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Juegos de tipo Tug-of-War y soluciones viscosas

La motivación de esta tesis es el estudio de los juegos llamados Tug-of-War en la
literatura, y su conexión con ecuaciones en derivadas parciales (EDP). Consideramos
diferentes variantes de juegos de dos jugadores, con suma cero, que dependen de un
parámetro que controla el tamaño del paso que se da cuando se actualiza la posición del
juego. Se demuestra que el valor de estos juegos converge (cuando el parámetro tiende a
cero) a una solución de una EDP (que debe ser interpretada en sentido viscoso). De esta
forma nos encontramos con una nueva herramienta, basada en teoŕıa de probabilidad,
para obtener soluciones de problemas no-variacionales como por ejemplo:

(i) max{−∆p1u,−∆p2u} = 0,

(ii) min{−∆p1u,−∆p2u} = 0,

(iii) λj(D
2u) = 0.

Aqúı ∆pu = div(|∇u|p−2∇u) es el operador conocido como p−laplaciano y λj(D
2u) es

ej j−ésimo autovalor de D2u.

También presentamos resultados relacionados con estos operadores que no están
directamente conectados con los juegos que motivaron su estudio. Obtuvimos una
interpretación geométrica de las soluciones viscosas de la ecuación λj(D

2u) = 0 en
términos de envolventes cóncavo/convexas sobre espacios afines de dimensión j. Esta
caracterización geométrica nos permitió dar condiciones necesarias y suficientes sobre el
dominio para asegurar el buen planteo del problema de Dirichlet asociado a la ecuación.

Motivados por las ecuaciones (i) y (ii) consideramos ecuaciones de la forma

max {L1u, L2u} = 0.

Presentamos un nuevo esquema iterativo usando el problema del obstáculo, que con-
verge a una solución de esta ecuación.

Finalmente, encontramos nuevas cotas para el primer autovalor de un operador
eĺıptico totalmente no-lineal. Esta nueva cota inferior nos permite probar que

lim
p→∞

λ1,p = λ1,∞ =
( π

2R

)2

,

donde λ1,p y λ1,∞ son el autovalor principal del p-laplaciano homogénero y del infinito
laplaciano homogéneo respectivamente.

Palabras clave: Juegos de tipo Tug-of-War, Soluciones Viscosas, Condición de
frontera de Dirichlet.



Tug-of-War games and viscosity solutions

This thesis is motivated by the study of Tug-of-War games in connection with par-
tial differential equations (PDE). We consider different variants of two-player zero-sum
games that depend on a parameter that control the size of the step that actualizes the
position of the game. We show that the value functions of these games converge (as
the parameter goes to zero) to a solution of a PDE (that has to be interpreted in the
viscosity sense). In this way we found a new tool, based in probability theory, to obtain
solutions to non-variational problems like

(i) max{−∆p1u,−∆p2u} = 0,

(ii) min{−∆p1u,−∆p2u} = 0,

(iii) λj(D
2u) = 0.

Here ∆pu = div(|∇u|p−2∇u) is the p−laplacian and λj(D
2u) stands for the j−th eigen-

value of D2u.

We also present results related to these operators that are not directly connected to
the games that motivated their study. We obtained a geometric interpretation of the
viscosity solutions to the equation λj(D

2u) = 0 in terms of convex/concave envelopes
over affine spaces of dimension j. This geometric interpretation of the solutions allows
us to give necessary and sufficient conditions on the domain in order to guarantee the
well posedness of the Dirichlet problem associated to this equation.

Motivated by equations (i) and (ii) we were lead to consider equations of the form

max {L1u, L2u} = 0.

We present a new iterative scheme using the obstacle problem that converges to a
solution of this equation.

Finally, we also discuss new bounds for the first eigenvalue of fully nonlinear elliptic
operators. These new bounds allow us to prove that

lim
p→∞

λ1,p = λ1,∞ =
( π

2R

)2

,

where λ1,p and λ1,∞ are the principal eigenvalue for the homogeneous p-laplacian and
the homogeneous infinity laplacian respectively.

Keywords: Tug-of-War games, Viscosity solutions, Dirichlet boundary conditions.
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Chapter 1

Introducción

La motivación de esta tesis es el estudio de diferentes versiones de los juegos conoci-
dos como de tipo Tug-of-War. Estos juegos constituyen un nuevo caṕıtulo en la rica
historia de resultados que conectan la teoŕıa de ecuaciones diferenciales con la teoŕıa
de probabilidad. Los trabajos de Doob, Feller, Hunt, Kakutani, Kolmogorov y muchos
otros muestran la profunda ráız común entre la teoŕıa clásica del potencial y la teoŕıa
de probabilidad. La idea que subyace en esta relación es que las funciones armónicas y
las martingalas tiene un punto en común: las fórmulas de valor medio. Esta relación
también es fruct́ıfera en el caso no lineal y los juegos del tipo Tug-of-War dan muestra
de ello.

A fines de la década del ’80 el matemático David Ross Richman propuso un nuevo
tipo de juego a mitad de camino entre los clásicos de la teoŕıa de juegos de Von Neumann
y Morgenstern, y los juegos combinatorios estudiados por Zermelo, Lasker y Conway,
entre otros. Aqúı dos jugadores se enfrentan en un juego combinatorio arbitrario (tatet́ı,
ajedrez, damas, etc.), pero cada uno posee cierta suma de dinero, que modifica las reglas
del juego: cada movida se licita y el que oferta más gana el derecho a mover. En caso
de empate en las ofertas, se puede decidir aleatoriamente tirando una moneda.

A fines de los ’90 en [50] y [51] se estudió esta clase de juegos, conocidos como
Richman games. Se los tradujo a un problema de difusión sobre un grafo: los nodos
son las posiciones del juego, los links equivalen a las movidas permitidas, y una ficha
en cierto nodo es desplazada por uno u otro jugador según quien gane la licitación. El
juego termina cuando la ficha llega a los nodos del grafo marcados como terminales
y un dato de borde indica cuánto gana el primer jugador, monto pagado por el otro
jugador.

Entre las distintas modificaciones del juego, un caso interesante es cuando el turno
se decide aleatoriamente tirando una moneda justa (con la misma probabilidad de cara
o cruz), eliminando aśı el proceso de licitación en cada turno. Esta idea dio lugar al
juego Tug-of-War cuyo origen está en el trabajo [70] de Peres, Schramm, Sheffield y
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Wilson. Alĺı se estudia ese juego y se muestra su conexión con ecuaciones diferenciales.
Más concretamente con el∞−laplaciano, un operador que surge naturalmente asociado
al problema de extensión Lipschitz absolutamente minimal, ver [6].

Al trabajar con ecuaciones diferenciales cabe hacer mención al tipo de soluciones
a considerar. La teoŕıa de operadores de segundo orden en forma de divergencia se
asocia usualmente al concepto de soluciones débiles; sin embargo, cuando se trata de
ecuaciones fuertemente no lineales que no están en forma de divergencia, el uso de
soluciones en sentido viscoso es más apropiado.

Este tipo de soluciones fue introducida por Crandall y Lions en la década del ’80. Al
hablar de soluciones viscosas es inevitable mencionar la clásica referencia [33]. Incluimos
en esta tesis un breve repaso sobre la teoŕıa de soluciones viscosas en el Apéndice A.
Alĺı se pueden encontrar algunos comentarios generales sobre la teoŕıa y detalles de
algunos resultados utilizados a lo largo de este manuscrito. Más allá de que en la tesis
utilicemos de manera exclusiva este tipo de soluciones, esto no es un limitante en cuanto
a los resultados. Por ejemplo, notemos que para el p−Laplaciano, div(|Du|p−2Du) = 0,
fue probado en [41] y [44] la equivalencia entre soluciones en sentido viscoso y soluciones
débiles.

Por ser uno de los disparadores de esta tesis, describamos aqúı el juego introducido
en [70]. El juego conocido como Tug-of-War es un juego de dos jugadores de suma
cero, es decir, dos jugadores compiten uno contra el otro y las ganancias de uno de
ellos son las perdidas del otro. Entonces, uno de ellos, digamos el Jugador I, juega
tratando de maximizar su ganancia esperada, mientras el otro, digamos el Jugador II,
trata de minimizar la ganancia del Jugador I (o, como el juego es de suma cero, trata
de maximizar su propia ganancia).

Consideremos un dominio acotado Ω ⊂ RN y un ε > 0 fijo. Inicialmente, una
ficha se encuentra en un punto x0 ∈ Ω. Los dos jugadores, Jugador I y Jugador II,
juegan de acuerdo a las siguientes reglas: se tira una moneda equilibrada (con la misma
probabilidad de cara o cruz) y el jugador que gana la tirada de la moneda mueve la ficha
a cualquier punto x1 de su elección a distancia menor a ε del anterior, x1 ∈ Bε(x0). A
partir de este punto x1 continúan jugando con las mismas reglas. En cada turno, se tira
nuevamente la moneda y el ganador elige la nueva posición del juego xk ∈ Bε(xk−1).

Este procedimiento nos da una sucesión de posiciones del juego x0, x1, . . .. Cuando
la posición de la ficha sale del dominio Ω, digamos en el paso τ , el juego termina. En
esta última posición del juego la ficha se encuentra en RN \ Ω. Dada una función de
pago final, g : RN \ Ω → R, al final del juego el Jugador II le paga al Jugador I la
cantidad dada por g(xτ ), es decir, el Jugador I obtuvo g(xτ ) mientras que el Jugador II
obtuvo −g(xτ ).

Una estrategia para el Jugador I, SI, es la colección de funciones medibles SI =
{SkI }∞k=0 tales que la siguiente posición del juego es

SkI (x0, x1, . . . , xk) = xk+1 ∈ Bε(xk)
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dado que el Jugador I ganó la tirada de la moneda dada la historia del juego hasta esa
movida (x0, x1, . . . , xk). Análogamente, el Jugador II juega de acuerdo a una estrategia
SII.

Para cada x0 ∈ Ω podemos considerar el valor esperado del juego empezando en
ese punto x0 asumiendo que ambos jugadores juegan de forma óptima, denotamos este
valor por uε(x0). Esta función es la que llamaremos el valor del juego. Para cada ε,
tenemos entonces una función uε : Ω→ R. En [70] se demuestra que existe una función
continua u : Ω→ R tal que uε → u cuando ε→ 0, y que u satisface

−∆∞u = −(∇u)tD2u∇u = 0 en Ω,

junto con la condión de borde u = g en ∂Ω.

Luego de este innovador trabajo, se consideraron diversas versiones de este juego y
se obtuvieron diferentes resultados. En [71] se estudió una versión del juego relacionada
con el p−laplaciano. Una versión no local del juego fue propuesta en [20] y en [21].
Diferentes condiciones de contorno también pueden ser consideradas: condiciones de
tipo Neumann, [3], y condiciones de tipo mixto, [32]. Un juego a tiempo continuo fue
introducido en [9].

En este punto debemos mencionar [61], [62] y [63] donde se estudia una versión del
juego relacionada con el p-laplaciano. Estos trabajos introdujeron un marco teórico
que fue aprovechado en trabajos posteriores. Un juego relacionado con el problema
del obstáculo fue estudiado en [64], uno relacionado con un operador que involucra
una restricción de gradiente fue considerado en [45], un juego para el p(x)-laplaciano
en [7], juegos para problemas parabólicos en [58], [37] y [10], y otras variantes en [38]
y [66]. Esta forma de abordar problemas de EDP también se ha usado para probar
resultados de regularidad de formas diferentes a las usuales (por ejemplo, la desigualdad
de Harnack’s y regularidad Hölder), citamos [56], [57], [73], [8] y [69].

Motivados por estos resultados previos, en esta tesis consideramos una variante
distinta del juego. En el Caṕıtulo 3 introducimos el juego que llamamos Tug-of-War
desbalanceado con ruido. El formato general es el mismo que el del juego original, pero
las reglas cambian ligeramente. En cada turno el Jugador I elige una moneda entre dos
posibles. Se tira esta moneda, que está desbalanceada, con probabilidades αi y βi, con
αi + βi = 1 y 1 ≥ αi, βi ≥ 0, i = 1, 2. Ahora se juega el juego Tug-of-War con ruido
descripto en [63] con probabilidades dadas por αi, βi. Si sale cara (probabilidad αi),
entonces se tira una moneda balanceada (con probabilidades iguales de cara y ceca) y
el jugador ganador de la tirada de esta última moneda mueve la posición de la ficha
a cualquier x1 ∈ Bε(x0) de su elección. Por otra parte, si en la tirada de la moneda
original desbalanceada sale ceca (probabilidad βi) la posición del juego se mueve al azar
con probabilidad uniforme a un punto x1 ∈ Bε(x0).

Cuando la posición de la ficha cae fuera del dominio Ω, digamos en la jugada τ , el
juego termina. El pago total está dado por una función de pago parcial f : Ω → R y
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una función de pago final g : RN \Ω→ R. Con estas dos funciones de pago, el pago final
que el Jugador II le paga al Jugador I viene dado por la fórmula g(xτ ) + ε2

∑τ−1
n=0 f(xn).

Primero demostramos que este juego tiene un valor y que este valor satisface el
Principio de Programación Dinámico dado por:

uε(x) = ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup

y∈Bε(x)

uε(y) + inf
y∈Bε(x)

uε(y)

}
+ βi

∫
Bε(x)

uε(y)dy

)

para todo x ∈ Ω, con uε(x) = g(x) para x 6∈ Ω. A continuación, probamos que existe
una función continua u tal que

uε → u uniformemente en Ω.

Este ĺımite u resulta ser una solución viscosa de{
max {−∆p1u,−∆p2u} = f̄ en Ω,

u = g en ∂Ω,
(∗)

donde f̄ = 2f , −∆pu = |∇u|2−pdiv(|∇u|p−2∇u) es el p−Laplaciano 1−homogéneo y
finalmente p1, p2 están dados por

αi =
pi − 2

pi +N
, βi =

2 +N

pi +N
, i = 1, 2.

Para este problema ĺımite probamos existencia y unicidad de solución viscosa. Un
resultado similar se puede obtener para el operador min {−∆p1u,−∆p2u}. Notemos
que una solución u de (∗) con f̄ = 0 nos da una cota uniforme para todas las funciones
p−armónicas con p1 ≤ p ≤ p2, es decir, si v es solución de{

−∆pv = 0 en Ω,

v = g en ∂Ω,

se tiene v ≥ u.

Cuando este juego se juega con ruido en todos los turnos, es decir, cuando los dos
βi son estrictamente positivos, el juego termina casi seguramente independientemente
de las estrategias elegidas por los dos jugadores. Cuando f es estrictamente positiva
o estrictamente negativa, uno de los dos jugadores tiene una fuerte motivación para
terminar el juego rápidamente. En ambos casos, este hecho simplifica notablemente los
argumentos usados en las demostraciones. Cuando f es cero y uno de los αi es igual a
uno (y en consecuencia el correspondiente βi es igual a cero) los argumentos se vuelven
más delicados. Para probar que el juego tiene un valor en este caso nos hace falta
desarrollar un nuevo argumento que es diferente a los usados en los trabajos previos.
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Motivados por el estudio de la ecuación max {−∆p1u,−∆p2u} = 0 fuimos llevados
a considerar ecuaciones de la forma

max {L1u, L2u} = 0.

Aqúı L1 y L2 son dos operadores para los que vale el principio del máximo. En el
Caṕıtulo 4 estudiamos este tipo de problemas y los relacionamos con soluciones del
problema del obstáculo, es decir, soluciones de

u ≥ Φ en Ω,
Lu ≥ 0 en Ω,
Lu = 0 en {u > φ},
u = g en ∂Ω.

(∗∗)

Aqúı las soluciones están sobre el obstáculo Φ en Ω. Una forma de entender este
problema es interpretar su solución como la menor supersolución de Lu = 0 que se
encuentra por encima del obstáculo Φ. Nos referiremos al problema del obstáculo como
PL(Φ, g).

Sean L1 y L2 dos operadores diferenciales y g definida en ∂Ω un dato de borde fijo.
Definimos una sucesión de funciones continuas inductivamente. Tomamos u1 como la
solución del problema de Dirichlet para L1. Luego, un está dada por la solución al
problema del obstáculo para Li (i = 1, 2 alternadamente) con obstáculo dado por el
termino previo un−1 en el dominio Ω. Es decir, definimos

un como la solución de

{
PL2(un−1, g) para n par,

PL1(un−1, g) para n impar.

Demostramos que de esta manera obtenemos un sucesión creciente que converge uni-
formemente a una solución viscosa del operador minimal asociado a L1 y L2, esto es, el
ĺımite u verifica min{L1u, L2u} = 0 en Ω con u = g en ∂Ω.

Al considerar el problema del obstáculo por arriba (esto es, tomamos u ≤ Φ y Lu ≤ 0
en Ω en (∗∗)) obtenemos, con las mismas ideas, una solución de max{L1u, L2u} = 0.
También incluimos algunas extensiones de este resultado. De manera similar podemos
obtener una construción para una familia finita o numerable de operadores. También
proponemos una construcción diferente que nos permite obtener un resultado similar
para una familia arbitraria de operadores.

En el Caṕıtulo 5 presentamos resultados que fueron inspirados por el estudio del
∞−laplaciano en el contexto de los juegos tipo Tug-of-War. Obtenemos una cota
inferior para el autovalor principal de Dirichlet de un operador eĺıptico fuertemente no
lineal. La cota obtenida depende del radio de la bola más grande incluida en Ω, esto es

R = max
x∈Ω̄

dist(x,Ωc).
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Dado un operador L, para obtener la cota debemos construir un función radial creciente
φ(r) definida en BR con φ(0) = 0 tal que

Lφ+ λφ ≤ 0

en BR \ {0} para algún λ ∈ R. Luego obtenemos

λ1(Ω) ≥ λ.

Ilustramos la construción requerida para obtener la cota en varios ejemplos. En
particular usamos el resultado para probar que

lim
p→∞

λ1,p = λ1,∞ =
( π

2R

)2

donde λ1,p y λ1,∞ son los autovalores principales para el p-laplaciano homogéneo y para
el ∞-laplaciano respectivamente.

En el Caṕıtulo 6 presentamos un juego que llamamos caminata aleatoria para λj.
Aqúı λ1 ≤ ... ≤ λN son los autovalores (ordenados de menor a mayor) de la matriz
Hesiana D2u. Como antes el juego se desarrolla en un dominio abierto acotado Ω ⊂ RN .
Se fija un número real ε > 0. Una ficha se coloca en x0 ∈ Ω. El Jugador I, que busca
minimizar el pago final, elige un subespacio S de dimensión j y luego en Jugador II (que
intenta maximizar el pago final) elige un vector unitario, v, en el subespacio previamente
elegido S. Luego la ficha es movida a x ± εv con igual probabilidad. Después de la
primera ronda, el juego continua desde x1 con las mismas reglas.

Denotamos xτ ∈ RN \ Ω la primer posición fuera de Ω. En este momento el juego
termina con pago final dado por g(xτ ), donde g : RN \Ω→ R es una función continua.
El Jugador I gana −g(xτ ) y el Jugador II obtiene g(xτ ).

Los valores del juego satisfacen

uε(x) = inf
dim(S)=j

sup
v∈S,|v|=1

{
1

2
uε(x+ εv) +

1

2
uε(x− εv)

}
y convergen uniformemente cuando ε→ 0 a una solución de

λj(D
2u) = 0,

en Ω, con u = g, en ∂Ω.

El juego nos motivó a estudiar la ecuación λj(D
2u) = 0. Como referencias sobre

este problema mencionamos [19, 18, 27, 39, 40, 74, 76]. En la tesis, damos una inter-
pretación geométrica de las soluciones viscosas del problema en términos de envolvente
cóncavas/convexas sobre espacios afines de dimensión j. Consideramos Hj, el conjunto
de las funciones v tales que

v ≤ g en ∂Ω,
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y tienen la siguiente propiedad: para todo espacio af́ın S de dimension j y todo dominio
j-dimensional D ⊂ S ∩ Ω vale que

v ≤ z en D

donde z es la envolvente cóncava de v|∂D en D.

Obtuvimos el siguiente resultado: una función semi-continua superior v pertenece a
Hj si y solo si es una subsolución de λj(D

2u) = 0. Más aún, probamos que la función

u(x) = sup
v∈Hj

v(x)

es la solución viscosa más grande de λj(D
2u) = 0, en Ω, con u ≤ g en ∂Ω.

Con esta caracterización para las soluciones damos condiciones necesarias y sufi-
cientes en el dominio tal que el problema tiene una solución continua para todo dato g.
Dado y ∈ ∂Ω asumimos que para todo r > 0 existe δ > 0 tal que para todo x ∈ Bδ(y)∩Ω
y S ⊂ RN subespacio de dimensión j, existe v ∈ S de norma 1 tal que

{x+ tv}t∈R ∩Br(y) ∩ ∂Ω 6= ∅. (Gj)

Con esta definición, probamos que la ecuación λj(D
2u) = 0 tiene una solución continua

para todo dato continuo g si y solo si Ω satisface (Gj) y (GN−j+1). Notar que este es un
resultado del tipo “si y solo si”, algo que no es usual al dar condiciones de resolubilidad
sobre los dominios.

En el Apéndice A incluimos algunos resultados de la teoŕıa de soluciones viscosas;
en el Apéndice B algunos resultados de la teoŕıa de probabilidades que usamos a lo
largo de los caṕıtulos.

Los resultados de esta tesis están contenidos en los siguientes art́ıculos:

1. P. Blanc – J. P. Pinasco – J. D. Rossi. Obstacle problems and maximal operators.
Advanced Nonlinear Studies. Vol. 16(2), 355–362, (2016).

2. P. Blanc – J. P. Pinasco – J. D. Rossi. Maximal operators for the p-Laplacian
family. Pacific Journal of Mathematics. Vol. 287(2), 257–295, (2017).

3. P. Blanc – J. D. Rossi. Games for eigenvalues of the Hessian and concave/convex
envelopes. To appear in Journal de Mathematiques Pures et Appliquees.

4. P. Blanc. A lower bound for the principal eigenvalue of fully nonlinear elliptic
operators. Submitted.
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Chapter 2

Introduction

This thesis was motivated by the study of different variants of Tug-of-War games.
These games have lead to a new chapter in the rich history of results connecting differ-
ential equations and probability theory. The fundamental works by Doob, Feller, Hunt,
Kakutani, Kolmogorov and many others show the deep connection between classical
potential theory and probability theory. The main idea that is behind this relation is
that harmonic functions and martingales have something in common: the mean value
formulas. This relation is also quite fruitful in the non-linear case and the Tug-of-War
games are a clear evidence of this fact.

At the end of the decade of the 80s the mathematician David Ross Richman proposed
a new kind of game that lies in between the classical games introduced by Von Neumann
and Morgenstern, and the combinatoric games studied by Zermelo, Lasker and Conway
among others. Here two players are in contest in an arbitrary combinatoric game (Tic-
tac-toe, chess, checkers, etc.), but each one of them has a certain amount of money that
modifies the rules of the game: at each turn the players bid and the one who offered
more win the right to make the next move. In case that both players bid the same
amount the turn can be decided by a coin toss.

At the end of the 90s in [50] and [51] this kind of games, known as Richman’s games
were studied. They have been translated into a diffusion problem on a graph: the nodes
stand for the positions of the game and the links between the nodes are the allowed
moves, a token is moved by one of the players according to who wins the bidding. The
game ends when the token arrives to the nodes of the graph labelled as terminal ones
and there a certain boundary datum says how much the first player gets (that is the
amount of money that the other player pays).

Among the several variants of these games, an interesting case is when the turn is
decided at random tossing a fair coin at each turn, getting rid in this way of the bidding
mechanism. This idea gives rise to the game called Tug-of-War introduced in [70] by
Peres, Schramm, Sheffield and Wilson. In that reference this game was studied and a
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connection with PDEs was found. More concretely, with the∞−laplacian, an operator
that appears naturally in a completely different context, it is associated to the minimal
Lipschitz extension problem, see [6].

When we deal with differential equations we have to mention the concept of solution
that we are considering. The theory for second order operators in divergence form
is associated to the concept of weak solutions; however, when one deals with fully
nonlinear equations that are not in divergence form, the use of viscosity solution seems
more appropriate.

This notion of solution was introduced by Crandall and Lions in the 80s. Here
we have to mention the classical reference [33]. We included a brief summary of the
viscosity solutions theory in Appendix A. There you will find some general comments
concerning the theory and some results that will be used in this thesis. Here, we restrict
ourselves to this notion of solution. However, this is not a limitation. For example, for
the p−Laplacian, div(|Du|p−2Du) = 0, we remark that it was proved in [41] and [44]
the equivalence between solutions in the viscosity sense and in the weak sense.

Being one of the triggers of this thesis, we describe here the game introduced in
[70]. Tug-of-War is a two-person, zero-sum game, that is, two players are in contest
and the total earnings of one of them are the losses of the other. Hence, one of them,
say Player I, plays trying to maximize his expected outcome, while the other, say Player
II is trying to minimize Player I’s outcome (or, since the game is zero-sum, to maximize
his own outcome).

Consider a bounded domain Ω ⊂ RN and a fixed ε > 0. At an initial time, a token
is placed at a point x0 ∈ Ω. Players I and II play as follows. They toss a fair coin
(with the same probability for heads and tails) and the winner of the toss moves the
game token to any point x1 of his choice at distance less than ε of the previous position,
x1 ∈ Bε(x0). Then, they continue playing from x1. At each turn, the coin is tossed
again, and the winner chooses a new game state xk ∈ Bε(xk−1).

This procedure yields a sequence of game states x0, x1, . . .. Once the game position
leaves Ω, let say at the τ -th step, the game ends. At that time the token will be on
RN \ Ω. A final payoff function is given in RN \ Ω, g : RN \ Ω→ R. At the end of the
game Player II pays Player I the amount given by g(xτ ), that is, Player I have earned
g(xτ ) while Player II have earned −g(xτ ).

A strategy SI for Player I is a collection of measurable mappings SI = {SkI }∞k=0 such
that the next game position is

SkI (x0, x1, . . . , xk) = xk+1 ∈ Bε(xk)

if Player I wins the toss given a partial history (x0, x1, . . . , xk). Similarly Player II plays
according to a strategy SII.

For each x0 ∈ Ω we can consider the expected payoff uε(x0) for the game starting
at x0 assuming that both players play optimally. This is what we call the game value.
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For each ε, we have a function uε : Ω̄ → R. In [70] it is proved that there exists a
continuous function u : Ω̄→ R such that uε → u as ε→ 0, and that u satisfies

−∆∞u = −(∇u)tD2u∇u = 0 in Ω,

with the boundary condition u = g on ∂Ω.

After this seminal work many versions of the game were considered and many results
obtained. In [71] a version of the game related to the p−laplacian is studied. Non-local
version of the game where proposed in [20] and [21]. Different boundary conditions
where considered: Neumann boundary conditions in [3] and mixed boundary conditions
in [32]. A continuous time game was presented in [9].

Let us mention [61], [62] and [63] where a version of the game related to the p-
laplacian is studied. These works provided a framework that was exploited in later
works. A game related to the obstacle problem was studied in [64], one related to an
operator with a gradient constrain was considered in [45], a game related to the p(x)-
laplacian in [7], games related to parabolic problems in [58], [37] and [10], and we can
find other variants in [38] and [66]. This approach was also useful to found different
proofs of regularity results (such us Harnack’s inequality and Hölder regularity), we
refer to [56], [57], [73], [8] and [69].

Motivated by these results, here we consider a different variant of the game. In
Chapter 3 we introduce the game that we call unbalanced Tug-of-War game with noise.
The set-up is the same as in the original game. At every round Player I chooses a coin
between two possible ones. They toss the chosen coin which is biased with probabilities
αi and βi, αi +βi = 1 and 1 ≥ αi, βi ≥ 0, i = 1, 2. Now, they play the Tug-of-War with
noise game described in [63] with probabilities αi, βi. If they get heads (probability
αi), they toss a fair coin (with equal probability of heads and tails) and the winner
of the toss moves the game position to any x1 ∈ Bε(x0) of his choice. On the other
hand, if they get tails (probability βi) the game state moves according to the uniform
probability density to a random point x1 ∈ Bε(x0).

Once the game position leaves Ω, say at the τ -th step, the game ends. The total
payoff is given by a running payoff function f : Ω → R and a final payoff function
g : RN \Ω→ R. At the end Player II pays to Player I the amount given by the formula
g(xτ ) + ε2

∑τ−1
n=0 f(xn).

We prove that the game has a value and that the value satisfies the Dynamic Pro-
gramming Principle, given by:

uε(x) = ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup

y∈Bε(x)

uε(y) + inf
y∈Bε(x)

uε(y)

}
+ βi

∫
Bε(x)

uε(y)dy

)
for x ∈ Ω, with uε(x) = g(x) for x 6∈ Ω. Then we prove that there exists a continuous
function u such that

uε → u uniformly in Ω.
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This limit u turns out to be a viscosity solution to{
max {−∆p1u,−∆p2u} = f̄ on Ω,

u = g on ∂Ω,
(∗)

where f̄ = 2f , −∆pu = |∇u|2−pdiv(|∇u|p−2∇u) is the 1−homogeneous p−Laplacian
and p1, p2 are given by

αi =
pi − 2

pi +N
, βi =

2 +N

pi +N
, i = 1, 2.

For this limit problem, we prove existence and uniqueness of viscosity solutions. A
similar result can be obtained for min {−∆p1u,−∆p2u}. Note that a solution u to (∗)
when f̄ = 0 gives a uniform bound for every p−harmonic function with p1 ≤ p ≤ p2,
that is, if {

−∆pv = 0 on Ω,

u = g on ∂Ω,

we have v ≥ u.

When the game is played with some noise at every turn, that is, when the two βi are
strictly positive, the game ends almost surely independently of the strategies adopted
by the players. When f is strictly positive or negative, one of the players is motivated
to finish the match quickly. In both cases, this fact simplifies the arguments used in
the proofs. When f is zero and one of the αi is one (and therefore the corresponding
βi is zero) the argument is more delicate. To prove that the game has a value we need
to develop a new argument different from the ones used in the previous works.

Motivated by the study of the equation max {−∆p1u,−∆p2u} = 0 we were lead to
consider equations of the form

max {L1u, L2u} = 0.

Here L1 and L2 are two operators that have a maximum principle. In Chapter 4 we
study that kind of problem. We relate them to solutions of the obstacle problem, that
is 

u ≥ Φ in Ω,
Lu ≥ 0 in Ω,
Lu = 0 in {u > φ},
u = g on ∂Ω.

(∗∗)

Here solutions are above the obstacle Φ inside Ω. A possible way to interpret the
solution to this problem is to look for the smallest supersolution to Lu = 0 that is
above the obstacle Φ. We will refer to the obstacle problem as PL(Φ, g).

Let L1 and L2 be two differential operators and g defined on ∂Ω a fixed boundary
datum. We define a sequence of continuous functions inductively. We take u1 as the
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solution to the Dirichlet problem for L1. Then, un is given by the solution to the
obstacle problem for an operator Li (i = 1, 2 alternating them) with obstacle given by
the previous term un−1 in the domain Ω. That is, we define

un as the solution to

{
PL2(un−1, g) for n even,

PL1(un−1, g) for n odd.

We show that in this way we obtain an increasing sequence that converge uniformly
to a viscosity solution to the minimal operator associated with L1 and L2, that is, the
limit u verifies min{L1u, L2u} = 0 in Ω with u = g on ∂Ω.

When we consider the obstacle problem from above (that is we take u ≤ Φ and
Lu ≤ 0 in Ω in (∗∗)) we get, using the same ideas, a solution to max{L1u, L2u} = 0.
We also propose some extensions of this result. In a similar way we can obtain a
construction for a finite number of operators or even for countably many operators.
We also propose a different construction that allow us to obtain a similar result for an
arbitrary family of operators.

In Chapter 5 we present a result inspired in the study of the ∞−laplacian in the
context of Tug-of-War games. We obtain a lower bound for the principal Dirichlet
eigenvalue of a fully nonlinear elliptic operator. The bound obtained depends on the
largest radius of a ball included in Ω, that is

R = max
x∈Ω̄

dist(x,Ωc).

Given an operator L, to obtain the lower bound we need to construct a radial increasing
function φ(r) defined in BR with φ(0) = 0 such that

Lφ+ λφ ≤ 0

in BR \ {0} for certain λ ∈ R. Then we obtain

λ1(Ω) ≥ λ.

We illustrate the construction required to obtain the bound in several examples. In
particular we use our results to prove that

lim
p→∞

λ1,p = λ1,∞ =
( π

2R

)2

where λ1,p and λ1,∞ are the principal eigenvalue for the homogeneous p-laplacian and
the homogeneous infinity laplacian respectively.

In Chapter 6 we present a game that we call a random walk for λj. Here λ1 ≤ ... ≤
λN are the eigenvalues (ordered form the smaller to the largest) of the Hessian matrix
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D2u. As before the game is played in a bounded open set Ω ⊂ RN . A real number
ε > 0 is given. A token is placed at x0 ∈ Ω. Player I, the player seeking to minimize
the final payoff, chooses a subspace S of dimension j and then Player II (who wants to
maximize the expected payoff) chooses a unitary vector, v, in the subspace S. Then
the position of the token is moved to x ± εv with equal probabilities. After the first
round, the game continues from x1 according to the same rules.

We denote by xτ ∈ RN \ Ω the first point outside Ω. At this time the game ends
with the final payoff given by g(xτ ), where g : RN \ Ω → R is a continuous function.
Player I earns −g(xτ ) while Player II earns g(xτ ).

The game value satisfies

uε(x) = inf
dim(S)=j

sup
v∈S,|v|=1

{
1

2
uε(x+ εv) +

1

2
uε(x− εv)

}
and converges uniformly as ε→ 0 to a solution of

λj(D
2u) = 0,

in Ω, with u = g, on ∂Ω.

This game motivated us to study the equation λj(D
2u) = 0. As references for this

problem and related ones we mention [19, 18, 27, 39, 40, 74, 76]. In the thesis, we
gave a geometric interpretation of the viscosity solutions to the problem in terms of
convex/concave envelopes over affine spaces of dimension j. We consider Hj, the set of
functions v such that

v ≤ g on ∂Ω,

and have the following property: for every S affine of dimension j and every j− dimen-
sional domain D ⊂ S ∩ Ω it holds that

v ≤ z in D,

where z is the concave envelope of v|∂D in D.

We obtained the following result: an upper semi-continuous function v belongs to
Hj if and only if it is a viscosity subsolution to λj(D

2u) = 0. Even more, we prove that
the function

u(x) = sup
v∈Hj

v(x)

is the largest viscosity solution to λj(D
2u) = 0, in Ω, with u ≤ g on ∂Ω.

With this characterization of the solutions we give necessary and sufficient conditions
on the domain so that the problem has a continuous solution for every continuous datum
g. Given y ∈ ∂Ω we assume that for every r > 0 there exists δ > 0 such that for every
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x ∈ Bδ(y) ∩ Ω and S ⊂ RN a subspace of dimension j, there exists v ∈ S of norm 1
such that

{x+ tv}t∈R ∩Br(y) ∩ ∂Ω 6= ∅. (Gj)

With this definition, we prove that the equation λj(D
2u) = 0 has a continuous solution

for every continuous data g if and only if Ω satisfies both (Gj) and (GN−j+1). Note
that this is an “if and only if” result, something that is not usual when dealing with
solvability conditions on the domain.

In Appendix A we include results from general viscosity theory; while in Appendix
B we collect some probability results that we use along the chapters.

The results of this thesis are contained in the following articles:

1. P. Blanc – J. P. Pinasco – J. D. Rossi. Obstacle problems and maximal operators.
Advanced Nonlinear Studies. Vol. 16(2), 355–362, (2016).

2. P. Blanc – J. P. Pinasco – J. D. Rossi. Maximal operators for the p-Laplacian
family. Pacific Journal of Mathematics. Vol. 287(2), 257–295, (2017).

3. P. Blanc – J. D. Rossi. Games for eigenvalues of the Hessian and concave/convex
envelopes. To appear in Journal de Mathematiques Pures et Appliquees.

4. P. Blanc. A lower bound for the principal eigenvalue of fully nonlinear elliptic
operators. Submitted.
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Chapter 3

Maximal operators for the
p-laplacian family

3.1 Introduction

In this chapter we study a variant of the tug-of-war game introduced in [62]. The
version of the game that we consider here is related to the PDE

max {−∆p1u(x), −∆p2u(x)} = f(x).

We will explore the interplay between probability theory and partial differential equa-
tions that arises. Here we include the results obtained in [24], a joint work with Juan
Pablo Pinasco and Julio Daniel Rossi.

Our first goal is to show existence and uniqueness of viscosity solutions to the
Dirichlet problem for the maximal operator associated with the family of p−Laplacian
operators, −∆pu = −div(|∇u|p−2∇u) with 2 ≤ p ≤ ∞. We refer to Appendix A for
details on viscosity solutions.

When one considers the family of uniformly elliptic second order operators of the
form −tr(AD2u) and look for maximal operators one finds the so-called Pucci maximal
operator, P+

λ,Λ(D2u) = maxA∈A−tr(AD2u), where A is the set of uniformly elliptic
matrices with ellipticity constant between λ and Λ. This maximal operator plays a
crucial role in the regularity theory for uniformly elliptic second order operators and
has the following properties, see [30]:

1. (Monotonicity) If λ1 ≤ λ2 ≤ Λ2 ≤ Λ1 then P+
λ2,Λ2

(D2u) ≤ P+
λ1,Λ1

(D2u).

2. (Positively homogeneous) If α ≥ 0, then P+
λ,Λ(αD2u) = αP+

λ,Λ(D2u).

3. (Subsolutions) If u verifies P+
λ,Λ(D2u) ≤ 0 in the viscosity sense, then−tr(AD2u) ≤

0 for every matrix A with ellipticity constants λ and Λ (that is, a subsolution to

25



the maximal operator is a subsolution for every elliptic operator in the class).
Therefore, from the comparison principle we get that a solution to P+

λ,Λ(D2u) ≤ 0
provides a lower bound for every solution of any elliptic operator in the class with
the same boundary values.

If we try to reproduce these properties for the family of p−Laplacians we are lead to
consider the operator maxp1≤p≤p2 −∆pu(x). This operator has similar properties to the
ones that hold for the Pucci maximal operator, but with respect to the p−Laplacian
family.

Hence, it is natural to consider the Dirichlet problem for the partial differential
equation

max
p1≤p≤p2

−∆pu(x) = f(x) (3.1)

in a bounded smooth domain Ω ⊂ RN for 2 ≤ p1, p2 ≤ ∞. Here we have normalized
the p−Laplacian and considered the operator

∆pu =
div (|∇u|p−2∇u)

(N + p)|∇u|p−2
,

that is called the 1-homogeneus p-Laplacian. We will assume that f ≡ 0 or that f is
strictly positive or negative in Ω. We will call solutions to this problem with f ≡ 0, u,
as p1-p2-harmonic functions.

Note that, formally, the 1-homogeneus p-laplacian can be written as

∆pu =
p− 2

N + p
∆∞u+

1

N + p
∆u

where ∆u is the usual Laplacian and ∆∞u is the normalized ∞−Laplacian, that is,

∆u =
N∑
i=1

uxixi and ∆∞u =
1

|∇u|2
N∑

i,j=1

uxiuxixiuxj .

Therefore, we can think about the 1-homogeneus p-laplacian as a convex combination
of the laplacian divided by N + 2 and the ∞-laplacian, in fact,

∆pu =
p− 2

N + p
∆∞u+

N + 2

N + p

∆u

N + 2
= α∆∞u+ θ∆u

with α = p−2
N+p

and θ = 1
N+p

(we reserve β for a different constant) for 2 ≤ p <∞, and
α = 1 and θ = 0 for p =∞.

Since we are dealing with convex combinations, equation (3.1) becomes

max
p1≤p≤p2

−∆pu(x) = max {−∆p1u(x), −∆p2u(x)} = f(x) (3.2)

with 2 ≤ p1, p2 ≤ ∞.

Our main result concerning viscosity solutions to (3.2) reads as follows:
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Theorem 3.1.1. Let Ω be a bounded domain such that the exterior ball condition holds
when p1 ≤ N or p2 ≤ N . Assume that infΩ f > 0, supΩ f < 0 or f ≡ 0. Then, given g
a continuous function defined on ∂Ω, there exists a unique viscosity solution u ∈ C(Ω̄)
of (3.2) with u = g in ∂Ω.

Moreover, a comparison principle holds, if u, v ∈ C(Ω̄) are such that

max {−∆p1u,−∆p2u} ≤ f max {−∆p1v,−∆p2v} ≥ f

in Ω and v ≥ u on ∂Ω, then v ≥ u in Ω.

In addition, we have a Hopf’s lemma: let u be a supersolution to (3.2) and x0 ∈ ∂Ω
be such that u(x0) > u(x) for all x ∈ Ω, then we have

lim sup
t→0+

u(x0 − tν)− u(x0)

t
< 0.

where ν is exterior normal to ∂Ω.

Remark 3.1.2. An analogous result holds for the equation minp1≤p≤p2 −∆pu(x) = f.

Remark 3.1.3. For the homogeneous case, f ≡ 0, we have that viscosity sub and
supersolutions to the 1-homogeneus p-Laplacian, − p−2

N+p
∆∞u − 1

N+p
∆u = 0, coincide

with viscosity sub and supersolutions to the usual (p − 1 homogeneous) p−Laplacian
−div (|∇u|p−2∇u) = 0, see [63].

Therefore, for f ≡ 0 we are providing existence and uniqueness of viscosity solutions
to maxp1≤p≤p2 −∆pu(x) = 0, being ∆pu the usual p−Laplacian that comes from calculus
of variations.

Remark 3.1.4. This maximal operator for the p−Laplacian family has the following
properties that are analogous to the ones described above for Pucci’s operator:

1. (Monotonicity) If p1,1 ≤ p2,1 ≤ p2,2 ≤ p1,2 then

max
p2,1≤p≤p2,2

−∆pu ≤ max
p1,1≤p≤p1,2

−∆pu.

2. (Positively homogeneous) If α ≥ 0, then

max
p1≤p≤p2

−∆p(αu) = α max
p1≤p≤p2

−∆pu.

3. (Subsolutions) A viscosity solution u to maxp1≤p≤p2 −∆pu(x) ≤ 0, is a viscosity
solution to −∆pu(x) ≤ 0 for every p1 ≤ p ≤ p2. Hence, from the comparison prin-
ciple we get that a solution to maxp1≤p≤p2 −∆pu(x) ≤ 0, provides a lower bound
for every solution of any elliptic operator in the class with the same boundary
values.
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We have two different approaches for this problem. The first one is based in PDE
tools in the framework of viscosity solutions. The second one is related to probability
theory (game theory) using the game that we describe below.

Let us introduce thea game that we call unbalanced Tug-of-War game with noise.
It is a two-player (Players I and II) zero-sum stochastic game. The game is played in
a bounded open set Ω ⊂ RN . Fix an ε > 0. At the initial time, the players place a
token at a point x0 ∈ Ω and Player I chooses a coin between two possible ones. They
toss the chosen coin which is biased with probabilities αi and βi, αi + βi = 1 and
1 ≥ αi, βi ≥ 0, i = 1, 2. Now, they play the Tug-of-War with noise game described
in [63] with probabilities αi, βi. If they get heads (probability αi), they toss a fair
coin (with equal probability of heads and tails) and the winner of the toss moves the
game position to any x1 ∈ Bε(x0) of his choice. On the other hand, if they get tails
(probability βi) the game state moves according to the uniform probability density to
a random point x1 ∈ Bε(x0). Once the game position leaves Ω, let say at the τ -th step,
the game ends. The payoff is given by a running payoff function f : Ω→ R and a final
payoff function g : RN \Ω→ R (note that we only use the values of g in a strip of width
ε around ∂Ω). At the end Player II pays to Player I the amount given by the formula
g(xτ ) + ε2

∑τ−1
n=0 f(xn). Note that the positions of the game depend on the strategies

adopted by Players I and II. From this procedure we get two extreme functions, uI(x0)
(the value of the game for Player I) and uII(x0) (the value of the game for Player II),
that are in a sense the best expected outcomes that each player can expect choosing a
strategy when the game starts at x0. When uI(x0) and uII(x0) coincide at every x0 ∈ Ω
this function uε := uI = uII is called the value of the game.

Theorem 3.1.5. Assume that f is a Lipschitz function with supΩ f < 0 or infΩ f > 0
or f ≡ 0. The unbalanced Tug-of-War game with noise with {α1, α2} 6= {0, 1} when
f ≡ 0 has a value and that value satisfies the Dynamic Programming Principle, given
by:

uε(x) = ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup

y∈Bε(x)

uε(y) + inf
y∈Bε(x)

uε(y)

}
+ βi

∫
Bε(x)

uε(y)dy

)
for x ∈ Ω, with uε(x) = g(x) for x 6∈ Ω.

Moreover, if g is Lipschitz and Ω satisfies the exterior ball condition, then there
exists a uniformly continuous function u such that

uε → u uniformly in Ω.

This limit u is a viscosity solution to{
max {−∆p1u,−∆p2u} = f̄ on Ω,

u = g on ∂Ω,
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where f̄ = 2f and p1, p2 are given by

αi =
pi − 2

pi +N
, βi =

2 +N

pi +N
, i = 1, 2.

Remark 3.1.6. When f is strictly positive or negative we have that the game ends
almost surely. The same is true (regardless the strategies adopted by the players) when
they play with some noise at every turn, that is, when the two βi are positive. This
fact simplifies the arguments used in the proofs.

When one of the αi is one (and therefore the corresponding βi is zero) the argument
is more delicate, see Section 3.4.

Remark 3.1.7. The proof of Theorem 3.1.5 follows from the results in sections 4 and 5.
In section 4 we establish that the game has a value and that the value is the unique
function that satisfies the Dynamic Programming Principle (DPP). In section 5 we prove
the convergence part of the theorem. In Proposition 3.4.4 we establish the existence of
a function satisfying the DPP. In Theorem 3.4.6 we prove that the function satisfying
the DPP is unique and coincide with the game value, in the case β1, β2 > 0, sup f < 0
or inf f > 0. The same result is obtained in the remaining cases in Theorems 3.4.8 and
3.4.9. Here is where we had to assume that {α1, α2} 6= {0, 1}. Finally, the convergence
is established in Corollaries 3.5.8 and 3.5.9.

Remark 3.1.8. Note that in the limit problem one only considers the values of g on ∂Ω
while in the game one needs g to be defined in a bigger set. Given a Lipschitz function
defined on ∂Ω we can just extend it to this larger set without affecting the Lipschitz
constant. For simplicity but making an abuse of notation we also call such extension
as g.

Remark 3.1.9. We also prove uniqueness of solutions to the DPP, see Section 3.4. That
is, there exists a unique function verifying

v(x) = ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup

y∈Bε(x)

v(y) + inf
y∈Bε(x)

v(y)

}
+ βi

∫
Bε(x)

v(y)dy

)

for x ∈ Ω, with v(x) = g(x) for x 6∈ Ω.

Remark 3.1.10. When Player II (recall that this player wants to minimize the expected
outcome) has the choice of the probabilities α and β we end up with a solution to{

min {−∆p1u,−∆p2u} = f on Ω,

u = g on ∂Ω,

Finally, we finish the introduction with a comment on the main technical novelties
contained in this chapter. To obtain existence and uniqueness for our maximal PDE

29



we first use ideas and techniques from viscosity solutions theory. This part follows the
usual steps (first one shows a comparison principle and then applies Perron’s method,
including the construction of barriers near the boundary), but here some extra care is
needed to deal with points at which the gradient of a test function vanishes. Concerning
the game theoretical approach we want to emphasize that when p2 = ∞ we don’t
know a priori that the game terminates almost surely and this fact introduces some
extra difficulties. The argument that shows that there is a unique solution to the
dynamic programming principle in this case is delicate, see Theorem 3.4.8. The proof
of convergence of the values of the game as the size of the steps goes to zero is also
different from previous results in the literature since here one has to take care of the
strategy of the player who chooses the parameters of the game. In particular, the proof
of the fact that when any of the two players pull in a fix direction the expectation of
the exit time is bounded above Cε2 is more involved, see Lemma 3.5.2.

The rest of the chapter is organized as follows: In Section 3.2 we prove the compari-
son principle and then existence and uniqueness for our problem using Perron’s method;
in Section 3.3 we introduce a precise description of the game; in Section 3.4 we show
that the game has a value and that this value is the solution to the Dynamic Program-
ming Principle; finally, in Section 3.5 we collect some properties of the value function
of the game and show that these values converge to the unique viscosity solution of our
problem.

3.2 Existence and uniqueness

First, let us state the definition of a viscosity solution. We refer to Appendix A for
general comments on viscosity solutions. We have to handle some technical difficul-
ties as the 1−homogeneous ∞-laplacian is not well defined when the gradient vanish.
Observing that

∆u = tr(D2u) and ∆∞u =
∇u
|∇u|

D2u
∇u
|∇u|

,

we can write (3.2) as F (∇u,D2u) = f where

F (v,X) = max
i∈{1,2}

{
−αi

v

|v|
X
v

|v|
− θitr(X)

}
Note that F is degenerate elliptic, that is,

F (v,X) ≤ F (v, Y ) for v ∈ RN \ {0} and X, Y ∈ SN provided X ≥ Y,

as it is generally requested to work in the context of viscosity solutions.
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This function F : RN × SN 7→ R is not well defined at v = 0. Therefore, we need to
consider the lower semicontinous F∗ and upper semicontinous F ∗ envelopes of F . This
functions coincide with F for v 6= 0 and for v = 0 are given by

F ∗(0, X) = max
i∈{1,2}

{−αiλmin(X)− θitr(X)}

and
F∗(0, X) = max

i∈{1,2}
{−αiλmax(X)− θitr(X)}

where
λmin(X) = min{λ : λ is an eigenvalue of X}

and
λmax(X) = max{λ : λ is an eigenvalue of X}.

Now we are ready to give the definition for a viscosity solution to our equation.

Definition 3.2.1. For 2 ≤ p1, p2 ≤ ∞ consider the equation

max {−∆p1u,−∆p2u} = f

in Ω.

1. A lower semi-continuous function u is a viscosity supersolution if for every φ ∈ C2

such that φ touches u at x ∈ Ω strictly from below, we have

F ∗(∇φ(x), D2φ(x)) ≥ f(x).

2. An upper semi-continuous function u is a subsolution if for every ψ ∈ C2 such
that ψ touches u at x ∈ Ω strictly from above, we have

F∗(∇ψ(x), D2ψ(x)) ≤ f(x).

3. Finally, u is a viscosity solution if it is both a sub- and supersolution.

In the case f ≡ 0 comparison holds for our equation as a consequence of the main
result of [49]. See also [11]. Note that the comparison principle obtained in [49] is
slightly more general than the one obtained in [11]. We need this more general result
here as our F is not necessarily continuous when the gradient vanishes. In [49] a
different notion of viscosity solution is considered. We remark that when a function is
a viscosity sub or super-solution in the sense of Definition 5.2.1 it is also that in the
sense considered in [49]. Therefore we can use the comparison result established there
once we check their hypotheses.
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Proposition 3.2.2. Let u ∈ USC(Ω) and v ∈ LSC(Ω) be, respectively, a viscosity
subsolution and a viscosity supersolution of (3.2) with f ≡ 0. If u ≤ v on ∂Ω, then
u ≤ v in Ω.

Proof. We just apply the main result in [49]. To this end we need to check some
conditions (we refer to [49] for notations and details). First, let us show that F is
elliptic, in fact we have

F (v,X − µv ⊗ v) = max
i∈{1,2}

{
−αi

v

|v|
(X − µv ⊗ v)

v

|v|
− θitr(X − µv ⊗ v)

}
= max

i∈{1,2}

{
−αi

v

|v|
X
v

|v|
+ αiµ|v|2 − θitr(X) + θiµ|v|2

}
= max

i∈{1,2}

{
−αi

v

|v|
X
v

|v|
− θitr(X) + θi

}
+ µ|v|2

= F (v,X) + µ|v|2.

Moreover, F is invariant by rescaling in v and 1-homogeneous in X.

So, we can take σ0(v) = |v|2, σ1(t) = t and ρ ≡ 0 (using the notation from [49])
that satisfy the conditions imposed in [49] to obtain the comparison result.

Now we deal with the case where f is assumed to be nontrivial and does not change
sign. In fact, we assume that inf f > 0 or sup f < 0. We follow similar ideas to the
ones in [55].

Lemma 3.2.3. If we have u, v ∈ C(Ω̄) such that

max {−∆p1u,−∆p2u} ≤ f and max {−∆p1v,−∆p2v} ≥ g

where g > f and v ≥ u in ∂Ω, then we have v ≥ u in Ω.

Proof. By adding a constant if necessary we can assume that u, v > 0. Arguing by
contradiction we assume that

max
Ω

(u− v) > 0 ≥ max
∂Ω

(u− v).

Now we double the variables and consider

sup
x,y∈Ω

{
u(x)− v(y)− j

2
|x− y|2

}
.

For large j the supremum is attained at interior points xj, yj such that xj → x̂, yj → x̂,
where x̂ is an interior point (that x̂ cannot be on the boundary can be obtained as in
[52]).

32



Now, we observe that there exists a constant C such that j|xj − yj| ≤ C. The
theorem of sums (see Theorem 3.2 from [33]) implies that there are symmetric matrices
Xj, Yj, with Xj ≤ Yj such that (j|xj − yj|,Xj) ∈ J2,+(u)(xj) and (j|xj − yj|,Yj) ∈
J2,−(v)(yj), where J2,+(u)(xj) and J2,−(v)(yj) are the closures of the super and subjets
of u and v respectively. Using the equations, assuming that xj 6= yj, we have

max
i∈{1,2}

{
−αi

〈
Xj

(xj − yj)
|xj − yj|

,
(xj − yj)
|xj − yj|

〉
− θitr(Xj)

}
≤ f(yj)

and

max
i∈{1,2}

{
−αi

〈
Yj

(xj − yj)
|xj − yj|

,
(xj − yj)
|xj − yj|

〉
− θitr(Yj)

}
≥ g(yj)

Now we observe that, since Xj ≤ Yj we get

−tr(Xj) ≥ −tr(Yj)

and

−
〈
Xj

(xj − yj)
|xj − yj|

,
(xj − yj)
|xj − yj|

〉
≥ −

〈
Yj

(xj − yj)
|xj − yj|

,
(xj − yj)
|xj − yj|

〉
.

Hence

f(yj) ≥ max
i∈{1,2}

{
−αi

〈
Xj

(xj − yj)
|xj − yj|

,
(xj − yj)
|xj − yj|

〉
− θitr(Xj)

}
≥ max

i∈{1,2}

{
−αi

〈
Yj

(xj − yj)
|xj − yj|

,
(xj − yj)
|xj − yj|

〉
− θitr(Yj)

}
≥ g(xj).

This gives a contradiction passing to the limit as j →∞.

When xj = yj we obtain

max
i∈{1,2}

{−αiλmax(Yj)− θitr(Yj)} ≤ f(yj)

and
max
i∈{1,2}

{−αiλmin(Xj)− θitr(Xj)} ≥ g(xj)

that also leads to a contradiction since λmax(Yj) ≥ λmax(Xj) ≥ λmin(Xj).

Hence we have obtained that u ≤ v, as we wanted to prove.

Lemma 3.2.4. If u, v ∈ C(Ω̄) are such that

max {−∆p1u,−∆p2u} ≤ f, max {−∆p1v,−∆p2v} ≥ f

in Ω with infΩ f > 0 and v ≥ u on ∂Ω, then we have v ≥ u in Ω .
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Proof. By adding a constant if necessary we can assume that u, v > 0. Lets consider
vδ = (1 + δ)v

max {−∆p1u,−∆p2u} ≤ f < (1 + δ)f ≤ max {−∆p1vδ,−∆p2vδ}

and vδ ≥ v ≥ u in ∂Ω. Then by the preceding lemma we conclude that and vδ ≥ u in
Ω for all δ > 0. Making δ → 0, we get v ≥ u in Ω as we wanted to show.

Remark 3.2.5. The above lemma is also true when supΩ f < 0. So, we have comparison
for the cases infΩ f > 0, supΩ f < 0 and f ≡ 0. From this comparison result we get
uniqueness of solutions.

Now we deal with the existence of solutions. In the proof of this result we are only
using that the exterior ball condition holds for Ω when p1 ≤ N or p2 ≤ N .

Theorem 3.2.6. Assume that inf f > 0, sup f < 0 or f ≡ 0. Then, given g a
continuous function defined on ∂Ω, there exists u ∈ C(Ω̄) a viscosity solution of (3.2)
such that u = g in ∂Ω.

Proof. We consider the set

A =
{
v ∈ C(Ω̄) : max {−∆p1v,−∆p2v} ≥ f in Ω and v ≥ g on ∂Ω

}
,

where the inequality for the equation inside Ω is verified in the viscosity sense and the
inequality on ∂Ω in the pointwise sense. Since ∆|x|2 = 2n and ∆∞|x|2 = 2 we have
that max {−∆p1v,−∆p2v} > 0 for v(x) = −|x|2. Hence we can choose K1 such that
the operator applied to −K1|x|2 is grater than sup f and then we can choose K2 such
that K2 − K1|x|2 ≥ g(x) in ∂Ω. We conclude that the function K2 − K1|x|2 ∈ A for
suitable K1, K2. Therefore the set A is not empty.

We define
u(x) = inf

v∈A
v(x), x ∈ Ω̄.

This infimum is finite since, as comparison holds, we have u(x) ≥ −L2 + L1|x|2 for
all u ∈ A for large L1, L2. The function u, being the infimum of supersolutions, is a
supersolution. We already know that u is upper semi-continuous, as it is the infimum
of continuous functions. Let us see it is indeed a solution. Suppose not, then there
exist φ ∈ C2 such that φ touches u at x0 ∈ Ω strictly from above but

max {−∆p1φ(x0),−∆p2φ(x0)} > f(x0).

Lets write

φ(x) = φ(x0) +∇φ(x0) · (x− x0) +
1

2
〈D2φ(x0)(x− x0), x− x0〉+ o(|x− x0|2)
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We define φ̂(x) = φ(x) − δ for a small positive number δ. Then φ̂ < u in a small
neighborhood of x0, contained in the set {x : max {−∆p1φ(x),−∆p2φ(x)} > f(x)}, but

φ̂ ≥ u outside this neighborhood, if we take δ small enough.

Now we can consider v = min{φ̂, u}. Since u is a viscosity supersolution in Ω and
φ̂ also is a viscosity supersolution in the small neighborhood of x0, it follows that v
is a viscosity supersolution. Moreover, on ∂Ω, v = u ≥ g. This implies v ∈ A, but
v = φ̂ < u near x0 , which is a contradiction with the definition of u as the infimum in
A.

Finally, we want to prove that u = g on ∂Ω and that boundary values are attained
with continuity. To this end, we have to construct barriers for our operator. It is
enough to prove that for every x0 ∈ ∂Ω and ε > 0 there exists a supersolution such
that v ≥ g on ∂Ω and v(x0) ≤ g(x0) + ε, and that there exists a subsolution such that
v ≤ g on ∂Ω and v(x0) ≥ g(x0)− ε. We prove now the existence of the supersolution,
the subsolution can be obtained in a similar way.

Let us consider φ a radial function, φ(x) = ψ(r) with ψ′(r) > 0. Then

∆∞φ = ψ′′ and ∆φ = ψ′′ +
N − 1

r
ψ′

and we get

max
i∈{1,2}

{−∆piφ} = max
i∈{1,2}

{−αi∆∞φ− θi∆φ}

= max
i∈{1,2}

{
−αiψ′′ − θi

(
ψ′′ +

N − 1

r
ψ′
)}

= max
i∈{1,2}

{
− pi − 2

N + pi
ψ′′ − 1

N + pi

(
ψ′′ +

N − 1

r
ψ′
)}

= max
i∈{1,2}

{
− pi − 1

N + pi
ψ′′ − 1

N + pi

N − 1

r
ψ′
}
.

We want this last expression to be greater than a positive constant.

To have a function of the form ψ(r) = rγ with γ > 0 that fulfills this, we need

max
i∈{1,2}

{
− pi − 1

N + pi
γ(γ − 1)− N − 1

N + pi
γ

}
rγ−2 ≥ c > 0.

Hence we have to choose γ according to

0 < γ < 1− N − 1

pi − 1
.

We have that such γ exists if N < p1 or N < p2. We will require that min{p1, p2} > N ,
that is, N < p1, p2.
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In this case we can consider v(x) = Kφ(x − x0) + g(x0) + ε with K big enough.
If Kc > sup f , then v is a supersolution. We have that v(x0) = g(x0) + ε, it remains
to prove that v ≥ g on ∂Ω. Since g is continuous at x0, there exists δ > 0 such that
|g(x) − g(x0)| < ε for every x ∈ Bδ(x0). Then we have that v ≥ g on ∂Ω ∩ Bδ(x0).
Finally we can pick K such that Kδγ + g(x0) + ε > sup g, and we obtain v ≥ g on
∂Ω ∩Bδ(x0)c.

When N ≥ p1 or N ≥ p2, we can find (with similar computations) a barrier of the
form ψ(r) = −rγ with γ < 0. Note that this function is not well defined at 0. In
this case, we have a barrier if the exterior ball condition holds. Given x0 ∈ ∂Ω there
exist λ > 0 and y0 ∈ Ωc such that |x0 − y0| = λ and Bλ(y0) ⊂ Ωc. We can consider
v(x) = K(φ(x− y0)−φ(x0− y0)) + g(x0) + ε and pick K in a similar way as above.

Now, we prove a version of the Hopf lemma for our equation. Note that since we
deal with viscosity solutions the normal derivative may not exists in a classical sense.

Lemma 3.2.7. Let Ω ⊂ RN be a domain with the interior ball condition and u subso-
lution to (3.2) whith f ≡ 0. Given x0 ∈ ∂Ω such that u(x0) > u(x) for all x ∈ Ω, we
have

lim sup
t→0+

u(x0 − tν)− u(x0)

t
< 0.

where ν is exterior normal to ∂Ω.

Proof. As the interior ball condition holds, we can assume there exist a ball centered
at 0, contained in Ω that has x0 in its boundary, that is, we have Br(0) ⊂ Ω and
x0 ∈ ∂Br(0). Let us consider φ(x) = 1

|x|N−2 − 1
rN−2 if N > 2 and φ(x) = −ln|x|+ ln(r)

for N = 2. It easy to check that

∆φ = 0, ∆∞φ ≥ 0, in Br(0) \ {0}.

So we have

max {−∆p1φ,−∆p2φ} ≤ 0 in Br(0) \ {0},
φ ≡ 0 on ∂Br(0).

As u(x0) > u(x) for all x ∈ Ω, in particular on ∂B r
2
(0), then there exists ε > 0

such that u(x0) − εφ ≥ u on ∂B r
2
(0). Therefore, by the comparison principle, we get

u(x0)− εφ ≥ u in Br(0) \B r
2
(0) and the result follows.

3.3 Unbalanced Tug-of-War games with noise

In this section we introduce the game that we call Unbalanced Tug-of-War game with
noise. First, let us describe the game without entering in mathematical details. It is
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a two-player zero-sum stochastic game. The game is played over a bounded open set
Ω ⊂ RN . An ε > 0 is given. Players I and II play as follows. At an initial time,
they place a token at a point x0 ∈ Ω and Player I choose a coin between two possible
ones (each of the two coins have different probabilities of getting a head). We think she
chooses i ∈ {1, 2}. Now they play the Tug-of-War with noise introduced in [63] starting
with the chosen coin. They toss the chosen coin which is biased with probabilities αi
and βi, αi + βi = 1 and 1 ≥ αi, βi ≥ 0. If they get heads (probability αi), they toss
a fair coin (with the same probability for heads and tails) and the winner of the toss
moves the game position to any x1 ∈ Bε(x0) of his choice. On the other hand, if they
get tails (probability βi) the game state moves according to the uniform probability
density to a random point x1 ∈ Bε(x0). Note that Player I chooses the probability of
playing the usual Tug-of-War game or moving at random with the choice of the first
coin between two possibilities. Then they continue playing from x1. At each turn Player
I may change the choice of the coin.

This procedure yields a sequence of game states x0, x1, . . .. Once the game position
leaves Ω, let say at the τ -th step, the game ends. At that time the token will be on the
compact boundary strip around Ω of width ε that we denote

Γε = {x ∈ Rn \ Ω : dist(x, ∂Ω) ≤ ε}.

The payoff is given by a running payoff function f : Ω → R and a final payoff
function g : Γε → R. At the end Player II pays Player I the amount given by a
g(xτ ) + ε2

∑τ−1
n=0 f(xn), that is, Player I have earned g(xτ ) + ε2

∑τ−1
n=0 f(xn) while Player

II have earned −g(xτ ) − ε2
∑τ−1

n=0 f(xn). We can think that when the token leaves xi
Player II pays Player I ε2f(xi), and g(xτ ) when the game ends.

A strategy SI for Player I is a pair of collections of measurable mappings SI =(
{γk}∞k=0, {SkI }∞k=0

)
, such that, given a partial history (x0, x1, . . . , xk), Player I choose

coin 1 with probability
γk(x0, x1, . . . , xk) = γ ∈ [0, 1]

and the next game position is

SkI (x0, x1, . . . , xk) = xk+1 ∈ Bε(xk)

if Player I wins the toss. Similarly Player II plays according to a strategy SII = {SkII}∞k=0.
Then, the next game position xk+1 ∈ Bε(xk), given a partial history (x0, x1, . . . , xk), is
distributed according to the probability

πSI,SII
(x0, x1, . . . , xk, A)

=
β |A ∩Bε(xk)|
|Bε(xk)|

+
α

2
δSkI (x0,x1...,xk)(A) +

α

2
δSkII(x0,x1,...,xk)(A),

where γ = γk(x0, x1 . . . , xk), α = α1γ + α2(1 − γ), β = β1γ + β2(1 − γ) and A is any
measurable set (note that α and β depend on SI and (x0, x1, . . . , xk), we do not make
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this explicit to avoid overloading the notation). From now on, we shall omit k and
simply denote the strategies by γ, SI and SII.

Let Ωε = Ω ∪ Γε ⊂ Rn be equipped with the natural topology, and the σ-algebra B
of the Lebesgue measurable sets. The space of all game sequences

H∞ = {x0} × Ωε × Ωε × . . . ,

is a product space endowed with the product topology.

Let {Fk}∞k=0 denote the filtration of σ-algebras, F0 ⊂ F1 ⊂ . . . defined as follows:
Fk is the product σ-algebra generated by cylinder sets of the form {x0} × A1 × . . . ×
Ak × Ωε × Ωε . . . with Ai ∈ B. For

ω = (x0, ω1, . . .) ∈ H∞,

we define the coordinate processes

Xk(ω) = ωk, Xk : H∞ → Rn, k = 0, 1, . . .

so that Xk is an Fk-measurable random variable. Moreover, F∞ = σ(
⋃
Fk) is the

smallest σ-algebra so that all Xk are F∞-measurable. To denote the time when the
game state reaches Γε, we define a random variable

τ(ω) = inf{k : Xk(ω) ∈ Γε, k = 0, 1, . . .},

which is a stopping time relative to the filtration {Fk}∞k=0.

A starting point x0 and the strategies SI and SII define (by Kolmogorov’s extension
theorem) a unique probability measure Px0SI ,SII

in H∞ relative to the σ-algebra F∞. We
denote by Ex0SI,SII

the corresponding expectation.

Then, if SI and SII denote the strategies adopted by Player I and II respectively, we
define the expected payoff for Player I as

Vx0,I(SI, SII) =

{
Ex0SI,SII

[g(Xτ ) + ε2
∑τ−1

n=1 f(xn)] if the game ends a.s.

−∞ otherwise,

and then the expected payoff for Player II as

Vx0,II(SI, SII) =

{
Ex0SI,SII

[g(Xτ ) + ε2
∑τ−1

n=1 f(xn)] if the game ends a.s.

+∞ otherwise.

Note that we penalize both players when the games doesn’t end a.s.

The value of the game for Player I is given by

uI(x0) = sup
SI

inf
SII

Vx0,I(SI, SII)
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while the value of the game for Player II is given by

uII(x0) = inf
SII

sup
SI

Vx0,II(SI, SII).

When uI = uII we say the game has a value u := uI = uII. The values uI(x0) and uII(x0)
are in a sense the best outcomes each player can expect when the game starts at x0.
For the measurability of the value functions we refer to [59] and [60].

Remark 3.3.1. It seems natural to consider a more general protocol to determine α in
a prescribed closed set. It is clear that there are only two possible scenarios: At each
turn Player I wants to maximize the value of α and Player II wants to minimize it, or
the converse. An expected value for α is obtained in each case assuming each player
plays optimal. Depending on the value of α in each case, we are considering a game
equivalent to the one that we described previously or another one where Player II gets
the choice of the first coin, for certain values of αi.

3.4 The game value function and the Dynamic Pro-

gramming Principle

In this section, we prove that the game has a value, that is, uI = uII and that this value
function satisfies the Dynamic Programming Principle (DPP) given by:

u(x) =ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

u+ inf
Bε(x)

u

}
+ βi

∫
Bε(x)

u(y) dy

)
, x ∈ Ω,

u(x) =g(x), x ∈ Γε.

Let see intuitively why this holds. At each step we have that Player I chooses
i ∈ {1, 2} and then we have three possibilities:

• With probability αi
2

, Player I moves the token, she will try to maximize the
expected outcome.

• With probability αi
2

, Player II moves the token, he will try to minimize the ex-
pected outcome.

• With probability βi, the token moves at random.

Since Player I chooses i trying to maximize the expected outcome we obtain a maxi∈{1,2}
in the DPP. Finally, the expected payoff at x is given by ε2f(x) plus the expected payoff
for the rest of the game.

39



Similar results are proved in [4], [53], [57], [62], [70] and [73]. Note that when
α1 = α2 (and hence β1 = β2) player I has no choice to make and we recover known
results for Tug-of-War games (with or without noise), see [70] and [63]. We follow [73]
where the idea is to prove the existence of a function satisfying the DPP and then that
this function gives the game value. For the existence of a solution to the DPP we borrow
some ideas from [4], and for the uniqueness of such a solution and the existence of the
value of the game we use martingales as in [62]. However we will have two different
cases. One where the noise assures us that the game ends almost surely independently
of the strategies adopted by the players or where the strictly positivity (or negativity)
of f helps us in this sense. And another one where we have to handle the problem
of getting strategies for the players to play almost optimal and to make sure that the
game ends almost surely.

In what follows Ω ⊂ RN is a bounded open set, ε > 0, g : Γε → R and f : Ω → R
bounded Borel functions such that f ≡ 0, infΩ f > 0 or supΩ f < 0.

Definition 3.4.1. A function u is sub-p1-p2-harmonious if

u(x) ≤ ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

u+ inf
Bε(x)

u

}
+ βi

∫
Bε(x)

u(y) dy

)
, x ∈ Ω,

u(x) ≤ g(x), x ∈ Γε

Analogously, a function u is super-p1-p2-harmonious if

u(x) ≥ ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

u+ inf
Bε(x)

u

}
+ βi

∫
Bε(x)

u(y) dy

)
, x ∈ Ω,

u(x) ≤ g(x), x ∈ Γε

Finally, u is p1-p2-harmonious if it is both sub- and super-p1-p2-harmonious (i.e. the
equality holds).

Here αi and βi are given by

αi =
pi − 2

pi +N
and βi =

N + 2

pi +N
i = 1, 2.

Our next task is to prove uniform bounds for these functions.

Lemma 3.4.2. Sub-p1-p2-harmonious functions are uniformly bounded from above.

Proof. We will consider the space partitioned along the xN axis in strips of width ε
2
.

To this end we define

D =
|{y ∈ Bε : yN < − ε

2
}|

|Bε|
=
|{y ∈ B1 : yN < −1

2
}|

|B1|
and C = 1−D.
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•

xNxN − ε
2

t ε
2

+ ε
2

t ε
2

Figure 3.1: The partition considered in the proof of Lemma 3.4.2.

The constant D gives the fraction of the ball Bε(x) covered by the shadowed section in
Figure 3.1, {y ∈ Bε : yN < xN − ε

2
}, and C the fraction occupy by its complement.

Given x ∈ Ω, let us consider t ∈ R such that xN < t ε
2

+ ε
2
. We get{

y ∈ Bε(x) : yN < xN −
ε

2

}
⊂
{
z ∈ RN : zN < t

ε

2

}
.

Now, given u a sub-p1-p2-subharmonious function, we have that

u(x) ≤ ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

u+ inf
Bε(x)

u

}
+ βi

∫
Bε(x)

u(y) dy

)
.

Now we can bound the terms in the RHS considering the partition given above, see
Figure 3.1. We have

sup
Bε(x)

u ≤ sup
Ωε

u,

inf
Bε(x)

u ≤ sup
{y∈Bε(x):yN<xN− ε2}

u ≤ sup
Ωε∩{zN<t ε2}

u,

and ∫
Bε(x)

u(y) dy ≤
∣∣∣{y ∈ Bε(x) : yN ≥ xN −

ε

2

}∣∣∣ sup
{y∈Bε(x):yN≥xN− ε2}

u

+
∣∣∣{y ∈ Bε(x) : yN < xN −

ε

2

}∣∣∣ sup
{y∈Bε(x):yN<xN− ε2}

u

≤ C sup
Ωε

u+D sup
Ωε∩{zN<t ε2}

u.
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Hence, we obtain

u(x) ≤ ε2 sup
Ω
f + max

i∈{1,2}

(
αi
2

{
sup
Ωε

u+ sup
Ωε∩{zN<t ε2}

u

}

+βi

{
C sup

Ωε

u+D sup
Ωε∩{zN<t ε2}

u

})

= ε2 sup
Ω
f + max

i∈{1,2}

({αi
2

+ βiC
}

sup
Ωε

u+
{αi

2
+ βiD

}
sup

Ωε∩{zn<t ε2}
u

)
= ε2 sup

Ω
f + max

i∈{1,2}

{αi
2

+ βiC
}

sup
Ωε

u+ min
i∈{1,2}

{αi
2

+ βiD
}

sup
Ωε∩{zN<t ε2}

u

= ε2 sup
Ω
f +K sup

Ωε

u+ (1−K) sup
Ωε∩{zN<t ε2}

u,

where K = maxi∈{1,2}
{
αi
2

+ βiC
}

. We conclude that

sup
Ωε∩{zN<(t+1) ε

2
}
uk ≤ ε2 sup

Ω
f +K sup

Ωε

uk + (1−K) sup
Ωε∩{zN<t ε2}

uk.

Then, inductively, we get

sup
Ωε∩{zN<(t+n) ε

2
}
u ≤

(
ε2 sup

Ω
f +K sup

Ωε

u

) n−1∑
i=0

(1−K)i + (1−K)n sup
Ωε∩{zN<t ε2}

u.

We assume without lost of generality that Ω ⊂ {x ∈ RN : 0 < xN < R} for some
R > 0. Now, we apply the formula for t = 0 and n such that nε

2
> R, we get

sup
Ωε

u ≤
(
ε2 sup

Ω
f +K sup

Ωε

u

) n−1∑
i=0

(1−K)i + (1−K)n sup
Γε

g

=

(
ε2 sup

Ω
f +K sup

Ωε

u

)
1− (1−K)n

1− (1−K)
+ (1−K)n sup

Γε

g

=
1− (1−K)n

K
ε2 sup

Ω
f + (1− (1−K)n) sup

Ωε

u+ (1−K)n sup
Γε

g.

Hence, we obtain

(1−K)n sup
Ωε

u ≤ 1− (1−K)n

K
ε2 sup

Ω
f + (1−K)n sup

Γε

g,

that gives the desired upper bound,

sup
Ωε

u ≤ 1− (1−K)n

K(1−K)n
ε2 sup

Ω
f + sup

Γε

g.
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Analogously, there holds that super-p1-p2-harmonious functions are uniformly bounded
from below.

Now with this results we can show that there exists a p1-p2-harmonious function as
in [54] applying Perron’s Method. Remark that when f and g are bounded we can easily
obtain the existence of sub-p1-p2-harmonious and super-p1-p2-harmonious functions.

We prefer a constructive argument (since we will use again this construction in what
follows). Let uk : Ωε → R be a sequence of functions such that uk = g on Γε for all
k ∈ N, u0 is sub-p1-p2-harmonious and

uk+1(x) = ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

uk + inf
Bε(x)

uk

}
+ βi

∫
Bε(x)

uk(y) dy

)
for x ∈ Ω.

Now, our main task is to show that this sequence converges uniformly. To this end,
let us prove an auxiliary lemma where we borrow some ideas from [4].

Lemma 3.4.3. Let x ∈ Ω, n ∈ N and fix λi for i = 1, . . . , 4 such that

un+1(x)− un(x) ≥ λ1,

‖un − un−1‖∞ ≤ λ2,∫
Bε(x)

un − un−1 ≤ λ3,

λ3 < λ1 and λ4 > 0. Then, for α := max{α1, α2} > 0, there exists y ∈ Bε(x) such that

inf
Bε(x)

un ≥ un−1(y) +
2λ1

α
− λ2 −

2(1− α)λ3

α
− λ4.

Proof. Given un+1(x)− un(x) ≥ λ1, by the recursive definition, we have

ε2f(x) + max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

un + inf
Bε(x)

un

}
+ βi

∫
Bε(x)

un(y) dy

)

−ε2f(x)− max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

un−1 + inf
Bε(x)

un−1

}
+ βi

∫
Bε(x)

un−1(y) dy

)
≥ λ1.

Since max{a, b} −max{c, d} ≤ max{a− c, b− d}, we get

max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

un + inf
Bε(x)

un − sup
Bε(x)

un−1 − inf
Bε(x)

un−1

}
+

+βi

∫
Bε(x)

un(y)− un−1(y) dy

)
≥ λ1.
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Using that
∫
Bε(x)

un − un−1 ≤ λ3 we get

max
i∈{1,2}

(
αi
2

{
sup
Bε(x)

un + inf
Bε(x)

un − sup
Bε(x)

un−1 − inf
Bε(x)

un−1

}
+ βiλ3

)
≥ λ1.

Now λ3 < λ1 implies

α

2

{
sup
Bε(x)

un + inf
Bε(x)

un − sup
Bε(x)

un−1 − inf
Bε(x)

un−1

}
+ (1− α)λ3 ≥ λ1.

We bound the difference between the suprema using ‖un− un−1‖∞ ≤ λ2 and we obtain

α

2

{
inf
Bε(x)

un − inf
Bε(x)

un−1

}
+
αλ2

2
+ (1− α)λ3 ≥ λ1,

that is,

inf
Bε(x)

un ≥ inf
Bε(x)

un−1 +
2λ1

α
− λ2 −

2(1− α)λ3

α
.

Finally we can choose y ∈ Bε(x) such that

un−1(y) ≤ inf
Bε(x)

un−1 + λ4

which gives the desired inequality.

Now we are ready to prove the uniform convergence and, therefore, the existence of
a p1-p2-harmonious function.

Proposition 3.4.4. The sequence uk converges uniformly and the limit is a solution
to the DPP.

Proof. Since u0 is sub-p1-p2-harmonious we have u1 ≥ u0. In addition, if uk ≥ uk−1, by
the recursive definition, we have uk+1 ≥ uk. Then, by induction, we obtain that the
sequence of functions is an increasing sequence. Replacing uk ≤ uk+1 in the recursive
definition we can see that uk is a sub-p1-p2-harmonious function for all k. This gives us
a uniform bound for uk (independent of k). Hence, uk converge pointwise to a bounded
Borel function u.

In the case α1 = α2 = 0 we can pass to the limit on the recursion because of Fatou’s
Lemma. Hence we assume α := max{α1, α2} > 0.

Now we show that the convergence is uniform. Suppose not. Observe that if ‖un+1−
un‖∞ → 0 we can extract a uniformly Cauchy subsequence, thus this subsequence
converges uniformly to a limit u. This implies that uk converge uniformly to u, because
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of the monotonicity. By the recursive definition we have ‖un+1−un‖∞ ≥ ‖un−un−1‖∞ ≥
0. Then, as we are assuming the convergence is not uniform, we have

‖un+1 − un‖∞ →M and ‖un+1 − un‖∞ ≥M

for some M > 0.

Let us observe that by Fatou’s Lemma it follows that

lim
n→∞

∫
Ω

u(y)− un(y) dy = 0

so we can bound
∫
Bε(x)

un+1 − un uniformly on x.

Given δ > 0, let n0 ∈ N such that for all n ≥ n0

‖un+1 − un‖∞ ≤M + δ and

∫
Bε(x)

un+1 − un < δ

for all x ∈ Ω. We fix k ≥ 0. Let x0 ∈ Ω such that un0+k(x0) − un0+k−1(x0) ≥ M − δ.
Now we apply Lemma 3.4.3 for λ1 = M − δ, λ2 = M + δ, λ3 = δ and λ4 = δ and we get

un0+k−1(x0), un0+k−1(x1) ≥ inf
Bε(x0)

un0+k−1

≥ un0+k−2(x1) +
2(M − δ)

α
− (M + δ)− 2(1− α)

α
− δ

= un0+k−2(x1) +M(
2

α
− 1)− δ 4

α

≥ un0+k−2(x1) +M − δ 4

α
.

for some x1 ∈ Bε(x0). Let us define ξ = 4
α

. If we repeat the argument for x1, but now
with λ1 = M − δξ, we obtain

un0+k−2(x1), un0+k−2(x2) ≥ un0+k−3(x2) +M − δ
(
ξ2 + ξ

)
.

Inductively, we obtain a sequence xl, 1 ≤ l ≤ k − 1 such that

un0+k−l(xl−1), un0+k−l(xl) ≥ un0+k−l−1(xl) +M − δ
l∑

t=1

ξt.

In Lemma 3.4.3 we require λ3 < λ1, so we need k(δ) to satisfy

M − δ
l∑

t=1

ξt > δ,
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that is,

M > δ

l∑
t=0

ξt

for 1 ≤ l ≤ k − 1, as the right hand side term grows with l, it is enough to check it for
l = k − 1. Since

l∑
t=1

ξt = ξ
ξl − 1

ξ − 1
≤ ξl+1 − 1 ≤ ξl+1,

we obtain
un0+k−l(xl−1) ≥ un0+k−l−1(xl) +M − δξl+1.

Adding this inequalities for 1 ≤ l ≤ k− 1, and un0+k(x0)−un0+k−1(x0) ≥M − δ we get

un0+k(x0) ≥ un0(xk−1) + kM − δ
k−1∑
l=0

ξl+1.

From the last inequality and the condition for k(δ), since

k−1∑
l=0

ξl+1 =
k∑
l=1

ξl ≤ ξk+1,

we have
un0+k(x0) ≥ un0(xk−1) + kM − δξk+1

for all k such that M > δξk+1. For k + 1 =
⌊

log M
δ

log ξ

⌋
this gives

un0+k(x0) ≥ un0(xk−1) +

(
log M

δ

log ξ
− 3

)
M

which is a contradiction since

lim
δ→0+

log M
δ

log ξ
=∞

and the sequence un is bounded. We have that un → u uniformly, therefore the result
follows by passing to the limit in the recursive definition of un. In fact, that the uniform
limit of the sequence un is a solution to the DPP is immediate since from the uniform
convergence we can pass to the limit as n→∞ in all the terms of the DPP formula.

Now we want to prove that this solution to the DPP, u, is unique and that it gives
the value of the game. To this end we have to take special care of the fact that the
game ends (or not) almost surely. First, we deal with the case β1, β2 > 0, supΩ f < 0
or infΩ f > 0. We apply a martingales argument to handle these cases. In other cases
we also use the construction of the sequence uk.
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Lemma 3.4.5. Assume that β1, β2 > 0, sup f < 0 or inf f > 0. Then, if v is a
p1-p2-harmonious function for gv and fv such that gv ≤ guI and fv ≤ fuI, then v ≤ uI.

Proof. By choosing a strategy according to the points where the maximal values of v
are attained, we show that Player I can obtain that a certain process is a submartingale.
The optional stopping theorem then implies that the expectation of the process under
this strategy is bounded by v. Moreover, this process provides a lower bound for uI.

Player II follows any strategy and Player I follows a strategy S0
I such that at xk−1 ∈ Ω

he chooses Γ as follows:

γ = 1 if
α1

2

{
sup

y∈Bε(x)

u(y) + inf
y∈Bε(x)

u(y)

}
+ β1

∫
Bε(x)

u(y) dy

>
α2

2

{
sup

y∈Bε(x)

u(y) + inf
y∈Bε(x)

u(y)

}
+ β2

∫
Bε(x)

u(y) dy

and γ = 0 othewise,

and to step to a point that almost maximize v, that is, to a point xk ∈ Bε(xk−1) such
that

v(xk) ≥ sup
Bε(xk−1)

v − η2−k

for some fixed η > 0. We start from the point x0. It follows that

Ex0
SI,S

0
II
[v(xk) + ε2

k−1∑
n=0

f(xn)− η2−k |x0, . . . , xk−1]

≥ max
i∈{1,2}

(
αi
2

{
inf

Bε(xk−1)
v − η2−k + sup

Bε(xk−1)

v

}
+ βi

∫
Bε(xk−1)

v dy

)

+ ε2

k−1∑
n=0

f(xn)− η2−k

≥ v(xk−1)− ε2f(xk−1)− η2−k + ε2

k−1∑
n=0

f(xn)− η2−k

= v(xk−1) + ε2

k−2∑
n=0

f(xn)− η2−k+1

where we have estimated the strategy of Player II inf and used the fact that v is p1-p2-
harmonious. Thus

Mk = v(xk) + ε2

k−1∑
n=0

f(xn)− η2−k
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is a submartingale.

Now we observe the following: if β1, β2 > 0 then the game ends almost surely and we
can continue (see below). If sup f < 0 we have that the fact that Mk is a submartingale
implies that the game ends in a finite number of moves (that can be estimated). In the
case inf f > 0 if the game does not end in a finite number of moves then we have to play
until the accumulated payoff (recall that f gives the running payoff) is greater than v
and then choose a strategy that ends the game almost surely (for example pointing to
some prescribed point x0 outside Ω).

Since gv ≤ guI and fv ≤ fuI , we deduce

uI(x0) = sup
SI

inf
SII

Ex0SI,SII
[guεI (xτ ) + ε2

τ−1∑
n=0

f(xn)]

≥ inf
SII

Ex0
S0
I ,SII

[gv(xτ ) + ε2

τ−1∑
n=0

f(xn)− η2−τ ]

≥ inf
SII

ES0
I ,SII

[M0] = v(x0)− η,

where we used the optional stopping theorem for Mk. Since η is arbitrary this proves
the claim.

A symmetric result can be proved for uII, hence we obtain the following result:

Theorem 3.4.6. Assume that β1, β2 > 0, sup f < 0 or inf f > 0. Then there exists a
unique p1-p2-harmonious function. Even more the game has a value, that is uI = uII,
which coincides with the unique p1-p2-harmonious function.

Proof. Let u be a p1-p2-harmonious function, that we know that exits by Proposi-
tion 3.4.4. From the definition of the game values we know that uI ≤ uII . Then by
Lemma 3.4.5 we have that

uI ≤ uII ≤ u ≤ uI .

This is uI = uII = u. Since we can repeat the argument for any p1-p2-harmonious
function, uniqueness follows.

Remark 3.4.7. Note that if we have a sub-p1-p2-harmonious function u, then v given
by v = u− C in Ω and v = u in Γε is sub-p1-p2-harmonious for every constant C > 0.
In this way we can obtain a sub-p1-p2-harmonious function smaller that any super-p1-
p2-harmonious function, and then if we start the above construction with this function
we get the smallest p1-p2-harmonious function. That is, there exists a minimal p1-p2-
harmonious function. We can do the analogous construction to get the larger p1-p2-
harmonious function (the maximal p1-p2-harmonious function).
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We now tackle the remaining case in which f ≡ 0 and one of the βi is zero (that is
the same as saying that one of the αi is equal to one).

Theorem 3.4.8. There exists a unique p1-p2-harmonious function when α1 = 1, α2 > 0
and f ≡ 0.

Proof. Supposed not, this is, we have u,v, such that

v(x) = max

{
1

2

(
sup
Bε(x)

v + inf
Bε(x)

v

)
,
α

2

(
sup
Bε(x)

v + inf
Bε(x)

v

)
+ β

∫
Bε(x)

v

}

u(x) = max

{
1

2

(
sup
Bε(x)

u+ inf
Bε(x)

u

)
,
α

2

(
sup
Bε(x)

u+ inf
Bε(x)

u

)
+ β

∫
Bε(x)

u

}
in Ω and

u = v = g

on Γε with

‖u− v‖∞ = M > 0.

As we observed in Remark 3.4.7 we can assume u ≥ v (just take v the minimal solution
to the DPP). Now we want to build a point where the difference between u and v is
almost attained and v has a large variation in the ball of radius ε around this point
(all this has to be carefully quantified). First, we apply a compactness argument. We
know that

Ω̄ ε
4
⊂
⋃
x∈Ω

B ε
2
(x).

As Ω̄ ε
4

is compact there exists yi such that

Ω̄ ε
4
⊂

k⋃
i=1

B ε
2
(yi).

Let A = {i ∈ {1, . . . , k} : u or v are not constant on B ε
2
(yi)} and let λ > 0 such that

for every i ∈ A

sup
Bε(yi)

u− inf
Bε(yi)

u >

(
4 +

4β

α

)
λ or sup

Bε(yi)

v − inf
Bε(yi)

v > 2λ.

We fix this λ. Now, for every δ > 0 such that λ > δ and M > δ, let z ∈ Ω such that
M − δ < u(z)− v(z). Let

O = {x ∈ Ω : u(x) = u(z) and v(x) = v(z)} ⊂ Ω.
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Take z̄ ∈ ∂O ⊂ Ω̄. Let i0 such that z̄ ∈ B ε
2
(yi0), we have

B ε
2
(yi0) ∩O 6= ∅ and B ε

2
(yi0) ∩Oc 6= ∅

hence i0 ∈ A. Let x0 ∈ B ε
2
(yi0) ∩ O. In this way we have obtained x0 such that

u(x0)− v(x0) > M − δ and one of the following holds:

1.

sup
Bε(x0)

u− inf
Bε(x0)

u >

(
4 +

4β

α

)
λ

2.

sup
Bε(x0)

v − inf
Bε(x0)

v > 2λ.

Let us show that in fact the second statement must hold. Supposed not, then the first
holds and we have

sup
Bε(x0)

v − inf
Bε(x0)

v ≤ 2λ.

Given that

v(x0) ≥ 1

2

(
sup
Bε(x0)

v + inf
Bε(x0)

v

)
we get

v(x0) + λ ≥ sup
Bε(x0)

v.

Hence

v(x0) + λ+M ≥ sup
Bε(x0)

v +M ≥ sup
Bε(x0)

u.

But we have more, since

u(x0)− v(x0) > M − δ > M − λ,

we get

u(x0) + 2λ > sup
Bε(x0)

u,

and

sup
Bε(x0)

u > inf
Bε(x0)

u+

(
4 +

4β

α

)
λ.

Hence

u(x0)−
(

2 +
4β

α

)
λ > inf

Bε(x0)
u.
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If we bound the integral by the value of the supremum we can control all the terms in
the DPP in terms of u(x0). We have

u(x0) = max

{
1

2

(
sup
Bε(x0)

u+ inf
Bε(x0)

u

)
,
α

2

(
sup
Bε(x0)

u+ inf
Bε(x0)

u

)
+ β

∫
Bε(x0)

u

}

< max

{
1

2

(
u(x0) + 2λ+ u(x0)−

(
2 +

4β

α

)
λ

)
,

α

2

(
u(x0) + 2λ+ u(x0)−

(
2 +

4β

α

)
λ

)
+ β(u(x0) + 2λ)

}
< max

{
u(x0)− 4β

α
λ, u(x0)

}
= u(x0),

which is a contradiction. Hence we obtain that the second condition must hold, that
is, we have

sup
Bε(x0)

v − inf
Bε(x0)

v > 2λ.

Applying the DPP we get

v(x0) ≥ 1

2

(
sup
Bε(x0)

v + inf
Bε(x0)

v

)
together with the fact that

sup
Bε(x0)

v − inf
Bε(x0)

v > 2λ,

then we conclude that
v(x0) > inf

Bε(x0)
v + λ.

We have proved that there exists x0 such that

v(x0) > inf
Bε(x0)

v + λ and u(x0)− v(x0) > M − δ.

Now we are going to build a sequence of points where the difference between u and v
is almost maximal and where the value of v decrease at least λ in every step. Applying
the DPP to M − δ < u(x0)− v(x0) and bounding the difference of the suprema by M
we get:

M − 2

α
δ + inf

Bε(x0)
v < inf

Bε(x0)
u.

Let x1 be such that v(x0) > v(x1) + λ and infBε(x0) v + δ > v(x1). We get

M −
(

1 +
2

α

)
δ + v(x1) < u(x1).

To repeat this construction we need two things:
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• In the last inequality if δ is small enough we have u(x1) 6= v(x1), hence x1 ∈ Ω.

• We know that 2v(x1) ≥ infBε(x1) v+ supBε(x1) v > v(x0) + infBε(x1) v. Hence, since
v(x0) > v(x1) + λ, we get v(x1) > infBε(x1) v + λ.

Then we get
v(xn−1) > v(xn) + λ

and

M −

(
n∑
k=0

(
2

α

)k)
δ + v(xn) < u(xn).

We can repeat this argument as long as

M −

(
n∑
k=0

(
2

α

)k)
δ > 0,

which is a contradiction with the fact that we know that v is bounded.

Now we want to show that this unique function that satisfies the DPP is the game
value. The key point of the proof is to construct an strategy based on the approximating
sequence that we used to construct the solution.

Theorem 3.4.9. Given f ≡ 0, the game has a value, that is uI = uII, which coincides
with the unique p1-p2-harmonious function.

Proof. Let u be the unique p1-p2-harmonious function (the uniqueness is given by The-
orem 3.4.6 and Theorem 3.4.8). We will show that u ≤ uI . The analogous result can
be proved for uII completing the proof.

Let us consider a function u0, sub-p1-p2-harmonious smaller that infΩ g at every
point in Ω. Starting with this u0 we build the corresponding uk as in Proposition 3.4.4.
We have that uk → u as k →∞.

Now, given δ > 0 let n > 0 be such that un(x0) > u(x0)− δ
2
. We build an strategy

S0
I for Player I, in the firsts n moves, given xk−1 he will choose to move to a point that

almost maximize un−k, that is, he chooses xk ∈ Bε(xk−1) such that

un−k(xk) > sup
Bε(xk−1)

un−k −
δ

2n
.

and choose γ in order to maximize

αi
2

{
inf

Bε(xk−1)
un−k −

δ

2n
+ sup

Bε(xk−1)

un−k

}
+ βi

∫
Bε(xk−1)

un−k dy.

52



After the first n moves he will follow a strategy that ends the game almost surely (for
example pointing in a fix direction).

We have

Ex0
S0
I ,SII

[un−k(xk) +
kδ

2n
|x0, . . . , xk−1]

≥ max
i∈{1,2}

(
αi
2

{
inf

Bε(xk−1)
un−k −

δ

2n
+ sup

Bε(xk−1)

un−k

}

+βi

∫
Bε(xk−1)

un−k dy

)
+
kδ

2n

≥ un−k+1(xk−1) +
(k − 1)δ

2n
,

where we have estimated the strategy of Player II by inf and used the construction for
the uk’s. Thus

Mk =

 un−k(xk) +
kδ

2n
− δ

2
for 0 ≤ k ≤ n,

Mk = infΩ g for k > n,

is a submartingale.

Now we have

uI(x0) = sup
SI

inf
SII

Ex0SI,SII
[g(xτ )]

≥ inf
SII

Ex0
S0
I ,SII

[g(xτ )]

≥ inf
SII

Ex0
S0
I ,SII

[Mτ ]

≥ inf
SII

ES0
I ,SII

[M0] = un(x0)− δ

2
> u(x0)− δ,

where we used the optional stopping theorem for Mk. Since δ is arbitrary this proves
the claim.

As an immediate corollary of our results in this section we obtain a comparison
result for solutions to the DPP.

Corollary 3.4.10. If v and u are p1-p2-harmonious functions for gv, fv and gu, fu,
respectively such that gv ≥ gu and fv ≥ fu, then v ≥ u.
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3.5 Properties of harmonious functions and conver-

gence

First, we show some properties of p1-p2-harmonious functions that we need to prove
convergence as ε→ 0. We want to apply the following Arzela-Ascoli type lemma. For
its proof see Lemma 4.2 from [63].

Lemma 3.5.1. Let {uε : Ω→ R, ε > 0} be a set of functions such that

1. there exists C > 0 such that |uε(x)| < C for every ε > 0 and every x ∈ Ω,

2. given η > 0 there are constants r0 and ε0 such that for every ε < ε0 and any
x, y ∈ Ω with |x− y| < r0 it holds

|uε(x)− uε(y)| < η.

Then, there exists a uniformly continuous function u : Ω → R and a subsequence still
denoted by {uε} such that

uε → u uniformly in Ω,

as ε→ 0.

So our task now is to show that the family uε satisfies the hypotheses of the previous
lemma. To this end we need some bounds on the expected exit time in the case a player
choose a certain strategy.

Let us start showing that uε are uniformly bounded. In Lemma 3.4.2 we obtained
a bound for the value of the game for a fixed ε, here we need a bound independent of
ε. To this end, let us define what we understand by pulling in one direction: We fix a
direction, that is, a unitary vector v and at each turn of the game the Player strategy
is given S(xk−1) = xk−1 + (ε− ε3/2k)v.

Lemma 3.5.2. In a game where a player pulls in a fix direction the expectation of the
exit time is bounded above by

E[τ ] ≤ Cε−2

for some C > 0 independent of ε.

Proof. First, let us assume without lost of generality that

Ω ⊂ {x ∈ Rn : 0 < xn < R}

and that the direction that the player is pulling to is −en. Then

Mk = (xk)n +
ε3

2k
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is a supermartingale. Indeed, if the random move occurs, then we know that the
expectation of (xk+1)n is equal to (xk)n. If the tug-of-war game is played we know that
with probability one half (xk+1)n = (xk)n − ε + ε3/2k and if the other player moves
(xk+1)n ≤ (xk)n + ε, so the expectation is less or equal to (xk)n + ε3

2k+1 .

Let us consider the expectation for (Mk+1−Mk)
2. If the random walk occurs, then

the expectation is ε2

n+2
+ o(ε2). Indeed,∫

Bε

x2
n =

1

n

∫
Bε

|x|2 =
1

εnn|B1|

∫ ε

0

r2|∂Br| dr =
|∂B1|
εnn|B1|

∫ ε

0

rn+1 dr =
ε2

n+ 2
.

If the tug-of-war occurs we know that with probability one half (xk+1)n = (xk)n −
ε+ ε3/2k, so the expectation is greater than or equal to ε2

3
.

Let us consider the expectation for M2
k −M2

k+1. We have,

E[M2
k −M2

k+1] = E[(Mk+1 −Mk)
2] + 2E[(Mk −Mk+1)Mk+1].

As (xk)n is positive, we have 2E[(Mk −Mk+1)Mk+1] ≥ 0. Then E[M2
k −M2

k+1] ≥ ε2

n+2
,

so M2
k + kε2

n+2
is a supermartingale. According to the optional stopping theorem for

supermartingales

E
[
M2

τ∧k +
(τ ∧ k)ε2

n+ 2

]
≤M2

0 .

We have

E[(τ ∧ k)]
ε2

n+ 2
≤M2

0 − E[M2
τ∧k] ≤M2

0 .

Taking limit in k, we get a bound for the expected exit time,

E[τ ] ≤ (n+ 2)M2
0 ε
−2,

so, the statement holds for C = (n+ 2)R2.

Lemma 3.5.3. A f -p1-p2-harmonious function uε with boundary values g satisfies

inf
y∈Γε

g(y) + C inf
y∈Ω

f(y) ≤ uε(x) ≤ sup
y∈Γε

g(y) + C sup
y∈Ω

f(y). (3.1)

Proof. We use the connection to games. Let one of the players choose a strategy of
pulling in a fix direction. Then

E[τ ] ≤ Cε−2

and this gives the upper bound

E[g(Xτ ) + ε2

τ−1∑
n=0

f(Xn)] ≤ sup
y∈Γε

g(y) + E[τ ]ε2 sup
y∈Ω

f(y) ≤ sup
y∈Γε

g(y) + C sup
y∈Ω

f(y).

The lower bound follows analogously.
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Let us show now that the uε are asymptotically uniformly continuous. First we
need a lemma that bound the expectation for the exit time when one player is pulling
towards a fixed point.

Let us consider an annular domain BR(y)\Bδ(y) and a game played inside. In each
round the token starts at a certain point x, an ε step tug-of-war is played inside BR(y)
or the token moves at random with uniform probability in BR(y) ∩Bε(x). If an ε-step
tug-of-war is played, with probability 1/2 each player moves the token to a point of
his choice in BR(y) ∩ Bε(x). We can think there is a third player choosing whether
the ε-step tug-of-war or the random move occurs. The game ends when the position
reaches Bδ(y), that is, when xτ∗ ∈ Bδ(y).

Lemma 3.5.4. Assume that one of the players pulls towards y in the game described
above. Then, no mater how many times the tug-of-war is played or the random move
is done the exit time verifies

Ex0(τ ∗) ≤ C(R/δ) dist(∂Bδ(y), x0) + o(1)

ε2
, (3.2)

for x0 ∈ BR(y) \ Bδ(y). Here τ ∗ is the exit time in the previously described game and
o(1)→ 0 as ε→ 0 can be taken depending only on δ and R.

Proof. Let us denote

hε(x) = Ex(τ).

By symmetry we know that hε is radial and it is easy to see that it is increasing in
r = |x− y|. If we assume that the other player wants to maximize the expectation for
the exit time and that the random move or tug-of-war is chosen in the same way, we
have that the function hε satisfies a dynamic programming principle

hε(x) = max

{
1

2

(
max

Bε(x)∩BR(y)
hε + min

Bε(x)∩BR(y)
hε

)
,

∫
Bε(x)∩BR(y)

hε dz

}
+ 1

by the above assumptions and that the number of steps always increases by one when
making a step. Further, we denote vε(x) = ε2hε(x) and obtain

vε(x) = max

{
1

2

(
sup

Bε(x)∩BR(y)

vε + inf
Bε(x)∩BR(y)

vε

)
,

∫
Bε(x)∩BR(y)

vε dz

}
+ ε2

This induces us to look for a function v such that

v(x) ≥
∫
Bε(x)

v dz + ε2

and

v(x) ≥ 1

2

(
sup
Bε(x)

v + inf
Bε(x)

v

)
+ ε2.

(3.3)
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Note that for small ε this is a sort of discrete version to the following inequalities{
∆v(x) ≤ −2(n+ 2), x ∈ BR+ε(y) \Bδ−ε(y),

∆∞v(x) ≤ −2, x ∈ BR+ε(y) \Bδ−ε(y).
(3.4)

This leads us to consider the problem
∆v(x) = −2(n+ 2), x ∈ BR+ε(y) \Bδ(y),

v(x) = 0, x ∈ ∂Bδ(y),
∂v

∂ν
= 0, x ∈ ∂BR+ε(y),

(3.5)

where ∂u
∂ν

refers to the normal derivative. The solution to this problem is radially
symmetric and strictly increasing in r = |x− y|. It takes the form

v(r) = −ar2 − br2−N + c,

if N > 2 and
v(r) = −ar2 − b log(r) + c,

if N = 2. If we extend this v to Bδ(y) \ Bδ−ε(y), it satisfies ∆v(x) = −2(N + 2) in
BR+ε(y) \Bδ−ε(y). We know that

∆∞v = vrr ≤ vrr +
N − 1

r
vr = ∆v.

Thus, v satisfy the inequalities (3.4). Then, the classical calculation shows that v
satisfies (3.3) for each Bε(x) ⊂ BR+ε(y) \Bδ−ε(y).

In addition, as v is increasing in r, it holds for each x ∈ BR(y) \Bδ(y) that∫
Bε(x)∩BR(y)

v dz ≤
∫
Bε(x)

v dz ≤ v(x)− ε2

and
1

2

(
sup

Bε(x)∩BR(y)

v+ inf
Bε(x)∩BR(y)

v

)
≤ 1

2

(
sup
Bε(x)

v+ inf
Bε(x)

v

)
≤ v(x)− ε2.

It follows that

E[v(xk) + kε2|x0, . . . , xk−1]

≤ max

{
1

2

(
sup

Bε(xk−1)∩BR(y)

v + inf
Bε(xk−1)∩BR(y)

v

)
,

∫
Bε(xk−1)∩BR(y)

v dz

}
≤ v(xk−1) + (k − 1)ε2,
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if xk−1 ∈ BR(y) \ Bδ(y). Thus v(xk) + kε2 is a supermartingale, and the optional
stopping theorem yields

Ex0 [v(xτ∗∧k) + (τ ∗ ∧ k)ε2] ≤ v(x0). (3.6)

Because xτ∗ ∈ Bδ(y) \Bδ−ε(y), we have

0 ≤ −Ex0 [v(xτ∗)] ≤ o(1).

Furthermore, the estimate

0 ≤ v(x0) ≤ C(R/δ) dist(∂Bδ(y), x0)

holds for the solutions of (3.5). Thus, by passing to the limit as k →∞, we obtain

ε2Ex0 [τ ∗] ≤ v(x0)− E[u(xτ∗)] ≤ C(R/δ)(dist(∂Bδ(y), x0) + o(1)).

This completes the proof.

Next we derive a uniform bound and estimate for the asymptotic continuity of the
family of p1-p2-harmonious functions.

We assume here that Ω satisfies an exterior sphere condition: For each y ∈ ∂Ω,
there exists Bδ(z) ⊂ Rn \ Ω such that y ∈ ∂Bδ(z).

Lemma 3.5.5. Let g be Lipschitz continuous in Γε and f Lipschitz continuous in Ω
such that f ≡ 0, inf f > 0 or sup f < 0. The p1-p2-harmonious function uε with data g
and f satisfies

|uε(x)− uε(y)| ≤ Lip(g)(|x− y|+ δ)

+C(R/δ)(|x− y|+ o(1))(1 + ‖f‖∞) + C̃Lip(f)|x− y|,
(3.7)

for every small enough δ > 0 and for every two points x, y ∈ Ω ∪ Γε. Here o(1) can be
taken depending only on δ and R.

Proof. The case x, y ∈ Γε is clear. Thus, we can concentrate on the cases x ∈ Ω and
y ∈ Γε as well as x, y ∈ Ω.

We use the connection to games. Suppose first that x ∈ Ω and y ∈ Γε. By the
exterior sphere condition, there exists Bδ(z) ⊂ Rn \ Ω such that y ∈ ∂Bδ(z). Now
Player I chooses a strategy of pulling towards z, denoted by SzI . Then

Mk = |xk − z| − Cε2k
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is a supermartingale for a constant C large enough independent of ε. Indeed,

Ex0SzI ,SII
[|xk − z| |x0, . . . , xk−1]

≤ max
i∈{1,2}

(
αi
2

{
|xk−1 − z|+ ε− ε3 + |xk−1 − z| − ε

}
+ βi

∫
Bε(xk−1)

|x− z| dx

)
≤ |xk−1 − z|+ Cε2.

The first inequality follows from the choice of the strategy, and the second from the
estimate ∫

Bε(xk−1)

|x− z| dx ≤ |xk−1 − z|+ Cε2.

By the optional stopping theorem, this implies that

Ex0SzI ,SII
[|xτ − z|] ≤ |x0 − z|+ Cε2Ex0SzI ,SII

[τ ]. (3.8)

Next we can estimate Ex0SzI ,SII
[τ ] by the stopping time of Lemma 3.5.4. Let R > 0 be

such that Ω ⊂ BR(z). Thus, by (3.2),

ε2Ex0SzI ,SII
[τ ] ≤ ε2Ex0SzI ,SII

[τ ∗] ≤ C(R/δ)(dist(∂Bδ(z), x0) + o(1)).

Since y ∈ ∂Bδ(z),

dist(∂Bδ(z), x0) ≤ |y − x0| ,

and thus, (3.8) implies

Ex0SzI ,SII
[|xτ − z|] ≤ C(R/δ)(|x0 − y|+ o(1)).

We get
g(z)− C(R/δ)(|x− y|+ o(1)) ≤ Ex0SzI ,SII

[g(xτ )].

Thus, we obtain

sup
SI

inf
SII

Ex0SI,SII
[g(xτ ) + ε2

τ−1∑
n=0

f(xn)]

≥ inf
SII

Ex0SzI ,SII
[g(xτ ) + ε2

τ−1∑
n=0

f(xn)]

≥ g(z)− C(R/δ)(|x0 − y|+ o(1))− ε2 inf
SII

Ex0SzI ,SII
[τ ]‖f‖∞

≥ g(y)− Lip(g)δ − C(R/δ)(|x0 − y|+ o(1))(1 + ‖f‖∞).

The upper bound can be obtained by choosing for Player II a strategy where he points
to z, and thus, (3.7) follows.
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Finally, let x, y ∈ Ω and fix the strategies SI, SII for the game starting at x. We
define a virtual game starting at y: we use the same coin tosses and random steps as
the usual game starting at x. Furthermore, the players adopt their strategies SvI , S

v
II

from the game starting at x, that is, when the game position is yk−1 a player chooses
the step that would be taken at xk−1 in the game starting at x. We proceed in this way
until for the first time xk ∈ Γε or yk ∈ Γε. At that point we have |xk − yk| = |x − y|,
and we may apply the previous steps that work for xk ∈ Ω, yk ∈ Γε or for xk, yk ∈ Γε.

If we are in the case f ≡ 0 we are done. In the case infy∈Ω |f(y)| > 0, as we know
that the uε are uniformly bounded according to Lemma 3.5.3, we have that the expected
exit time is bounded by

C̃ =
maxy∈Γε |g(y)|+ C maxy∈Ω |f(y)|

infy∈Ω |f(y)|
.

So the expected difference in the running payoff in the game starting at x and the virtual
one is bounded by C̃Lip(f)|x− y|, because |xi − yi| = |x− y| for all 0 ≤ i ≤ k.

Corollary 3.5.6. Let {uε} be a family of p1-p2-harmonious. Then there exists a uni-
formly continuous u and a subsequence still denoted by {uε} such that

uε → u uniformly in Ω.

Proof. Using Lemmas 3.5.3 and 3.5.5 we get that the family uε satisfies the hypothesis
of the compactness Lemma 6.5.3.

Theorem 3.5.7. The function u obtained as a limit in Corollary 3.5.6 is a viscosity
solution to (3.2) when we consider the game with f/2 as the running pay-off function.

Proof. First, we observe that u = g on ∂Ω due to uε = g on ∂Ω for all ε > 0. Hence, we
can focus our attention on showing that u is p1-p2-harmonic inside Ω in the viscosity
sense. To this end, we recall from [61] an estimate that involves the regular Laplacian
(p = 2) and an approximation for the infinity Laplacian (p =∞). Choose a point x ∈ Ω
and a C2-function φ defined in a neighborhood of x. Note that since φ is continuous
then we have

min
y∈Bε(x)

φ(y) = inf
y∈Bε(x)

φ(y)

for all x ∈ Ω. Let xε1 be the point at which φ attains its minimum in Bε(x)

φ(xε1) = min
y∈Bε(x)

φ(y).
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It follows from the Taylor expansions in [61] that

α

2

(
max
y∈Bε(x)

φ(y) + min
y∈Bε(x)

φ(y)

)
+ β

∫
Bε(x)

φ(y) dy − φ(x)

≥ ε2

2(n+ p)

{
(p− 2)

〈
D2φ(x)

(
xε1 − x
ε

)
,

(
xε1 − x
ε

)〉
+ ∆φ(x)

}
+ o(ε2).

(3.9)

Suppose that φ touches u at x strictly from below. We want to prove that

F ∗(∇φ(x), D2φ(x)) ≥ f(x).

By the uniform convergence, there exists sequence {xε} converging to x such that uε−φ
has an approximate minimum at xε, that is, for ηε > 0, there exists xε such that

uε(x)− φ(x) ≥ uε(xε)− φ(xε)− ηε.

Moreover, considering φ̃ = φ − uε(xε) − φ(xε), we can assume that φ(xε) = uε(xε).
Thus, by recalling the fact that uε is p1-p2-harmonious, we obtain

ηε ≥ ε2f(xε)

2
− φ(xε) + max

i∈{1,2}

{
αi
2

(
max
Bε(xε)

φ+ min
Bε(xε)

φ

)
+ βi

∫
Bε(xε)

φ(y) dy

}
,

and thus, by (3.9), and choosing ηε = o(ε2), we have

0 ≥ ε2

2
max
i∈{1,2}

{
αi

〈
D2φ(xε)

(
xε1 − xε

ε

)
,

(
xε1 − xε

ε

)〉
+ θi∆φ(xε)

}
+ε2f(xε)

2
+ o(ε2).

Next we need to observe that〈
D2φ(xε)

(
xε1 − xε

ε

)
,

(
xε1 − xε

ε

)〉
converge to ∆∞φ(x) when∇φ(x) 6= 0 and always is bounded in the limit by λmin(D2φ(x))
and λmax(D2φ(x)). Dividing by ε2 and letting ε→ 0, we get

F ∗(∇φ(x), D2φ(x)) ≥ f(x).

Therefore u is a viscosity supersolution.

To prove that u is a viscosity subsolution, we use a reverse inequality to (3.9) by
considering the maximum point of the test function and choose a smooth test function
that touches u from above.
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Now, we just observe that this probabilistic approach provides an alternative exis-
tence proof of viscosity solutions to our PDE problem.

Corollary 3.5.8. Any limit function obtained as in Corollary 3.5.6 is a viscosity solu-
tion to the problem {

max {−∆p1u,−∆p2u} = f on Ω,

u = g on ∂Ω.

In particular, the problem has a solution.

We proved that the problem has an unique solution using PDE methods, therefore
we conclude that we have convergence as ε→ 0 of uε (not only along subsequences).

Corollary 3.5.9. It holds that

uε → u uniformly in Ω,

being u the unique solution to the problem{
max {−∆p1u,−∆p2u} = f on Ω,

u = g on ∂Ω.
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Chapter 4

Obstacle problems and maximal
operators

4.1 Introduction

Motivated by the work in the previous chapter we were lead to consider PDEs of the
form

max {L1v, L2v} = 0.

That gave origin to the work that we present in this chapter. Here we include the
results obtained in [23], a joint work with Juan Pablo Pinasco and Julio Daniel Rossi.

Both the obstacle problem and maximal operators are classical subjects in the theory
of PDEs and have brought the attention of many researchers for many years. For
example, if one considers the family of uniformly elliptic second order operators of the
form −tr(AD2u) and look for maximal operators one finds the so-called Pucci maximal
operator, P+

λ,Λ(D2u) = maxA∈A−tr(AD2u), where A is the set of uniformly elliptic
matrices with ellipticity constant between λ and Λ, we refer to [30] for properties of
these operators and details of its crucial role in regularity theory. On the other hand,
the obstacle problem is a well known and widely studied free boundary problem, [72].

In this chapter we show that one can obtain solutions to maximal or minimal op-
erators by taking the limit of a sequence constructed iterating the obstacle problem
alternating the involved operators with the previous term in the sequence as obstacle.

We will look for solutions to the Dirichlet problem for the maximum or the mini-
mum of two operators. To this end, let Ω ⊂ RN be a bounded, smooth, domain and
g : ∂Ω→ R a smooth boundary condition. We want to point out that here we are not
dealing with regularity issues of the solutions, therefore to simplify the presentation we
set the domain and the boundary datum to be smooth.

Given an operator L (notice that here we can consider fully nonlinear problems of
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the form Lu = F (x, u,Du,D2u)) we consider the obstacle problem (here solutions are
assumed to be above the obstacle)

u ≥ Φ in Ω,
Lu ≥ 0 in Ω,
Lu = 0 in {u > φ},
u = g on ∂Ω,

(4.1)

or equivalently {
min{Lu, u− Φ} = 0 in Ω,
u = g on ∂Ω.

The obstacle problem can be also stated as follows: we look for the smallest super
solution of L (with boundary datum g) that is above the obstacle. This formulation
is quite convenient when dealing with fully nonlinear problems. We will refer to the
obstacle problem as PL(Φ, g).

We will assume here that the problem (4.1) has a unique viscosity solution. This is
guaranteed if L has a comparison principle and one can construct barriers close to the
boundary so that the boundary datum g is taken continuously. For general references
on the obstacle problem (including regularity of solutions that are proved to be C1,1)
we just mention [2], [28], [29], [36], [72] and references therein.

Now, we define a sequence of continuous functions as follows: given two continuous
operators L1 and L2 we start with u1 the viscosity solution to{

L1u1 = 0 in Ω,
u1 = g on ∂Ω,

and then inductively we set

un as the solution to

{
PL2(un−1, g) for n even,

PL1(un−1, g) for n odd.

That is, we define un as the solution to the obstacle problem alternating the involved
operator Li and using un−1 as obstacle. Note that since un−1 stands as the obstacle for
un then we trivially have un−1 ≤ un. Hence this sequence is increasing with n.

We will also require that there exists a function U that is a viscosity super solution
for both operators L1 and L2 with boundary datum g simultaneously, that is, we require
that

L1U ≥ 0, L2U ≥ 0 and U |∂Ω ≥ g. (4.2)

This function U will be used to obtain a uniform upper bound for the increasing se-
quence un. Hypothesis (4.2) holds, for example, if the maximum principle holds for
the operators or when L1 and L2 are proper (uniformly degenerated elliptic and non
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decreasing in u). In the first case we can consider U = max g. While in the second one
we can consider U = c− k|x|2 where k is the maximum of the ellipticity constants for
L1 and L2 and c is large enough so that U = c− k|x|2 ≥ g on ∂Ω.

Note that when we consider the obstacle problem looking for sub solutions that
are below the obstacle (that is, we reverse the inequalities in (4.1)) we can produce,
iterating this obstacle problem starting with v1 = u1 as above, a sequence that we
call vn. With this procedure the obtained sequence is decreasing with n. When one
considers this decreasing sequence vn we need the existence of a function V such that

L1V ≤ 0, L2V ≤ 0 and V |∂Ω ≤ g.

As before one can show that this holds if the minimum principle holds for the operators
or when L1 and L2 are proper.

As un is monotone and bounded we have that there exists the limit,

u(x) := lim
n
un(x).

We will assume that the limit u is continuous, or equivalently (by Dini’s theorem) that
the limit is uniform. This assumption can be checked by tracking the constants that
appear in the regularity results for the obstacle problem in such a way that there is a
uniform modulus of continuity for the sequence un (this holds, for example, when the
Lipschitz constant remains uniformly bounded), see Remark 4.3.4. Now we are ready
to state our main result that reads as follows:

Theorem 4.1.1.

1. The increasing sequence un converges uniformly in Ω to a viscosity solution of{
min {L1u, L2u} = 0 in Ω,
u = g on ∂Ω.

2. The decreasing sequence vn converges uniformly in Ω to a viscosity solution of{
max {L1v, L2v} = 0 in Ω,
u = g on ∂Ω.

The rest of the chapter is organized as follows: In Section 4.2 we prove Theorem
6.1.1 and in Section 4.3 we gather some remarks concerning extensions of our results.

4.2 Proof of the main result

We will prove part (1) of Theorem 6.1.1. The proof of part (2) is entirely analogous.
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Recall that we deal with viscosity solutions to the obstacle problem (4.1) and that
we assume that there is a comparison principle for the involved operators, L1 and L2.
Note that we can consider only test functions that touch u strictly, see Definition A.1.1.

We assumed here that the operators L1 and L2 are continuous in the usual sense.
We will comment on how to relax this hypothesis in Remark 4.3.5.

Also recall that the sequence un is constructed as follows: We take u1 the solution
to {

L1u1 = 0 in Ω,
u1 = g on ∂Ω,

and un is given inductively by

un is the solution to

{
PL2(un−1, g) for n even,

PL1(un−1, g) for n odd.

This sequence un is increasing, bounded (since, using the comparison principle one
can show by induction that un ≤ U , where U is such that (4.2) holds) and we are
assuming that there exists a continuous function u such that

un → u

uniformly in Ω. We will comment on this assumption in Remark 4.3.4.

Now we observe that L1un ≥ 0 if n is even and L2un ≥ 0 when n is odd and since
u2n and u2n+1 converge uniformly to the same limit u we conclude that

L1u ≥ 0 and L2u ≥ 0,

in the viscosity sense in Ω.

On the other hand, we claim that

min{L1un, L2un} ≤ 0

for every n in the viscosity sense in Ω. Let us show this claim by induction. First, let
us point out that it is clear that min{L1u1, L2u1} ≤ 0 since L1u1 ≤ 0.

Now assume that the claim holds for un and let us prove it for un+1. In the set
{un+1 > un} it holds because L1un+1 or L2un+1 is zero. It remains to look in the
coincidence set {un+1 = un}. Let x ∈ {un+1 = un} ∩ Ω, then we have un+1(x) = un(x)
and un+1 ≥ un in the whole Ω. To conclude the argument we want to show that
min{L1ψ(x), L2ψ(x)} ≤ 0 for every ψ ∈ C2 that touches un+1 strictly from above at x,
but this follows since ψ also touches un from above at x.

As we have that min{L1un, L2un} ≤ 0 and un converges uniformly to u we conclude
that

min{L1u, L2u} ≤ 0, in Ω.
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As we also have L1u ≥ 0 and L2u ≥ 0 in Ω we get that

min{L1u, L2u} = 0 in Ω.

The boundary datum u = g is taken in a pointwise sense since un = g on ∂Ω and
we have uniform convergence.

4.3 Remarks and extensions

4.3.1 The maximum/minimum of two p−Laplacians.

In the previous chapter, the Dirichlet problem for the maximal operator associated with
the p−Laplacian family was studied.

Let ∆pu = |Du|2−pdiv(|Du|p−2Du) and consider

max {−∆p1u(x), −∆p2u(x)} = f(x)

for 2 ≤ p1 < p2 ≤ ∞ in a bounded smooth domain Ω ⊂ RN with u = g on ∂Ω. We
proved existence and uniqueness of a viscosity solution using PDE techniques combined
with game theoretical arguments. Now we remark that we can use the previously de-
scribed iterations with the obstacle problems for −∆p1u and −∆p2u to obtain a decreas-
ing (or increasing) sequence un (or vn) that converges uniformly (see Remark 4.3.4) to
the unique viscosity solution to the Dirichlet problem for max {−∆p1u(x), −∆p2u(x)} =
f(x) (or for min {−∆p1u(x), −∆p2u(x)} = f(x)).

4.3.2 Parabolic Problems.

Our results can be also extended to parabolic problems. In fact we can consider the
parabolic obstacle problem for a parabolic operator of the form

L(u) = F (ut, t, x, u,Du,D
2u),

that is, 
u ≥ Φ in Ω× (0, T ),
Lu ≥ 0 in Ω× (0, T ),
Lu = 0 in {u > Φ},
u = g on ∂Ω× (0, T ),
u = u0 in Ω.

Note that now the obstacle Φ is a function of x and t. As before, we assume here that
the problem (4.1) has a unique viscosity solution, that the involved operators L have
a comparison principle and that there exists a simultaneous supersolution, U , valid for
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every L. In this way we obtain an increasing and bounded sequence that (assuming
continuity of the limit) converge to a viscosity solution to

min{L1u(x, t), L2u(x, t)} = 0 in Ω× (0, T ),
u = g on ∂Ω× (0, T ),
u = u0 in Ω.

Combining previous remarks we obtain existence of a viscosity solution to
min {ut −∆p1u, ut −∆p1u} (x, t) = 0 in Ω× (0, T ),
u = g on ∂Ω× (0, T ),
u = u0 in Ω.

4.3.3 Maximum/minimum of more than two operators.

Let us mention that this idea works for a finite number of operators, L1, ...., LK . We
just have to consider the obstacle problem for L1, ...., LK and iterate to produce an
increasing (or decreasing) sequence that converges uniformly to a viscosity solution to
minj {Lju(x)} = 0 (or to maxj {Lju(x)} = 0).

This procedure can be also extended to a sequence of operators {Lj}j∈N the only
point is that the obstacle problem for every operator in the sequence has to appear
infinitely many times. This can be done just by considering the sequence

PL1 , PL2 , PL1 , PL2 , PL3 , PL1 , . . . .

We can also consider an arbitrary family of operators {Li}i∈I (here the set of indexes
I is not assumed to be numerable). To this end we have to modify slightly our previous
procedure. Before proceeding with this extension we have to recall some definitions for
two reasons: first, to complete the technical details omitted in the proof of Theorem
6.1.1 related to the fact that we can consider non continuous operators (as we do in
Remark 4.3.5) and second because, even when all the operators {Li}i∈I are continuous,
the infi∈I{Li} it is not necessarily so.

We refer to Appendix A for the definition of the lower semicontinous and upper
semicontinous envelopes of F . And in particular to Definition A.1.2, for the definition
of viscosity solutions for a discontinuous F .

Now, let us construct our sequence. We start by solving the Dirichlet problem for
all the operators Li, that is, we let ui1 be such that{

Liu
i
1 = 0 in Ω,

ui1 = g on ∂Ω,

and then take
u1 = sup

i∈I
ui1.

68



Now we define inductively un by taking the supremum of the solutions to the obstacle
problem for the operators Li with obstacle un−1, that is, we take uin the solution to

uin ≥ un−1 in Ω,
Liu

i
n ≥ 0 in Ω,

Liu
i
n = 0 in {uin > un−1},

uin = g on ∂Ω,

and then we let
un = sup

i∈I
uin.

As was argued previously, we assume that there exists a continuous function u such
that

un → u

uniformly in Ω.

Now our aim is to show that u is a viscosity solution to

Lu = inf
i∈I

Liu = 0. (4.3)

First, we observe that, given i ∈ I, we have uin → u because un ≤ uin ≤ un+1. As
for each i ∈ I we know that Liu

i
n ≥ 0 in Ω, we get that u is a supersolution of Liu = 0,

this is Liu ≥ 0. Hence it is a supersolution of (4.3), in the sense that Lu ≥ 0 in the
viscosity sense.

Let us now show that un is a subsolution of (4.3) for all n ∈ N. We proceed by
induction. For n = 1, we consider an arbitrary x0 ∈ Ω. Let ψ be an arbitrary smooth
function that touches from above u1 at x0, then there exist {ik}k∈N ⊂ I such that
u1(x0) = limk u

ik
1 (x0). Then let xk be a point where ψ − uik1 attains its minimum, we

know that xk → x0 (note that we ask that ψ touches u1 strictly from above). We have
that ψ − ψ(xk) + uik1 (xk) touches from above uik1 at xk. Then, since Liku

ik
1 = 0, we get

Lik(xk, u
ik
1 (xk),∇ψ(xk), D

2ψ(xk)) ≤ 0.

Hence
L(xk, u

ik
1 (xk),∇ψ(xk), D

2ψ(xk)) ≤ 0

and we can conclude that

L∗ψ(x0) ≤ lim
k
L(D2ψ(xk),∇ψ(xk), ψ − ψ(xk) + uik1 (xk), xk) ≤ 0

We have proved that u1 is a viscosity subsolution of (4.3).

Analogously, we can show that the claim holds for un+1 assuming that it holds for
un. We consider an arbitrary x0 ∈ Ω. Let ψ be an arbitrary smooth function that
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strictly touches from above un+1 at x0, then, as before, there exist {ik}k∈N ⊂ I such
that un+1(x0) = limk u

ik
n+1(x0). Then let xk be a point where φ − uikn+1 attains its

minimum, we know that xk → x0. We have that ψ(z) − ψ(xk) + uikn+1(xk) + |z − xk|4
strictly touches from above uikn+1 at xk. Then, since Liku

ik
n+1 = 0 in {uikn+1 > un} and

L∗u
ik
n+1 ≤ 0 in {uikn+1 = un} by the inductive hypothesis, we get

L∗u
ik
n+1 ≤ 0.

Hence
L∗(xk, u

ik
1 (xk),∇ψ(xk), D

2ψ(xk)) ≤ 0

and we can conclude that

L∗ψ(x0) ≤ lim
k
L∗(xk, u

ik
1 (xk),∇ψ(xk), D

2ψ(xk)) ≤ 0

We have proved that un+1 is a subsolution of (4.3), that is, L∗un+1 ≤ 0.

Finally, being the limit of subsolutions, we conclude that u (the limit of the sequence
un) is a subsolution and therefore a solution of (4.3).

4.3.4 Continuity of the limit and uniform convergence hypoth-
esis.

Let us recall a result from Section 6 of [33] that we used in the proof of the main result.
Given un subsolutions of an equation, we have that

Ū := lim sup
n

∗un = lim sup
j

{
un(z) : n ≥ j, z ∈ Ω, |z − x| ≤ 1

j

}
is a subsolution of the same equation. An analogous result holds for super solutions.

Hence if the limit of the sequence is continuous we can conclude it is a subsolution.
Even more, if we have that the limit is continuous, we can conclude that the convergence
is uniform by Dini’s theorem.

On the other hand, we want to be able to obtain the continuity of the limit (that
we assumed) imposing conditions on the involved operators. In this direction, we can
require that there is a uniform modulus of continuity for the obstacle problems involved,
that is, if the obstacle and the boundary datum have a modulus of continuity, then the
solution to the obstacle problem also has the same modulus of continuity. This holds, for
example, for the obstacle problem for the fractional Laplacian (a quite popular operator
nowadays), see Theorem 3.2.3 in [75]. This also holds for the p−laplacian, the solution
is holder-continuous (for a specific exponent) with the same constant, see Theorem
6 in [31]. Then, inductively, we conclude that all the un have the same modulus of
continuity, and hence they are equicontinous. By Arzelà-Ascoli theorem we get that
the sequence converges uniformly. Then, of course, the limit u is continuous (and even
more, we get a modulus of continuity for the limit).
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4.3.5 On the hypothesis of continuity of the operators.

In the proof of the main theorem and Remark 4.3.3 we assumed that the involved
operators are continuous. We used this fact in two steps.

We conclude that u was a supersolution of Liu = 0 (as being the limit of superso-
lutions) and then, because of this, that it was a super solution of infi∈I Liu = 0. But
this fact is not necessarily true when the operators are not continuous. We have that
L∗iu ≥ 0 and hence we can conclude that infi∈I L

∗
iu ≥ 0 but we want to conclude that

(infi∈I Li)
∗u ≥ 0. So we need to require that (infi∈I Li)

∗ ≥ infi∈I L
∗
i , that holds when

the operator are continuous.

On the other hand we need that (infi∈I Li)∗ ≤ infi∈I Li∗. In the proof of the main
theorem we need this fact to conclude that un+1 is a subsolution of min{L1, L2}u = 0
on the set {un+1 > un} where we know L1un+1 or L2un+1 is zero. In Remark 4.3.3 we
need it in a similar way when we conclude that L∗u

ik
n+1 ≤ 0. In this case we have that

this inequality always holds.

In conclusion, when we have that the involved operators are not continuous we need
to require that (

inf
i∈I

Li

)∗
≥ inf

i∈I
L∗i .

Let us present two simple examples where this assumption does not hold. We
consider Ω = (0, 1) and the boundary datum g(0) = g(1) = 0 in both examples.

Example 1. We consider L1 = −u′′ − χ[0,1/2) and L2 = −u′′ − χ[1/2,1], then

(inf{L1, L2})∗ =
(
−u′′ − χ[0,1]

)∗
= −u′′ − χ[0,1]

while

inf{L∗1, L∗2} = inf{−u′′ − χ[0,1/2),−u′′ − χ(1/2,1]} = −u′′ − χ[0,1/2)∪(1/2,1].

Hence, (infi∈I Li)
∗ ≥ infi∈I L

∗
i does not hold pointwise. However, remark that in this

example we have the same solutions for infi∈I L
∗
iu = 0 and for infi∈I Liu = 0.

Example 2. Now we consider Li = −u′′ − δi for i ∈ [0, 1] (remark that in this
example we have an uncountable family of operators), then(

inf
i∈I

Li

)∗
=
(
−u′′ − χ[0,1]

)∗
= −u′′ − χ[0,1]

while
inf
i∈I

L∗i = inf
i∈I
−u′′ = −u′′.

Again in this example the hypothesis (infi∈I Li)
∗ ≥ infi∈I L

∗
i does not hold pointwise.

Note that now the equations infi∈I L
∗
iu = 0 and infi∈I Liu = 0 are really different.
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Chapter 5

A lower bound for the principal
eigenvalue

5.1 Introduction

In this chapter we present the results obtained in [22]. These results where obtained
while considering different variants of Tug-of-War games. However, the results are not
directly related to games and the presentation does not refer to them.

Let Ω ⊂ RN be a domain and Lu = F (u,∇u,D2u) a differential operator. We
consider the Dirichlet eigenvalue problem{

Lu+ λu = 0 in Ω

u = 0 on ∂Ω.
(5.1)

We are interested in the principal eigenvalue of −L, that is the smallest number λ ∈ R
for which the Dirichlet eigenvalue problem (5.1) has a non-trivial solution. Our goal
here is to introduce a novel technique to obtain a lower bound for this value.

We will consider solutions in the viscosity sense, see Appendix A. This will allow
us to consider fully nonlinear operators like Lu = F (u,∇u,D2u). In this general
framework we define the principal eigenvalue through the maximum principle as in
[12]. That is, we let

λ1(Ω) = sup{λ ∈ R : ∃v ∈ C(Ω) satisfying v(x) > 0 ∀x ∈ Ω and Lv + λv ≤ 0}.

This definition allows us to consider operators in non-divergence form. In [12] the
authors proved that for uniformly elliptic linear operators the value λ1(Ω) defined above
is indeed the principal eigenvalue of −L. This work opened the path to develop an
eigenvalue theory for nonlinear operators.
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Let us mention some previous work that deal with the operators that we will con-
sider as examples to illustrate our general result. The Pucci extremal operators were
studied in [26]. In [16, 17] it is proved that the number defined above is the princi-
pal eigenvalue for a class of homogeneous fully nonlinear operators which includes the
homogeneous p-laplacian (see also [47] and [65]). In [42] this was done for the homoge-
neous infinity laplacian. The eigenvalue problem that arises as limit of the problem for
the p-laplacian was considered in [43]. Other questions were addressed in more recent
work as problems in non-smooth domains [14], unbounded domains [13] and simplicity
of the first eigenvalue [15].

The lower bound that we obtain here depends on the largest radius of a ball included
in Ω. We define

R = max
x∈Ω̄

dist(x,Ωc).

From the definition of λ1 it is clear that the first eigenvalue is monotone with respect
to the domain, that is

Ω1 ⊂ Ω2 ⇒ λ1(Ω2) ≤ λ1(Ω1).

Then
λ1(Ω) ≤ λ1(BR)

and hence we can obtain an upper bound for the principal eigenvalue by computing
this value for a ball. We can do this by constructing a radial positive eigenfunction.
Therefore, we have to provide a radial solution φ(r) to the equation (5.1) such that
φ(R) = 0 and φ′(0) = 0. The eigenfunction will look like the one in Figure 5.1a. In
this way we can obtain an upper bound for the principal eigenvalue by solving certain
ODE.

Our main result provides an analogous construction to obtain a lower bound for
the principal eigenvalue. This time we require a radial solution φ(r) to the equation
Lu+ λu = 0 defined in the punctured ball BR \ {0} such that φ′(R) = 0 and φ(0) = 0.
The function will look like the one shown in Figure 5.1b. In this way we can obtain a
lower bound for the principal eigenvalue by solving an ODE. The lower bound will be
the value of λ for which we can solve the ODE.

Since our bound only depends on R, our technique is well suited for example for L
shape domains where considering a ball or and strip that contains Ω gives poorer results
or can’t be done for example if the L shape domain is unbounded. We also compare
our result with the classical Rayleigh-Faber-Krahn inequality in Example 5.3.3. Even
more, our technique is well suited to obtain sharp bounds for certain operators as will
be shown in the example section.

In the next section we state and prove our main result of this chapter and then
we outline some extensions. Later, in Section 5.3, we compute the bound explicitly
for the homogeneous infinity laplacian, for the homogeneuos p-laplacian and for other
operators. We prove that for the homogeneous infinity laplacian the principal eigenvalue
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(a) A eigenfunction in a ball.

(b) The radial function required in the main
theorem.

Figure 5.1: Radial functions that allow us to obtain bounds for the principal eigenvalue
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is λ1,∞ =
(
π

2R

)2
. In addition, our bound for the homogeneous p-laplacian proves that

limp→∞ λ1,p = λ1,∞.

5.2 Main theorem

Let Ω ⊂ RN be a domain (not necessarily bounded) and Lu := F (u,∇u,D2u) a fully
nonlinear operator. As we are interested in operators like the homogeneous infinity
laplacian and p-laplacian which are not well defined where the gradient vanishes we will
give a suitable definition of solution that includes these operators as in Definition A.1.2
but for the eigenvalue problem.

Definition 5.2.1. We consider the equation

F (u,∇u,D2u) + λu = 0.

1. A lower semi-continuous function u is a viscosity supersolution if for every ψ ∈ C2

such that ψ touches u at x ∈ Ω strictly from below, we have

F∗(ψ(x),∇ψ(x), D2ψ(x)) + λψ(x) ≤ 0.

2. An upper semi-continuous function u is a subsolution if for every ψ ∈ C2 such
that ψ touches u at x ∈ Ω strictly from above, we have

F ∗(ψ(x),∇ψ(x), D2ψ(x)) + λψ(x) ≥ 0.

3. Finally, u is a viscosity solution if it is both a sub- and supersolution.

As we have mentioned in the introduction, we want to obtain a lower bound for the
principal eigenvalue of −L given by

λ1(Ω) = sup{λ ∈ R : ∃v ∈ C(Ω) satisfying v(x) > 0 ∀x ∈ Ω and Lv + λv ≤ 0},

where the last inequality holds in the viscosity sense. Let us recall that here

R = max
x∈Ω̄

dist(x,Ωc).

We are ready to state and prove the main theorem of this Chapter.

Theorem 5.2.2. Suppose φ(r) is an increasing radial function defined in Br for some
r > R with φ(0) = 0 and λ ∈ R is such that

Lφ+ λφ ≤ 0

in Br \ {0}. Then λ1(Ω) ≥ λ.
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Figure 5.2: Functions v (blue) and φy0 (red) defined in the proof of Theorem 5.2.2 for
a square.

Proof. Let us consider v : Ω→ R given by

v(x) = φ(dist(x,Ωc)).

Since φ is positive outside the origin so is v inside Ω. If we prove that Lv + λv ≤ 0 for
the given value of λ, we obtain the desired inequality.

Let us consider x0 ∈ Ω and ψ ∈ C2 such that it touches v at x0 strictly from below.
Since Ω is an open set, there exists y0 ∈ ∂Ω such that dist(x0,Ω

c) = dist(x0, y0) and we
can consider φy0(x) = φ(|x−y0|). Then, since φ is radial increasing, one get v ≤ φy0 and
coincides with it at x0. So ψ touches φy0 at x0 strictly from below and hence ψ satisfies
the inequality. This shows that Lv + λv ≤ 0 in the viscosity sense as desired.

Remark 5.2.3. Given r if we are able to construct φ for certain λ(r) that depends
continuously on r since λ1(Ω) ≥ λ(r) for all r > R, we obtain λ1(Ω) ≥ λ(R).

It may be the case that we could not construct φ as required above (see Exam-
ple 5.3.3). In that case we can modify our construction in order to obtain the lower
bound as follows. Given δ > 0, we consider

Ωδ = {x : dist(x,Ω) < δ}

and
Rδ = max

x∈Ω̄δ

dist(x,Ωc
δ).

Theorem 5.2.4. Suppose φ(r) is an increasing radial function defined in Br \ Bδ for
some r > Rδ with φ = 0 on ∂Bδ and λ is such that

Lφ+ λφ ≤ 0
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in Br \Bδ. Then λ1(Ω) ≥ λ.

Proof. The proof is completely analogous to that of Theorem 5.2.2. We have to consider
v(x) = φ(dist(x,Ωc

δ)) which is positive in Ω since dist(x,Ωc
δ) ≥ δ for all x ∈ Ω. And we

prove that v is a supersolution at x0 by considering φy0(x) = φ(|x − y0|) for y0 ∈ ∂Ωδ

such that dist(x0,Ω
c
δ) = dist(x0, y0).

Let us make some comments regarding Rδ which will be useful when applying The-
orem 5.2.4, see Example 5.3.3. We observe that Rδ ≥ R+ δ but equality is not true in
general. This can be seen by considering an U shaped domain, if δ is big enough the
‘hole’ inside the domain is covered and then Rδ is strictly bigger than R + δ. Let us
prove that the equality holds for convex domains.

Lemma 5.2.5. When Ω is convex, Rδ = R + δ.

Proof. Let y ∈ Ωδ such that BR̃(y) ⊂ Ωδ. Let us show that BR̃−δ(y) ⊂ Ω, and hence
Rδ − δ ≤ R as desired.

Suppose not, let x ∈ BR̃−δ(y) \ Ω. As x 6∈ Ω and Ω is convex there exists a plane
though x such that one of the half-spaces defined by this plane is disjoint with Ω. Now,
points in that half-space at distance greater that δ from the plane are not in Ωδ but
this is a contradiction since BR̃−|x−y| ⊂ Ωδ and R̃− |x− y| > δ.

Remark 5.2.6. We have considered the Dirichlet eigenvalue problem given by

Lu+ λu = 0

but we can consider a more general version of the problem Lu+ λMu = 0, where M is
a given differential operator, or even more generally

G(D2u,∇u, u, λ) = 0.

As examples of this general situation we can consider M = |u|αu as in [17] and
G(D2u,∇u, u, λ) = min{−∆∞u, |∇u| − λu} as in [43]. Theorems 5.2.2 and 5.2.4 also
hold in this more general case.

5.3 Examples

In this section we compute explicitly the bound for the principal eigenvalue of the
homogeneous infinity laplacian, the homogeneuos p-laplacian, the eigenvalue problem
that rises when considering the limit as p → ∞ of the problem for the p-laplacian
and Pucci extremal operator. We denote λ1,∞ and λ1,p the principal eigenvalue of
the homogeneous infinity laplacian and the homogeneuos p-laplacian, respectively. For
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the homogeneous infinity laplacian we prove that the principal eigenvalue is given by

λ1,∞ =
(
π

2R

)2
. For the homogeneous p-laplacian our bound allows us to prove that

limp→∞ λ1,p = λ1,∞, see [65] for a different proof of this result.

Example 5.3.1. Here we consider the homogeneous infinity laplacian, which is given
by

∆H
∞u =

(
∇u
|∇u|

)t
D2u

∇u
|∇u|

.

The eigenvalue problem for this operator was studied in [42]. We want to prove that

λ1,∞(Ω) =
( π

2R

)2

,

which gives us an explicit new characterization of the eigenvalue.

On the one hand we have that λ1,∞(BR) =
(
π

2R

)2
. It is easy to check that

u(x) = sin

(
(R− ||x||)π

2R

)
is the corresponding eigenfunction. On the other hand it is easy to verify that

φ(x) = sin

(
||x||π
2R

)
satisfies Lφ+λ1,∞φ ≤ 0 in BR \{0}, it is radially increasing in BR and φ(0) = 0. Hence
Theorem 5.2.2 allows us to conclude the desired result.

Moreover v(x) = φ(dist(x,Ωc)) is an eigenfunction for stadium like domains. As
can be seen in the proof of Theorem 5.2.2, it is a supersolution to the equation. In
the same way it can be shown that it is a subsolution by considering the eigenfunction
in balls of radius R contained in Ω. Let us mention that in [35] stadium like domains
are characterized by considering a Serrin-type problem for the homogeneous infinity
laplacian.

Example 5.3.2. We consider the homogeneous p-laplacian, that is

∆H
p u =

1

p
|∇u|2−pdiv(|∇u|p−2∇u) =

p− 2

p
∆H
∞u+

1

p
∆u.

When we look for radial solutions to the equation ∆H
p v + λv = 0 in BR, we obtain

the equation

vrr +
N − 1

p− 1

vr
r

+
pλ

p− 1
v = 0. (5.1)

The general solution is given by

v(r) = c1r
αJα(ηr) + c2r

αYα(ηr),
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where

α =
1− N−1

p−1

2
=

p−N
2(p− 1)

, η =

√
λ

p

p− 1

and Jα and Yα are Bessel functions.

In [48] the eigenvalue for a ball BR is computed,

λp(BR) =
p− 1

p

(
µ

(−α)
1

R

)2

,

where µ
(−α)
1 is the first zero of the Bessel function J−α. This implies that

λ1,p(Ω) ≤ p− 1

p

(
µ

(−α)
1

R

)2

.

We want to construct an appropriate function to apply Theorem 5.2.2. We consider
the case p > N (we analyse the case p ≤ N in the following example). We observe that

0 < α =
p−N

2(p− 1)
.

As we require v(0) = 0, we have to take

v(r) = crαJα(ηr).

Then
v′(r) = cηrαJα−1(ηr)

and we can take v increasing up to the first zero of the derivative. We impose v′(R) = 0,
that is

µ
(α−1)
1

R
= η =

√
λ

p

p− 1
.

Then,

p− 1

p

(
µ

(α−1)
1

R

)2

≤ λ1,p(Ω),

and we have that

p− 1

p

(
µ

(α−1)
1

R

)2

≤ λ1,p(Ω) ≤ p− 1

p

(
µ

(−α)
1

R

)2

.

Now let us consider the limit as p→∞. Since α→ 1
2

−
, we have that

α− 1→ −1

2

−
and − α→ −1

2

+
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and hence

p− 1

p

(
µ

(α−1)
1

R

)2

→
( π

2R

)2

and
p− 1

p

(
µ

(−α)
1

R

)2

→
( π

2R

)2

.

We have proved that
lim
p→∞

λ1,p(Ω) = λ1,∞(Ω).

Example 5.3.3. If we consider the case p ≤ N in the previous example, the ordinary
differential equation (5.1) has no non-trivial solution with v(0) = 0. Hence we apply
Theorem 5.2.4.

We can take
v(r) = crαJα(ηr).

Then
v′(r) = cηrαJα−1(ηr).

If x < y are zeros of Jα and Jα−1 respectively, we can choose the sign of c such that v
is an increasing positive function in the interval (x/η, y/η). Let us assume that we can
choose δ such that δ/Rδ = x/y (we can do this when Ω is convex and hence Rδ = R+ δ
as stated in Lemma 5.2.5). If we take η = x/δ = y/Rδ we obtain that v is an increasing
positive function in the interval (δ, Rδ) and we can apply Theorem 5.2.4. In the case
that Rδ = R + δ, δ/Rδ = x/y implies that δ = Rx

y−x . Then η = y−x
R

, and we obtain

p− 1

p

(
y − x
R

)2

≤ λ1,p(Ω).

Let us observe that the same can be done with Yα instead of Jα.

Let us make some explicit computation in a particular case, for the Laplacian in
dimension 3. We avoid the term 1/p in the operator and consider the equation ∆u+λu =
0 in Ω ⊂ R3. We have α = −1/2,

x−1/2J−1/2(x) =

√
2

π

cos(x)

x
.

The distance between the zeros of the function and the subsequent zero of its derivative
increases and approaches π/2. Hence, we obtain( π

2R

)2

≤ λ1,2(Ω).

Let us compare our result to the classical Rayleigh-Faber-Krahn inequality which
states

λ1(Ω) ≥ |Ω|−
2
NC

2
N
N (µ

N
2
−1

1 )2
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where CN is the volume of the N -dimensional unit ball. This inequality is sharp for
the unit ball, in R3 we have

λ1,2(B1) =
( π
R

)2

.

If |Ω| ≥ 8|BR|, we have

|Ω|−
2
3C

2
3
3 (µ

n
2
−1

1 )2 ≤ |8BR|−
2
3 |B1|

2
3 (µ

1
2
1 )2 =

( π

2R

)2

,

hence our inequality is sharper in this case. For example for a cylinder tall enough.

Example 5.3.4. We consider the equation

min{−∆∞u, |∇u| − λu} = 0,

where
∆∞u = (∇u)tD2u∇u

is the infinity laplacian. This equation arises when considering the limit as p → ∞ in
the eigenvalue problem for the p-laplacian, see [43].

In this case the principal eigenvalue is 1
R

, we can prove this fact in the same way as
in Example 5.3.1 by considering u(x) = R− ||x|| and φ(x) = ||x||.

Example 5.3.5. We consider Pucci’s extremal operator, that is

M+
γ,Γ(D2u) = Γ

∑
ei>0

ei + γ
∑
ei<0

ei,

where ei are the eigenvalues of D2u.

When u(x) = φ(r) is radial, the eigenvalues are φ′′(r) with multiplicity one and
φ′(r)/r with multiplicity n− 1. Since we require the function to be increasing, we have
φ′(r)/r > 0, let us consider the case φ′′(r) < 0. We obtain the equation

φ′′ + Γ(N − 1)γ
φ′

r
+
λ

γ
φ = 0.

Again, the general solution is given by

v(r) = c1r
αJα(ηr) + c2r

αYα(ηr),

where

α =
1− Γ(N−1)

γ

2
=
γ − Γ(N − 1)

2γ
and η =

√
λ

γ
.

We can obtain the bound as in the previous examples. Let us illustrate this with a
particular case. With γ = 1, Γ = 2 in dimension 2 we have α = −1/2 as in the end of

Example 5.3.3, we obtain
(
π

2R

)2 ≤ λ1(Ω).
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Chapter 6

Games for eigenvalues of the
Hessian and concave/convex
envelopes

6.1 Introduction

In this chapter, we study the boundary value problem{
λj(D

2u) = 0, in Ω,

u = g, on ∂Ω.
(λj, g)

Here Ω is a domain in RN and for the Hessian matrix of a function u : Ω 7→ R, D2u,
we denote by

λ1(D2u) ≤ ... ≤ λN(D2u)

the ordered eigenvalues. Thus our equation says that the j−st smaller eigenvalue of
the Hessian is equal to zero inside Ω. We include here the results obtained in [25], a
joint work with Julio Daniel Rossi.

The uniqueness and a comparison principle for the equation were proved in [39].
For the existence, in [39] it is assumed that the domain is smooth (at least C2) and
such that κ1 ≤ κ2 ≤ ... ≤ κN−1, the main curvatures of ∂Ω, verify

κj(x) > 0 and κN−j+1(x) > 0, ∀x ∈ ∂Ω. (H)

Our main goal here is to improve the previous result and give sufficient and necessary
conditions on the domain (without assuming smoothness of the boundary) so that the
problem has a continuous solution for every continuous data g. Our geometric condition
on the domain reads as follows: Given y ∈ ∂Ω we assume that for every r > 0 there
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exists δ > 0 such that for every x ∈ Bδ(y) ∩ Ω and S ⊂ RN a subspace of dimension j,
there exists v ∈ S of norm 1 such that

{x+ tv}t∈R ∩Br(y) ∩ ∂Ω 6= ∅. (Gj)

We say that Ω satisfies condition (G) if it satisfies both (Gj) and (GN−j+1).

Theorem 6.1.1. The equation (λj, g) has a continuous solution for every continuous
data g if and only if Ω satisfies condition (G).

As part of the proof of this theorem we use the following geometric interpretation
of solutions to (λj, g). Let Hj be the set of functions v such that

v ≤ g on ∂Ω,

and have the following property: for every S affine of dimension j and every j−dimensional
domain D ⊂ S ∩ Ω it holds that

v ≤ z in D

where z is the concave envelope of v|∂D in D. Then we have the following results:

Theorem 6.1.2. An upper semi-continuous function v belongs to Hj if and only if it
is a viscosity subsolution to (λj, g).

Theorem 6.1.3. The function

u(x) = sup
v∈Hj

v(x).

is the largest viscosity solution to λj(D
2u) = 0, in Ω, with u ≤ g on ∂Ω.

Notice that, for j = N , we have that the equation for the concave envelope of u|∂Ω

in Ω is just λN = 0; while the equation for the convex envelope is λ1 = 0. See [68]
for the convex envelope of a boundary datum and [67] for the convex envelope of a
function f : Ω 7→ R. Notice that our condition (G) in these two extreme cases is just
saying that the domain is strictly convex. Hence, Theorem 6.1.1 implies that for a
strictly convex domain the concave or the convex envelope of a continuous datum g
on its boundary is attached to g continuously. Note that the concave/convex envelope
of g inside Ω is well defined for every domain (just take the infimum/supremum of
concave/convex functions that are above/below g on ∂Ω). The main point of Theorem
6.1.1 is the continuity up to the boundary of the concave/convex envelope of g if and
only if (G) holds. Remark that Theorem 6.1.2 says that the equation λj(D

2u) = 0 for
1 < j < N is also related to concave/convex envelopes of g, but in this case we consider
concave/convex functions restricted to affine subspaces. Also in this case Theorem 6.1.1
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gives a necessary and sufficient condition on the domain in order to have existence of a
solution that is continuous up to the boundary.

Remark that we have that u is a continuous solution to (λj, g) if and only if −u is
a solution to (λN−j+1,−g). This fact explains why we have to include both (Gj) and
(GN−j+1) in condition (G).

Our original motivation to study the problem (λj, g) comes from game theory. Let
us describe the game that we propose to approximate solutions to the equation. It is
a two-player zero-sum game. Fix a domain Ω ⊂ RN , ε > 0 and a final payoff function
g : RN \Ω 7→ R. The rules of the game are the following: the game starts with a token
at an initial position x0 ∈ Ω, one player (the one who wants to minimize the expected
payoff) chooses a subspace S of dimension j and then the second player (who wants
to maximize the expected payoff) chooses one unitary vector, v, in the subspace S.
Then the position of the token is moved to x± εv with equal probabilities. The game
continues until the position of the token leaves the domain and at this point xτ the
first player gets −g(xτ ) and the second player g(xτ ). When the two players fix their
strategies SI (the first player chooses a j−dimensional subspace S at every step of the
game) and SII (the second player chooses a unitary vector v ∈ S at every step of the
game) we can compute the expected outcome as

Ex0SI ,SII [g(xτ )].

Then the values of the game for any x0 ∈ Ω for the two players are defined as

uεI(x0) = inf
SI

sup
SII

Ex0SI,SII
[g(xτ )] , uεII(x0) = sup

SII

inf
SI

Ex0SI,SII
[g(xτ )] .

When the two values coincide we say that the game has a value.

Next, we state that this game has a value and the value verifies an equation (called
the Dynamic Programming Principle (DPP) in the literature).

Theorem 6.1.4. The game has value

uε = uεI = uεII

that verifies uε(x) = inf
dim(S)=j

sup
v∈S,|v|=1

{
1

2
uε(x+ εv) +

1

2
uε(x− εv)

}
x ∈ Ω,

uε(x) = g(x) x 6∈ Ω.

(DPP)

Our next goal is to look for the limit as ε → 0. To this end we need another
geometric assumption on ∂Ω. Given y ∈ ∂Ω we assume that there exists r > 0 such
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Figure 6.1: Condition (F2) in R3. We have ∂Ω in blue, Bδ(y) in green and Tλ in red.

that for every δ > 0 there exists T ⊂ RN a subspace of dimension j, v ∈ RN of norm
1, λ > 0 and θ > 0 such that

{x ∈ Ω ∩Br(y) ∩ Tλ : 〈v, x− y〉 < θ} ⊂ Bδ(y) (Fj)

where

Tλ = {x ∈ RN : d(x, T ) < λ}.

For our game with a given j we will assume that Ω satisfies both (Fj) and (FN−j+1), in
this case we will say that Ω satisfy condition (F ).

For example, if we consider the equation λ2 = 0 in R3, we will require that the
domain satisfy (F2) as illustrated in Figure 6.1.

Theorem 6.1.5. Assume that Ω satisfies (F ) and let uε be the values of the game.
Then,

uε → u, as ε→ 0,

uniformly in Ω. Moreover, the limit u is characterized as the unique viscosity solution
to {

λj(D
2u) = 0, in Ω,

u = g, on ∂Ω.
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We regard condition (F ) as a geometric way to state (H) without assuming that
the boundary is smooth. In section 6.6, we discuss the relation within the different
conditions on the boundary in detail, we have that

(H)⇒ (F)⇒ (G).

Our results can be easily extended to cover equations of the form

k∑
i=1

αiλji = 0 (6.1)

with α1 + ...+αk = 1, αi > 0 and λj1 ≤ ... ≤ λjk any choice of k eigenvalues of D2u (not
necessarily consecutive ones). In fact, once we fixed indexes j1, ..., jk, we can just choose
at random (with probabilities α1, ..., αk) which game we play at each step (between the
previously described games that give λji in the limit). In this case the DPP reads as

uε(x) =
k∑
i=1

αi

(
inf

dim(S)=ji
sup

v∈S,|v|=1

{
1

2
uε(x+ εv) +

1

2
uε(x− εv)

})
.

Passing to the limit as ε→ 0 we obtain a solution to (6.1).

In particular, we can handle equations of the form

P+
k (D2u) :=

N∑
i=N−k+1

λi(D
2u) = 0, and P−k (D2u) :=

k∑
i=1

λi(D
2u) = 0,

or a convex combination of the previous two

P±k,l,α(D2u) := α
N∑

i=N−k+1

λi(D
2u) + (1− α)

l∑
i=1

λi(D
2u) = 0.

These operators appear in [19, 18, 39, 40] and in [74, 76] with connections with
geometry. See also [27] for uniformly elliptic equations that involve eigenvalues of the
Hessian.

Remark 6.1.6. We can interchange the roles of Player I and Player II. In fact, consider
a version of the game where the player who chooses the subspace S of dimension j is
the one seeking to maximize the expected payoff while the one who chooses the unitary
vector wants to minimize the expected payoff. In this case the game values will converge
to a solution of the equation

λN−j+1(D2u) = 0.

Notice that the geometric condition on Ω, (Fj) and (FN−j+1), is also well suited to deal
with this case.
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The chapter is organized as follows: in Section 6.2 we collect some preliminary
results; in Section 6.3 we obtain the geometric interpretation of solutions to (λj, g)
stated in Theorem 6.1.3 and Theorem 6.1.2; in Section 6.4 we prove Theorem 6.1.1; in
Section 6.5 we prove our main results concerning the game, Theorem 6.1.4 and Theorem
6.1.5; and, finally, in Section 6.6 we discuss the relation between the different geometric
conditions on Ω.

6.2 Preliminaries

We begin by stating the usual definition of a viscosity solution to (λj, g). We refer to
Appendix A for the definitions of the lower semicontinuous envelope, u∗, and the upper
semicontinuous envelope, u∗, of u.

Definition 6.2.1. A function u : Ω 7→ R verifies

λj(D
2u) = 0

in the viscosity sense if

1. for every φ ∈ C2 such that u∗ − φ has a strict minimum at the point x ∈ Ω with
u∗(x) = φ(x), we have

λj(D
2φ(x)) ≤ 0.

2. for every ψ ∈ C2 such that u∗−ψ has a strict maximum at the point x ∈ Ω with
u∗(x) = ψ(x), we have

λj(D
2ψ(x)) ≥ 0.

We refer to [39] for the following existence and uniqueness result for viscosity solu-
tions to (λj, g).

Theorem 6.2.2 ([39]). Let Ω be a smooth bounded domain in RN . Assume that con-
dition (H) holds at every point on ∂Ω. Then, for every g ∈ C(∂Ω), the problem{

λj(D
2u) = 0, in Ω,

u = g, on ∂Ω,

has a unique viscosity solution u ∈ C(Ω).

We remark that for the equation λj(D
2u) = 0 there is a comparison principle. A

viscosity supersolution u (a lower semicontinuous function that verifies (1) in Definition
6.2.1) and viscosity subsolution u (an upper semicontinuous function that verifies (2)
in Definition 6.2.1) that are ordered as u ≤ u on ∂Ω are also ordered as u ≤ u inside
Ω. This comparison principle holds without assuming condition (H).
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Condition (H) allows us to construct a barrier at every point of the boundary. This
implies the continuity up to the boundary as stated above. For the reader’s convenience,
let us include some details on the constructions of such barriers. This calculations may
help the reader to understand the interplay between the different conditions on the
boundary of Ω that will be discussed in Section 6.6.

For a given point on the boundary (that we assume to be x = 0) we take coordi-
nates according to xN in the direction of the normal vector and (x1, ..., xN−1) in the
tangent plane in such a way that the main curvatures of the boundary κ1 ≤ ... ≤ κN−1

corresponds to the directions (x1, ..., xN−1). That is, locally the boundary of Ω can be
described as

xN = f(x1, ..., xN−1)

with
f(0, ..., 0) = 0, ∇f(0, ..., 0) = 0.

That is, locally we have that the boundary of Ω is given by

xN −
1

2

N−1∑
i=1

κix
2
i = o

(
N−1∑
i=1

x2
i

)
,

and
Ω ∩Br(0) =

{
(x1, ..., xN) ∈ Br(0) : xN − f(x1, ..., xN−1) > 0

}
=

{
(x1, ..., xN) ∈ Br(0) : xN −

1

2

N−1∑
i=1

κix
2
i > o

(
N−1∑
i=1

x2
i

)}
.

for some r > 0.

Now we take as candidate for a barrier a function of the form

u(x1, ..., xN) = xN −
1

2

N−1∑
i=1

aix
2
i −

1

2
bx2

N ,

with
ai = κi − η and b = κN−j+1 − η.

We have that

D2(u) =


−a1 . . . 0 0

...
. . .

...
0 −aN−1 0
0 . . . 0 −b

 ,

and then the eigenvalues of D2(u) are given by

λ1 = −κN−1 + η ≤ · · · ≤ λj−1 = −κN−j+1 + η =

λj = −κN−j+1 + η ≤ · · · ≤ λN = −κ1 + η.
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We asked that condition (H) holds, that implies, in particular, that

κN−j+1 > 0,

and therefore,
λj(D

2u) = −κN−j+1 + η < 0

for η > 0 small enough.

We also have

u(x1, ..., xN) > 0 for (x1, ..., xN) ∈ Ω ∩B(0, r)

for r small enough. To see this fact we argue as follows:

u(x1, ..., xN) = xN −
1

2

N−1∑
i=1

aix
2
i −

1

2
bx2

N

= xN − f(x1, ..., xN−1) + f(x1, ..., xN−1)− 1

2

n∑
i=2

aix
2
i −

1

2
bx2

1

≥ f(x1, ..., xN−1)− 1

2

N−1∑
i=1

κix
2
i +

η

2

N∑
i=1

x2
i −

1

2
κN−j+1x

2
N

≥ η

2

N∑
i=1

x2
i −

1

2
κN−j+1x

2
N + o

(
N−1∑
i=1

x2
i

)
.

Since we assumed that κN−j+1 > 0 we have

u(x1, ..., xN) ≥ η

2

N∑
i=1

x2
i −

1

2
κN−j+1x

2
N + o(

N−1∑
i=1

x2
i )

≥ η

2

N∑
i=1

x2
i −

1

2
κN−j+1

(
1

2

N−1∑
i=1

κix
2
i

)2

+ o

(
N−1∑
i=1

x2
i

)

≥ η

2

N∑
i=1

x2
i − C

(
N−1∑
i=1

x2
i

)2

+ o

(
N−1∑
i=1

x2
i

)
> 0

for (x1, ..., xN) ∈ Ω ∩ B(0, r) with r small enough. We also have that u(0) = 0 and at
a point on ∂Ω \ {0}

u(x1, ..., xN) = xN −
1

2

N−1∑
i=1

aix
2
i −

1

2
bx2

N

=
η

2

N∑
i=1

x2
i + o

(
N−1∑
i=1

x2
i

)
> 0.

When looking for a subsolution we can do an analogous construction. In this case
we will use the condition κj > 0.
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6.3 The geometry of convex/concave envelopes and

the equation λj = 0

Let us describe a geometric interpretation of being a solution (the largest) to the equa-
tion

λj(D
2u) = 0, in Ω

with u ≤ g on ∂Ω.

We begin with two special cases of Theorem 6.1.3.

6.3.1 j = 1 and the convex envelope.

Let us start with the case j = 1. We let H1 be the set of functions v such that

v ≤ g on ∂Ω,

and have the following property: for every segment D = (x1, x2) ⊂ Ω it holds that

v ≤ z in D

where z is the linear function in D with boundary values v|∂D. In this case, the graph
of z is just the segment that joins (x1, v(x1)) with (x2, v(x2)) and then we get

v(tx1 + (1− t)x2) ≤ tv(x1) + (1− t)v(x2) t ∈ (0, 1).

That is, H1 is the set of convex functions in Ω that are less or equal that g on ∂Ω.

Now we have

Theorem 6.3.1. Let

u(x) = sup
v∈H1

v(x).

It turns out that u is the largest viscosity solution to

λ1(D2u) = 0 in Ω,

with u ≤ g on ∂Ω.

Notice that u is just the convex envelope of g in Ω and that this function is known
to be twice differentiable almost everywhere inside Ω, [1].
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6.3.2 j = N and the concave envelope.

Similarly, when one deals with j = N , we consider

λN(D2u) = 0 in Ω,

with u = g on ∂Ω. We get that v = −u is a solution to

λ1(D2v) = 0 in Ω,

with v = −g on ∂Ω. Hence v = −u is the convex envelope of −g, that is, u is the
concave envelope of g.

6.3.3 1 < j < N and the convcave/convex envelope in affine
spaces.

Let us consider Hj the set of functions v such that

v ≤ g on ∂Ω,

and have the following property: for every S affine of dimension j and every j−dimensional
domain D ⊂ S ∩ Ω it holds that

v ≤ z in D

where z is the concave envelope of v|∂D in D. Notice that, from our previous case,
j = N , we have that the equation for the convex envelope of g in a j−dimensional
domain D is just λj = 0.

Now we proceed with the proof of Theorem 6.1.2.

Proof of Theorem 6.1.2. First, let us show that every upper semi-continuous v ∈ Hj

is a viscosity subsolution to our problem. In fact, we start mentioning that v ≤ g on
∂Ω. Concerning the equation, let φ ∈ C2 such that φ − v has a strict minimum at
x0 ∈ Ω with v(x0) = φ(x0) (φ touches v from above at x0) and assume, arguing by
contradiction, that

λj(D
2φ(x0)) < 0.

Therefore, there are j orthogonal directions v1, ..., vj such that

〈D2φ(x)vi, vi〉 < 0.

Notice that λ1(D2φ(x0)) ≤ ... ≤ λj(D
2φ(x0)) < 0, therefore the matrix D2φ(x0)) has

at least j negative eigenvalues. Let us call S the affine variety generated by v1, ..., vj
that passes trough x0.

92



Then we have, for any vector w ∈ Bδ(x0) ∩ S not null (δ small)

v(x0 + w) ≤ φ(x0 + w) < φ(x0) + 〈∇φ(x0), w − x0〉.

Therefore, we obtain that

w 7→ φ(x0) + 〈∇φ(x0), w − x0〉 − ε

describes a function z over the ball Bδ(x0) ∩ S with v|∂Bδ(x0)∩S ≤ z|∂Bδ(x0)∩S (for ε
small), such that

z(x0) = φ(x0)− ε < φ(x0) = v(x0).

A contradiction since v ∈ Hj and z is linear and hence concave. This shows that every
v ∈ Hj upper semi-continuous is a subsolution.

Now we show that every upper semi-continuous subsolution v belongs to Hj. Sup-
pose, arguing again by contradiction, that there exist S an affine space of dimension j,
a j−dimensional domain D ⊂ S ∩ Ω and x0 ∈ D such that

v(x0) > z(x0)

where z is the concave envelope of v|∂D in D. Since z is a concave envelope, there
exists a linear function L defined in D such that L ≥ v on ∂D and v(x0) > L(x0). By

considering L′ = L+ v(x0)−L(x0)
2

we obtain a linear function L′ such that L′ > v on ∂D
and v(x0) > L′(x0).

Let us consider

Dε = {x ∈ Rn : p(x) ∈ D and dist(x,D) < ε}

where p is the orthogonal projection over S. We split the boundary of this set, ∂Dε,
into two regions, the bases and the sides. Let

A = {x ∈ Rn : p(x) ∈ ∂D and dist(x,D) ≤ ε}

and
B = {x ∈ Rn : p(x) ∈ D and dist(x,D) = ε}.

We have ∂Dε = A ∪B.

We extend L′ to Rn by considering L′′ = L′ ◦ p. Since L′′ is continuous, v is upper
semi-continuous and L′′ > v on ∂D we have that L′′ > v on A for ε small enough.
We can consider φ(x) = L′′(x) + K[dist(x, S)]2. Since v is upper semi-continuous it is
bounded on B, hence φ > v on B for K large enough. We have φ > v on ∂Dε and
v(x0) > φ(x0). We consider φ′(x) = φ(x) − δ dist(x, x0)2 for δ small enough such that
φ′ > v on ∂Dε and v(x0) > φ′(x0). The function φ′ − v must attain a minimum inside
Dε, which is a contradiction since v is a subsolution and the second derivatives of φ′

are strictly negative in the j directions spanned by S.
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Before we proceed with the proof of Theorem 6.1.3 we need to show the next lemma.
Notice that for a function v ∈ Hj it could happen that v∗ does not satisfy v∗ ≤ g on
∂Ω, nevertheless the main condition in the definition of the set Hj still holds for v∗.

Lemma 6.3.2. If v ∈ Hj then for every S affine of dimension j and every j−dimensional
domain D ⊂ S ∩ Ω it holds that

v∗ ≤ z in D

where z is the concave envelope of v∗|∂D in D.

Proof. Suppose not. Then, there exist x ∈ Ω, an affine space S of dimension j and a
j−dimensional domain D ⊂ S∩Ω such that x ∈ D and v∗(x) > z(x), where z : D → R
is the concave envelope of v∗|∂D in D. We consider w = z + ε for ε > 0 such that
v∗(x) > w(x). We have that w(y) > v∗(y) for every y ∈ ∂D. We assume, without lost
of generality, that x = 0.

We know that there exists xk ∈ Ω such that xk → 0 and v(xk) → v∗(0). We let
Sk = xk + S and Dk = (D+ xk)∩Ω. Now, we consider r > 0 such that Br(0)∩ S ⊂ D
and B2r(0) ⊂ Ω, if |xk| < r then Br(xk) ⊂ Dk. Hence, Dk is not empty for k large
enough, since we have that xk ∈ Dk.

We consider wk : Dk → R given by wk(x) = w(x−xk). Since v∗(0) > w(0) = wk(xk)
and v(xk) → v∗(0) we know that v(xk) > wk(xk) for k large enough. Since wk is
concave, v ∈ Hj and v(xk) > wk(xk) there exists yk ∈ ∂Dk such that v(yk) > wk(yk).
As ∂Dk ⊂ ∂(D + xk) ∪ ∂Ω, by considering a subsequence we can assume that there
exists y such that yk → y, and yk ∈ ∂(D + xk) for every k or yk ∈ ∂Ω for every k.

When yk ∈ ∂(D + xk), we have that yk − xk ∈ ∂D and hence y ∈ ∂D. Since
v(yk) > wk(yk) = w(yk − xk) and w is continuous we obtain that

v∗(y) ≥ lim sup
k

v(yk) ≥ lim sup
k

w(yk − xk) ≥ w(y),

which is a contradiction.

Now we consider the case when yk ∈ ∂Ω. Since yk ∈ Dk, we have that y ∈ D. If
y ∈ ∂D we can arrive to a contradiction as before. If y ∈ D then y ∈ Ω which is a
contradiction since yk ∈ ∂Ω and yk → y.

Now, we are ready to prove the main theorem of this section.

Proof of Theorem 6.1.3. First, let us observe that every v ∈ Hj is a viscosity subso-
lution to our problem. This holds as a direct consequence of Lemma 6.3.2 and Theo-
rem 6.1.2. Hence

u(x) = sup
v∈Hj

v(x)
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is also a subsolution.

Now, to show that u is a supersolution we let φ ∈ C2 such that φ− u∗ has a strict
maximum at x0 ∈ Ω with u∗(x0) = φ(x0) (φ touches u∗ from below at x0) and assume,
arguing by contradiction, that

λj(D
2φ(x0)) > 0.

Therefore, all the eigenvalues λj(D
2φ(x0)) ≤ ... ≤ λN(D2φ(x0)) of D2φ(x0) are strictly

positive. Hence φ ∈ Hj in a small neighborhood of x0 (every affine S of dimension j
contains a direction v such that 〈D2φ(x0)v, v〉 > 0).

Now, we take (for ε small)

û(x) = max{u(x), φ(x) + ε}

and we obtain a function û ∈ Hj that verifies

û(z) = max{u(z), φ(z) + ε} > u(z) = sup
v∈Hj

v(z)

for some z close to x0, a contradiction.

Hence, for a general j we can say that the largest solution to our problem

λj(D
2u) = 0, in Ω

with u ≤ g on ∂Ω, is the j−dimensional affine convex envelope of g inside Ω.

Remark 6.3.3. Notice that we can look at the equation

λj = 0

from a dual perspective.

Now, we consider VN−j+1 the set of functions w that are greater or equal than g on
∂Ω and verify the following property, for every T affine of dimension N − j+ 1 and any
domain D ⊂ T , w to be bigger or equal than z for every z a convex function in D that
is less or equal than w on ∂D.

Let
u(x) = inf

w∈VN−j+1

w(x).

Arguing as before, it turns out that u is the smallest viscosity solution to

λj(D
2u) = 0, in Ω

with u ≥ g on ∂Ω.
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6.4 Existence of continuous solutions

In the previous section we showed existence and uniqueness of the largest/smallest
viscosity solution to the PDE problem

λj(D
2u) = 0, in Ω

with

u ≤ g / u ≥ g, on ∂Ω.

Our main goal in this section is to show that under condition (G) on ∂Ω these
functions coincide and then we have a solution u that is continuous up to the bound-
ary. Uniqueness and continuity inside Ω follow from the comparison principle for the
equation λj(D

2u) = 0 proved in [39]. In fact, for a solution that is continuous on ∂Ω,
we have that u∗ is a subsolution and u∗ is a supersolution that verify u∗ = u∗ = g
on ∂Ω and then the comparison principle gives u∗ ≤ u∗ in Ω. This fact proves that
u = u∗ = u∗ is continuous.

Let us start by pointing out that when Ω does not satisfy condition (G) then we
have that (Gj) or (GN−j+1) does not hold.

If Ω does not satisfy (Gj) then there exist y ∈ ∂Ω, r > 0, a sequences of points
xn ∈ Ω such that xn → y and Sn a sequence of affine subspaces of dimension j such
that xn ∈ Sn and

Sn ∩ ∂Ω ∩Br(y) = ∅.

Example 6.4.1. The half-ball, that is, the domain

Ω = B1(0) ∩ {x2 > 0}

in R3 does not satisfy (G). In fact, if we take y = 0 ∈ ∂Ω, r = 1
2
, xn = (0, 1

n
, 0) and

Sn = xn + 〈(1, 0, 0), (0, 0, 1)〉 we have

Sn ∩ Ω ∩Br(y) = ∅

for every n.

Now, let us show that (λj, g) with j = 2 does not have a continuous solution
for a certain continuous boundary datum g. We consider g such that g(x) ≡ 0 for
x ∈ ∂B1(0) ∩ {x2 > 0} and g(0) = 1. Then, from our geometric characterization of
solutions to the equation λ2 = 0 we obtain that there is no continuous solution to the
Dirichlet problem in Ω with datum u = g on ∂Ω. In fact, if such solution exists, then
it must hold that

u(0, a, 0) ≤ 0
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for every a > 0. To see this, just observe that u has to be less or equal than z ≡ 0 that
is the concave envelope of g on the boundary of Ω∩ {x2 = a}. Now, as u is continuous
we must have

0 ≥ lim
a↘0

u(0, a, 0) = u(0, 0, 0) = g(0) = 1

a contradiction.

With this example in mind we are ready to prove our main theorem.

Proof of Theorem 6.1.1. Our goal is to show that (λj, g) has a continuous solution for
every boundary data g if and only if Ω satisfy (G).

Let us start by proving that the condition is necessary. We assume that Ω does not
satisfies condition (G), hence (Gj) or (GN−j+1) does not hold.

If Ω does not satisfy (Gj) then there exist y ∈ ∂Ω, r > 0, a sequences of points
xn ∈ Ω such that xn → y and Sn a sequence of affine subspaces of dimension j such
that xn ∈ Sn and

Sn ∩ ∂Ω ∩Br(y) = ∅.

We consider a continuous g such that g(y) = 1 and g ≡ 0 in ∂Ω \ Br(y). We assume
there exists a solution u. We have that g ≡ 0 in Sn ∩ ∂Ω and hence z ≡ 0 is concave in
Sn ∩ Ω, we conclude that u(xn) ≤ 0 for every n ∈ N. Since u(y) = g(y) = 1 we obtain
that u is not continuous.

If Ω does not satisfy (GN−j+1) then we consider a continuous g such that g(y) = −1
and g ≡ 0 in ∂Ω \ Br(y). As before we arrive to a contradiction by considering the
characterization given in Remark 6.3.3.

We have proved that condition (G) is necessary. Now, let us show that if condition
(G) holds we have a continuous solution for every continuous boundary datum g. To
this end, we consider the largest viscosity solution to the our PDE, λj(D

2u) = 0 in Ω
with u ≤ g on ∂Ω that was constructed in the previous section.

We fix y ∈ ∂Ω. Given ε > 0, we want to prove that there exists δ > 0 such that
u(x) > g(y)− ε for every x ∈ Ω∩Bδ(y). To prove this, we will show there exists δ > 0
such that for every x ∈ Ω ∩ Bδ(y) and for every affine space S of dimension j through
x, if we consider D = Ω ∩ S and the concave envelope z of g|∂D in D, it holds that

z(x) > g(y)− ε.

Since g is continuous, there exists δ > 0 such that |g(x) − g(y)| < ε
2

for every

x ∈ ∂Ω ∩ Bδ(y). We consider r ≤ δ and δ > 0 such that condition (Gj) is verified.
Given x ∈ Ω ∩ Bδ(y), for every affine space S of dimension j through x there exists v
of norm one, a direction in S such that

{x+ tv}t∈R ∩Br(y) ∩ ∂Ω 6= ∅. (6.2)
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We can consider the line segment AB contained in {x+ tv}t∈R such that x ∈ AB, the
interior of the segment is contained in Ω and A,B ∈ ∂Ω. Due to (6.2) we can assume
that A ∈ Br(y) ∩ ∂Ω.

If B ∈ Bδ(y), then, recalling that A ∈ Br(y) ⊂ Bδ(y), we have

z(x) ≥ min{g(A), g(B)} > g(y)− ε

2
> g(y)− ε.

If B 6∈ Bδ(y), then dist(x,B) ≥ δ − δ. We have

z(x) ≥ g(A) dist(x,B) + g(B) dist(x,A)

dist(x,A) + dist(x,B)

≥ g(y) +
(g(A)− g(y)) dist(x,B) + (g(B)− g(y)) dist(x,A)

dist(x,A) + dist(x,B)

≥ g(y)− |g(A)− g(y)| dist(x,B)

dist(x,A) + dist(x,B)
− |g(B)− g(y)| dist(x,A)

dist(x,A) + dist(x,B)

≥ g(y)− ε

2
− 2 max |g|dist(x,A)

dist(x,B)
.

We know that dist(x,A) ≤ r + δ. If we take δ ≤ r, then, for r small enough

z(x) ≥ g(y)− ε

2
− 2 max |g| 2r

δ − r
> g(y)− ε

as we wanted.

Analogously, taking into account that Ω verifies (GN−j+1) and employing the char-
acterization given in Remark 6.3.3, we can show that there exists δ > 0 such that
u(x) < g(y) + ε for every x ∈ Ω∩Bδ(y). In this way we obtain that u is continuous on
∂Ω and hence in the whole Ω.

Example 6.4.2. The domain Ω = B1.4(0, 0, 1) ∪ B1.4(0, 0,−1) in R3 that can be seen
in Figure 6.2 satisfy (G2). Hence, we have that the equation λ2 = 0 has a solution in
such domain. Observe that the boundary is not smooth.

6.5 Games

In this section, we describe in detail the two-player zero-sum game that we call a random
walk for λj.

Let Ω ⊂ RN be a bounded open set and fix ε > 0. A token is placed at x0 ∈
Ω. Player I, the player seeking to minimize the final payoff, chooses a subspace S of
dimension j and then Player II (who wants to maximize the expected payoff) chooses
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Figure 6.2: The domain Ω = B1.4(0, 0, 1) ∪B1.4(0, 0,−1).

one unitary vector, v, in the subspace S. Then the position of the token is moved
to x ± εv with equal probabilities. After the first round, the game continues from x1

according to the same rules.

This procedure yields a possibly infinite sequence of game states x0, x1, . . . where
every xk is a random variable. The game ends when the token leaves Ω, at this point
the token will be in the boundary strip of width ε given by

Γε = {x ∈ RN \ Ω : dist(x, ∂Ω) < ε}.

We denote by xτ ∈ Γε the first point in the sequence of game states that lies in Γε,
so that τ refers to the first time we hit Γε. At this time the game ends with the final
payoff given by g(xτ ), where g : Γε → R is a given continuous function that we call
payoff function. Player I earns −g(xτ ) while Player II earns g(xτ ).

A strategy SI for Player I is a function defined on the partial histories that gives a
j−dimensional subspace S at every step of the game

SI(x0, x1, . . . , xk) = S ∈ Gr(j,RN).

A strategy SII for Player II is a function defined on the partial histories that gives a
unitary vector in a prescribed j−dimensional subspace S at every step of the game

SII(x0, x1, . . . , xk, S) = v ∈ S.
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When the two players fix their strategies SI (the first player chooses a subspace S
at every step of the game) and SII (the second player chooses a unitary vector v ∈ S
at every step of the game) we can compute the expected outcome as follows: Given the
sequence x0, . . . , xk with xk ∈ Ω the next game position is distributed according to the
probability

πSI,SII
(x0, . . . , xk, A)

=
1

2
δxk+εSII(x0,...,xk,SI(x0,...,xk))(A) +

1

2
δxk−εSII(x0,...,xk,SI(x0,...,xk))(A).

By using the Kolmogorov’s extension theorem and the one step transition probabilities,
we can build a probability measure Px0SI,SII

on the game sequences. The expected payoff,
when starting from x0 and using the strategies SI, SII, is

Ex0SI,SII
[g(xτ )] =

∫
H∞

g(xτ ) dPx0SI,SII
. (6.3)

The value of the game for Player I is given by

uεI(x0) = inf
SI

sup
SII

Ex0SI,SII
[g(xτ )]

while the value of the game for Player II is given by

uεII(x0) = sup
SII

inf
SI

Ex0SI,SII
[g(xτ )] .

Intuitively, the values uI(x0) and uII(x0) are the best expected outcomes each player
can guarantee when the game starts at x0. If uεI = uεII, we say that the game has a
value.

Let us observe that the game ends almost surely, then the expectation (6.3) is well
defined. If we consider the square of the distance to a fix point in Γε, at every step,
this values increases by at least ε2 with probability 1

2
. As the distance to that point is

bounded with a positive probability the game ends after a finite number of steps. This
implies that the game ends almost surely.

To see that the game has a value, we can consider uε, a function that satisfies the
DPP  uε(x) = inf

dim(S)=j
sup

v∈S,|v|=1

{
1

2
uε(x+ εv) +

1

2
uε(x− εv)

}
x ∈ Ω,

uε(x) = g(x) x 6∈ Ω.

The existence of such a function can be seen by Perron’s method. The operator given
by the RHS of the DPP is in the hipoteses of the main result of [54].

Now, we want to prove that uε = uεI = uεII. We know that uεI ≥ uεII, to obtain the
desired result, we will show that uε ≥ uεI and uεII ≥ uε.
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Given η > 0 we can consider the strategy S0
II for Player II that at every step almost

maximize uε(xk + εv) + uε(xk − εv), that is

S0
II(x0, x1, . . . , xk, S) = w ∈ S

such that {
1

2
uε(xk + εw) +

1

2
uε(xk − εw)

}
≥

sup
v∈S,|v|=1

{
1

2
uε(xk + εv) +

1

2
uε(xk − εv)

}
− η2−(k+1)

We have

Ex0
SI,S

0
II
[uε(xk+1)− η2−(k+1)|x0, . . . , xk]

≥ inf
S,dim(S)=j

sup
v∈S,|v|=1

{
1

2
uε(xk + εv) +

1

2
uε(xk − εv)

}
− η2−(k+1) − η2−(k+1)

≥ uε(xk)− η2−k,

where we have estimated the strategy of Player I by inf and used the DPP. Thus

Mk = uε(xk)− η2−k

is a submartingale. Now, we have

uεII(x0) = sup
SII

inf
SI

Ex0SI,SII
[g(xτ )]

≥ inf
SI

Ex0
SI,S

0
II

[g(xτ )]

≥ inf
SI

Ex0
SI,S

0
II
[M0] = uε(x0)− η,

where we used the optional stopping theorem for Mk. Since η is arbitrary this proves
that uεII ≥ uε. An analogous strategy can be consider for Player I to prove that uε ≥ uεI .

We can obtain the following result similar to Lemma 4 in [5]. Given a function u,
defined in the set

Ωε = {x ∈ Ω : Bε(x) ⊂ Ω},

we define

Tεu(x) = inf
dim(S)=j

sup
w∈S,|w|=1

{
1

2
u(x+ εw) +

1

2
u(x− εw)

}
,

for x ∈ Ωε.
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Lemma 6.5.1. Let u a lower semi-continuous function and v an upper semi-continuous
function such that

u(x) ≤ Tεu(x) and v(x) ≥ Tεv(x) (6.4)

for every x ∈ Ωε. Then
sup

Ω
(u− v) = sup

Ω\Ωε
(u− v).

Proof. Let us suppose, arguing by contradiction, that

sup
Ω

(u− v) > sup
Ω\Ωε

(u− v).

We define
E =

{
x ∈ Ω : (u− v)(x) = sup

Ω
(u− v)

}
.

This subset of Ωε, E, is not empty and closed (hence compact). We consider x0 ∈ E
the first point in lexicographic order. That is,

x0 = ((x0)1, ..., (x0)N) ∈ E

minimizes the first coordinate, (x0)1, in E then the second coordinate among minimizers
of the first one and so on.

Since v(x) ≥ Tεv(x) and v is upper semi-continuous, there exists S of dimension j
such that

v(x0) ≥ sup
w∈S,|w|=1

{
1

2
v(x+ εw) +

1

2
v(x− εw)

}
.

For that S,

u(x0) ≤ sup
w∈S,|w|=1

{
1

2
u(x+ εw) +

1

2
u(x− εw)

}
.

Then, since u is lower semi-continuous, there exists w ∈ S, |w| = 1 such that

u(x0) ≤ 1

2
u(x+ εw) +

1

2
u(x− εw) (6.5)

and for that w, we have

v(x0) ≥ 1

2
v(x+ εw) +

1

2
v(x− εw). (6.6)

By subtracting equation (6.5) from equation (6.6), we obtain

2(u(x0)− v(x0)) ≤ u(x+ εw)− v(x+ εw) + u(x− εw)− v(x− εw).

Since u(x+εw)−v(x+εw) and u(x−εw)−v(x−εw) are less or equal than u(x0)−v(x0),
equality must hold. Hence, x+ εw and x− εw belong to E. This contradicts the choice
of x0 as the first point in E in lexicographic order.

102



Remark 6.5.2. The same result can be obtained for

T̃εu(x) = max
dim(S)=N−j+1

min
w∈S,|w|=1

{
1

2
u(x+ εw) +

1

2
u(x− εw)

}
.

Now, if u is a subsolution to λj = 0 then we have that for every S affine of dimension
j and every j−dimensional domain D ⊂ S ∩ Ω it holds that

u ≤ z in D

where z is the concave envelope of u|∂D in D. Hence

u(x) ≤ Tεu(x).

In the same way we can prove that for a supersolution to λj = 0, v, we have

v(x) ≥ T̃εv(x).

But, we can not obtain v(x) ≥ Tεv(x) or u(x) ≤ T̃εu(x). Any of these two inequalities
would allow us to obtain a comparison result for viscosity solutions to the equation
λj = 0 with a proof similar to that in [5].

Now our aim is to pass to the limit in the values of the game

uε → u, as ε→ 0

and obtain in this limit process a viscosity solution to (λj, g).

To obtain a convergent subsequence uε → u we will use the following Arzela-Ascoli
type lemma. For its proof see Lemma 4.2 from [63].

Lemma 6.5.3. Let {uε : Ω→ R, ε > 0} be a set of functions such that

1. there exists C > 0 such that |uε(x)| < C for every ε > 0 and every x ∈ Ω,

2. given η > 0 there are constants r0 and ε0 such that for every ε < ε0 and any
x, y ∈ Ω with |x− y| < r0 it holds

|uε(x)− uε(y)| < η.

Then, there exists a uniformly continuous function u : Ω → R and a subsequence still
denoted by {uε} such that

uε → u uniformly in Ω,

as ε→ 0.
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So our task now is to show that the family uε satisfies the hypotheses of the previous
lemma.

Lemma 6.5.4. There exists C > 0 independent of ε such that

|uε(x)| < C

for every ε > 0 and every x ∈ Ω.

Proof. We just observe that

min g ≤ uε(x) ≤ max g

for every x ∈ Ω.

To prove that uε satisfies second hypothesis we will have to make some geometric
assumptions on the domain. For our game with a given j we will assume that Ω satisfies
both (Fj) and (FN−j+1).

Let us observe that for j = 1 we assume (FN), this condition can be read as follows.
Given y ∈ ∂Ω we assume that there exists r > 0 such that for every δ > 0 there exists
v ∈ RN of norm 1 and θ > 0 such that

{x ∈ Ω ∩Br(y) : 〈v, x− y〉 < θ} ⊂ Bδ(y). (6.7)

Lemma 6.5.5. Given η > 0 there are constants r0 and ε0 such that for every ε < ε0

and any x, y ∈ Ω with |x− y| < r0 it holds

|uε(x)− uε(y)| < η.

Proof. The case x, y ∈ Γε follows from the uniformity continuity of g in Γε. For the
case x, y ∈ Ω we argue as follows. We fix the strategies SI, SII for the game starting
at x. We define a virtual game starting at y. We use the same random steps as the
game starting at x. Furthermore, the players adopt their strategies SvI , S

v
II from the

game starting at x, that is, when the game position is yk a player make the choices that
would have taken at xk in the game starting at x. We proceed in this way until for the
first time xk ∈ Γε or yk ∈ Γε. At that point we have |xk− yk| = |x− y|, and the desired
estimate follow from the one for xk ∈ Ω, yk ∈ Γε or for xk, yk ∈ Γε.

Thus, we can concentrate on the case x ∈ Ω and y ∈ Γε. Even more, we can assume
that y ∈ ∂Ω. If we have the bound for those points we can obtain a bound for a point
y ∈ Γε just by considering z ∈ ∂Ω in the line segment between x and y.

In this case we have
uε(y) = g(y),

and we need to obtain a bound for uε(x).
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First, we deal with j = 1. To this end we just observe that, for any possible strategy
of the players (that is, for any possible choice of the direction v at every point) we have
that the projection of xn in the direction of the a fixed vector w of norm 1,

〈xn − y, w〉

is a martingale. We fix r > 0 and consider xτ , the first time x leaves Ω or Br(y). Hence

E 〈xτ − y, w〉 ≤ 〈x− y, w〉 ≤ d(x, y) < r0.

From the geometric assumption on Ω, we have that 〈xn − y, w〉 ≥ −ε. Therefore

P
(
〈xτ − y, w〉 > r

1/2
0

)
r

1/2
0 −

(
1− P

(
〈xτ − y, w〉 > r

1/2
0

))
ε < r0.

Then, we have (for every ε small enough)

P
(
〈xτ − y, w〉 > r

1/2
0

)
< 2r

1/2
0 .

Then, (6.7) implies that given δ > 0 we can conclude that

P(d(xτ , y) > δ) < 2r
1/2
0 .

by taking r0 small enough and a appropriate w.

When d(xτ , y) ≤ δ, the point xτ is actually the point where the process have leaved
Ω. Hence,

|uε(x)− g(y)|

≤ P(d(xτ , y) ≤ δ)|g(xτ )− g(y)|+ P(d(xτ , y) > δ)2 max g

≤ sup
xτ∈Bδ(y)

|g(xτ )− g(y)|+ 4r
1/2
0 max g < η

if r0 and δ are small enough.

For a general j we can proceed in the same way. We have to make some extra work
to argue that the points xn that appear along the argument belong to Tλ. If r0 < λ we
have that x ∈ Tλ, so if we make sure that at every move v ∈ T we will have that the
game sequence will be contained in x+ T ⊂ Tλ.

Recall that here we are assuming both (Fj) and (FN−j+1) are satisfied. We can
separate the argument into two parts. We will prove on the one hand that uε(x)−g(y) <
η and on the other that g(y) − uε(x) < η. For the first inequality we can make extra
assumptions on the strategy for Player I, and for the second one we can do the same
with Player II.
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Since Ω satisfies (Fj), Player I can make sure that at every move v belongs to T by
selecting S = T . This proves the upper bound uε(x) − g(y) < η. On the other hand,
since Ω satisfy (FN−j+1), Player II will be able to select v in a space S of dimension j
and hence he can always choose v ∈ S ∩ T since

dim(T ) + dim(S) = N − j + 1 + j = N + 1 > N.

This shows the lower bound g(y)− uε(x) < η.

From Lemma 6.5.4 and Lemma 6.5.5 we have that the hypotheses of the Arzela-
Ascoli type lemma, Lemma 6.5.3, are satisfied. Hence we have obtained uniform con-
vergence of uε along a subsequence.

Corollary 6.5.6. Let uε be the values of the game. Then, along a subsequence,

uε → u, as ε→ 0, (6.8)

uniformly in Ω.

Now, let us prove that any possible limit of uε is a viscosity solution to the limit
PDE problem.

Theorem 6.5.7. Any uniform limit of the values of the game uε, u, is a viscosity
solution to {

λj(D
2u) = 0, in Ω,

u = g, on ∂Ω.
(6.9)

Proof. First, we observe that since uε = g on ∂Ω we obtain, form the uniform conver-
gence, that u = g on ∂Ω. Also, notice that Lemma 6.5.3 gives that a uniform limit of
uε is a continuous function. Hence, we avoid the use of u∗ and u∗ in what follows.

To check that u is a viscosity solution to λj(D
2u) = 0 in Ω, in the sense of Definition

6.2.1, let φ ∈ C2 be such that u − φ has a strict minimum at the point x ∈ Ω with
u(x) = φ(x). We need to check that

λj(D
2φ(x)) ≤ 0.

As uε → u uniformly in Ω we have the existence of a sequence xε such that xε → x as
ε→ 0 and

uε(z)− φ(z) ≥ uε(xε)− φ(xε)− ε3

(remark that uε is not continuous in general). As uε is a solution to

uε(x) = inf
dim(S)=j

sup
v∈S,|v|=1

{
1

2
uε(x+ εv) +

1

2
uε(x− εv)

}
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we obtain that φ verifies the inequality

0 ≥ inf
dim(S)=j

sup
v∈S,|v|=1

{
1

2
φ(xε + εv) +

1

2
φ(xε − εv)− φ(xε)

}
− ε3.

Now, consider the Taylor expansion of the second order of φ

φ(y) = φ(x) +∇φ(x) · (y − x) +
1

2
〈D2φ(x)(y − x), (y − x)〉+ o(|y − x|2)

as |y − x| → 0. Hence, we have

φ(x+ εv) = φ(x) + ε∇φ(x) · v + ε2 1

2
〈D2φ(x)v, v〉+ o(ε2) (6.10)

and

φ(x− εv) = φ(x)− ε∇φ(x) · v + ε2 1

2
〈D2φ(x)v, v〉+ o(ε2). (6.11)

Hence, using these expansions we get

1

2
φ(xε + εv) +

1

2
φ(xε − εv)− φ(xε) =

ε2

2
〈D2φ(xε)v, v〉+ o(ε2),

and then we conclude that

0 ≥ ε2 inf
dim(S)=j

sup
v∈S,|v|=1

{
1

2
〈D2φ(xε)v, v〉

}
+ o(ε2).

Dividing by ε2 and passing to the limit as ε→ 0 we get

0 ≥ inf
dim(S)=j

sup
v∈S,|v|=1

{
〈D2φ(x)v, v〉

}
,

that is equivalent to
0 ≥ λj(D

2φ(x))

as we wanted to show.

The reverse inequality when a smooth function ψ touches u from below can be
obtained in a similar way.

Remark 6.5.8. Since there is uniqueness of viscosity solutions to the limit problem (6.9)
(uniqueness holds for every domain without any geometric restriction once we have
existence of a continuous solution) we obtain that the uniform limit

lim
ε→0

uε = u

exists (not only along a subsequence).
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6.6 Geometric conditions on ∂Ω

Now, our goal is to analyze the relation between the different conditions on ∂Ω. We
have introduced in this Chapter three different conditions:

(H) that involve the curvatures of ∂Ω and hence requires smoothness, this condition
was used in [39] to obtain existence of a continuous viscosity solution to (λj, g).

(F) that is given by (Fj) and (FN−j+1). This condition was used to obtain conver-
gence of the values of the game.

(G) that was proved to be equivalent to the solvability of (λj, g) for every continuous
datum g.

We will show that
(H)⇒ (F)⇒ (G).

6.6.1 (H) implies (Fj)

Let us show that the condition κN−j+1 > 0 in (H) implies (Fj). We consider T =
〈xN−j+1, . . . , xN〉 (note that this is a subspace of dimension j), v = xN and r as above.
We want to show that for every δ > 0 there exists λ > 0 and θ > 0 such that

{x ∈ Ω ∩Br(y) ∩ Tλ : 〈v, x− y〉 < θ} ⊂ Bδ(y). (6.12)

We have to choose λ and θ such that for x with ‖x‖ > δ,

‖(x1, . . . , xN−j)‖ < λ

and

xN −
1

2

N−1∑
i=1

κix
2
i > o

(
N−1∑
i=1

x2
i

)
,

it holds that
xN > θ.

Let us prove this fact. We have

xN >
1

2

N−1∑
i=1

κix
2
i + o

(
N−1∑
i=1

x2
i

)

≥ 1

2

N−j∑
i=1

κix
2
i +

1

2

N−1∑
i=N−j+1

κix
2
i + o

(
N−1∑
i=1

x2
i

)

≥ −C1

N−j∑
i=1

x2
i + C2

N−1∑
i=1

x2
i + o

(
N−1∑
i=1

x2
i

)

≥ −C1λ
2 + C2δ

2 + o

(
N−1∑
i=1

x2
i

)
> θ
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for r, λ and θ small enough (for a given δ).

6.6.2 (F) implies (G)

We proved that (F) implies existence of a continuous viscosity solution to (λj, g) (that
was obtained as the limit of the values of the game described in Section 6.5). Notice
that we have proved that (G) is equivalent to the existence of a continuous solution to
(λj, g) for every continuous datum g. Then, we deduce that (F) implies (G).

The same argument can be used to show that (H) implies (G) directly.

6.6.3 (H) implies (G)

We use again that (G) is equivalent to the existence of a continuous solution to (λj, g)
for every continuous datum g and that in [39] it is proved that (H) implies existence
of a continuous viscosity solution to (λj, g) thanks to the construction of the barriers
described in Section 6.2. Hence we can deduce that (H) implies (G).
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Appendix A

Viscosity Solutions

A.1 Definition

In this Appendix we give a brief introduction to the theory of viscosity solutions. We
base the presentation in the introductory text [46] and the classical reference [33].

Viscosity solutions were first introduced in the 1980s by Crandall and Lions [34].
The term “viscosity solutions” originate from the “vanishing viscosity method”, but it is
not necessarily related to this method. Viscosity solutions constitute a general theory
of “weak” (i.e. non-differentiable) solutions which applies to certain fully nonlinear
Partial Differential Equations (PDE) of 1st and 2nd order.

Consider the PDE

F (·, u,Du,D2u) = 0

where

F : Ω× R× RN × SN → R

and SN denotes the set of symmetric N ×N matrices.

The idea behind Viscosity Solutions is to use the maximum principle in order to
“pass derivatives to smooth test functions”. This idea allows us to consider operators
in non divergence form. We will assume that F is degenerate elliptic, that is, F satisfy

X ≤ Y in SN =⇒ F (x, r, p,X) ≥ F (x, r, p, Y )

for all (x, r, p) ∈ Ω× R× RN .

Now, let us motivate the definition of viscosity solution. Suppose that u ∈ C2(Ω) is
a classical solution of the PDE

F (x, u(x), Du(x), D2u(x)) = 0, x ∈ Ω.

111



Figure A.1: ψ (in yellow) touches u (in blue) from above

Assume further that at some x0 ∈ Ω, u can be “touched from above” by some smooth
function ψ ∈ C2(RN) at x0. That is

ψ − u ≥ 0 = (ψ − u)(x0)

on a ball Br(x0). Since ψ − u attains a minimum at x0 we have

D(ψ − u)(x0) = 0 and D2(ψ − u)(x0) ≤ 0.

By using that u is a solution and the ellipticity of F , we obtain

0 = F (x0, u(x0), Du(x0), D2u(x0)) ≥ F (x0, ψ(x0), Dψ(x0), D2ψ(x0)).

We have proved that if u is a solution to the equation and ψ “touches from above”
u then

0 ≥ F (x0, ψ(x0), Dψ(x0), D2ψ(x0)).

Analogously, it can be seen that if φ “touches from below” u then

0 ≤ F (x0, φ(x0), Dφ(x0), D2φ(x0)).

Now, with this result in mind, we are ready to give the definition of viscosity solution
to the equation

F (·, u,∇u,D2u) = 0. (A.1)
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Definition A.1.1. A lower semi-continuous function u is a viscosity supersolution of
(A.1) if for every φ ∈ C2 such that φ touches u at x ∈ Ω strictly from below (that is,
u− φ has a strict minimum at x with u(x) = φ(x)), we have

F (x, φ(x),∇φ(x), D2φ(x)) ≥ 0.

An upper semi-continuous function u is a subsolution of (A.1) if for every ψ ∈ C2

such that ψ touches u at x ∈ Ω strictly from above (that is, u−ψ has a strict maximum
at x with u(x) = ψ(x)), we have

F (x, φ(x),∇φ(x), D2φ(x)) ≤ 0.

Finally, u is a viscosity solution of (A.1) if it is both a sub- and a supersolution.

Observe that we have required u− φ to have a strict minimum. We have done this
since in general this is the definition that we use along the thesis. If we only require
the difference to have a minimum we obtain an equivalent definition.

In general we assume that F is continuous, that is, for sequences xk → x in Ω,
uk → u in R, ξk → ξ in RN and Mk →M in SN , we have

F (xk, rk, pk, Xk)→ F (x, r, p,X) as k →∞.

Although, discontinuous operators arise along the thesis and we are interested in oper-
ators as the homogeneous p-laplacian and the ∞-laplacian that are not defined when
the gradient vanishes. In order to be able to handle these cases, we need to consider the
lower semicontinous, F∗, and upper semicontinous, F ∗, envelopes of F . These functions
are given by

F ∗(x, r, p,X) = lim sup
(y,s,w,Y )→(x,r,p,X)

F (y, s, w, Y ),

F∗(x, r, p,X) = lim inf
(y,s,w,Y )→(x,r,p,X)

F (y, s, w, Y ).

These functions coincide with F at every point of continuity of F and are lower and
upper semicontinous respectively.

Definition A.1.2. A lower semi-continuous function u is a viscosity supersolution of
(A.1) if for every φ ∈ C2 such that φ touches u at x ∈ Ω strictly from below (that is,
u− φ has a strict minimum at x with u(x) = φ(x)), we have

F ∗(x, φ(x),∇φ(x), D2φ(x)) ≥ 0.

An upper semi-continuous function u is a subsolution of (A.1) if for every ψ ∈ C2

such that ψ touches u at x ∈ Ω strictly from above (that is, u−ψ has a strict maximum
at x with u(x) = ψ(x)), we have

F∗(x, φ(x),∇φ(x), D2φ(x)) ≤ 0.

Finally, u is a viscosity solution of (A.1) if it is both a sub- and supersolution.
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Here we have required supersolutions to be lower semi-continuous and subsolutions
to be upper semi-continuous. To extend this concept we consider the lower semicontin-
uous envelope, u∗, and the upper semicontinuous envelope, u∗, of u, that is,

u∗(x) = sup
r>0

inf
y∈Br(x)

u(y) and u∗(x) = inf
r>0

sup
y∈Br(x)

u(y).

As stated before for F , these functions coincide with u at every point of continuity of
u and are lower and upper semicontinous respectively. Now we give the more general
definition of viscosity solution involving these functions.

Definition A.1.3. A function u is a viscosity supersolution of (A.1) if for every φ ∈ C2

such that φ touches u∗ at x ∈ Ω strictly from below (that is, u∗−φ has a strict minimum
at x with u∗(x) = φ(x)), we have

F ∗(x, φ(x),∇φ(x), D2φ(x)) ≥ 0.

A function u is a subsolution of (A.1) if for every ψ ∈ C2 such that ψ touches u∗ at
x ∈ Ω strictly from above (that is, u∗−ψ has a strict maximum at x with u∗(x) = ψ(x)),
we have

F∗(x, φ(x),∇φ(x), D2φ(x)) ≤ 0.

Finally, u is a viscosity solution of (A.1) if it is both a sub- and supersolution.

The definitions given above are going to be consider depending on the context
(whether we are considering a continuous F or not, if u is continuous or not know a
priori, etc). Another possible way to state the definition of viscosity solution, that we
do not include here, is to define the Super-Jets and Sub-Jets, that play the role of the
derivatives of u, and give later the definition of viscosity solution referring to them.

For a bounded domain Ω ⊂ RN , we consider the Dirichlet problem{
F (·, u,Du,D2u) = 0, in Ω,

u = g, on ∂Ω,

where g is a continuous boundary condition. In what remains of this Appendix we
will comment on the question of existence and uniqueness of solutions for the Dirichlet
problem.

A.2 Uniqueness

In this section we address the question of uniqueness of solutions of the Dirichlet prob-
lem. Uniqueness can be obtained as an immediate consequence of the comparison
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principle for solutions to the equation. Let us start by giving a proof of comparison for
smooth viscosity solutions. We will assume that F is degenerate elliptic and satisfies

r < s in R =⇒ F (x, r, p,X) < F (x, s, p,X)

for all (x, p,X) ∈ Ω× RN × SN .

Our goal is to show that if u ∈ C2(Ω)∩C(Ω̄) is a subsolution and v ∈ C2(Ω)∩C(Ω̄))
is a supersolution such that u ≤ v on ∂Ω, then u ≤ v in Ω. Observe that if v and u
are smooth, then we can use them in the definition of super and subsolution as tests
functions. We obtain

F (x, u,∇u,D2u) ≤ 0 ≤ F (x, v,∇v,D2v).

Suppose, arguing by contradiction, that u > v somewhere in Ω. Then, since u ≤ v
on ∂Ω, there exists x0 ∈ Ω such that

(u− v)(x0) ≥ u− v,

on Ω.

Hence ∇(u − v)(x0) = 0 and D2(u − v)(x0) ≤ 0. We have that u(x0) > v(x0),
∇u(x0) = ∇u(x0) and D2u(x0) ≤ D2v(x0). By our assumptions on F , we have

F (x0, u(x0),∇u(x0), D2u(x0)) ≥ F (x0, u(x0),∇u(x0), D2v(x0))

≥ F (x0, u(x0),∇v(x0), D2v(x0))

> F (x0, v(x0),∇v(x0), D2v(x0)).

Which is a contradiction since u is a subsolution and v is a supersolution.

We can not apply this idea to only continuous solutions since we may not be able
to touch the functions at the points of maxima of u − v. The idea to overcome this
difficulty is to double the number of variables and in the place of u − v, to consider
instead the maximization of the function of two variables

(x, y)→ u(x)− v(y).

Then we penalize the doubling of variables, in order to push the maxima to the diagonal
{x = y}. The idea is to maximize the function

Wα(x, y) = u(x)− v(y)− α

2
|x− y|2

and let α→ +∞. We used this idea in the proof of Lemma 3.2.3.

In [46] a comparison principle for the equation F (u,∇u,D2u) = f is proved under
the assumptions of F and f being continuous, F degenerate elliptic and

F (r, p,X) ≥ F (s, p,X) + γ(s− r)

for some γ > 0. Of course the result holds in grater generality. For example, let us
mention the classical reference [11].
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A.3 Existence

In this section we include a proof of existence via Perron’s Method. We assume that F
is continuous and proper, that is F is degenerate elliptic and satisfies

r ≥ s in R =⇒ F (x, r, p,X) ≥ F (x, s, p,X)

for all (x, p,X) ∈ Ω × RN × SN . We also assume that the equation satisfies the com-
parison principle.

Theorem A.3.1. If there exist a subsolution u and a supersolution u of the Dirichlet
problem such that u = u = g on ∂Ω, then

u(x) = inf {v(x) : v is a supersolution and u ≤ v ≤ u}

is a solution of the Dirichlet problem.

Proof. Being the infimum of supersolutions, the function u is a supersolution. We
already know that u is upper semi-continuous, as it is the infimum of upper semi-
continuous functions. Let us see it is indeed a solution. Suppose not, then there exists
φ ∈ C2 such that φ touches u at x0 ∈ Ω strictly from above but

F (x0, u(x0),∇u(x0)u,D2u(x0)) > 0.

Let us write

φ(x) = φ(x0) +∇φ(x0) · (x− x0) +
1

2
〈D2φ(x0)(x− x0), x− x0〉+ o(|x− x0|2).

We define φ̂(x) = φ(x) − δ for a small positive number δ. Then φ̂ < u in a small
neighborhood of x0, contained in the set {x : F (x, u,∇u,D2u) > 0}, but φ̂ ≥ u outside
this neighborhood, if we take δ small enough.

Now we can consider v = min{φ̂, u}. Since u is a viscosity supersolution in Ω
and φ̂ also is a viscosity supersolution in the small neighborhood of x0, it follows
that v is a viscosity supersolution. Moreover, on ∂Ω, v = u ≥ g. This implies
v ∈ {v(x) : v is a supersolution and u ≤ v ≤ u}, but v = φ̂ < u near x0 , which is
a contradiction with the definition of u as the infimum of that set.

Let us remark that in the same way we can prove that

u(x) = max {v(x) : v is a subsolution and u ≤ v ≤ u}

is a solution to the Dirichlet problem.
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Appendix B

Probability Theory

B.1 Stochastic processes

In this appendix we include some definitions and the proof of some results that are used
along the thesis. As we will not refer to the games explicitly we use a notation slightly
different to the one that we used in the game context. Although the general setting
will be very similar.

Let Ω ⊂ RN be equipped with the natural topology, and the σ-algebra B of the
Lebesgue measurable sets. Let x0 ∈ Ω be a given point. We want to define a stochastic
process in Ω starting in x0. To that end, we consider the space of all sequences

H∞ = {x0} × Ω× Ω× . . . ,

which is a product space endowed with the product topology.

Let {Fk}∞k=0 denote the filtration of σ-algebras, F0 ⊂ F1 ⊂ . . . defined as follows:
Fk is the product σ-algebra generated by cylinder sets of the form

{x0} × A1 × . . .× Ak × Ω× Ω . . .

with Ai ∈ B(Ω). For

ω = (x0, ω1, . . .) ∈ H∞,

we define the coordinate processes

Xk(ω) = ωk, Xk : H∞ → Rn, k = 0, 1, . . .

so that Xk is an Fk-measurable random variable. Moreover, F∞ = σ(
⋃
Fk) is the

smallest σ-algebra so that all Xk are F∞-measurable.
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Given the sequence x0, . . . , xk with xk ∈ Ω the next position is distributed according
to the probability π(x0, . . . , xk, A) for A ∈ B(Ω). By using the Kolmogorov’s extension
theorem and the one step transition probabilities, we can build a probability measure
P in H∞ relative to the σ-algebra F∞. We denote by E the corresponding expectation
with respect to P.

Definition B.1.1. We say that M = (Mk)k≥0 is a stochastic process if it is a collection
of random variables such that Mk is Fk-measurable for every k ≥ 0.

The coordinate process defined above is a stochastic process. To define a process
we have to specify the probability π(x0, . . . , xk, A). In other words, given the history
(x0, . . . , xk), we have to specify how is xk+1 chosen. Let us give two examples to which
we are going to refer to illustrate the definitions and results that we are going to
introduce in the next section.

Example B.1.2. Let us consider Ω = RN . Suppose that at every time a random
unitary vector v is selected and then xk+1 = xk + v with probability 1

2
or xk+1 = xk− v

with probability 1
2
. Then, given a fixed y ∈ RN , we can consider Mk = ||xk − y||2.

Observe that Mk depends only on (x0, x1, . . . , xk) and hence it is Fk-measurable, it is
a stochastic process.

Example B.1.3. Suppose that you are playing at a roulette (without the zero) in
a casino, starting with x0 = 0 pesos (you are allow to get credit to play). At every
round you bet certain amount of money (that may depend on the result of the previous
rounds). If you start the round with Xk pesos and you bet vk, then Xk+1 = Xk + vk
with probability 1

2
and Xk+1 = Xk − vk with probability 1

2
. In our setting, we can

consider Ω = Z to model this situation.

B.2 Optional stopping theorem

Definition B.2.1. A stopping time with respect to the filtration {Fk}∞k=0 is a random
variable τ : Ω→ N ∪ {+∞} such that {τ ≤ k} ∈ Fk for all k ∈ N.

In particular we will be interested in the hitting times. Suppose Γ ⊂ Ω is a given
set. To denote the time when the process state reaches Γ, we define a random variable

τ(ω) = inf{k ≥ 0 : Xk(ω) ∈ Γ}.

This random variable is a stopping time relative to the filtration {Fk}∞k=0.

In Example B.1.2, for a given R > 0, we can consider Γ = BR(0)c. Then τ refers
to the first time the process leaves BR(0). In Example B.1.3, we can consider that the
player leaves the casino the first time he finds himself with a profit. If Γ = N, the
hitting time τ is by definition that moment.
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Definition B.2.2. Let M = (Mk)k≥0 be a stochastic process such that E[Mk] <∞.

• We say that M is a submartingale if E[Mk|Fk−1] ≥Mk−1 for every k ∈ N.

• We say that M is a supermartingale if E[Mk|Fk−1] ≤Mk−1 for every k ∈ N.

• We say that M is a martingale if E[Mk|Fk−1] = Mk−1 for every k ∈ N.

In Example B.1.2, we have Mk ≤ k2 and hence E[Mk] <∞. Since

E[Mk+1|Fk] =
||xk + v − y||2 + ||xk − v − y||2

2
= ||xk − x0||2 + ||v||2

= ||xk − x0||2 + 1

≥ ||xk − x0||2 = Mk,

Mk is a supermartingale.

In Example B.1.3,

E[Xk+1|Fk] =
Xk + vk

2
+
Xk − vk

2
= Xk.

If the strategy used by the player guaranties E[Xk] <∞, Xk is a martingale.

Theorem B.2.3. (Optional stopping theorem) Let M = (Mk)k≥0 be a supermartingale
and τ a stopping time. Suppose there exists a constant c such that |Mτ∧k| ≤ c almost
surely for every k ≥ 0 where ∧ denotes the minimum operator. Then,

E[Mτ ] ≤ E[M0].

Analogously, if M is a submartingale it holds that E[Mτ ] ≥ E[M0]. And hence the
equality holds for M a martingale.

There are different versions of the theorem. The hypothesis of the uniform bound
for the variables |Xτ∧k| ≤ c can be substituted by: τ ≤ c almost surely, or by E[τ ] <∞
and E[Mk+1 −Mk|Fk] ≤ c.

In Example B.1.3, suppose that the player use the martingale betting system. That
is, he bets 1 peso the first round, 2 the second round, 4 the third round, etc. In the
n-th round he bets 2n−1 pesos until he wins for the first time. Observe that at that
moment he will have

−1− 2− · · · − 2n−2 + 2n−1 = 1

pesos. We have, X0 = 0 and Xτ = 1, hence the optional stopping theorem does not
hold in this case. Observe that xk is not bounded (from below). At every round with
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probability one half the player will won and hence stop. Then, P(τ = k) = 2−k, and so
τ is not bounded almost surely. On the other hand, we have

E[τ ] =
∞∑
k=1

k2−k = 2.

We have E[τ ] < ∞ but E[Xk+1 − Xk|Fk] is not bounded. As we can see none of the
possible sets of hypothesis for the validity of the optional stopping theorem is fulfilled.

In Example B.1.2, suppose that x0 = 0. We consider Nk = ||xk||2 − k. With a
similar computation as the one done before we can show that Nk is a martingale. We
consider Γ = BR(0)c and the corresponding hitting time τ . If we apply the optional
stopping theorem we obtain that

E[Nτ ] = N0 = ||x0||2 − 0 = 0

Since at every step the process makes a jump of distance 1 and before living xτ−1 ∈
BR(0), we have ||xτ || ≤ R + 1. Hence E[||xτ ||2] ≤ (R + 1)2. Since

E[Nτ ] = E[||xk||2 − k] = 0,

we obtain
E[τ ] = E[||xτ ||2] ≤ (R + 1)2.

That is, we have proved that the expected time for the process to exit the ball of radius
R is bounded by (R + 1)2.
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