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Contribuciones a la metodologia para estimar efectos causales en
estudios longitudinales observacionales

Esta tesis contribuye a la estimacién de efectos causales de tratamientos variantes en el tiempo
en presencia de variables confusoras variantes en el tiempo que se ven afectadas por el tratamiento
recibido en el pasado. La tesis consta de dos capitulos.

El primer capitulo contribuye a la estimacién muiltiple robusta paramétrica de modelos estruc-
turales marginales. Especificamente, hacemos propuestas de estimacién, en base a datos recogidos
de estudios longitudinales observacionales, de los parametros de los modelos marginales estruc-
turales para la media (MMEM) para variables de respuesta no acotadas. Actualmente, los métodos
populares utilizados en las aplicaciones para estimar los parametros de los MMEM incluyen a los
estimadores ”inverse probability of treatment weighted” y a los estimadores paramétricos doble ro-
bustos (DR). Bajo la metodologia paramétrica DR, el investigador postula una secuencia de modelos
de trabajo paramétricos, un modelo para la media de la variable de respuesta contrafactual dado
el historial de covariables y tratamientos hasta cada instante de tiempo de exposicién (que, a lo
largo de este resumen, denominamos media contrafactual del instante de tiempo especifico) y otra
secuencia de modelos de trabajo, un modelo para la probabilidad de tratamiento en cada instante de
tiempo condicional a los tratamientos y las covariables del pasado que, a lo largo de este resumen,
denominamos probabilidad de tratamiento del instante de tiempo especifico. Los estimadores DR,
de los pardametros de los MMEM son consistentes y asintéticamente normales siempre y cuando o
bien la secuencia de modelos de trabajo para las medias contrafactuales de cada instante de tiempo
especifico sea correcta o bien la secuencia de modelos para las probabilidades de tratamiento sea
correcta, pero no necesariamente ambas secuencias de modelos sean correctas.

Una dificultad con la estimacién DR paramétrica es que la mayoria de los modelos naturales
para las medias contrafactuales de cada instante de tiempo especifico son usualmente incompatibles.
Robins, Rotnitzky y Scharfstein (2000) propusieron una parametrizacién de la verosimilitud que
implica modelos paramétricos compatibles para dichas medias. Esta parametrizaciéon no se ha
explotado para construir estimadores DR y uno de los objetivos del primer capitulo es llenar este
vacio. Més importante aun, al explotar esta parametrizacién, proponemos un estimador multiple
robusto (MR) de los pardmetros de un MMEM que otorga una proteccién ain mayor contra la
especificacion errénea de los modelos que los estimadores DR, ya que el estimador tiene la propiedad
multiple robusta de ser consistente y asintéticamente normal siempre y cuando, en cada instante
de tiempo, o bien el modelo de trabajo para la media contrafactual o bien el modelo de trabajo
para la probabilidad de tratamiento sea correcto, pero no necesariamente ambos lo sean. Nuestros
métodos son de facil implementacién ya que se basan en el ajuste iterativo de una secuencia de
regresiones ponderadas.

El segundo capitulo explora y contrasta los méritos relativos de los estimadores no paramétricos
doble y multiple robustos de la media de una variable de respuesta contrafactual medida al final de
un estudio longitudinal. Cuando hablamos de estimador no paramétrico doble robusto (o multiple
robusto) nos referimos a uno que se calcula siguiendo un procedimiento que produciria un estimador
con la propiedad doble (o miltiple) robusta si las medias contrafactuales y las probabilidades de
tratamiento de cada tiempo especifico se hubieran estimado a tasas paramétricas, pero en el que es-
tas funciones desconocidas se estiman de manera no paramétrica utilizando, por ejemplo, estimacién
por series, nicleo, spline o, mas generalmente, cualquier estimador de aprendizaje automatico. Las



contribuciones centrales de este capitulo son (1) la derivacién de expresiones novedosas para el sesgo
asintético de los estimadores DR y MR no paramétricos y (2) el cdlculo de cotas para las tasas de
convergencia de estos sesgos cuando asumimos que las medias contrafactuales y las probabilidades
de tratamiento desconocidas pertenecen a bolas Holder y son estimadas mediante estimacién por
series. Nuestros anglisis sugieren que, en lo que respecta a conseguir estimadores y/n—consistentes
de la media contrafactual al final del estudio, nunca es contraproducente y, bajo algunos procesos
de generacién de datos, es preferible realizar estimacién MR no paramétrica que realizar estimacion
DR.

Palabras claves: modelos compatibles, modelos marginales estructurales para la media, esti-
macién doble robusta, estimacion multiple robusta, g-férmula, estimacién no paramétrica.



Contributions to methods for estimating causal effects from longitudinal
observational studies

This thesis makes contributions to the estimation of causal effects of time-dependent exposures
in the presence of time-dependent confounders that are themselves affected by previous treatments.
The thesis is comprised of two chapters.

The first chapter makes contributions to the parametric multiple robust estimation of marginal
structural models. Specifically, we consider estimation, from longitudinal observational data, of the
parameters of marginal structural mean models (MSMM) for unconstrained outcomes. Currently
popular methods used in applications for estimating parameters of MSMM include inverse proba-
bility of treatment weighted and parametric doubly robust (DR) estimators. Under the parametric
DR methodology the investigator postulates a sequence of parametric working models, one model
for the mean of the counterfactual outcome given the covariate and treatment history up to each
exposure time point -throughout this abstract referred to as the time specific counterfactual mean-
and another sequence of working models, one model for the conditional probability of treatment at
each time given past treatments and covariates -throughout referred to as the time specific propen-
sity score-. The DR estimators of the parameters of MSMM have the doubly robust property that
they are consistent and asymptotically normal so long the sequence of working models for the time
specific counterfactual means are correct or the sequence of models for the propensity scores are
correct, but not necessarily both sequences of models are correct.

A difficulty with parametric DR estimation is that most natural models for the time specific
counterfactual means are often incompatible. Robins, Rotnitzky and Scharfstein (2000) proposed
a parameterization of the likelihood which implies compatible parametric models for such means.
Their parameterization has not been exploited to construct DR estimators and one goal of the
first chapter is to fill this gap. More importantly, exploiting this parameterization we propose a
multiple robust (MR) estimator of the parameters of a MSMM that confers even more protection
against model misspecification than DR estimators in that the estimator has the multiple robust
property that it is consistent and asymptotically normal so long at each time, either the working
model for the counterfactual mean or the working model for the propensity score is correct, but
not necessarily both. Our methods are easy to implement as they are based on the iterative fit of
a sequence of weighted regressions.

The second chapter explores and contrasts the relative merits of non-parametric doubly and
multiply robust estimators of the mean of a counterfactual outcome measured at the end of a
longitudinal study. By a non-parametric doubly robust (multiply robust) estimator we mean one
that is computed following a procedure which would yield an estimator with the double (multiple)
robust property if the time specific counterfactual means and the time specific propensity scores had
been estimated at parametric rates, but in which these unknowns functions are instead estimated
non-parametrically, e.g. using series, kernel, spline or more generally arbitrary machine learning
estimators. The key contributions of this chapter are (1) the derivation of novel expressions for the
asymptotic bias of the non-parametric DR and MR estimators and (2) the calculation of bounds
on the rates of convergence of these biases when the unknown time specific counterfactual means
and propensity scores are assumed to belong to Holder balls and are estimated by series estimation.
Our analyses suggest that as far as achieving /n—consistent estimators of the counterfactual mean
at the end of the study is concerned, it never hurts and, under some data generating processes,



it sometimes helps to conduct non-parametric MR estimation as opposed to non-parametric DR
estimation.

Key words: compatible models, marginal structural mean models, doubly robust estimation,
multiply robust estimation, g-formula, non-parametric estimation.
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Chapter 1

Parametric Multiple Robust
Estimation of Marginal Structural
Mean Models for an unbounded
outcome

1.1 Introduction

Marginal Structural Mean Models (MSMM) are popular tools to model the causal effect of a time-
dependent exposure in the presence of time-dependent confounders that are themselves affected by
previous treatment. Since they were first proposed by Robins ([30]), MSMMs have been applied
to analyze numerous health-related studies. For example, studies of, the effect of highly active
antiretroviral therapy on CD4 count ([9]), the effect of pillbox organizer use on adherence to an-
tiretroviral medications and viral load ([28]) and the effect of loneliness on depressive symptoms
(B9)).

Currently popular methods used in applications to estimate the parameters of MSMMs include
inverse probability of treatment weighted (IPTW) estimation ([34]; [35] and [38]) and doubly robust
(DR) estimation ([36]; [25]; [1I; [62];[27]; [56]).

IPTW estimation requires that the analyst postulates a sequence of models, each model para-
meterizing the dependence of each occasion-specific propensity score (PS), i.e., of the probability of
treatment assignment at each time point, on past treatments and covariates. Consistency of IPTW
estimators is guaranteed only when all the postulated models are correct. On the other hand, DR
estimators require that the analyst postulates two sequences of models, one sequence being the se-
quence of PS models. The second sequence of models parameterizes, for each time point, the mean
of the counterfactual outcome given the covariate and treatment history up to that time point. The
estimators are consistent provided one, but not necessarily both, of these sequences of models is
correct.

A difficulty with DR estimation is that a model for a counterfactual mean given covariate
and treatment history up to the given exposure time point usually imposes restrictions on the
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counterfactual mean given the covariate history up to any earlier exposure time point. A practical
implication of this technicality is that often it is difficult to postulate compatible models for the
sequence of counterfactual means. To our knowledge, for DR estimation based on parametric models
for the counterfactual means, no general approach to address model incompatibility exists. One
goal of this chapter is to fill this gap in the special case in which the outcome is continuous and
unbounded.

To arrive at our proposed DR estimator we exploit a parameterization of the likelihood dis-
cussed in [42] which implies compatible parametric models for the counterfactual means. In fact,
exploiting this parameterization we additionally propose a multiply robust (MR) estimator that
confers even more protection against model misspecification than DR estimators. Specifically, let-
ting K denote the total number of exposure time points, we propose an estimator that is consistent
and asymptotically normal (CAN) so long as for some & in {0, 1, ..., K'} , regardless of which k, the
models for the first £ counterfactual means and the last K — k PS models are correctly specified.
Our MR estimator is simple to implement. Its computation requires, simply, the fit of a sequence
of regressions.

Our multiply robust estimator is inspired by the work of Tchetgen Tchetgen ([53]) and Molina
et al. ([24]). The former article describes an augmented inverse probability weighted estimator of
the mean of a missing at random outcome that is multiply robust. The latter article develops theory
for the construction of MR estimators in factorized likelihood models. However, these articles do
not discuss remedies for model incompatibility. In addition, our proposal differs from the ones in
these articles in that it is based on the iterative fit of a sequence of regressions.

Our proposal contributes to the growing literature on MR estimation that includes recent MR es-
timators for methods for natural indirect and direct causal effects ([54]; [64] and [55]), for statistical
interactions ([61]) and for missing data ([60]; [53]; [6]; [19]; [17];[16] and [18§]).

Sections [[.3] and [I.4] review MSMMs and existing estimators respectively. Section [I.5] discusses
compatible models for the sequence of counterfactual means and Section [L.6] presents DR and MR,
estimators that use these models, for the case in which the number of exposure time points is K = 2.
In Section [1.7} we generalize our proposal for the case of arbitrary K. In Section [1.8] we illustrate
our methods with an analysis of data from the National Heart Lung and Blood Institute Growth
and Health Study. In Section [[.9] we present a simulation study. In Section we prove the
consistency and asymptotic normality of our MR estimator. Finally, in Section [[.11} we generalize
our proposal to the case of repeated outcomes.
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1.2 Notation

In this section we summarize the notation that will be used through the chapter.
For k€ {1,..,K}, j €{l,...k} and any {v.}, ., <, we let

T = (01, -+, Vk) Vg = (Vky -+, V) andﬁ?z(vj,...,vk).

Also, for k € {1,..., K} and any collection of functions {f;}, ;. , we let

71@5(fl,“wfk)aikz(fk""afK)'

Likewise, for k € {1,..., K}, j € {1,...,k} and any collection of sets {C’r'}lgrgK , we let

Ekzcl><~--ka,QkECkx---xCKandd?ECj><-~-ka

i

€ RP*7 | ||A|| denotes its Euclidean norm

For any vector v = [v;],;,, € RP, ||v|| denotes its Euclidean norm (> v2)1/2.

For any matrix A = [ai;]; ;0 1<,
sup {||Av|| : v € RP with |v| =1}

For any function f: X C R? — RY, || f| ., denotes sup,cx ||f (z)||.

For Xi,..., X, i.i.d. copies of a random vector X with law P and range in X C RP, P, (X)
denotes the sample average = > " | X;. Also, for any function f : X — R?, P, (f) and Ep (f)
denote P, {f (X)} and Ep {f (X)} respectively.
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1.3 Marginal structural mean model for an unconstrained
outcome.

Suppose that i.i.d. copies of
0= (Ll,Al, ceey LK,AK, Y)

are collected on n subjects. Variable Y is an outcome of interest at time ¢ ;1 which is unconstrained,
i.e. with range in the real line. For k = 1,..., K, Ay is the treatment given at time ¢ taking values
in a finite set Ay and Ly is a vector of covariates measured at time ¢, , i.e. an instant prior to tj
(tx—1 < t), taking values in a subset £ of a Euclidean space.

For each treatment history ax = (a1,...,ax), let Yz, be the subject’s response if, possibly
contrary to fact, treatment regime ay is followed. Under the assumptions of

(1) consistency: -
Y. =Y if A =ag

e =
(2) no unmeasured confounding (NUC): for all ax and k,
Ya L Ag|Ly, Ap—1 = @1
and
(3) positivity: for all k and @y, if f(@x_1,lx) > 0 then f(ag|@r_1,lx) > 0,

it is well known (|32]) that E (Y, |Z) is identified, where Z is a subvector of L;. Throughout,
we shall refer to (1)-(3) as the identifying assumptions. In this chapter, we make the identifying
assumptions and consider estimation of the parameter ¢¥* € RP of the MSMM ([30])

E (Yz,.12) =m(ak, Z;¢*) for all ag, (1.1)

where m (-, -;-) is specified.
Throughout, we write L1 = (Z,V). Also, we say that an estimator ¢ of ¢* is consistent and
asymptotically normal (CAN) under a given model M if \/n (12)\ — w*> converges to a mean zero

Normal distribution under any law that satisfies model M.
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1.4 Existing estimators.

1.4.1 Inverse probability weighted estimators

Under the identifying assumptions, Robins (|35]) proved that (1.1)) is equivalent to a model for the
observed data O defined by

E |77 (Axe,Tie) " {Y —m (Ax, 2;0")}| Ax, 2] =0,

where .
” (ax.Ix) = [[ = (@;.1)
j=1
with
T (al,ll) = Pr (Al = a1|L1 = ll) s
i (@5,1;) =Pr(4; = ajl4;_1 = a1, L; = 1),

2 < 7 < K. This observation gave rise to the so-called IPTW estimator QZ rpTw Which is obtained by
fitting a weighted least squares regression with outcome Y and covariates (Af, Z). The weights are
given by the inverse of the maximum likelihood estimator (MLE) 7P (ZK, ZK) of 7P (ZK7 ZK) under
a parametric model for the treatment probabilities 7;,1 < j < K. Under regularity conditions, the

estimator 1Z rprw is CAN under the assumed parametric model for 7,1 < j < K. However, it may
not even converge in probability to 9* if any of the 7; is incorrectly modeled.

1.4.2 Iterative conditional expectation estimators
An alternative estimator of ¢* can be obtained from the following observation. Let
ni(ax,lx) = E (Y[Ax =ak, Lk = lk)
and, for k=K —1,K —2,...,1, let
M@, k) = E{nk+1(@x, Les1)|Ax = @, L = I} -

Also let
no (Gk,2) = E{m(ax,L1)|Z = z}.

It follows from Theorem 3.2 of [29], (see also, [33]) that under the identifying assumptions,
nk (@, L) = E (Ya, |Ar = @k, L) ,

k=1,...,K, and
Mo (@i, Z) = E (Ya,|Z).

Hence, under these assumptions, model (|1.1)) is equivalent to a model for the observed data O
defined by the sole restriction

Mo (@x,Z) =m(ax, Z;v¢*) for all ag. (1.2)

16



This observation suggests postulating parametric models ng (@, Li) = nx(Gx, L; 0),1<k<
K, and computing an iterated conditional expectation (ICE) estimator ¢;cg of ¢* as follows. First
compute dg solving

9 o _
P, [%(UK(AK,LK;CSK){Y_WK(AKvLK55K)} =0.

Then, for k= K — 1, K — 2,...,1 iteratively compute gk solving

9 _ _ . _ _
Py, Z a5, Me(Aky @y 1, L Or) {nk+1(Akan+17 Liy1;6p41) — me(Ary ag i1, Lis 5k)} =0.

A1 €AL

Here recall that, v, = (vg,...,vk) for any {Uj}1<j<K and A; = Aj x -+ x Ak, j = 1,... K.

Finally, 1210 E solves

a ~
Po| > %m(m,Z;w){’?l(@le%fSl)—m(@l’z”/’)} =0

a; eAl

Under regularity conditions, this estimator is CAN under the assumed model for all the 7,1 <
k < K. However, it may not even converge in probability to ¢* if any of the 7y is incorrectly
modeled.

1.4.3 Doubly robust estimators

Bang and Robins ([I]) discussed a DR estimator of 1* which weakens reliance on modelling as-
sumptions by offering the opportunity to avoid committing to one specific modelling strategy. In
Sections and we describe a slightly different DR estimator. Other DR estimators were
described in [36]; [25]; [14] and [27]. For computing a DR estimator the data analyst postulates
a model for the treatment probabilities m; and also a model for the functionals 7,1 < k < K.
The estimator is CAN for ¥* under the union model that assumes that either the model for the
7k, 1 < k < K, or the model for the n;,1 < k < K, is true, but not necessarily both are.

17



1.5 Compatible parametric working models for the 7; for the
special case K =2

A model for 141 implies restrictions on the range of possible 7;,s because

nk(aK,Zk) = F {ﬁk+1(aK,Zk+1)|Zk = Ek,fk = Zk} k= 1,..., K — 1. Likewise, a model for m
implies restrictions on 7. This makes the task of simultaneously modeling all the 7, challenging.
For instance, if K = 2, the linear model that assumes that 72 (ao, Zg) = aptaja; +asas+ Bl + B4l
implies that 1y (@2,11) = ag + @1a1 + azas + Bl + BLE (La|A1 = a1, Ly =1y) . If Ly is binary and
L; is unbounded, then F (L2|A1, L1) must be a non-linear function of Ly unless it is independent
of it. Thus, if the linear model for 79 is correct, except in the extreme scenarios in which either
B2 =0 or E (Ls|A1, L) is independent of Ly, the linear model 1y (@2,11) = vo + v1a1 + Y202 + 6111
that many analysts would naturally postulate is incorrectly specified.

Robins et al. (J42]) proposed a parameterization of the likelihood which implies compatible
parametric models for all the 1} s with some shared parameters. By compatible 1, models with
shared parameters, we mean that for every combination of parameter values indexing the models
for the distinct 7 and agreeing on the shared parameters, it is possible to find at least one distri-
bution for the observed data O that satisfies all models. For instance, when K = 2, Ly is binary
and L, is unbounded, Robins et al. parameterization results in compatible parametric models for
n1 (@2, L1) and n2(@z, Lo) that, in fact, does not exclude the possibility of simultaneous dependence
of E(Ls|Ay,L1) on Ly and of 1o(@2, Lz) on Ly. As far as we know, Robins et al.’s parameteri-
zation has not been exploited to construct DR estimators. One goal of this chapter is to fill this
gap. More importantly, exploiting this parameterization we propose an MR estimator of ¢* whose
implementation requires but just a slight modification of the procedure for computing the ICE
estimator. Our MR estimator confers even more protection against model misspecification than
DR estimators. For didactical reasons we describe our proposal when K = 2, i.e. under a follow-up
study with observed data

O = (Ll, Al, LQ, AQ, Y)

where L1 = (Z,V). The case of arbitrary K is discussed in Section Note that when K = 2,
n2 (@2, L2) = E (Y[Ay =@y, Ly)

m (@2, L1) = E {n (G2, L2) |4y = a1, L1 }
and
Mo (62, Z) = E{’I]l (62, Ll) |Z} .
When K = 2, Robins et al.’s parameterization depends on f (V|Z), f (Lz2|L1, A1), 1o (G2, 2) ,
p1 (@2, 1) =m (@2, 1) —m (a2, 2,0 = o)
and - B
P2 (52, 12) =12 (52, 12) —n2 (G2,l1,12 = l2yp),

where vy and [y are any baseline levels of V' and Ly respectively and [y = (z,v). In Appendix
we show that ng, p1, p2, f (V|Z) and f (La|L1, A1) are variation independent functions in the
sense that fixing one or several of them does not restrict the range of the remaining ones. Note that,
under the identifying assumptions,

p1 (a2, 1) =FE(Ya,|A1 =a1,L1 =11) — E(Ya,|A1 =a1,Z = 2,V = v)
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and
p2 (G2,12) = B (Ya,|Ay = G2, Ly =11, Ly = ly) — E (Yg,|Ay = a2, Ly = l1, Lo = lz) .

Thus, p; (a2,l1) quantifies the extent to which the mean of Yz, differs across strata of the baseline
covariate V' among subjects that received treatment A; = a1 and had baseline level Z = z. Likewise,
02 (62,22) quantifies the dependence of the counterfactual outcome mean on Lo among subjects
that received the treatment sequence A; = @» and had baseline covariates L; = [;. Straightforward
calculations yield

m (G2, 1) = 1o (@2, 2) + p1 (G2, 1) — E{p1 (a2, L1)|Z = 2}, (1.3)

n2 (@2,12) = o (@2, 2) + p1 (G2, 1) — E{p1 (G2, L1) |Z = 2} (1.4)
+ p2 (@2, 12) — E{p2 (@2, L) [A1 = a1, L1 =l }.
These identities imply that parametric models for p1, p2, £ {p1 (@2, L1) |Z} and
E {pg (62, LQ) |Aq, L1} and the MSMM 1 (@2, z) = m (a2, z;¢*) determine compatible parametric
models for 79,71 and 72 with shared parameters. For reasons explained in Section [I.6.5] we propose
modeling p; and ps as

p1 (@2, L1) = g1(az, Z;71)'t1 (V) and py (G2, L) = g2(@2, L1;75)'t2 (L2) (1.5)

where g1 and g2 are user specified vector-valued functions, 77 and «; are finite dimensional parame-
ters, and ¢; and to are user-specified conformable vector-valued functions verifying ¢; (vg) = 0 and
to (I2,0) = 0 so that the definitional restrictions p; (G2, 2,v = v9) = 0 and ps (G2,l1,la =1l2o) =0
are respected. Note that models include polynomials in the variables intervening in p; and
p2 with unknown coefficients. For instance, the polynomial model v11v + Y12v? 4 Y1320 + 14202 +
Y1510 + 16020 for py (@2,11) is obtained by taking ¢ (v) = (v,v2,v,v2,v,v)/ and g (az,2;71) =
(Y11, 7125 V137, V147, V1501, Y1602) -

Under models , in order to specify models for E {p; (G2, L1) |Z} and E {pg (Eg,fg) |Aq, Ll} ,
it suffices to specify parametric conditional mean models

E{ts(V)|Z} = e1(Z;17), (1.6)
E{ty(L2)|A1, L1} = ez (A1, L1;75) . (1.7)

where e; and ey are user specified conformable vector-valued functions and 7 and 75 are finite
dimensional parameters.

By (1.3) and (1.4) , the models (1.2)),(1.5)) , (1.6]) and (1.7) imply the following compatible, shared

parameter, models for 77 and 72,

m (@2, L1) = n1 (@2, L1i;¥", 77, 71) (1.8)
=m (G2, % ¢") + g1 (@2, Z;77) {t1 (V) — e1(Z;77)}
2 (52712) =12 (ﬁz,fz;w*,’ﬁﬁ;ﬁfﬁ;) (1.9)

= (@, L1;9*, 75, 7)) + g2 (@2, L1373) {t2 (La) — e2(an, L1;75)} -

We say that , and are compatible models with shared parameters because, for
every combination of values for ¢*,~{, 75, 7f and 75, there exists at least one distribution such that
Mo (G2, Z) = m(az, Z;9*) , m (a2, L1) = m (@2, L1;9*, 77, 71) and
Mo (dg,fg) =19 (ag,fg; w*,’yf,’y;‘,Tf,T;) . This follows from facts , and from the fact
that ng, p1, p2, f (V|Z) and f (Lo|L1, A1) are variation independent.
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1.6 Estimation exploiting the compatible models for the spe-
cial case K =2

1.6.1 Preliminaries

In this section we describe, in sequence, three estimators of 1*, each conferring more protection
against model misspecification than the previous one.

Our estimators of ¥* rely on preliminary method of moments fits of models and (|1.7)) to esti-
mate 7* = (77, 75) . Although 7* also indexes the model 13 (Ag, Lo;1*, 75,75, 7*) for E (Y H‘lg, L,),
we ignore this model for estimating 7* because it carries little or no information about it when
(¥*,~f,75) is unknown. For instance, consider the case in which A; and L, are binary, j = 1,2, Z
is nill and all working models and the MSMM are saturated. In such case, dim (7)) = 1,dim (72) =
dim (1) = dim (¢) = 4 and dim (v2) = 8, so dim () = 21 where 0 = (1, v1, V2, 71, T2) . However,
there are only 16 means F (Y|A2 =Ty, Ly = lg) so 6 is not identified under a model that just
assumes that F (Y|A2, Lg) =19 (Ag, Lo 0 ) .

1.6.2 A regression estimator

Here, we describe an estimator wR of ¥*, throughout referred to as regression ebtlmator that
under regularity conditions, is CAN under a model Ro for 7, defined by restrictions ( , (1.7

and (|1.9) . Note that model Ry determines the parametric model . ) for 71 since (1.7 ) and (1.9
imply (1.8) . This is seen by taking the conditional expectation given (4; = a1, L) on both SldeS

of . Likewise, Ro implies the restriction that defines the MSMM under the identifying
assumptions.

As indicated earlier, we first compute the method of moment estimators 73 and 75 of 77 and 75
under models and . For instance, 7| solves

Pl (2) {t1 (V) —e1 (Z;71)}] = 0,

where ¢; (2) is a a user-specified conformable matrix-valued function and 7, solves
Pr (g2 (A1, L1) {t2 (L2) — €2 (A1, L1; 12)}] = 0,

where ¢ (a1,11) is a user-specified conformable matrix-valued function. In each of the preceding
equations, 0 is a vector of zeros of an appropriate dimension.

Next, we compute the least squares estimator ("JJ\R,%, Ry 72, R) from the fit of the model
M2 (22712;1/)*,7{,7;,?1,?2) for £ (Y|Zg,f2) where (¥*,~7,~4) is unknown and (71, 72) is regarded

as known. That is, we compute (JR, A1,R,72,r ) the solution of

On2 (A2, Los v, 11,7271, 72)
8 (7/)771772)

Pr

{Y — N2 (A2,L2;1/),71,’727?17?2)}] = 0.

1.6.3 A doubly robust estimator

Here we describe an estimator QZD r which is doubly robust in the following sense. Let Py be
a parametric model 71 (a1,li;af) for m (ay,l1) and let Py be a parametric model w5 (a2, l2; o)
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for o (EQ,ZQ) . Also, let M be the model defined by restriction , i.e. the MSMM under the
identifying assumptions, for the case in which K = 2. Then, under regularity conditions, &D R IS
CAN under the union model that assumes that either (i) model Ro holds or (ii) models M, P; and
P53 hold, but not necessarily both (i) and (ii) hold.

For any n = (n1,m2) and © = (71, m2), not just the true ones, and any function d of (ZQ, Z)
define the estimating function

Ud (7/’77%7) = S(% (772,71'1771'2) + Scll (771’772771'1) + Sél) (7/’7771) (110)
where
d (A3, 2) S
52 (g, my,m) = Y — 1y (As,Ls) ),
a (2™ 2) m1 (Ay, L) ma (A2, L2) { e (A2, L2)
d(Al,ag,Z

Sy (n,m2,m) = Z ) {n2 (A1,a2,Ly) —m (A1,a2,L1)},

as€A2

Sq(om)= > Y d(@,2){m (@, L) —m (@2, Z;v)} .

a1 €A1 az€A;

71 (A1, L1)

To calculate zZ DR, we first run the procedure in Section and define
Mo.r (a2,12) = n2 (52,12; wRﬁLRv%,R’ﬂﬂA’z)

and ~
g (G2, 1) =m (52,11;1/)}3,31,1%,?1) .

Second, we compute @; and @y the MLEs of af and a3} under P; and Ps respectively and define
;T\l (al, ll) =T (al, ll; al)

and B -
T (a2, l2) = my (@2, l2;G2) -

Finally, the estimator 12 DR Solves

where g = (M1,Rr,2,r) , 7 = (71, 7T2) and J(ZQ, Z) is any, possibly data dependent, function of
the same dimension as 1*, for instance, J(ZQ, Z) = {WH . The estimator Vpr is
Y=y¢r
doubly robust essentially because
(I) as shown in [I], under M,
E{U; ("0, 7")} =0 (1.11)

if either (n],7n%) is equal to the true (n1,7n2) or (7}, 74) is equal to the true (71, 72),

(IT) by construction, 7, r converges to the true ng, k = 1,2, under Ry, and

(ITI) 7 converges to the true m under Py, k = 1,2.

Here and throughout, for any functional x of the observed data law, any parametric model G
assuming x = xg- for some §* € I' (with I' in a Euclidean space) and any estimator § of 8*, we
say that ¥ = X3 "converges to" (or equivalently "is consistent for") x under G if B is consistent for

[* under G.
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1.6.4 A multiply robust estimator

Here, we propose an estimator @Z MR that confers even more protection against model misspecifica-
tion than ¥ pg. Specifically, let R; be the model defined by restrictions and . Note that
Ro implies R1 and R implies M. The estimator 12 MR is multiply robust in the sense that, under
regularity conditions, it is CAN under the union model that assumes that any, but not necessarily
all, of the following conditions (i), (ii) or (iii) is satisfied: (i) model Rs holds; (ii) models Ry and
P2 hold; (iii) models M, Py, and Py hold. Thus, whereas @D R yields valid inferences if (i) or (iii)
holds, 1y g also does it if (ii) holds even when (i) and (iii) fail. The following table summarizes the
definition of the models introduced in subsections [[L6.2] to [L6.4

Table 1
Definition of models
Model Restrictions defining the model

M for K =2

R1 il.()‘i , il.S‘

RQ " ) (' ’ "

P1 parametric model for m (aq,1)
Po parametric model for (62,[2)

The steps to construct @MR are:

1. Compute a; and &z the MLEs of a and a3 under P; and P, respectively and define 7, (a1, 1)
=T (al, ll; al) and %2 (62, lg) = Tl (52, ZQ; ag)

2. Compute the estimators 77 and 7 of 77 and 735 as in Sectionm

3. Define s (a2, l2;%, 71, 72) = n2 (@2, 1259, 71,72, 71, 72) and o (@2, l2; 0,71, 72) =
onz (@2, 12;¢,7,72) /0(¥,71,72). Define (12(2),%2),352)) as a solution of

7.72 (22712;1/}7717’72)
71 (A1, L1) 7y (A2, Ly

n

) {Y —m (A27L2;¢,71,’72)}] =0

if that equation has at least one solution and as an arbitrary value, in the same space where
the parameters lie, otherwise.

Define 7, (az,l2) = n2 (52712; 12(2)7%2)7%20 :

4. Define ny (G2, li; ¢, 1) = m (G2, i, 71, 71) and 0y (@, b5, 71) = Om (G2, b, ) /00, 1)
Define (w(l), %1)) as a solution of

™ (A1,a2,L1;1Z(2)ﬁ§2))
71 (A1, Ly)

by

azE€As

{m2 (A1, a2, La) —m (A1, a2, L1;9, 1)} | =0
if that equation has at least one solution and as an arbitrary value, in the same space where
the parameters lie, otherwise.

Define 7, (@2, 1) = m1 (a2, l1; 12(1)7%1))
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5. Define m (@2, z;0) = Om (ag, z; 1) /0. Define {Z;MR as a solution of

Po| D0 D (@ 2:0®) (i1 (@ L) —m @, Zi4)} | = 0

a1€AL az€A2

if that equation has at least one solution and as an arbitrary value in RP otherwise.

__ Note that the algorithm for computing @M r mimics the one for computing the ICE estimator
Y1og except for the following modifications. First, the estimating functions in steps 3 and 4 are
weighted by (%17?2)_1 and (7?1)_1 respectively. Second, the derivatives in the equations of steps 4
and 5 are evaluated at the estimators of 1) and v; computed in step 3. These modifications are
essential to ensure the multiple robustness of ¥y r (see Appendix and also the proof of fact
(V) below). When the function g; of model and m are linear in the parameters, 5 and m do
not depend on ¥ and ;. In such case, the equations in steps 4 and 5 can be implemented with
standard weighted least squares software. Specifically, in step 4 one regards 7, as an outcome that
follows a conditional mean model 7 (Zg,Ll;w,'yl). The solution of the equation in step 4 is a
weighted least squares estimator of (¢,71) under such model based on a pseudo-sample in which
each observation of the original sample is replicated as many times as the cardinal #.A5 of set As,
and As is replaced in each replication by one distinct value of as in As. Likewise, in step 5 on regards
71 as an outcome that follows a conditional mean model m (ZQ, Z; 7,[1). The solution of the equation
in step 5 is a weighted least squares estimator of ¥ under such model based on a pseudo-sample
in which each observation of the original sample is replicated as many times as # (A; x A3) and
(A1, As) is replaced in each replication by one distinct value of (a1, az2) in Ay x As.

Here, we provide an heuristic argument of why 1; MR should be consistent for ¢* under a model
that assumes that any, but not necessarily all, of the following conditions (i), (ii) or (iii) above
is satisfied. Once consistency has been established, the convergence under regularity conditions

of /n (@MR — ¢*) to a mean zero Normal distribution follows immediately from the fact that
@ZMR and all nuisance parameters ultimately solve a system of estimating equations. The precise
regularity conditions under which ¥, is consistent and asymptotically normal for 1* under the
model that assumes that (i), (ii) or (iii) hold are given in Section for the case of arbitrary K.
Essentially, the multiple robustness of 15;r is a consequence of the following facts:

(I) The identity (|1.11)) holds under M not only when (1], 75) is equal to the true (11, 7n2) or (7], 75)
is equal to the true (71, 72), but also under the weaker condition that for each j € {1,2},
either 77;- is equal to the true n; or w‘; is equal to the true ;.

(IT) Under regularity conditions, the estimator 7; is consistent for 7; under P;,j =1, 2.

(III) Under regularity conditions, the estimator 7); in step 3 is consistent for the true 7, under
model Ro.

(IV) Under regularity conditions, the estimator 7; in step 4 is itself doubly robust in that it is
consistent for the true n; under the model that assumes that R; holds and that either Rq or
PQ holds.

(V) The estimator IZMR in step 5 solves P, {Ug(i/},ﬁ, %)} = 0 for E(ZQ,Z) =m (ZQ,Z;'IZ(z)) ,
17 = (7, 72) computed in steps 3 and 4, and 7T = (71, T2) computed in step 1.
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Facts (I)-(V) imply that, under regularity conditions, 1Z MR is CAN under the model that assumes
that M holds and that for each j € {1,2} either model R; or model P; holds. The fact that Ro
implies R; and, R; implies M then gives that ’(Z)\M r 18 CAN under the model that assumes that
any, but not necessarily all, of the following conditions (i), (ii) or (iii) is satisfied: (i) model Ro
holds; (ii) models Ry and Ps hold; (iii) models M, Py, and P, hold.

Tchetgen Tchetgen ([63]) first noted the remarkable fact (I). Later, Molina et al. ([24]) noted
that this fact is a consequence of the likelihood factorization that takes place in coarsened at random
models. For completeness, in Proposition [If of Section [L.10| we give an independent proof of that
fact for the case of arbitrary K.

Fact (III) is true because Ry is a regression model for the outcome Y on covariates Ay and Lo,
and in addition, under regularity conditions, 7; and T converge to 77 and 75 respectively under
Ra.

Fact (IV) is true because of the theoretical results in [24]. In Appendix[A.2]we give an intuitive
argument invoking counterfactuals.

Fact (V) is true because, when C/Z\(ZQ, Z) = m (Xg, 7z 12(2)) ,

(i) Yas solves P, {Sg(zb, ﬁl)} = 0 by step 5,

(ii) P, {S{% (ﬁl,ﬁz,%l)} = 0, by step 4 and the fact that m (Al,a,g,Z;{Z;(z)) is a subvector of
on (A1,a27L1;TZ(2)7%2)) ; and

(iii) P, {S(% (ﬁg,%h%g)} = 0 by step 3 and the fact that m (Z% Z; 12(2)> is also a subvector of
o (A, T 9,707,307

Note that evaluating 7, and m at ¢ = $® in steps 4 and 5 is key to ensure that (ii) and (iii)

hold. Likewise, as shown in Appendix evaluating 7‘]1 at v = %2) in step 4 is key to ensure fact

(2)
1

(IV). Therefore, evaluating 7, and m at ¥ and 7, in steps 4 and 5 is essential to guarantee the

multiple robustness of ¥y g.

1.6.5 On our proposed models for p;

Our choice of model for p; and po is based on considerations of flexibility and ease of implemen-
tation. First, the formulation is flexible because, as indicated earlier, it includes polynomial
models of any order. Because any function of finite-valued variables can be expressed as a poly-
nomial then, in particular, when all variables but Y are finite-valued, even the saturated models
for p1 and py can be written as . Note also that if g; depends on all @y and g, depends on
ag, then imply models for 7, and 7, that allow the possibility that (1) L; is a modifier for
the additive effect of Ay on Y, i. e., that the differences E (Yz,|L,) — F (Yag Ll) depend on L
for @y # @} and (2) Ay, L1, Ly are modifiers for the additive effect of As on Y. Second, imple-
mentation is facilitated under models and — because 7; is estimated separately
from ;. In principle, it is possible to implement R, DR and MR estimators under arbitrary models
p1 (@2, L1;77) and pa (@2, Lo;73) , and models 1 (Z; 71) for E {p1 (a2, L1;77) | Z} and e (A1, L1;73)
for £ { 02 (Al, as, Lo; fy;) |A1, Ll} . Such implementation would follow the algorithms described in
the preceding sections except that one will need to first compute method of moments estimates
71 (71) and T2 (72) over a fine grid of (y1,72) values and then follow the R, DR and MR algorithms
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with 71 (1) and 72 (72) instead of 77 and 7». While feasible, this strategy would be computationally
intense.

One will typically not be free to choose arbitrary models for each of the entries of the vectors
E{t(V)|Z} and E {t2(L2)|A1, L1 } . For instance, if t1 (V') = (V, V?) , then models for E {t,(V)|Z} =
E{(V,V?)|Z} will be tied by the inequality E (V?|Z) > E (V|Z)? . One strategy to come up with
models that do not violate any logical constraint is to derive them from fully parametric models
for the densities f (v|z) and f (I2|l1,a1). We emphasize that under this strategy the conditions for
consistency of the R, DR and MR estimators will remain dependent on the validity of just the
mean models and implied by the fully parametric models, and not on the full validity of
the latter. This is because 7 and 75 are not estimated by maximum likelihood but rather by the
method of moments.
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1.7 MR estimation for arbitrary K

In this section, we generalize the construction of compatible models for the functionals 7 proposed
in Section to the case in which there are K > 2 time points. We also generalize the R, DR and
MR estimation algorithms of Section [L.6]

1.7.1 Compatible parametric working models for the 7

The derivation of compatible models for the ;s with shared parameters for the case of K > 2 is
completely analogous to the one proposed in Section [L.5] for the case of K = 2. As indicated in that
section, Robins et al. [42] proposed a parameterization of the likelihood that depends on f (V|Z),
f (Llek—h Ak—l) s k=2,....K,n (62, Z) R

p1 (@, 1) =m (@, i) —m (@k, z,v = vo)
and B B B
ok (Gxc, k) = mi (@, le) — e (@xcs le—1, b = lro) »

k= 2,...,K, where vy and [; o are any baseline levels of V' and L;, k = 2,..., K, respectively
and l; = (z,v). These functionals are variation independent, as shown in Appendix for the
case in which K = 2. The proof for arbitrary K is completely analogous. As in the case of K = 2,
straightforward calculations yield

m (@x,l1) =no (@, 2) + p1 (@, l1) — E{p1 (@, L1)|Z = 2}, (1.12)

and

ne (@x, k) = no (ak,2) + p1 @k, 1) — E{p1 (@, L1)|Z = 2} (1.13)
f L o - -
+ 30 [P (@, 1) — E{pj (@x, L) [Aj-1 = a1, Lj—1 = 11 }],
k=2,..., K. These identities imply that parametric models for the p’s, for £ {p (ax, L1)|Z} and
E {pj (EK,ZJ-) |Zj_1,fj_1} .7 = 2,..., K, and the MSMM 1y (G, 2) = m(ax,z;9*) determine

compatible parametric, shared parameter, models for the ng, &k = 0, ..., K. For reasons analogous
to those explained in Section we propose modeling the p’s as

1 (@x, Ln) = g1 (ax, Z377) 01 (V) , (1.14)
and
_ = _ = «\/
pj (@x, L) = gj (@x, Lj-1;7;) t (L) (1.15)
j=2,..., K, where the g;.s are user specified vector-valued functions, the ’y;f’ s are finite dimensional

parameters, and the tgs are user-specified conformable vector-valued functions verifying
t1(vo) =0and t; (I;0) =0,j =2,..., K, so that the definitional restrictions py (ax, z,v = vg) =0
and p; (aK,lj_l,lj% 0, 7 = 2,..., K, are respected. Note that, as in the case of K = 2,
models and ([L.15)) include polynomials in the variables intervening in the p}s with unknown
coefficients.

Under models (|1.14]) and , in order to specify models for E {p1 (ax,L1)|Z} and
E {pj (EK,fj) |Zj,17fj,1} it suffices to specify parametric conditional mean models

E{t:(V)|Z} = e1(Z;77), (1.16)
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and, for j =2,..., K, B

E{t ‘AJ 17 j— 1} =€ (Aj,l,Lj,]_;T;). (117)
where the e/;s are user specified conformable vector-valued functions and the 7;”s are finite dimen-
sional parameters

By (1.12)) and -, the MSMM and the models 1|1 14) , (T.15) , (1.16) and (1.17) imply

the followmg compatible, shared parameter models for the 77J

m (@x,L1) = m (@x, Li;0" 47, 11) (1.18)
=m(ag, Z;0") + g1 (@x, Z;77) {1 (V) —e1 (Z;71)}
and
nj (@, L) = n; (ax, L 0", 75, 75) (1.19)
_77] l(aKv J— 151/} 7] 17 J 1)+g] ((ZK, J— 177‘7) {t aj 1’L-7-71;T;)}’

j=2,...,K. We say that (L.2), and for j = 2, ..., K, are compatible models with

shared parameters because, for every combination of values for ¢*, 7% and T}, there exists at least

one distribution such that ny (@x, Z) = m (Gx, Z;9¥*) and 7, (EK,fk) =g (EK,fk; 1/)*,7,”;,?2) k=
., K. This follows from , and from the fact that no,the p’s, f (V|Z) and

f (Lj |fj_1,Zj_1) ,j =2,...,K are variation independent functionals.

1.7.2 Estimation exploiting the compatible models

In this section, we extend the three estimators of Section to the case of arbitrary K exposure
time points. Again, in the construction of our estimators, we will separately estimate 7} by the
method of moments. We will not exploit model nx (Ax, Li; 9™, 75 Ti) for E(Y|Ag,Lk) to
estimate T7 because this model carries little or no information about this parameter when the
remaining parameters are unknown.

A regression estimator

To calculate the regression estimator 1ZR, as indicated earlier, we first compute Tk = (T1y..,TK)
where 7; is a method of moment estimator of 7, under (1.16)) if j = 1, and (L.17) if j > 1. Next,

we compute the least squares estimator (@R,%K,R) = (@R,%,R, e ﬁK,R) from the fit of the
model nx (ZK,ZK;W‘,W},%K) for E (Y|Ag, Li) where (¢*,7}) is unknown and Tk is regarded
as known. Under regularity conditions, the estimator zZ r is CAN under the model R defined by

restriction , restriction for j = 2,..., K, and restriction for j = K.

Note that model R determines the parametric model for nx_; defined by equation (1.19) for
j = K — 1. This is because equations for j = K and for j = K imply equati((]);‘-@b
for j = K —1, as is seen by computing the conditional expectation given (ZK 1 =ax-1,Lix— 1) on
both sides of (1.19] - for j = K. Likewise, R implies the models for the 77 s deﬁned by restrictions
(1.18)) if j = 1 and ( if j=2,..., K —2, and also implies the restriction ) that defines the
MSMM under the 1ndent1fy1ng absumptlonb
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A doubly robust estimator

For each k =1,..., K, let P, be a parametric model 7, (Ek,ik; a;;) for my, (Ek,fk) . Also, let M be
the MSMM under the identified assumptions, defined by restriction (|1.2)) . Our proposed estimator
Ypgr is doubly robust in the sense that, under regularity conditions, it is CAN under the union

model that assumes that either (i) Ry holds or (ii) model M and models Py, k=1,...,, K, hold,
but not necessarily both (i) and (ii) hold.
_ For any n = (n1,...,mK) and m = (71,...,7k), not just the true ones, and any function d of

(A K Z) , define the estimating function

K—1
Ud (7/1,77777) = Sé( (UKJF) + Z Sc]iC (nkvnk’-‘rlaﬂ-lv ce 77rk) + Sg (77/1,771)’ (120)
k=1
where .
d(Ax,Z _
I (nrem) = oAy (A T},

Hj:ﬂ'j (Zjvzj)
fork=1,...,K —1,

d(Ap,a,. .2
,Wk)E Z ( kyQp41 )

% — — {nk+1(zk7gk+17zk+l) - nk(zkagk+17zk)} 5
Hj:lﬂ'j (Aj7 j)

k
Sa (ks Mo 1,715+ -
g1 €A

and

S§W,m) = > d(ay, 2) {mlay, L) — m(ay, Z;¥)},
QleAl
where recall that A, = A X --- x Ag, k=1,..., K.

To compute ¥pr we first run the preceding procedure in the regression estimator algorithm
and, for each k = 1,..., K, we define

Mo,k (Gxc, ) = mi(@xc, Ui @Rﬁk,m?k)-
Second, for each k =1,..., K, we compute &, the MLE of o} under Pj and define
T (@, ls) = 7k (G, Les Q) -

Finally, the estimator 15 DR Solves

where g = (M.rs---,0x.R),7 = (T1,...,7Tx) and J(ZK,Z) is any, possibly data dependent,

function of the same dimension as 1*, for instance, EZ\(ZK, Z) = {8m (ZK, VA w) /M}‘w:% . The

estimator QZD r is doubly robust essentially because
(I) as shown in [I], under M,

E{Us (¥, 0", 7")} =0, (1.21)
if either 7’ is equal to the true 5 or 7’ is equal to the true ,

(IT) by construction, 7 r converges to the true 7 under R,k =1,..., K, and
(ITI) 7% converges to the true m under Py, k=1,..., K.
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A multiply robust estimator

Here, we propose an estimator iysr that confers even more protection against model misspecifica-

tion than ¢ pr. Specifically, let Rq be the model defined by restrictions ([1.16)) and (1.18)) . Also, for
each k € {2,..., K — 1}, let Ry, be the model defined by restriction (|1.16), restrictions (1.17) for

7 =2,...,k, and restriction for j = k. That is, R4 is the model defined by restrictions
E{ty(V)|Z} = e1(Z;7]) and
m (ax, L1) = m (@, Li;9", 71, 77)
=m (ax, Z;¢%) + g1 (ax, Z;75) {t1 (V) — e1 (Z;71)}
and, for each k =2,..., K — 1, Ry, is the model defined by restrictions
E{t(V)|Z} = ea(Z577),
E{t;(L)|Aj—1,Lj—1} = ej (Aj—1,Lj—1;77) ,j =2,...,k, and
e (@rc, L) = ni (Gxc, Li; ¥*, 75 Tr)

= nr—1 (@x, Le—1; 0", 751, Th_1)

+ gk (EKyfkq;’YZ)/ {te (Lk) — ex(@—1, Li—1;77) } -
The following table summarizes the definition of the models introduced in subsections[L.7.2] to[1.7.2]

Table 2
Definition of models
Model Restrictions defining the model
M 1.2
R (1.16)), (1.18])

fork=2,....K

Rk avj:27"'7k77j:k
fork=1,..., K

P parametric model for 7 (Ek,ik)
Note that, for each k =1,..., K — 1, Ry implies Ry. Likewise, Rq implies the MSMM M. The
estimator zZM r is multiply robust in the sense that, under regularity conditions, it is CAN under
the model that assumes that any, but not necessarily all, of the following conditions (i), (ii) or (iii)
is satisfied: (i) Rk holds; (ii) for some &k € {1,...., K — 1}, model Ry and models Pyi1,..., Pk
hold; (iii) model M and models Py, ..., Pk hold. Thus, whereas &DR yields valid inferences if (i)
or (iii) holds, ¥z also does it if (ii) holds even when (i) and (iii) fail.
The following algorithm yields the proposed estimator.

Algorithm 1

1. For k=1,..., K we compute &j the MLE of o} under Py, which we will assume it solves

b _
Pn ?«klnﬂk (Ak,Lk;Otk) =0.

Define 7, (ak,ik) =T (ak,ik; &k)
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2. Compute a method of moments estimator 73 of 7 that solves the moment equations
P g1 (2) {t1 (V) —e1 (Z;7)}] = 0,

where ¢ (2) is a a user-specified conformable matrix-valued function and, for k = 2,..., K,
compute a method of moments estimator 7j, of 7 that solves the moment equations

Py [qk (Ak—1, Li—1) {tx (L) — ex (Ak—1, Li—157%) }] =0,

where g (Ek_l,zk_l) is a user-specified conformable matrix-valued function.

3. Define ng (@, lx; ¥, Vi) = 1k (EK,ZK;%WK,%K) and

7.7K (aK,iK;waﬁK) = anK (aszK;waﬁK) /8(1[}’7[() :
Define (QZ<K>,%§§)) = ({%K), %K), ce ,%(K)) as a solution of

Nk (Ax,Lk; ¥, k)
I, 7 (45,L5)

if that equation has at least one solution and as an arbitrary value, in the same space where
the parameters lie, otherwise.

- = s~ ~(K)
Define nx (aKJK) =K (GKJKH/J(K)»’Y(K ) :

n

{Y —nx (AK,LK§¢77K)}] =0

4. For k=K —1,...,1, iteratively define ny (EK,Zk; 1/%71@) =k (EK,Zk; @b,ﬁk,%k) and

M (@rc, Ui ¥, i) = O (e, Ui 0, i) /0 (0, 7,) -
Define (1%“,%5?) = (1//;(’“), %k), e ,‘y\,(ck)) as a solution of

o /— — ey A(K
i (A g, Tas 009,53,
Matha
1= 75 (45, Ly)

Pu| 2

W1 €AL

{1 (Aks a1y Lirr) — e (Ak, @prys Lies 0, 75) } | =0

if that equation has at least one solution and as an arbitrary value, in the same space where
the parameters lie, otherwise.

~ 7 _ 7 v 2(R)
Define 7y (ax, Ir) = m(@x, l; ™, 73),).

5. Define m (agx, z;¢) = m (ax, z;0) /0.
Define ¥ as a solution of

Po | > (00,205 ) {in(ay, L) = m (ar, Z3 )} | =0

ay EAl

if that equation has at least one solution and an as an arbitrary value in RP otherwise.
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As in the case in which K = 2, when gi,k =1,..., K — 1, and m are linear in the parameters,

the derivatives 7.7k, k=1,...,K—1,and m do not depend on ¢ and 7. In such case, the equations
in steps 4 and 5 can be implemented with standard weighted least squares software.
The multiple robustness of 1k is a consequence of the following facts:

(I) The identity (1.21) holds not only when (ni,...,n%) is equal to the true (n,...,nx) or

(7h,..., ) is equal to the true (m1,...,mx), but also under the weaker condition that,
for each k € {1,..., K}, either n is equal to the true n; or 7, is equal to the true 7.
(IT) Under regularity conditions, the estimator 7y is consistent for m under Py, k=1,..., K.

(III) Under regularity conditions, the estimator 7 in step 3 is consistent for nx under model R

(IV) Under regularity conditions, for each k = 1,..., (K — 1), the estimator 7 in step 4 is itself
multiply robust in that it is consistent for 7, under the model that assumes that Ry holds
and that, for each j € {k+1,..., K}, either R; or P; holds.

(V) The estimator 7ZMR in step 5 actually solves the equation P, {UJ(Q/J, 7, %)} =0 for

d (AK, Z) =m (ZK, Z, J(K)) ,n=(M,...,NKk) computed in steps 3and 4 and 7 = (71, ..., TK)
computed in step 1.

Facts (I)-(V) imply that, under regularity conditions, 5,5 is CAN for 1* under the model that
assume that M holds and that, for each j € {1,..., K}, either R; or P; holds. The fact that,
foreach k =1,..., K — 1, Riy1 implies Ry and that R; implies M, then gives that zZMR is CAN
for 1* under the model that assumes that any, but not necessarily all, of the following conditions
(i), (ii) or (iil) is satisfied: (i) Rx holds; (ii) for some k € {1,....,K — 1}, model R, and models
Pr+t1,---, Pr hold; (iii) model M and models Py, ..., Pk hold.

As indicated in Section the remarkable fact (I) was first noticed in [53], and it was later
shown to be a consequence of the likelihood factorization that takes place in coarsened at random
models in [24]. For completeness, in Proposition [1| of Section we give an independent proof of
that fact.

Fact (III) follows from the fact that Ry is a regression model for the outcome Y on covariates
Ak and L, and in addition, for each j € {1,..., K}, under regularity conditions, 7; converges to
T; under Ry.

As in the case of K = 2, fact (IV) follows applying results in [24]. Also, an heuristic argument
can be given using counterfactuals and backward induction, generalizing the arguments used in
Appendix [A2] to prove fact (IV) in the case in which K = 2.

Fact (V) follows from the facts that, when J(ZK, Z) =m (ZK, Z; 1Z(K)) ,

(i) Ui solves
Pp {Sg(wvﬁl)} =0
by step 5,
(ii) for each k € {1,..., K — 1},
P { SE (i Tes1, 71, F) | = 0

by step 4 and the fact that m is a subvector of ;]k, and
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(iii) Py, {Sg (K, %)} = 0 by step 3 and the fact that m is also a subvector of 7).
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1.8 Example

We applied our methods to analyze data from the National Heart Lung and Blood Institute Growth
and Health Study. The study sought to investigate racial differences in dietary, physical activity,
family, and psychosocial factors associated with obesity from pre-adolescence through maturation
between African-American and Caucasian girls. During 1987 and 1988, girls aged 9 and 10 were
recruited from Richmond, CA and Cincinnati, OH and also from families enrolled in one HMO
in the Washington, D.C. area. The follow-up period was 9 years with annual examinations. The
recorded data included: anthropometric measurements, dietary information, physical activity and
family socioeconomic status.

We analyzed data from the first three cycles of the study. We are interested in the effect of
diet (Ag) on cycles k = 1,2,3 on the logarithm of BMI (Y) measured at cycle 4. To illustrate our
methods we chose to dichotomize diet as Ap = 1 if the daily percentage of energy from saturated
fatty acids, computed from data reported in the questionnaire of cycle k, was less than 10, and
Ay = 0 otherwise. A thorough analysis would need to carefully consider the appropriate scale for
diet. Our analysis used a baseline covariate Ly = (Z, V) where Z is race (1= Caucasian,
0= African-American) and V = (V4, V) with V; =household income at visit 1 (categorical variable
with categories: 1-less than $ 10,000, 2-between $ 10,000 and $ 20,000, 3-between $ 20,000 and
$ 40,000, 4-more than $ 40,000) and V5 =logarithm of a physical activity score computed from
responses to the questionnaire administered in cycle 1, a covariate Ly =log(BMI) on cycle 2 and
a covariate Ly = (L3 1, L3 2) with L3 1 =log(BMI) and L3 o =logarithm of physical activity score,
both on cycle 3. The covariate Ly did not include physical activity on cycle 2 because this variable
was not recorded at that cycle.

Our analysis was based on 1303 children without missing data in any of the variables. We
estimated the parameter 1 of the following MSMM

E(Yz,|Z) = o+ Zip1 + (Y2 + Zabs) a1 + (Ya + Zps) as + (Y6 + Z17) as.

This model assumes that, within strata Z = z of race, the direct effect of diet at cycle k£ controlling
by intervention the previous cycle diets is

o . = Yo + 292541,

k =1,2,3, and hence it does not change with the previous cycle diets.
To compute our MR estimator of 1) we postulated a working model

p1 (@3, 1) = g1 (@3, 2:m) t1 (v)

for
p1(@s, ) = E(Yas|A1 =a1,Z =2,V =0v) = E(Yg,|A1 = a1,Z = 2,V = v)

where I3 = (z,v) and vy = (v10,v20) = (4,0) is a baseline level for V. We also postulated working
models

pr (@3, lk) = gi (asjk—ﬁ’Yk)/tk (Ik)

for

ok (a3,1k) = E (Ya,|Ax = @k, Li—1 = li—1, Ly = k) — E (Ya, | Ak = @, Li—1 = lp—1, Li, = lpo)
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for k = 2,3, where l3p = 0 and 30 = (0,0). In our models
t(V)=I(W=1),I(Vi=2),I(Vy =3),Va]

and
tr (Li) = Lg

for k = 2,3. The functions ¢; (a3, z;y1) and gi (Eg,ik,l; 'yk) .k = 2,3, were vector-valued functions
of conformable dimension with j entry being of the form [1,as, 2] v1,; and [1,63,%,1] Vr—1,j Te-
spectively. Also, our working models for E {t, (V) |Z} and E {tx (Lx) |Ak—1, Lr—1} were distinct
linear models in all the conditioning variables and were estimated by ordinary least squares. In
addition, our treatment models assumed logistic regressions for each A; with linear terms in race,
household income, the last prior diet, the last prior log(BMI) and the closest prior available loga-
rithm of physical activity score.

As shown in Section [[.10] above for the case of the MR estimator, usual empirical sandwich
variance techmques [50] can be used to derive estimators that are consistent for the asymptotic
variances of wR, ¢DR and ¢MR under the respective models in which they are CAN. This is
because, ultimately these estimators solve estimating equations of the form Z\If () = 0 with 0 a

i=1
parameter vector that includes ¥ and several, finite dimensional, nuisance parameters. However,
because handling the analytic expression for ¥, (6) is cumbersome, in this section and in Section
we use instead the non-parametric bootstrap variance estimator which is consistent since zZR,
¥pr and Y are regular and asymptotically linear estimators [13].

Table 3 reports the MR, DR, R and IPTW estimators of oy . = 9ar + 2¢2r4+1,k = 1,2,3 and
z = 0,1, their estimated standard errors (SE) and 95% Wald type confidence intervals using the
bootstrap variance estimator from 1000 bootstrap samples, of which 16 were discarded due to lack
of convergence. All but one of the estimated oy, . are non-significant. Furthermore, all estimated
oy, . are negative, except for all estimators of the effect of diet at cycle 2 for Caucasians, i.e. of ag ;.
Also, note that even though, for Caucasians (Z = 1), the estimated effects of A; are greater than
those of Ag, for all the estimators but the IPTW, the SEs are also higher. As predicted by theory,
the IPTW estimator is the one with highest SE and the R estimator is the one with the lowest SE.
Interestingly, the SEs of the MR and the DR estimators are similar.

Table 3
Estimators of o, = Yok + 2¢ak41 [bootstrap SE] (normal theory bootstrap 95% C1I).

MR DR R IPTW

aio 0[0.038] (-0.074,0.074) -0.003[0.039] (-0.079,0.073)  -0.019[0.022] (-0.062,0.023)  -0.041[0.049] (-0.138,0.056)
azo  -0.014[0.019] (-0.051,0.023)  -0.006[0.023] (-0.05,0.039)  0.005[0.012] (-0.019,0.029)  -0.047[0.048] (-0.14,0.047)
s -0.009[0.014] (-0.036,0.017)  -0.007[0.017] (-0.041,0.027)  -0.008[0.008] (-0.023,0.008)  -0.028[0.05] (-0.125,0.069)
aip -0.043[0.027] (-0.096,0.01)  -0.035[0.026] (-0.085,0.015)  -0.018[0.024] (-0.065,0.029)  -0.032[0.026] (-0.084,0.019)
az1  0.006]0.014] (-0.021,0.033)  0.011[0.016] (-0.02,0.043) 0.015[0.009] (0.002,0.033)  0.007[0.026] (-0.044,0.057)
asy  -0.008[0.011] (-0.03,0.014)  -0.007[0.013] (-0.032,0.019)  -0.006[0.008] (-0.021,0.008)  -0.045[0.025] (-0.094,0.003)

—~ =~
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1.9 A simulation study

We conducted a simulation study under a scenario that roughly mimics the data structure in the
study of Section [L.8] excluding the baseline variable Z. We generated 1000 samples, each of size
1000 according to the data generating process in Table 4 with parameter values given in Table 5.
Under this process and the identifying assumptions of Section [1.3]

E(Ya,) = m (a3;¢) = o + 1a1 + p2az + 1P3as.

Also, the following holds

(@s51) + g1 {t1 (L1) —e1}
3¢)+2J 195 {t; (L) — €5}

B (Yg,|As = a3, Ls) = $0) + 305095ty (Ly) — e5

(@

(@s;
E{ty (L1)} = e1 (1)
E {ta (L) |A1, L1} = ea (A1, L1;72)

E {t3(L3) A2, Ly} = e3 (A2, Ly;73)

with L1 = V = (V4, V) and with g;,¢; and e;,5 = 1, 2 3 deﬁned in Table 4. In particular, the
following models hold. Model R, defined by restrictions nd 1.25)), Ro defined by restrlctlons
, and , and R3 defined by restrlctlonb 1 24 , (1. 25 , (1.26)) and . Finally,
the data also follows models Py, given by logit{Pr (A, = 1[As_1,Li)} = c (Zk_l,fk)/ak with
¢k () given in Table 4, 1 < k < 3.

We considered the following six scenarios: (1) Ry, and Py correct, k = 1,2, 3, (2) only Ry, correct,
k=1,2,3, (3) only R1,Re and Ps correct, (4) only Rq, P2 and Ps correct, (5) only Pj correct,
k=1,2,3 (6) Ry and Py, incorrect, k = 1,2, 3.

The incorrect Py, P2 and P3 models were logistic regression models with covariates ¢ (L1) = [1, V4],
2 (A1, L2) = [1,L2], ¢3 (A2, Ls) = [1,Vi, Ay, Lg ] respectively. Different choices were used to
build the incorrect Ry models, depending on the scenario. Specifically, in scenario (3) gs,ts,
and e3 were incorrect, in scenario (4) go, €2, g3, t3, and ez were incorrect and in scenarios (5) and
(6) the functions g1, g2, €2, 93,t3, and es were incorrect. When g; was misspecified the function
Jj (Eg,fj,lﬁj) = 7; with 7; of conformable dimension was used, j = 1,2,3. For the remain-

ing functions the following incorrect choices were used: t3 (LS) L3, e5 (A1, L1;7) = (1,117
and 53 (ZQ,ZQ,"FS) = [gg 1,53 2] with 63 1= [1 Ll,AQ] T3,1, 632 = [1 LQ] 73,2-

We computed Wald type confidence intervals using the bootstrap variance estimator with 1000
bootsptrap replications. Figure 1 reports results for ¢MR7¢DR,¢R and 1/11PTW Observe that, as
predicted by theory, 1/1 )rprw was virtually unbiased if every Py, was correct, but considerably biased
otherwise. Similarly, /r was unbiased when every Ry, was correct but badly biased otherwise. Also,
Ypr was virtually unbiased when the sequence of Ry models or the sequence of P, models was
correct. Interestingly, it was also virtually unbiased under scenario (4), but it was considerably
biased otherwise. In contrast, @MR was unbiased in all scenarios except when all the models
were incorrect. Even in this unfavorable scenario its bias was smaller than the bias of the other
estimators. The graphs reporting the SEs indicate that, as predicted by theory, ¢;prw had larger
SEs. Interestingly the SEs of ¥y;r and ¢ pr were always very similar only slightly larger than those
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of 1Z r under scenarios in which the three estimators are consistent. As for confidence intervals, those
centered at the MR estimators, had actual coverage probability very close to the nominal 95% in
all scenarios including, surprisingly, the case with all models incorrect. Intervals centered at the
remaining estimators had actual coverage probability smaller than the nominal 95% in at least one
scenario.
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Figure 1: simulation results
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Table 4
Data generating process in the simulation study

Ll = [Vl"/é]/; ‘/1 = Z?:l ]IJ where I = [11712al3al4] ~ MU’lt([plap27p3ap4] ) 1) ‘
Vao|Vi ~ N (u1 (V1) 0% (V1)) , La| (A1, Ly) ~ N (p2,03) 3 po = [1, L1, Ay, ViVa, LiAd] 7
T T 1,La, Az, Ly A2, Vi Lo, Vo Ay
L3 =[Ls1,Ls2]"; Ls| (A2, Ls) ~ N N3,1],E>;{M3,1}_{[7 2, A2, Lo Ag, Vila, VoA 3,1}
3 7[ il 3,2 3|( 2 2) <[ 13,2 s 13,2 [I,IVQLILQ,IAQ]T?LQ
Y| (A3, Ls) ~ N (14, 0%) s pa = m (Ag30) + 3051 95 {t; (Ly) — e} s m (Asiv) = [1, As] ¢
91 = 911,912,913, 91,45 91,5 = [1, As] 715,92 = [1, L1, As] 72

93 = (931,932,933 5 93,5 = |1, V1, Lo, As] v35:t1 (L1) = [11,[2,137‘//2]1; ta (L2) = Lo
t3(L3) = [L3j, Lag2, Ly1Lsp) se1 =71 = {p17pz7p372?:1 Dj 1 (j)} ;€2 = Ua
e3 (Az,Lz;Ts) = [p3.1, 13,2, X1,2 + pzaps2) with 75 = (13,1, 13,2, 21,2]/

Ay, binary; Pr(A4; = 1|Ly) :expit{q (Ll)/al}

Pr (Ak = 1|Zk,1,fk> :expit{ck (Zk,l,fk)/ ak} ,]f = 2, 3

€1 (El)f [LIVZ]/;C2 (Al,f2) = [1, L1, Ay, Lo, V1V2,L1/A1,L1L2,A1L2]'
cs (Ag, Ls) = [1,V4, As, L3, V1Ag,ViLs, Ao L3, L3 1 L3 o]

Table 5
Parameter values for the data generating process of the simulation study

’ [P1, P2, 3, pa] = [15,.2,.3,.35]; [p1 (1), pa (2), pa (3), pua (4)] = [3.35,3.37, 3.38, 3.42] ‘

[01(1),01(2),01(3),01 (4)] = [0.48,0.45,0.43,0.44] ; 75 = [2.98, —.01, —.02, —.05,0, —.01, —.01]’

oy = 0.12; 731 = [.03, .45, —.02,.01,1.17, .1, —.06, —.16, —.01]

T30 = [3.18,3.32,3.47,3.61,.3,.22, .15, .07, —.55, —.47, —.38, —.29, .45, .38, .31, .24]

-3 —4

_1;266XX1§)0_4 5‘28;(810 Loy = .04; ¢ = [3.22, —.05, —.075, —.1]'
Y11 = [12,.05, —.04, —.02]'; v1 2 = [.07,.04, —.02, —.01]"; v, 3 = [.04, —.01, —.02, —.01]’
Y14 = [.03,—.01,.01,.01] ;45 = [1.15, —.12,.01, —.05, —.06, .1]’
v3.1 = [1.66, —.06,.04, .09, —.34, —.37]" ; y3.0 = [.54, —.04, —.2, —.05, —.24, —.1]
Y33 = [—.12,.01,.04,.02,.08,.04] ; a1 = [~3.23, —2.39, —1.85, —1.49, .50, .39, .34, .32]'
a = [4.5, 1.2, —.69,3.26, —1.35,.2,.3,.24, —.58, .08, —.48]'
as = [7,-1.04,5.81,-3.04, —1.2, — .21, .55, —.15, —1.17, —.33, .5]'

> =
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1.10 Consistency and asymptotic normality of the MR esti-
mator

In this section, we formally prove the multiple robustness of the MR estimator TZM r proposed in
Section [[.7.2] That is, we provide regularity conditions ensuring its consistency and asymptotic
normality under the model that assumes that any, but not necessarily all, of the following conditions
(i), (ii) or (iil) is satisfied: (i) Rx holds; (ii) for some k € {1,....,K — 1}, model R, and models
Pr+t1s-- -, Pr hold; (iii) model M and models Py, ..., Pk hold. Throughout this section, P denotes
the distribution of the observed data O = (Lq, Ay,..., Lk, Ak,Y). Also, throughout this section,
T k=1,...,K,n,k=0,...,K,and py,k = 1,..., K, are the functionals defined in Sections[T.4.1]
and respectively. Notice that, although all these functionals depend on P, for simplicity
we omit that subscript. We start by providing rigorous definitions of model M and models Ry and
Pr,k=1,...,K.
Let
M ={P 3 (P) € E C RP such that ng (ax,z) =m(@x,z;v (P)) }

where m (G, z; -) is a user-specified real-valued function of ¢ € RP.
For k=1,...,K, let
Pr= {P s ey, (P) € Ap € R such that m (Ek,ik) = Tk (ak,zk;ak (P))}

where 7, (Ek,ik; ) is a user-specified real-valued function of ay € R%.
Let

Si= {P : vy (P) € Ty C R such that p; (ak,l1) = g1 (@k, 2;m (P))/tl (v)}

where ¢1 (@, z; ) is a user-specified vector-valued function of v; € R and ¢; () is a user-specified
conformable vector-valued function verifying t; (vg) = 0 with vy any baseline level of V.
For k=2,..., K, let

Si= {P : Al (P) € Ty, C R such that py, (EK,LC) = gk (EK,Zk—U'Yk (P))/tk (lk)}

where g (EK,Zk,l; ) is a user-specified conformable vector-valued function of v, € R and ¢ ()
is a user-specified conformable vector-valued function verifying ¢y (Ix,0) = 0 with [0 any baseline
level of Ly.
Let
Ei={P: 37 (P)e Y1 C R™ such that Ep {t1 (V) |Z =z} =e1 (2,71 (P))}
where e (z;-) is a user-specified conformable vector-valued function of 7 € R™.
For k=2,..., K, let

5kE {P : H!Tk (P) S Tk g R"™ such that Ep {ﬁk (Lk) |Zk,1 = akfl,fkfl = ikfl} = €L (Ek,ljk,l;m (P))}

where ey, (a,H,Z,H; ) is a user-specified conformable vector-valued function of 7, € R"™*.
Finally, for k=1,..., K, let

k k
Ri = MnN ﬂSJ N ﬂgj
j=1

j=1

38



We will now provide regularity conditions under which y/n (12 MR — U (P)) converges to a mean-

zero normal distribution for every P € F with

fERKU L_J <Rkﬂ ﬁ ’PJ>U<M06’PJ>

k=1 j=k+1 Jj=1

Later, we will derive the asymptotic variance AV ar (@Z M R) of QZ MR, 1.€. the variance of the limiting

normal distribution of v/n (77; MR — Y (P)) and we will also provide a consistent -under - estimator

of it.
Our derivation of the consistency and asymptotic normality of ¥z under F relies on the
following facts.

(I) The elements of Uarr are the last p components of a vector  defined in (1.28) below that,
under the assumptions of Lemma [1| below, solves the equation P, (¢g) = 0, with ¢y defined

in (1.29) below.

(II) For every P € F verifying Condition SPob below, Ep (¢9) = 0 has a unique solution, denoted
in (1.37) by 6% (P), whose last p components are the elements of 1 (P).

(IIT) Under the assumptions of Lemma below, 6 is CAN for 4f (P) under model F.

The results presented in this section are proved in Appendix [A-3]
We start with statement (I). Define

0 =~ = (K 1) ~
QE(QK’TK’w( ,7K ﬂﬁ TK—-1 - 7¢( )371 77/)MR) (128)

k ~
with @k, Tk, (wk’“)ﬁ; )> k=1,... K, and ¢¥)/r the estimators defined in steps 1, 2, 3-4 and 5
respectively of Algorithm [I] of Section Also define

0= (aKv?Ka 'l/](K)77%()a ZZJ(K_I)W(;?:;), cee ,7/1(1)7 7;1)7 "/}>

as a free parameter vector with each component having the same dimension as the corresponding

component in 9. For instance, for k=1,..., K, 7 *(k) = (%k), e ,yl(ck)) with each 7§k),j =1,...,k,

having the same dimension as ﬁ;jﬂ, Note that, for every k,l > j, vj(k) and 'yj(-l) have the same
dimension. We also define
Vi = (71""7')%)
with each v;,j5 =1,...,k, a free parameter vector with the same dimension as fyj(k). We let
K K K
=Y ax+Y e+ Y (K—k+1)sp+(K+1)p
k=1 k=1 k=1

be the dimension of 6.
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__ Note that, if each of the equations in steps 3 to 5 of Algorithm [T has at least one solution, then
6 solves a joint system of estimating equations given by P,, (¥p) = 0 where

_ 1 K g K+1 2K g, 2K+1 3K+1\/
\119:(\119,...,\1'9,\119 oo, Py ,\IIG ,...,\119 ),

with each W), j = 1,...,3K + 1 defined next. For k = 1,..., K,

0
Uy (0) = Tklnm (@, L o)

Vp(0) = a1 (2) {ti (v) —er (1)}
and, for k=2,..., K,

T (0) = i (@1, lk—1) {t (&) — e (@—1,lk—1;7%) } -

For notational convenience, we index the estimating functions \I/ZKH, ey \I'gKH by PRIk

k=K,...,0. We do so because, as will become clear next, for k = K,...,1, \IJSKH_k is the

k
estimating function used to compute (’(/Jk ,'y; )) and \Ing *1 ig the estimating function used to
compute z/JMR~ We denote 771; (aKallc§¢ ka?k) = Oy (6K7zk;1/) 7;&7%@) /8 (1/’ 719) k=1 K,
and m (ak, z;¢) = Om (ax, z;9) /0. Now, when k = K, WK1k — g2K+1 wijth

2K +1 _ 7.7K (aK’ZK;w(K)ﬁ%Q’?K> — 3 (K) =(K) =
N (0) = Hf:lﬂs (Esjs;as) {y—UK (aKle7¢ VK ,TK)},

fork=K-1,...,1,

7.7k (ak7ggg+1)zk3; Z/J(K)aigf() T

15, 7 (@, 1 s

1A O

’
2k+1€Ak+1

—Nk (ak7Q;g+1,zk§¢ )7712)7 )}7

y Tk
_ < _(k+
) {77k+1 (ark7g;g+1)lk+l;w(k+1)77§g+1 ),Tk+1)

and when k = 0, \IJ?’K'*'1 k \II3K+1 with
. 1
U o) = 0 b (ahyz0®) (a5l ) = mia, )}
Q/leAl

In Lemma [I} generalizing the argument used to prove facts (IV) and (V) of Subsection [1.6.4]
we show that if each one of the equations in steps 3 to 5 of Algorithm [[ has at least one solution,
then 0 actually solves another system of estimating equations given by P, (¢9) = 0 with

b = (0h, s O SETY L G, 2L @R (1.29)

where, for k=1,..., K,
%E‘I’Ig
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and
K+k _ K+k
o =W,

2K+1 — q2K+1
by =V

and, for k=0,..., K — 1,

A Z(p o (1.30)
where, for k=1,..., K —1
. _ = _(K) =
- Mk (ajaQ;'le’lk;w(K)arYk 7Tk> - _ . B
L)O];,J (0) = Z 7 — 7. {77]+1 (a’]7gg+17lj+1;’(/}(‘7—"_1)7,}/5{:1 )’T]+1)
@l €A HS:l Ts (as’ Ls; 055)
(1.31)
=1 (aj,@;ﬂjj;W”ﬁ;j)fg‘)} ;
forj=k,..., K—1, and
. _ = _(K) =
N (aKulk;d}(K)?’Yk 77—16) _
s (0) = = — {y — K (EK,ZKQ'IZJ(K AL, K)} (1.32)
Hs:1 Ts (asa ls; Oés)
Also, for k =0,

pp’ o)=Y m (@’172;1&”{)) {m (a1 i), 7 ) —m(@’pzw)}, (1.33)
al €A,

(@ (K)
0/ \ _ m (@j, d,q, 29 00) o
©p” (0) = E ( ; j Wj o) {njH (a]_JH, FIRTRTICAR 7§]+1 )7Ty+1) (1.34)
al €A, =1Ts \Us, bs; Qs

forj=1,...,K —1, and

0.K m (@, z 9 ") (K) ~(K) -+
pp - (0) = = y—nx (ar, ;s ) 7 . (1.35)
’ Hf:1 Ts (ESals;Ols) { < )}

Note that, for k=0,..., K — 1, @’g’k _ \I/?KH*’“.

Lemma 1 If each one of the equations in steps 3 to 5 of Algorithm [1] has at least one solution,
then 0 solves Py, (¢g) = 0.
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To see facts (IT) and (III) we need to introduce the following notation. For k = 1,..., K, define
the following subvectors of 6 :

Gk = g,

0K+k = Tk,
O3k +1-k = (¢(k),7§fk)>

and also define
O3k 41 = .

Note that, with these definitions, € can be written as

0 = (917...,9K,9K+1,...,92K792K+1,...,03K+1).

Also, for j = 1,...,3K + 1, let 8; = (01,...,0;). Note that, for k = 1,...,K,03 11 =
(01,...,0341-k) = (aK T, ) 7 7( ) ..,w(k),ﬁl(f)» Analogously, define the subvectors of

o~

0, 9 §K+k7§3K+1 k,k} = 1,...,K,93K+1 and 53K+1—k,k = 1,...,K. Note that, for each k =
1,...,K, ¢>9, Ktk and (bgKH_k depend on € only through oy, 7 and (EK,?K,z/)(K),W%Q,...,w(’“),ﬁff)>

respectively. Likewise, for k = 0,..., K —1 and j = k,..., K, wlg’j depends on @ only through a
subvector of <EK,?K, z/J(K)77(I§{), . ,w(j),ﬁ,(j)) . Hence, for k =1,..., K, we will write indistinctly

k

d)@? Qg or ¢9k
K+k [ K+k K+k
d) + a¢ + or ¢0Ktk

and
3K+1—k ¢3K+1 k ¢3K+1 k-

o (OéKJKﬂ/}(K) 7(K)’ w(k)ﬁ;p) O3k 11—k

Also, for k=0,...,K —1and j =k, ..., K, we will use indistinctly the notation

k.j >
"2 (p _ or Y~ .
o (aK T, (O, “/<K) ’w““),vff)) Osrc4+1-j

We now focus on fact (II). Lemmabelow establishes that, for every P € F verifying Condition
SPob below, the equation in 6, Ep (¢9) = 0, has a unique solution whose last p components are the
elements of the vector ¢ (P). The proof of that lemma relies on the following Proposition Recall
that, as defined in (1.20), for any n = (m1,...,mk) and 7 = (m1,...,7k), not just the true ones,
and any function d of (ZK, Z)

K—-1
Ud(d}?nv’fr)* ﬂK, + ZS nkvnk+1a7rlv"'77rk)+SS(7:Z13771)7
k=1
where a
d(Ax, Z o
Sf (7’][(,7‘() = # {Y — K (AK7LK)} s

[Tmim (A5, L)
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fork=1,..., K —1,

d(Ax,a,. 1,2 _ _
SE (Mo Mo 15 Ty -+ TE) = Z # {1 (Aks gy Lirr) — mie(Aky agyr, L) }
H_] 1 (A L)

2k+1€Ak+1

and

Sy@m)= Y dlar, 2) {mlar, L) — mlay, Z; )} -

a, €A,

Now, for k= 1,..., K — 1, for arbitrary n and 7, and any function dj of (ZK,fk) , we define

K-1

Uc’fk {(%bﬁkfk) ﬂkHﬁkH} = SS;K (MK Tht 15+, Ti) + Z 55: (T Mt 1 Tl 15 -+« 5 )
r=k+1
+ Sljkk {(w)ika?k) 7nk+1} 3 (136)
where (7 - )
di (Ax, Lk, _
Ss;K(nKvﬂk-‘rl,-'-aﬂ—K)E K ——— {Y*T]K (AK,LK)},

[T (45, L)
forr=kFk+1,.... K -1

)

dk (AT7 [ Lk) — — —
Mr AraQr s Ly -1 (Ar, i1, L)y,
e UNICH AR . 2}

k,r
Sdk (777") Mr41s Tht1y -+ 7T7‘)

a, 1€A

and
SUF A T Th) e } =
- Z dye (Ak, g 15 L) {1 (Aks @girs Liwr) = me (Ars airs Lis 0,70 Tr) §

Qi1 eAk+1

Here and throughout, Z - =0.
Proposition [1] states a property of the functions U, and Ud ,k =1,..., K that is central to

understand the multiple robustness of ¢M r- Note that, for any 6 and 0 € RY,
3K+1 U 57
¢(§3K703K+1> d (7%777 )

with d (g, 2) = m (EK,Z;{[)V(K)) ke (aKjk) =1 ( aK, lk”l)[}( )77k ), ) and 7, (ak,lk) = g (ak,lk,ak)
k=1,...,K. Likewise, for k =1,..., K

)

— (k) = ~ ~
¢3§+1 k ) = U(’;k {(w(k)ml(C )’Tk) 7Qk+1vﬂk+1}

(93K+1—(k+1) O3k +1-k
. = M (@ s 7 (K) Tk) - -~ ~ ~ ~
with dj, (aK,lk) = 1(_[?::1 S(As,Ls,as) )’Qk+1 = (Mk41s---,70k) and Ty = (Tg1,...,7K). For
this reason, the result in the following proposition is key to prove the Lemma [2| below. Although
the theory of Molina et al. [24] implies the following proposition, for completeness, we provide an
independent proof of it.
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Proposition 1 Let Uy and Ué“wk =1,...,K — 1, be the functions defined in and
respectively. Let 7= (1,...,7k) and T = (71,...,Tk) where, for k=1,..., K, 1, is an arbitrary
real-valued function with domain in the sample space of (ZK,fk) and T is an arbitrary function
with range in (0,1) and domain in the sample space of (Zk,fk) . The following holds:

(a) If P € M then
EP{Ud(w(P)vﬁ’%)} =0

for any function d, whenever, for each k € {1,..., K}, either y = ng or T = .

(b) Fork=1,...,K —1, if P € Ry, then

Ep U5 { @ (P). 7, (P), 7 (P)) 7, s }] =0
for any function dy, provided that, for each j € {k+1,...,K}, either n; =n; or 7; = m;.
To prove facts (II) and (IIT) we make the following assumptions.

Condition D For k=1,...,K, m (Ek, 7% ozk) is differentiable with respect to o and there exists
o > 0 such that 7 (Ekjk; ak) > o for every (Ek,ik) € A, x Ly, and ay, € Ag.

As an example, Condition D is satisfied when, for each k = 1,..., K, the support £y of L; and
the parameter space Ay of oy are compact, and 7y (-, -; ) is a logistic regression model
exp {a%ck (Ek, Zk) }
1+ exp {a;cck (ak,ik)}

Tk (akaihak)

with ¢ (+,-) a continuous function.
Condition SPob The following holds:
(i) for k=1,..., K, the equation in 0 (= ay),
Ep (¢5,) =0,

has a unique solution which we denote indistinctly 9;2 (P) or CYL (P),
(ii) for k=1,..., K, the equation in Ox (= 7%),
Ep (of14) =0,
t

has a unique solution which we denote indistinctly 9}( 4k (P)or 7 (P),

(iii) for k=1,..., K, the equation in O3x 41—k (: (z/;“”,ifﬁ)) ,

4 @31k —0,
r {¢(0;Kk(P)703K+1k)

has a unique solution which we denote indistinctly 9;K+17k (P) or (1/)“’“) (P) ,iz(k) (P))
and
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(iv) the equation in f5x1 (=),

P —0
(5§,K(P)a931<+1) ’

has a unique solution which we denote indistinctly 0; k41 (P) or T (P).

For any P verifying Condition SPob, we define

01 (P)= (01 (P). o 0 ()0 yy (P) o O (P) 0Ly (P) o Oy (P)) (137)
= (@ (P), 7 (P), 015 (), 7} 5 (), K0 (P), 5 KD (P),..
W'D (P) AV (P),uT (P))
Lemma 2 Suppose that P € F satisfies Condition SPob and Condition D holds. Then
(a) the equation in 0, Ep (¢g) = 0, has a unique solution at 67 (P) and
(b) 05,1 (P) (=4t (P)) coincides with ¢ (P).

Now, turn to fact (III). By definition, 12 MR is the vector of the last p components of the vector
6 defined in (T.28) and, under the assumptions of Lemma [2| 1 (P) is the vector of the last p

components of 0T (P). Hence, to prove that v/n {TZMR — 1 (P) ¢ converges to a mean zero Normal

distribution under F it suffices to show that \/ﬁ{é\f of (P)} does. Now, notice that, under the

assumptions of Lemma 0 is a solution of P, (¢9) = 0 and, under the assumptions of Lemma
6t (P) is the only solution of Ep (¢9) = 0. Thus, under the assumptions of Lemmas || and [2, 6
is a Z-estimator of 6' (P) (see Chapter 5 of [58]). We can now apply Theorems 5.41 and 5.42 of
[58] on consistency and asymptotic normality of Z-estimators to our problem. For completeness, in
Proposition [3] of Appendix [A73] we present a corollary of those theorems, that contains the results
that we will use to derive the consistency and asymptotic normality of 6 under F.

Next, we introduce some notation that will be used in the rest of this section. Consider an
open subset B of an Euclidean space and a random vector X with range in some subset X of an
Euclidean space. Given a collection of functions {fﬂ (): X =RN:B ¢ B}, for B € Band x € X, we
denote

fs(x) = ﬁf@()

whenever such derivative exists. Also, given N' C B, we say that fz(-) is dominated by a fixed
integrable function in N iff

I/ (@) < f (z) forall € N and z € X

for some measurable function f (-) : X —R" such that E{f (X)} < co.
Throughout, we make the following assumptions.
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Condition S The event C,, =“for k =1, ..., K, the equations P, (¢’gk) =0 and
P, (¢K+k> = 0 have at most one solution and, for £k =0,..., K, if P, <¢§K+1_(k+1)> =0,

(% .
K+k 03K 11— (k+1)

then the equation in Osx 1, Py, (b?’f“_k = 0, has at most one solution”
(93K+1—(k+1)793K+1—k)

occurs with probability tending to one under P.

Condition D(¢g) ¢y (0) is twice continuously differentiable w.r.t. 0 for every o.

Also, for P verifying Condition SPob, we assume the following conditions.

Condition Moment2 Ep (qum(p)H2> < 00.

Condition NonSing the matrix Ep (qu(P)) exists and is nonsingular.

Condition Domination the second-order partial derivatives of ¢p (0) w.r.t. 6 are dominated by
a fixed integrable function in a neighborhood of 67 (P).

Note that Condition Moment2 is a standard condition on the boundedness on the second order
moment of the estimating function. The requirement in Condition D that 7 (ak, l; ak) is bounded
away form zero is made so as to help ensure that this condition is satisfied.

Lemma 3 Let Oq,...,0, be i.i.d. copies of O ~ P € F and assume that Conditions D, SPob, S,
D(¢y), Moment2, NonSing and Domination hold. Then,

—1 n
~ : 1
\/E{G*QT (P)}:*EP {¢GT(P)} %Zéf’ef(m (O;) +op (1),
i=1
i.e., 9 is an asymptotically linear estimator of 0 (P) with influence function
_ -1
£0 = -Er {5, } o).

In particular, the sequence \/ﬁ{g— ot (P)} converges to a mean zero Normal distribution with

71 /
Ep {¢QT(P)} 1 ’

From now on, throughout this section, we index the components of 6 indistinctly with 6y, 051, k =
1,...,K, and 0311k, k =0,...,K, or with 05, s = 1,...,3K + 1. Likewise, we index the com-
ponents of ¢, indistinctly with ¢’gk7¢£i:i,k =1,...,K, ¢%K+1*k7k¢ =0,...,K, or with (;5% ,8 =

3K+1—k s

1,...,3K + 1. Also, in the second indexing, for s = 1,...,2K, we write indistinctly ¢§. or ¢,

. -1
variance Ep {QSM(P)} Ep {¢9*(P)¢0T(P)}

since ¢ depends on @, only through 6.

Having derived the consistency and asymptotic normality of @M r under F, we will now (1)
derive its asymptotic variance and (2) find an estimator of it, which is consistent under F. To
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derive a formula for the asymptotic variance of 15 MR, it suffices to find its influence function. Since
¢ MR is the vector of the last p components of 9 its influence function is, under the assumptions of
Lemma, [3 I the vector-valued function of the last p components of the influence function of 0

‘ 1
£(o)=—-Ep <¢M(P)> bot(py (0) -

Therefore, the influence function of @ZMR is equal to —M¢gi(py (0), where M is the submatrix

_ -1
composed by the last p rows of Ep (d)em))) . Since, for s = 1,...,3K + 1, ¢ depends on 0 at
most on 8, Ep (gb 9> admits the following representation:

EP B%ﬁﬁél 0d1 X da Odl Xd3 e 0d1><d3K+1

Ep 8i01¢%2 Ep (ai@z(b%z) 0d2><d3 T Od?XdSKJrl
. B 5 .3 9 .3 9 .3 .. .

Ep (%) =| FEr (871%3) Ep (372%3) Ep (%%3) ' ' ’

OdBK Xd3r 41

3K+1 3K+1 3K+1 3K+1
- Er (‘991(;S ) Er (‘992¢ ) Er <d€3¢93K+1> o B (093K+1¢93K+1> -

03K +1 03K +1

where dg is the dimension of 6, = 1,...,3K + 1. That is, Ep <¢9> is a lower-triangular-block-

matriz as defined in Subsection of Appendix [A-3] Exploiting this structure, in Theorem
we recursively derive the influence function of each 65 and in particular, we derive the influence of
O3k+1 =Yg as the last step of this recursion. Also, as shown in Lemma of that subsection,
we can relax the Condition NonSing by making the following assumption.

Condition NonSing2 the matrix Fp <¢ef<1>)> existsand, fors =1,...,3K+1, Ep { (8(35 ¢§ ) ‘7 af(P)}

is nonsingular.

To find consistent estimators for the asymptotic variances of the (9\;57 we also make the following
assumption.

Condition M The function ¢y (0) and its first-order partial derivatives w.r.t. 6 are measurable
w.r.t. o for every 6 in a neighborhood of 67 (P).

The following result gives, as Lemma [3] sufficient conditions for the consistency and asymptotic
normality of 9 for 0T (P (P) under F, and also provides a recursive formula to compute the influence

function of each HA&, s=1,...,3K+1. Moreover, it provides consistent estimators for the asymptotic
variances of the 6.s, Which are computed in a recursive way.

Theorem 1 Let Oq,...,0, be i.i.d. copies of O ~ P € F and assume that Conditions D, SPob,
S, D(¢g), Moment2, Domination, NonSing2 and M hold. Then, for s=1,...,3K + 1,
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(a) 55 is an asymptotically linear estimator of 0% (P) with influence function &, (o) where, for
s

=1,...,2K,
5 -1
E s s ,
" { (39s %S) 95_9I(P)H o)

and, for s =2K +1,... 3K +1,

-1 s—1
9 s s o . |
EP { <695 %5> es—el(mH P O ;EP { (303%) GS—GZ(P)}gj )

(b) m <§S) =P, (Esé;f) converges in probability, under P, to AV ar (é\s) =Fp (fsﬁsT) where,

fors=1,...2K, B
~ 0
£l0)=- [Pn { (55:%.) OS_@H %, 0 (1.38)

which is well defined, i.e. P, { (a%sqbgs) } is mon-singular, with probability going to 1
and, fors=2K +1,...,3K +1,

N R R e R

(1.39)
which is well defined, i.e. Py, { (,gnggS)’ - } is non-singular, with probability going to 1.

& (o) = —

s (0) =—

0,=0,

0s=0,

In particular, Yarg is an asymptotically linear estimator of 1 (P) with influence function €35 11 (0)
and AVar (@MR) =P, (@K-kngH) converges in probability, under P, to

AVar (@MR> = Ep (&x+183511)-

The following lemma establishes primitive conditions on the functions m, g, tx, ex, 7 and g
under which the estimating function ¢y satisfies Conditions D(¢g) and M. This lemma follows
straightforwardly by the analytic expressions of ¢y (0) and its first and second-order partial deriv-
atives w.r.t. 6.

Lemma 4 Assume that

(i) m(ag,z;) is three times continuously differentiable w.r.t. 1 for every (ax,z) . Also,
m (G, z;9) and its first and second-order partial derivatives w.r.t. ¢ are measurable w.r.t.

(aKv Z);

(ii) g (EK,Zk_l;%) 1s three times continuously differentiable w.r.t. ~y for every (EK,Z;C_l) ,
kE=1,...,K. Also, g (EK,Zk_l;”yk) and its first and second-order partial derivatives w.r.t.
Y, are measurable w.r.t. (EK,Zk_l) JEk=1,... K.
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(11i) ey (z;71) is twice continuously differentiable w.r.t. T for every z and, for k = 2,..., K,
ek (Ek,l,ik,l;m) is twice continuously differentiable w.r.t. Ty for every (Ek,l,ik,l) . Also,
e1(z;71) and its first-order partial derivatives w.r.t. T are measurable w.r.t. z and, for
k=2,...,K, e (Ek_ljk_l; Tk) and its first-order partial derivatives w.r.t. T are measurable

w.r.t. (ak,l, Zkfl) .

(iv) 7y (Ek,zk;ak) are positive for every (Ek,zk;ak) and three times continuously differentiable

w.r.t. ai for every (Ek,ik) Jk=1,..., K. Also, 7y, (Ek,zk; ak) and its first and second-order
partial derivatives w.r.t. oy are measurable w.r.t. (Ek,zk) Jk=1,... K.
(v) t1 (v) and ty (I) are measurable w.r.t. v and l respectively, k =2,..., K.
(vi) q1 (2) and g (Ek_l,ik_l) are measurable w.r.t. z and (Ek_l,ik_l) respectively, k =2,..., K.
Then,

(a) ¢o(0) is twice continuously differentiable w.r.t. 0 for every o (i.e. Condition D(¢g) holds)
and

(b) ¢g (0) and its first-order partial derivatives w.r.t. 0 are measurable w.r.t. o for every 6 € RY
and, hence, Condition M holds.

1.10.1 Consistency and asymptotic normality under linearity

When m (ak, z;¢), g1 (Gx, z;71) or any g (EK,Zk,l; 'yk) ,k=2,...,K,is a non linear function of
1,1 or v respectively, parts (iii) and (iv) of Condition SPob are conditions for the existence of a
unique solution of a system of non-linear equations. As such the condition will need to be verified
on a case by case basis. A similar situation occurs with Condition S. On the other hand, when m

and the g} s are linear in the parameters, the moment equations defining

Oorey (P) = (10 (P), 71U (), pt &= (P) 5h (K= (p) .t (P) A1) (P) 4t (P))

make up a system of linear equations with equal number of equations as number of unknowns. In
such case, condition SPob reduces to the condition that the matrix defining the system is non-
singular. Since the matrix for this system is a lower-triangular-block-matrix, the requirement of
non-singularity reduces to the requirement of the non-singularity of the diagonal block matrices.
Condition SPobLin describes the diagonal block matrices. A similar situation occurs for the condi-
tions on the uniqueness of the solutions to the empirical version of the population moment equations
defining 53§ET (P) when the remaining unknown parameters are replaced by their estimators. In
Lemma [6] we provide conditions that ensure that the matrix of the linear system is invertible with
probability going to 1. Notice that because we have assumed that the outcome Y is unconstrained,
it is reasonable to postulate models for the 7; s in which the functions m and g s are linear in
the parameters. In what follows we formalize this argument by giving rigorous conditions for the
validity of Conditions SPob and S when m and the g} s are linear in the parameters, i.e.

m(aK,Zﬂ/)) = III(EK,Z)/’IZJ, (140)
91 (ak, zm) = &1 (ak,2) 7, (1.41)
and, for k=2,..., K,
- - /
9k (@, le—15 %) = 8k (ax, li—1) Yo, (1.42)

49



for some conformable vector-valued function m (-, -) and some conformable matrix-valued functions
gi(-)and gy (+,-),k=2,..., K. i
The fact that, under (1. 40[) (1.41) and (T.42)), the moment equations defining 0, Kﬁ i (P) make

up a system of linear equations, follows from the fact, under this setting, each ny, (a 15 Uy 0y ks ?k)
is linear in (v,7%;),k =1,..., K,. To see this, for k =1,..., K, define

m(ag,z)
g1 (ax,2) A1 (li; 1)

Hy (ax, l;Tr) = : (1.43)
gk (axc, lo—1) A (@—1, li; )
with
Ay (Iy;m) =t (v) — e (2511)
and - B
A (@r—1, 15 ) = tr () — e (@1, le—1; 70,

k=2,...,K. Then,

(0
= o = N\ Y1
M (Grc, Ui s i Th) = Hi (@xc, Ues 7o) : : (1.44)
Yk
Throughout this section, we will write indistinctly ¢f ¢£(KJ;’Z , ¢3K+1 Fk=1,..., K, and
3K+1— k
3K+1 K+k 3K+1—-k k= K. and
¢03K+1 aka d) ’d)(OLK,TK,w(K) ,(K) ¢(k+1)17§€]$r11)ﬂ/)(k)ﬁgck))’ , ceey 44, an
3K+1

(@ Tae w00 T b D iV )

The following lemma gives primitive conditions, under the linearity of m and the g; s for parts
(iii) and (iv) of Condition SPob, assuming that parts (i) and (ii) of that condition hold. Part (i) of
Condition SPob is satisfied when, for each k = 1,..., K, the expectation of the estimating function
used to estimate aj has a unique solution. In the case where the model for 7 is correct, this is
verified when «y is identified. For badly specified 7 models, this condition must be verified on a
case-by-case basis. A similar situation occurs for 74,k =1,..., K, in part (ii) of Condition SPob.

In what follows, m (Gx, z) , g1 (ak, z) and g, (EK,Zk,l) .k =2,..., K, are the functions involved

in equations (1.40), (L.41) and (L.42) respectively. Likewise, Hy, (@x,lx;T)) are the functions de-
fined in (1.43) ,k=1,..., K.
Throughout, we make the following assumption.

Condition SPobLin P verifies parts (i) and (ii) of Condition SPob and the matrices
EP { Hyg (ZK,ZK;?}((P))HK(ZK,ZK;?}((P))I }

Hﬁ.{=1 s (ZS7ZS;(¥1(P))

Hy (Ag,ay o D7 (P)) Hi (Ax ay o Lrimh (P)
Ep z:214-,+1€Ak+1 M5, 7s(As.Lasal (P))

Ep {ZgleAl m(a;,Z)m (ay, Z)/} are nonsingular.

}Jﬂzl,...,K—l, and
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Lemma 5 Suppose that the functions m (-,-;%) and gr (-,5vk), k = 1,..., K, verify equations
(1.40)-(1.42)) and that P verifies Condition SPobLin. Then, P verifies Condition SPob.

The following lemma establishes primitive conditions for Condition S. These conditions include
the following assumptions.
Condition SLin The event B, =“for k = 1,..., K, the equations P, (qblgk) =0 and

P, (X% ) = 0 have at most one solution” occurs with probability tending to one under P.
OK 4k

— 7 — — 7 — ’
Condition R The function HK(QK’lg’TK)IjK,(aK’lK’TK)
[T 7a(@alesors)

pendix where (EK,ZK) plays the roll of z and (@k,7Tx) plays the roll of 8 and, for

k=1,...,K —1, the function Y (g o 7o) (B g )

is regular according to Deﬁnitionof Ap-

is regular accord-

Ay €A [T, s (s lsss )
ing to Definition [2[ of Appendix where (Ek,ik.) plays the roll of z and (@, 7x) plays the

roll of .

Lemma 6 Suppose that the functions m (-, -;v) and gx (-, vk) ,
k=1,..., K, verify equations (1.40)-(1.42). Let O4,...,0, be i.i.d. copies of O ~ P. Assume that
Conditions Moment2, Domination, NonSing2, SPobLin, SLin and R hold. Also assume that

(i) (Ek,zk; ak) is three times continuously differentiable w.r.t. oy for every (Ek,zk) ,
k=1,...,K, and

(ii) e1 (z;71) is twice continuously differentiable w.r.t. T for every z and, for k = 2,... K,
ek (Ek,l, lp_1; Tk) 18 twice continuously differentiable w.r.t. T for every (dk,l, lk,l) .

Then, Condition S holds.

Finally, note that if the functions m (-, ;1) and g (-, ;%) s verify equations (T.40) — (1.42
with m and g,k = 1,..., K, measurable functions, then assumptions (i) and (ii) of Lemma [4] are
satisfied.
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1.11 MR estimation for repeated outcomes

1.11.1 Marginal structural mean model for repeated and unconstrained
outcomes

In this section, we provide a discussion of what it takes to generalize the proposal of R, DR and MR
estimation of Section to the case of a MSMM for repeated and unconstrained outcomes; that
is, when rather than being interested in a single outcome measured at the end of a longitudinal
study, we are also interested in outcomes which correspond to a specific component of the vector Ly,
measured at each occasion ¢, . To formalize the inferential problem, suppose as in earlier sections
that the observed data are n i.i.d. copies of

0= (L1,A1,...,LK,AK,YK+1),

where Y 11 is an outcome of interest at time ¢x 11, which is unconstrained. Also, for k =1,..., K,
Ay, is the treatment given at time t; taking values in a finite set Ay (tx—1 < tx). As in Section
L; is a vector of covariates, measured at time ¢], that we write as L1 = (Z,V;). For each
k=2,...,K, we now decompose

Ly = (Yi, Vi)

where Y}, is an outcome of interest and Vj, is a vector of covariates, both measured at time ¢, , i.e.
an instant prior to ty .

Analogously to the case of a single outcome, for each k = 1,..., K, we define the counterfactual
variable Y113, to be the subject’s response at time ¢,  if, possibly contrary to fact, treatment
regime ay, is followed up to that time point. We make the identifying assumptions of

(1) consistency: -
Yit1,a, = Y+ if Ay = @y,

(2) no unmeasured confounding (NUC): for all @y,
Virra, WAL, Ajy =@,
1<57<k1<Ek<K,and
(3) positivity: for all k and @y, if f(@r_1,lx) > 0 then f(ag|ar_1,lx) > 0.

A straightforward extension of the argument used for a single outcome implies that under the
identifying assumptions, the parameter * = (wz’*, e ,1/1K+1’*) € RP2 x .- x RPE+1 of the MSMM
defined by the restrictions

E (Yii1,|2) = m"™ @y, Z; %) for all @y, (1.45)

where m**1 (., -;.) is specified for all k = 1,..., K.

In this section we will discuss a number of non-trivial subtle issues that arise in extending the
methods described in earlier sections for estimating the parameters of MSMM for a single outcome
to the case of parameters of MSMM for repeated outcomes. At first sight, the inferential problem
appears to be a trivial extension. However, this is not the case for the following reason. Suppose we
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were to estimate each ¢/*+1* separately, regarding each time ;1 as if it were the end of the study,
i.e. disregarding the data measured after time t;,1 and regarding Yy,; as the sole outcome of
interest. For estimating a single 1/**1* we would specify and estimate working nested compatible
models following the steps described in earlier sections. However, if we wish our models to be
compatible across all times t;,k = 1,..., K, we will not be free to specify the components of the
nested models for each t; freely, essentially because the outcome Yj at a given time ¢; becomes a
component of the covariate vector L when we estimate the parameters of the marginal structural
mean model for a future outcome Y ; for j > 1. This implies that we need to take extra care in the
formulation of our nested models and in the procedure we use to estimate the model parameters.
In the next subsections we elaborate on these points.

1.11.2 Compatible parametric working models for the n*ls

J

Foreach k=1,..., K, let

it (@, k) = E (Yep1|Ar = @, L = 1)
and, for j=1,...,k—1, let

0 (@ ) = E{nji (@ L) [4 = a5, Ly = 1}

Also let

77(])€+1 (ak’z) =F {UlfH (akle) ‘Z = Z} )
k=1,...,K. Since for each k € {1,..., K}, (1.45) is a MSMM for a single outcome, then, under

the identifying assumptions,

0 @ L) = E (Yienal4; = a5, L)

j=1,...,k, and
ne ™ (@, Z) = E (Yi1,3,12) -

Hence, under these assumptions, given k € {1,..., K}, (L.45) is equivalent to a model for the
observed data Oy defined by the sole restriction

not @, Z) = mM (g, Z; ) for all @y (1.46)
To arrive at compatible, shared parameter, models for all the 77;“1’3, we cannot merely generalize

the proposal of Section |1.7.1‘ To see this, we first define the functionals p?“’ s analogous to the

p}s of that section. That is, for k =1,..., K, let

k
P1+1 (

@, ) = 0y (@, ) =y (@, 2,010 = v10)
and, for k=2,..., K and j =2,...,k, let
A5 (@, 1) = g (@ 1) — ™ (@, li—a, 1 = o) -
where v1 ¢ and [; ¢ are any baseline levels of V; and L, j = 2, ..., K, respectively and l; = (z,v1) .

For each k =1,..., K, the same arguments as those of Section yield
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anrl (ak’ll) = "7§+1 (ak’z> + plthl (akvll) - FE {p]f+1 (akle) ‘Z = Z} (1'47)
and, fors=2,...,K,and k=s,..., K,

NS @k, L) = 6™ (@, 2) + P @k, ) — B {p (@, L1) | Z = Z} (1.48)
+Zj:z [Pj (@, 1;) — E{PkH (@k, Lj) [Aj-1 = @j-1,Lj—1 = l;-1}]

As in Section these identities imply that parametric models for the pkH' s,
for £ {pk+1 (@, L1) \Z} and for the {pl€+1 (ak, J) |4;_1, ],1} s, together with the MSMM for
the observed data defined by the restrictions ny ™" (@, Z) = m**! (@), Z; ")  k=1,..., K +1,

determine parametric models for the nkH’

s. However, now one is not free to choose arbitrary models
for the pk'H’s for £ {pkH (ag, L1) |Z} and for the F {p’”‘l (ak7 ) |AJ 1, L j— 1} s. This is because

the nk+1’s the p?“'s, f(V1|Z) and the f (LJ|LJ_1, A]_l) s are no longer variation independent.
To see why, notice that, for each k =2,..., K

)

L nk“ is determined by nkH’ pI;H Jj=1..,k FE {PIfH (@x, L1) |Z} and
E{p§+ (ak’ ]) ‘A]—h ]—1} , ] = 2,...,k7

2. foreach j =2,....k 17]- 1 (Zj 1,fj 1) = (Y |Z] 1,7J 1) which is not Variation indepen-
dent with E{kar (ak, )\A7 1, L 1} since both depend on f(L |Li—1,A;_ 1) and

3. foreach j =2,...,k 775 ; is determined by 7767 péaszl,...7j—1,E{p{ (aj717L1)|Z} and
E{pJ(aJ 1, )lAS 1 sl} 8—2 ]—1

Thus, for k=2,...,K and j = 2,. kng,pg,sfl .7=1 f(W|Z2) andf(L |As 1, Ly 1)
$=2,...,7—1 are not Varlatlon mdependent with ,ok+1 (ak, ) and f (L |AJ L Lj— 1) since, both
p?“ (ak,L-) and f (L |AJ 1, L 1) determine E{p’c+1 (ak, ) |AJ,1, ],1}.

We can nevertheless derive compatible models for the nk“’ s from parametric models for the

p?“’s E{p’”r1 (@, L1) |Z} theE{pk+1 ay, L ) |AJ 1, L 1} s and the MSMMSs for the observed
data , exploiting the relationships ((1.47) and ( -, as in Section m The distinction is
that now, for each k = 2,..., K and j = 2,...,k, we must carefully choose the working model
for £ {p?f'"1 (Ek, Lj) |4, 1, Lj_l} so as to be compatible with the model for 77] ; implied by the
assumed models for ng, pls=1,...,j—1, E{p1 (@j—1,L1) |Z} and E{pﬂ (aj 1, L ) |Ag 1, Ly 1}
s=2,...,7—1.

Analogously to the case of one outcome, we propose the following models the pkH/s For
k=1,..., K, we assume
P (@, Ly) = g @, 277 1 (V1) (1.49)
and, for k=2,...,K and j = 2,...,k we assume
P?H (ak’zj) gk+1(ak,LJ la’YJk+1 )ty (Ly), (1.50)
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where, for each K = 1,...,K and j = 1,...,k, k“ is a user specified vector-valued function
and ’ka * is a finite dimensional parameter. Also, the t;-s are user-specified conformable vector-
Valued functions verifying ¢1 (v10) = 0 and ¢; ({;0) = 0,5 = 2,..., K, so that the definitional
restrictions p’f“ (@, z,v1 =v10) =0,k =1,..., K, and p?“ (Ekjj,l, l; = lj,o) =0,k=2,...,K,
7=2,...,k, are respected

Under models ( and - , in order to specify models for {p’“‘l (@, L1) |Z} and
E {pkH (@, L ) |AJ 1,Lj—1} it suffices to specify parametric models for E {¢;(V1)|Z} and

E{t;j(Lj)[Aj_1,L;—1}. We assume
E{t:(W)|Z} = e (Z;71), (1.51)

where e; is any user-specified conformable vector-valued function and 77 is a finite dimensional
parameter.

Since, for eachj =2,..., K, the model for £ {t |AJ 1, L j— 1} must be compatible with the
one proposed for 77 1 and at the same time, the models for the nk+1 k=1j,..., K, are derived from
the postulated models for £ {t s) | As—1, Ly 1} s=1,...,j, we propose specifying the models

for £ {t A1, L 1} in ascendmg order, together with the models for the nk+1's as follows.

1. Fork=1,...,K, let

Mt @, L) = ™ (ak, Ly;phths 4t ﬁ) (1.52)
= m* T @, Z; 05T + gf T @, 20T {0 (V1) —en (25 7))

2. For j=2,..., K,

(i) let
E{t |A] 17 j— 1} =€ (Zj—la Jj— 17¢ 77j) (153)

where e; is a user-specified conformable vector-valued function satisfying certain condi-
tions described below and 77 = (Tf7 . ,T;) is a finite dimensional parameter. Here, in
an abuse of notation, for j = 2,..., K,we write

— % .

G = (P 0)
and ‘ '

Fi* = (72’*7 L 7,YJ,*)
where

V= ().
(ii) for k =j,..., K, let
— T — * —k * ) —*
(@, Ly) =yt (ak, R AR (A ) (1.54)
— T * Lx _ * =%
= nffll (akaLj—1§¢k+1 el f+11 J/JJ b ijl)

+9§+ (@, Lj— 1,’Y] Hy {tj (Lj) —ej (aj—l,zj—l;awﬁj’*f;)}-
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Here, foreach k=1,...,K and j =1,...,k,
—k+1,% __ k4+1,% k+1,x
vt =(vl+ N )

For each s = 2,..., K, e; must satisfy that the model determined by (|1.53) for j = s is compat-
ible with the model for n$_; determined by restriction (1.52) for k = 1, if s = 2, and by restriction

- 1.54) for k = j = s—1, if s > 2. That is, the functions e’ s must satisfy that, for any (@S* *S’*, ?*) ,

S

there is at least one distribution for the observed data O that satisfies F {t $) | As_1, Ly 1} =

—s—1,%

€s (Zs 17 s— 1,1/) )andns l(as 17L ):773—1 (asflv S*lvws*a 5*,1][) 78 1> ?:—1

For example if one of the components of ts(Lg) is Y;, then the corresponding component of

—s—1,%

€s (As la s— 171/) 76* 7:) must be equal to 77571 (as—l7zs—1;ws’*7 s*MP 7‘5 1x ?;71>a

where 7,/) F1* =nill.

As in the case of one outcome, we propose to derive e; from a fully parametric model for the
density f(V1]Z). For s = 2,..., K, we propose to derive e, from a fully parametric model for the
density f (LS|ZS,1,ZS,1) that is compatible with the model for n?_; (Zs,l,fs,l) determined by
restriction for k=1, if s = 2, and by restriction for k=j5=s—1,if s > 3. Note that,
in Section m the only parameter indexing each e, is 7. Now, each ey is also allowed to depend

on (@é , 75 ) because the proposed model for n?_; depends on those parameters.

1.11.3 Estimation exploiting the compatible models

In this section, we extend the three estimators of Section to the case of multiple outcomes.
Since, for each k = 1,..., K, (1.45) is a MSMM for a single outcome, the same procedures of
Section can be used to compute R, DR and MR estimators of each 1/*T1* and, hence, R, DR
and MR estimators of 1*. However, the algorithms yielding the different estimators in the case of
repeated outcomes differ slightly from those in the case of a single outcome. Specifically, they differ
in the estimation of 7j.. This is because, although we also estimate 77 by method of moments
fits of models and (L.53)) , now the estimation of 7} can not be made separately from the
estimation of the other parameters. To see why, note that, as indicated in the previous subsection,

when j > 2, model (L.53) is indexed not only by 77 but also by (@j’*ﬁj’*,ﬁ_l). Hence, the

. . . .. . . I ik —
estimation of 7} requires a preliminary estimation of (1/1 LA, 7';_1).

Before we describe the estimation algorithms, we introduce the following notational conventions.

We use (1) to denote restriction ((1.51)) and we use (¢;) to denote restriction (|1.53)) for each
j=2,...,K. Also, for each k =1,..., K, we we use (n’gﬂ) to denote equation ([1.46)) and (n’f“)

to denote equation (1.52)). Finally, we use (77;“'1) to denote equation (1.54) for each k =2,... K
and j = 2,...,k. Note that, for j > 2, if one of the components of ¢; (L;) is Yj, then restriction

(t;) implies restriction (77?_1).

Now, for k=1,..., K, let RIfH be the model defined by restrictions (¢1) and (77]1““) . For
k=2,...,K,j7=2,...,k, we define R"?H as the model determined by restrictions
(t1),(t2), (n3) ..., (&), (’75—1) (nf“) . That is, R?H is the model determined by restrictions
(t1), restrictions (¢) and (ni_;) for s = 2,..., j and restriction (n kH) Also, foreach k =1,..., K,
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let M**! be the model defined by restriction (776”1) . Finally, let M be the model determined by
all the (ng“) ,k=1,..., K, ie., the MSMM under the identifying assumptions.

A regression estimator

For each k =1,..., K, we now describe a regression estimator wﬁﬂ which, under regularity condi-

tions, is CAN for ¢*+1* under the model RZH. Note that model RZH determines the parametric
model for nlljf% defined by restriction (n’gﬂ) . This is because (n’,j“) and (t) imply (n,’if%) . Like-
wise, for each j = 1,...,k — 27RIZ+1 determines the parametric model for the "1 defined by

J
;-H'l) and also implies the parametric models for n§+1 determined by M**+1. Also no-

tice that, for k = 2,..., K, R¥*! implies RY_,, hence v = (&;@ o Ag“) will be CAN for *
under Rﬁ“. Finally note that, since Rg“ implies all the ’RIIE‘H/S and each ’R:‘H implies M*+1,

then Rﬁ“ implies the MSMM M under the identifying assumptions.
The following steps yield the proposed estimator:

restriction (77

1. Compute a method of moment estimator 71 g from the fit of the model e; (Z; 77) for E {t1 (V1) |Z} .

2. Compute the least squares estimator (12?{7 ﬁ%) from the fit of the model n? (Al, Ly 2%, 2, ?LR)

for E (Y3|A1, L1) where (1/12’*, 72’*) is unknown and 7 g is regarded as known.
3. Fork=2,...,K,

(i) compute a method of moment estimator 7y g from the fit of the model
_ _ =~k _p - _ _
ex <Ak1,Lk1;wR,'yR,Tk1,R7T,j) for E{tk(Lk)|Ak,1,Lk,1} where 7 is unknown
~k _p
and <Z/JR,’)/R,T;€_17R) is regarded as known, and

(ii) compute the least squares estimator (Agﬂ, ﬁf;l) from the fit of the model

. =~k 5 < .
nett <Ak,Lk;wkﬂ’*"YHI’*,?/JRWR,M,R) for E (Yi41|Ag, L) where (gpFThx yF+1x)

=k~

is unknown and <w R YR Tk, R) is regarded as known.

=ktl g1 -
We now give an inductive heuristic argument of why <1/J R VR Tk, R> should be consistent for

k+1,% __ _ . .. . o .
P , R 75 | under RZ'H, k=1,..., K. Our argument is heuristic because we will omit in-

dicating the regularity conditions under which a method of moment estimator that depends on con-
sistent estimators of nuisance parameters, is itself consistent. Also, once consistency has been estab-

. . . =kl g1 A —hALe i —x
lished, the convergence under regularity conditions of vn < | ¥p ,7r Tkr | — (z/J YT ,Tk)

~k+1 a1
to a mean zero Normal distribution, k = 1,. .. K, follows immediately from the fact that <¢R ,WR+ ,Tk’R> ,

k=1,..., K, ultimately solve a system of estimating equations.
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The estimator 7y g is consistent for 7; under R? because R? implies (¢1), which is a regression
model for the outcome t; (V;) on Z. Then, since R? also implies (nf) , which is a regression model

for the outcome Y5 on covariates A1 and L, (1212%, ﬁ%) is consistent for (@/}2’*, 72’*) under that model

=k . . ke,
R2. Now, for k > 2, assume that <1/)R,7R,7'k 1,r | is consistent for (¢ il ?’,271> under Rk 1-

. k41 . g k SR kg1 : : TRELE il =
Since R implies Ry _;, to prove that (¥r ,7r ,Tk,r | is consistent for (1 ST T

under ’Rﬁ“, it suffices to prove that ( k'H, ’ygﬂ ?k,R> is consistent for (wk+17*, y

REFTL The fact that 7y g is consistent for 77 under RE™! follows from the facts that (1) (t;,) is a

FHLx ) under
_ _ ~k _p ~
conditional mean model for the outcome ¢ (Lg) on covariates A and Ly, (2) (wR,’yR,Tk_LR

ko g — . . . . .
is consistent for (w *,7’“ T’,g_l) under R’,j 1 by inductive hypothesis, and (3) Rﬁ“ implies

restriction (¢) and model R¥_,. Finally, ( k“,'yﬁ“) is consistent for (¢k+1’*,7k+1’*) under

RZH because (1) (n,’j“) is a regression model for the outcome Y41 on covariates Aj, and Ly, (2)
=k g~ — ko, ~

<wR,7R,Tk 1 R) is consistent for <w ,Wk * ?}:_1) under RE_| by inductive hypothesis, (3) 7% r

is consistent for 7; under RE™!, and (4) R*! implies (77,’:“) and RE_|.

A doubly robust estimator

For each k = 1,..., K, let Py, be a parametric model my (ak, lx; af;) for m, (@, ;) as in the case of
a single outcome. For each k = 1,..., K, we will now describe an estimator 1/1%}1 which is doubly

robust in the sense that, under regularity conditions, it is consistent and asymptotically normal
under the union model that assumes that either (i) RZH holds or (i) M**! and Py, ..., P}, hold,
but not necessarily both (i) and (ii) hold. The fact that, for each k, Ri "' determines Ry and

M determines M*+1, implies that Ppp = (721231?,7 o Ag;t{l) is CAN under the union model that

assumes that either (i) R holds or (ii) M and Py, ..., Pk hold.
For each k = 1,..., K, and for any n**! = (n’f“, .. ,n’,i“) and T = (71, ..., 7Tg), not just the
true ones, and any function dj of (Zk, Z) , define the estimating function

k+1 k+1 , k+1 = k+1k kl— k+1,5 k+1 [ k+1 k+10 k+1 , k+1
U+ (¢+ 377+ ,71') S + +ZS / :+ 777J_t177r17 cey T ) S (er 7771+)7

(1.55)
where

) dy (Ay, Z o
S k) = gt S i )
s=1"$s Sy s

forj=1,...,k—1,

, (A", 2) 7 _
k+1.j ( k k J> @)1 k k —k
Sd:_ / (773+1a77j111a7T17~-~>77j) Z i ] n +1(A77aj+1aLj+1) _nj+1(Aj7a'§+17Lj)}a

9:17T5 (AS’LS) gk

-
@71 €A1
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and

SR L) = Y d (@, 2) D (@ 1) — ot (@ Z )

ake Al

—k
Here, recall that A; ; = Aj11 X - X Ag andE;?_H =(aj41,...,a5),k=2,...,K,5=0,..., k-1
Also, we define 22:1 -=0.
To compute 1/)][“,}1, k=1,..., K, we first run the procedure in the previous section and, for each
j=1,...,k, we define

_ o~ =~j i
~kt+1 (= _ ktl (= 7. k+1 k4L =i =
R (ak7lj) =1, <ak7lj»¢R » V4R 7¢Ra'VRvTj,R .

Second, for each k =1,..., K, we compute &, the MLE of o under Pj, and define
T (@, l) = i (G, Ls Q) -
Finally, the estimator 1?;)}1 solves
k1 [ k+1 okt = _
{0 (440 75 50) <o

where c/l\k (Zk, Z ) is any, possibly data dependent, function of the same dimension as ¢*+1*, for
instance, dy, (A, Z) = {OmF (A, Z; k) /3¢k+1}|wk+1:$2ﬂ . The estimator ¥}} is doubly

robust essentially because (I) as shown in [I], under M*+1

E{USH (M gt m) Y =0, (1.56)
if either n*+1’ is equal to the true n**1 or 7} is equal to the true 7y, (II) by construction, ﬁf}l
converges to the true nj-”l under R’g“,j = 1,...,k, and (III) ; converges to the true 7; under
P j=1,... k.

~eq okl
Fact (II) holds because, for each j = 1,...,k, (1) as shown in previous section, ( g“,ﬁj; )

A .
. : k+1,x _k+1 =) = . . Jo* i
is consistent for ( R+ ’*,'yj} *) under Rﬁ“, <¢R,’)/R,Tj1’R> is consistent for (1/} ,WJ’*J;Ll)
under Rj_,, and 7j g is consistent for 7} under R;H, and (2) Rj*! implies R?_; and R;H.
Once consistency has been established, the convergence under regularity conditions of

Vn (A,’g‘gl - wkH’*) to a mean zero Normal distribution, k = 1, ..., K, follows immediately from

the fact that 121’%}1, k=1,..., K, and all nuisance parameter estimators ultimately solve a system

of estimating equations.

A multiply robust estimator

We will next construct an estimator @fj}%, for each k = 1,..., K, that is multiply robust in the
sense that, under regularity conditions, it is consistent and asymptotically normal for 1/*+!* under
the model that assumes that MF¥*! holds and that, for each j € {1,...,k}, either ’R;?'H or P;

holds. If we define R; as the model that assumes that R?H holds for every k = j,..., K, then
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each Aﬁé is also consistent for 1/*+1* under the more restrictive model that assumes that M holds

and that, for each j € {1,..., K}, either R; or P; holds. Hence, Dup = (@%/[R,...7 AJI\(/[JIQI) is
consistent for 1* under that model.

Note that R; is determined by restrictions (¢;), (77%) , (ni)’) ey (nf“) . That is, R is deter-
mined by restriction (¢1) and by restrictions (nf“) for k=1,..., K. Likewise, for j =2,..., K, R;
is determined by restrictions (¢1), (t2), (n1),...,(t;), (77571) , <n§+1) e (anH) . That is, R; is

determined by restriction (¢1), by restrictions (ts) and (7]2_1) for s = 2,...,7 and by restrictions
(nj“) for s = j,..., K. Hence, the fact that, for j =1,..., K —1 and k = j,..., K, restrictions
(tj) and (n;-”l) imply restriction (nffll) , then gives that R; implies R;_1,j = 2,..., K, and Ry
implies M. Therefore, QZMR is consistent under the model that assumes that any but, not nec-
essarily all, of the following assumptions (i), (i) or (iii) is satisfied: (i) Rx = R T holds; (ii)
for some j € {1,..., K — 1} models R;,Pj41,...,Px hold; (iii) model M and models Ps,..., Pk
hold. Thus, whereas ¥pp yields valid inferences if (i) or (iii) holds, Vg also does it if (ii) holds
even when (i) and (iii) fail.
The following steps yield the proposed estimator:

1. For k=1,..., K we compute &y the MLE of o under Pj and define
Tk @k,zk) =T (akazhak) .

2. Compute a method of moments estimator 7y prrp from the fit of the model e; (Z;77) for
E{t(V1)|Z}-

3. Define 07 (aq,l1;¢%,~%) = ni (a1, l;¢%,7%, 71, mr) and
o2
U (a’lv llv 11[}27'72) = 87’]% (a’17 l17 77[}27’72) /8 (77[}27’72) .
Compute (12)\2’(1),‘?27(1)> solving

o2
m (A1, L1192, ~4%)

]:P'n. o~
71 (A1, L)

{Ys — 03 (A1, L1;9°,7%) }| = 0.

Define 77 (a1,11) = 03 (01751;{#\2’(1),?2’(1)) )

4. Define 7;12 (al,z;djz) = Om? (al,z;z/)Q) /o2,

Compute 12, , solving

]Pn [ Z T;L2 (al?Z;'l,/Z;Z(l)) {7/7\% (a17L1) _ m2 (al,Z;'l/)z)} = 0.

a1 €A,

5. For k=2,... K,
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(i)

(iii)

(iv)

:k),(k*l) e e
define ¥ = (¢2’(1), . ,wk’(’“’l)) and 7 = (32’(1), o ,?k’(k’l)) and compute

a method of moments estimator 7y g from the fit of the model

~k,(k—1)

_ — =k(b=1) g (k—1) ~ . — — .
€L Akfl,kal;iﬂ , Y sy Tk—1,MR, Ty for E{tk(LkﬂAk,l,Lk,l} where T 18
~k (k 1) ~k (k 1) - .
unknown and | 3 Y ,Tk—1,MR | is regarded as known,

K1 (2 T .okl Akl k(o 7kt ket T Sk 2
define 9t (@g, lp; wF 1 AL =y Qg L 5T, ot Tk MR | and

7.7:+1 @k, T WP M) = Ot (ax, L R T AR HY) J0 (R AR )

Compute (QZ’““’(’“)ﬁk*l’(k)) solving
okl
Ne  (Ag, L T AR

Py
H] 17 (A L)

(Vi1 =y (A, Tis 0" 4 1 =0

Define 7, ™" (ax, lx) = ny (ak,zk;@kﬂ,(k)ﬁkﬂ,(k)) _

For s=k—1,...,2, iteratively define

_ =s,(s—1) ~s,(s—1) ~
7’§+1 ( ¢k+1 k+1) = nichl (ak l warl k+1,w . aTs,MR)

and fy (@, L+ 7Y = O (@, L g 7Y 0 (4, 75

Compute (warl () k+1 (s)) _ (ZZHL(S),%H,@)““ﬁfﬂ,(s)) solving

ok+1 /s _ Ak+1 "
Ns (As,a’;rl, PR (k ) - )
" Z HJ 17 (A L; ) 77?.7__11 (As’a§+17Ls+1)

ke k
as11€A

777‘]:+1 (ZS)E§+1>fs;wk+177]§+l) }] =0.
Define 7%+ (ay, ;) = nk*! (ak Ty; pkt1(s), ’\’f+1 (6))

Define it (@g, li; %1, 47t = it (ar, L ¢ 0T Fvg) and

i (@, L R D) = Ot (@, L L A F ) /0 (R AR

Compute (1/1’“*1’(1) , ﬁf“’(l)) solving

ok+1 ~ N
771 (AlaagaLl;warl’(k)a’Yf-i_L(k))

o 7 ms*t (Ar,al, L
l —;k 71 (A1, L) { ( 1,03 2)
a3€A;

—ii Tt (An,as, Lot ) H =0,

Define 77k+1(a’k)ll) = 77]f+1 (aka ll; {/;kJrl’(l)a;Y\erl,(l)) .
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ok
(v) Define m i (@r, 2 WFY) = OmP Y (ag, 2; R 1) JogktL

Compute 1?;/?' }% solving

P, n.lk+1 ( k7. gkt (k)) (A1 @k, Ly) — mF T (ak, Z; ) )| = 0.

ake Al
The multiple robustness of each @fjﬁ{ is a consequence of the following facts:

(I) The identity (L.56) holds not only when n**V = (ny*t", ... ny™") is equal to the true
nktl = (77]1“'1, . ,n,’j“) or T, = (m},...,m,) is equal to the true 7 = (m1,...,7), but also
under the weaker condition that, for each j € {1,...,k}, either n; is equal to the true n; or

' is equal to the true ;.

(IT) The estimator 7; in step 1 is consistent for 7; under P;, j =1,...,k.

(III) The estimator 7j; ™ in step 3 (if k = 1) or step 5.ii, (if & > 2), is consistent for the true 7y ™!
under model RFT!.

(IV) If k > 2, for each s = 1,..., (k — 1), the estimator 7**1 in step 5.iii (if s > 2) or step 5.iv (if
s = 1) is itself multiply robust in that it is consistent for the true 7**! under the model that
assumes that RE*! holds and that, for each j € {s +1,...,k}, either R?H or P; holds.

(V) The estimator 1/)’“’1 in step 4 (if &k = 1) or step 5.v (if & > 2) actually solves the equation

~ ~ o kt1 ~
Pn {Ug\:l (¢k+1aﬁk+1aﬁk)} =0 for dk (Ak7 Z) m (Ak ;¢k+17(k)) ’
ot = (GFth, .50 ™) computed in steps 3 (if & = 1) or steps 5.i-iv (if k > 2), and
T = (71, ..., 7T) computed in step 1.

Facts (I)-(V) imply that, under regularity conditions, ﬂ)\lgj 1 is consistent and asymptotically for
¥**1* under the model that assumes that M**! holds and that, for each j € {1,...,k}, either
R’Hl or P; holds. Because ultimately wﬁj}%, k =1,..., K and all nuisance parameters ultimately
bOlVG a system of estimating equations, then a conblbtent estimator of the asymptotic variance
estimator of the entire vector of parameters (i.e. z/;ﬁj 1%, k =1,..., K and all nuisance parameters)
can be obtained by the usual sandwich variance estimator. A cons1stent estimator of the asymptotic
variance of each w]’fj}% can then be obtained by extracting the specific entry of the sandwich variance
estimator matrix. Because of the complexity of the estimating functions, this procedure might be
impractical. Nevertheless, just as in the case of a single outcome, the bootstrap can be used instead
to estimate the variance of each 1[1k+1

As noted in Section _ fact (I) is a consequence of the likelihood factorization that takes

place in coarsened at random models in [24].

=kA+L(R) pg1,(k) ~
To prove fact (IIT), we must show that, for every k > 1, ( ¢ o ,Tk,MR | converges to

—k+1,% __ * —x . . . . . ~
(w * AL ,Tk) under ’RZ‘H. We prove it by induction in k. When &k = 1, the estimator 7 v r

is consistent for 77 under R? because (t1) is a conditional mean model for the outcome t; (V;)
on Z and R implies (¢1). Then, since R} also implies (nf), which is a regression model for the
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outcome Y5 on covariates A; and L, 122’(1),32’(1)) is consistent for (z/JQ’*, 72’*) under that model.
=k (k=1) g, (k—1) = . . — kg
Now, for & > 2, assume that | Y ,Tk—1,MR | is consistent for (w R ,Tk71>

k . k+1 . k =k+1,(k) ~k+1,(k) =~ . .
under R{_;. Since R, ™" implies R;_,, to prove that (¢ Y ,Tk,MR | is consistent for

—k+1,% __ . —x . 0 e ~ . .
(w * AL ,Tk) under Rﬁ“, it suffices to prove that (1/)k+1’(k), A1, (k) Tk}MR) is consistent for

(phtLx kL ) under REFL. The fact that 75 arg is consistent for 7, under RET follows from

the facts that: (1) (tx) is a conditional mean model for the outcome ¢ (L) on covariates A; and

— =k (B=1) gk (k—1) ~ k%
L, (2) <1/; Y ( ),Tk_LMR) is consistent for (1/) ' ﬁk’*,?zfl) under R¥_, by inductive

hypothesis, and (3) RFT! implies restriction (t) and model R¥_,. Finally, (12’“‘1’(’“),3"'“’(“) is

consistent for (1/)’”‘1’*, 'yk‘“’*) under RZH because (1) (n’ljﬂ) is a regression model for the outcome
_ _ =k(k=1) g (k—1) ~ _

Yi+1 on covariates Ay and Ly, (2) (1/1 7 ( 1),Tk_17MR> is consistent for (1/1k’*,7k’*,?271>
under RF_, by inductive hypothesis, (3) Tx.ar is consistent for 73 under RET and (4) R
implies (n,’j“) and RZ_I.

Since each M**1 is a MSMM for a single outcome, fact (IV) follows from arguments analogous
to those of Section and from the facts that, for each k = 2,..., K, (1) 71, Mg is consistent for 7

~5,(5—1) g (s—1) ~ s

under R’f“ and (2) foreach s = 2,...,k—1, (1/} ,75'(8 1),7'S,MR> converges to (dzs’ ,7”,??)
under R¥*1. Fact (1) holds because R’f“ implies (¢1) . Since foreach k =2,..., K,s=2,..., k—1,

25571 5. (s—1) o . . TS gy , B4l s . ,
0 R ,Ts—1,MR | is consistent for (1/} ,757*,7*71) under R¢_; and R¥T1 implies RS

S s—1»

then to prove fact (2) it suffices to prove that 7s arr is consistent for 7 under RET! for every
k=2,...,K,s=2,...,k—1. It holds because (a) (¢s) is a conditional mean model for the outcome

ts (Ls) on covariates A, and L, (b) (1;8,(8_1),/7\87(5_1),;5LMR) is consistent for (@S’*7§s7*f:71>
under R¥*1 and (c) RF*+! implies (¢,).

Finally, fact (V) follows from the facts that, when c?k (Zk,Z) = nozkH (Zk,Z;$k+1’(k)), (i)
Aﬁ/ﬂ% solves P, {ngl’o (wk“,ﬁfﬂ)} =0 by step 4 (if k = 1) or step 5.v (if k£ > 2), (ii) if & > 2,
for each s € {1,...,k—1}, P, {Sg:l’s (ﬁf"’l,ﬁfill,%l, e ,%\5)} = 0, by step 5.iii-iv and the fact

k+1

k+1 ~
that m  is a subvector of 7.75 , and (iil) P, { S'H’k (ﬁ’g“,ﬁk)} =0 by step 3 (if k = 1) or step
k

L] +1 L[]
5.ii (if £ > 2) and the fact that m  is also a subvector of 7,
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1.12 Resumen

Los modelos marginales estructurales para la media (MMEM) son herramientas populares para
modelar el efecto causal de tratamientos variantes en el tiempo en presencia variables confusoras
variantes en el tiempo que estdn afectadas por el tratamiento recibido en el pasado. Desde que
fueron propuestos por primera vez por Robins ([30]), los MMEM se han aplicado para analizar
numerosos estudios relacionados con la salud. Por ejemplo, estudios sobre el efecto del tratamiento
antirretroviral altamente activo en el recuento de CD4 ([9]), el efecto del uso del organizador de
pastillas sobre la adherencia a los medicamentos antirretrovirales y la carga viral ([28]) y el efecto
de la soledad en los sintomas depresivos ([59]).

En este capitulo proponemos un estimador paramétrico miiltiple robusto para el pardmetro
de un MMEM en el caso particular en que la variable de respuesta en continua y no acotada.
Nuestro estimador es de facil implementacién ya que requiere simplemente del ajuste de una serie
de regresiones iteradas por el método de minimos cuadrados pesados.

Para ser concretos sobre las contribuciones de este capitulo comenzamos por definir formalmente
los modelos marginales estructurales para la media. Supongamos que los datos observados son n
replicaciones i.i.d. un vector

0= (Ll, Al, ey LK,AK, Y)

donde Y es una variables de respuesta de interés medida en el instante de tiempo tx1 que es no
acotada, es decir con rango en la recta real. Paracada k = 1,..., K, Ay es el tratamiento recibido en
el tiempo t; que toma valores en un conjunto finito Ay y Lj es un vector de covariables medido en el
tiempo ¢, , es decir un instante previo a t;, (tx—1 < tx), que toma valores en un subconjunto L de
un espacio euclideo. En lo que sigue, para k € {1,..., K'} y para cualquier {v,}, ., . , denotamos

Tp = (V1,..,0%) ¥ U = (vk,...,EK). Asf mismo, para k € {1,..., K} y cualquier coleccién de
conjuntos {C,}, ., , denotamos C, =C; x --- xCp y C;, =Cp, X - -+ x Ck.
Para cada historia de tratamiento ax = (a1, ...,ax), sea Yz, la respuesta del individuo si éste

hubiese seguido el régimen de tratamiento ax. Bajo las suposiciones de

(1) consistencia: -
YEK =Y si A =ag

(2) inexistencia de variables confusoras no medidas (no unmeasured confounding, NUC): para
todo ax y k, o
Ya AR Ly, Ag—1 = @1

y

(3) positividad: para todo k y @y, si f(@x_1,lx) > 0 entonces f(ag|ax_1,11) > 0,

es bien sabido ([32]) que E(Yz, |Z) estd identificado, donde Z es un subvector de L;. En lo que
sigue, nos referiremos a (1) - (3) como las condiciones de indentificabilidad.

En este capitulo, asumimos las condiciones de identificabilidad y hacemos propuestas de esti-
macién para el pardmetro ¢* € RP del MMEM ([30])

E (Yz,.|Z) =m(ak, Z;v¢*) para todo ag, (1.57)

donde m (-, ;) es una funcién conocida.
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A continuacién, discutimos las propuestas existentes para la estimacion de los pardmetros de
los MMEM.

Bajo las condiciones de identificabilidad, Robins ([35]) probé que es equivalente al modelo
para los datos observados O definido por

E | x (A, i) {Y = m Ak, 250")}| Ak, 2] = 0

_ K _
donde 7P (EK,ZK) =[] n; (Ej,lj) con 7y (a1,l1) =Pr(A1=a1|L1=1)y
j=1
T (Ej,zj) = Pr (Aj = aj |Zj_1 = Ej_l,fj = Zj) ,2 < 5 < K. Esta observacién dio origen al esti-
mador TPTW, 1Z rpTw, que se obtiene ajustando una regresién por minimos cuadrados pesados con
variable de respuesta Y y covariables (Ax, Z). Los pesos de la regresion estan dados por la inversa de

. K _ _
P (AK, LK) =[] 7 (Aj,Lj) donde, para cada 1 < j < K, 7; (Aj,Lj) es el estimador de maxima,
j=1
verosimilitud de m; (Zj,fj) bajo un modelo paramétrico P; para la probabilidad de tratamiento

m;. Bajo condiciones de regularidad, el estimador ¢;prw es consistente y asintéticamente normal
(CAN) bajo el modelo que asume (L.57) y que todos los modelos P;,1 < j < K, se satisfacen.
Sin embargo, si alguna de las 7; fue modelada incorrectamente, es posible que este estimador ni
siquiera converja en probabilidad a *.
La siguiente observacién sugiere una estrategia alternativa para estimar a ¢*. Sea
ni(ax,lx) = E (Y|Ag =@k, L = lx)
yv,parak=K—-1,K—2/...,1, sea

Me(@sc, k) = E{nr+1(@x, Les1)|Ax = @, L = I} -

También, definamos
no (@x,z) = E{m@x,L1)|Z = z}.

El Teorema 3.2 de [29], (ver también [33]) implica que, bajo las condiciones de identificabilidad,
nk (ax, L) = E (Ya, |Ar = @k, L) , (1.58)

k=1,....K,y
Mo (asz) = E(YEK‘Z)
Por lo tanto, bajo estas condiciones, el modelo (|1.57)) es equivalente al modelo para los datos
observados O definido por

no (@x,Z) = m(ag, Z;¢") para todo ag. (1.59)

Esta observacién sugiere postular modelos paramétricos Ry, ni(ar, L) = nk(@x, L; 05), 1 <

~

k < K, y calcular un estimador “iterated conditional expectation” (ICE) ¢;cg de * mediante el
siguiente procedimiento. Primero, calculamos una solucién dx de

P, | =—=—nx(Ak,Lk;6 Y — Ag,Li;6 =0.
a(5K771<( K, Li;0x) {Y — i (Ak, Li; 0k ) }
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Luego, para k= K — 1, K — 2,...,1 iterativamente calculamos una solucién gk de

o _ _ _ . _ _
Po| > 8—(sknk(A,.c,ng,L;g;ék) {nk+1(Ak7@k+1va+1§5k+1)_nk(AMQkJrl’Lk;ék)} =0

L1 €A1

Finalmente, ;o resuelve

5 -
P, g&pm(al,Z;w){m(auLls&)m(“vZ”/’)} =0
a, €4,

Bajo condiciones de regularidad, este estimador es CAN bajo el modelo que asume vy que
todos los modelos R;,1 < j < K, se satisfacen. Sin embargo, es posible que este estimador ni
siquiera converja en probabilidad a ¥* si alguna de las n;, fue modelada incorrectamente.

Bang y Robins ([I]) propusieron un estimador doble robusto (DR) de ¢* que ofrece més oportu-
nidades de tener una inferencia correcta que los estimadores IPTW e ICE al evitar comprometerse
con una estrategia de modelado especifica. Otros estimadores DR fueron descriptos en [36], [25],
[14] v [27]. Estos estimadores requieren que el analista postule dos secuencias de modelos: una
secuencia de modelos para las probabilidades de tratamiento 7,1 < k < K, y otra secuencia de
modelos para los funcionales 75,1 < k < K. El estimador es CAN para ©* bajo el modelo unién
que asume y que o bien la secuencia de modelos para las 7,1 < k < K o bien la secuencia
de modelos para las 7,1 < k < K, es correcta, pero no necesariamente ambas.

Un inconveniente de los estimadores DR es que los funcionales en el conjunto {n; : 0 < k < K}
no son de variacién independiente. Una consecuencia de este hecho es que las restricciones impuestas
por un modelo para n; pueden no ser compatibles con las restricciones impuestas por un modelo para
M, k' # k. Mds aun, cualquier modelo para 7 puede no ser compatible con el modelo marginal
estructural de interés para E (Yz,|Z). Esto implica que el analista no puede elegir libremente
los modelos para cada 7 porque de hacerlo corre el riesgo de construir un estimador que no sea
genuinamente doble robusto.

Segin nuestro conocimiento, en el contexto de la estimacién doble robusta basada en modelos
para la medias contrafactuales 7, no existe ninguna propuesta general para asegurar la compati-
bilidad de los modelos. Uno de los objetivos de esta tesis es llenar este vacio en el caso especial
en el que la variable de respuesta en continua y no acotada. Extendiendo el trabajo de Robins,
Rotnitzky y Scharfstein ([42]), en este capitulo proponemos una nueva clase de modelos anidados
flexibles para los funcionales 7, que son siempre compatibles entre si y compatibles con el MMEM.
Estos modelos son lo suficientemente flexibles como para permitir que L; sea un modificador del
efecto aditivo de A en Y, es decir que las diferencias E (Y5, |L1) — F (Ya;( Ll) dependan de L

para Gx # @j. Asf mismo, estos modelos permiten que (A;_1,L;) sea un modificador del efecto

aditivo de A; en Y. Explotando esta propuesta de modelado, construimos un estimador DR, @D R
basado en modelos compatibles. Mds atin, proponemos un estimador multiple robusto (MR) que
otorga atin mayor protecciéon ante la incorrecta especificacién de los modelos que el DR. Este esti-
mador, al igual que el estimador DR, requiere que el analista postule dos secuencias de modelos:
una secuencia de modelos Py, para las probabilidades de tratamiento 75, 1 < k < K, y otra secuencia
de modelos Ry para los funcionales 7, 1 < k < K. El estimador MR, g, resuelve la ecuacién

P, {U;(,7,7)} =0 (1.60)
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donde d es una funcién estimada a partir de los datos,

K-1
Ud (¢77777T) = Slﬁ( (77K77T) + Z St]ic (’r}kank-‘rlvﬂ-la "'77Tk) + Sg (7%771)7
k=1
con B
d(Ax. 7 o
Si (g, m) = K(# {Y —nk (Ak, Lk)},

IT,2im (45, L;)
parak=1,..,. K —1,

Z d(Ay, a1, 7)
15y (4;,L;)

S (ks M1, ™15 -0y T {mes1(Ar, apy 1y Liwr) — me(Ars gy, L) §

ﬂk+1eAk+1

Sq (¥,m) = Z d(ay, Z) {m(as, L1) —m(ay, Z;)},

a, eAl

Ademds, en la ecuacién (1.60), n = (91,...,Mkx) ¥y 7 = (71, ...,k ) donde T es un estimador
consistente para 7, bajo Py, k = 1,..., K, 1 es un estimador consistente para nx bajo Rx y, para
cada k =1,..., K — 1, 1j; es un estimador multiple robusto de 7, en el sentido de que es consistente
para 7 bajo el modelo que asume que Ry, se satisface y que, para cada j € {k+ 1, ..., K}, alguno
de los modelos R; ¢ P; también se satisface. De ahora en mds, para cualquier funcional x de la
ley de los datos observados O, cualquier modelo paramétrico G que asume que x = x 3~ para algin
B* €T (con T' un subconjunto de un espacio euclideo) y cualquier estimador B de B*, diremos que
X = Xg es consistente para x bajo G si B es consistente para S* bajo G.

El estimador 7} MR es multiple robusto en el sentido de que, bajo condiciones de regularidad, es
CAN para ¥* bajo el modelo que asume que se satisface y que, para cada j € {1,...,K},
alguno de los modelos R; o P; se satisface. El hecho de que los modelos R, sean anidados (es decir,
paracada k=1,..., K —1, Ry implica Ry y R1 implica )7 implica que zZMR es CAN para
1* bajo el modelo que asume y que alguna de las tres condiciones siguientes (i), (ii) o (iii) se
satisface : (i) los modelos Ry, ..., Rk son correctos; (ii) para algun k € {1,..., K — 1}, los modelos
Ri,...,Ri y los modelos Pgi1,..., Pk son correctos; (iii) los modelos Py, ..., Pk son correctos.
Por lo tanto, mientras que ¢/p produce inferencias validas si (i) o (iii) se satisface, ¥arz también
produce inferencias vdlidas si (ii) se satisface incluso cuando (i) y (iii) no se verifican. Dicho de otro
modo, @M r ofrece K + 1 oportunidades para una inferencia correcta, en lugar dos como lo hace
Ypr. La miltiple robustez de ¥ ;g es esencialmente una consecuencia de los siguientes hechos:

(I) Como se demuestra en la Proposicién [1| de la seccién para cualquier ' = (n,...,7%) ¥
cualquier 7’ = (n{,...,7%), E{Uqs (¥*,n',7")} = 0 bajo (L.57) si para cada k = 1,..., K, o
bien 7, es igual al verdadero 7 o bien 7}, es igual al verdadero y.

(ITI) El estimador 7k es consistente para nx bajo Ri y, para cada k = 1,..., K — 1, 7 es un
estimador muiltiple robusto de 7 en el sentido mencionado anteriormente.

67



Por otra parte, para cada k = 1,..., K — 1, la estimacién mltiple robusta de 7 fue posible
también gracias a la Proposicién |1} Esto se debe a que implica que el modelo para n; que se
deduce de Ry puede considerarse como un MMEM en un estudio longitudinal con K — k instantes
de tiempo, variable de respuesta Y, variables de tratamiento Ag41,..., Ak, y con (Zk, fk) en lugar
de Z y Li41 en lugar de V.

Por otro lado, la eleccién particular de la funcién d en la ecuacién de estimacion y las
ecuaciones de estimacién particulares utilizadas para estimar a cada 7, son tales que los primeros
K términos del promedio muestral de U5 (v,7, 7) (es decir del lado izquierdo de la ecuacién (1.60))

se anulan. De modo que @M r de hecho se obtiene, al igual que el estimador ICE, mediante una
regresién por el método de minimos cuadrados no pesados reemplazando a Y por el valor predicho
de m;. Asi mismo, como se detalla en la subseccién cada 7 se obtiene, al igual que en el
método ICE, mediante una regresiéon por el método de minimos cuadrados donde la variable de
respuesta es el estimador de 11, pero a diferencia del método anterior, esta regresién es pesada.

Las secciones y describen los MMEM vy los estimadores existentes respectivamente. En
la seccién [1.5] proponemos modelos compatibles para la secuencia de medias contrafactuales y en la
seccion [L.6| presentamos estimadores DR y MR que usan esos modelos para caso en que el nimero de
instantes de tiempo de exposicién K es igual a 2. En la seccién[I.7] generalizamos nuestra propuesta
para el caso en que K es arbitrario. En la seccién [[.8] ilustramos nuestros métodos mediante el
andlisis de un conjunto de datos del "National Heart Lung and Blood Institute Growth and Health
Study". En la seccién [1.9] presentamos un estudio de simulacién. En la seccién probamos la
consistencia y la normalidad asintética de nuestro estimador MR. Finalmente, en la seccién [1.11}
generalizamos nuestra propuesta al caso de variables de respuesta repetidas.
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Chapter 2

On non-parametric doubly and
multiply robust estimation of the
g-formula

2.1 Introduction

The goal of this chapter is to investigate and contrast the asymptotic properties of double and
multiple robust estimation of the longitudinal g-computation formula parameter (aka g-formula) of
Robins ([29]) from n ii.d. copies of a vector O = (O4,...,0k, Lit1) where O = (L, A) , k =
1,..., K, Ay is a discrete variable (representing treatment received at time t;) and Ly is a, possibly
multivariate, random vector (representing the data recorded on a subject just prior to receiving
treatment Ay).

Letting p denote the density of the law P of O, with respect to some dominating measure, write

K K
p(0) = [T or Geralln, ar) ] P (anll, @),
k=0 k=1

or for short p = gh, where hy, (akﬂk,ak_l) =P (A;€ =ap|Ly =, Ap_1 = Ek_l) and g, (lk“ﬂkﬁk)
is (a version of) the conditional density of Ly41. Here and throughout, for 1 < k£ < K and any
{viticjcn» welet D = (vi, ..., 0p) .

The g-computation formula ([29]) is defined as

0(p) = Egn- {k (Lx+1)}

where & is a given real valued function and hj, (akﬁk, Ek_l) is a given, i.e. known, probability mass
density for each k = 1, ..., K, such that p* = gh* is absolutely continuous with respect to p = gh
and Egp~ (-) denotes expectation under p* = gh*. Explicitly,

K —
06) = [ () TLoe (i) di 0 (2.1)

k=0
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where (Zoﬁo) =nill and

K
v (o) = {th (ak|lk,ak_1)} & (lks1) - (2.2)
k=1
is a known, i.e. specified, function of o.
Special choices of hj yield 0 (p) equal to parameters which are of interest in causal inference
and in missing data analysis and which are reviewed in Appendix A leading special example
is when

hy, (akﬂk,ak,l) = I{GZ} (ak) (2.3)

which, under the assumption of no unmeasured confounding, corresponds to the expectation of a
counterfactual response when a particular fixed, i.e. non-dynamic, treatment strategy Ay = aj,k =
1,..., K, is forced in the population ([29], [32] and [33]). To avoid distracting technicalities and
alleviate the notation, in this chapter we will focus on this special case, i.e. we will assume that hj;
is the mass point probability . Our results easily generalize to arbitrary h}'s.

For the point mass probability A} of the g-computation formula reduces to

9(p) = Ego [Egl [ "EQK—l [EQK {H (ZK-H) ‘ZK :a*szKHZK—l = a}(—lﬂfK—l] s |A1 = aT’Llﬂ

where Eg, (-|-) denotes conditional expectation under gy. The expression makes it clear that 6 (p)
depends on p only through g; more precisely only through the marginal law gy of L;, through the
conditional expectation

K (ZK) = EgK {/Q (ZK+1) | ZK = E},ZK}
and through the iterated conditional expectations defined sequentially for k = K —1,...,1, as
Nk (Zk) = Egk, {nk+1 (zk+1) | Zk = az,fk} . (24)

So, letting n = (go, 71, .--, Mk ) , from now on, we will denote 0 (p) as 6 (n) .
A natural first choice for estimating 6 (n) is with the so called plug-in estimator 6 (7)) where

7= (9o, M1, -, Nk ) and
1. go = d@o where @0 is the empirical law of L1,

2. Mk is a preferred estimator of the conditional mean of k (ZK_H) given Ly among subjects
with Ax = @}, and,

3. sequentially for k = K —1,...,1, (fk) is a preferred estimator of the conditional mean
of Mi41 (fk_H) given L) among subjects with A, = @}, obtained by pretending that the
unknown "outcome" 741 (ka) is equal to its estimator 741 (fk+1) .

When the estimators 7, (fk) ,k=K+1,...,1, are computed under parametric regression models,
the plug in estimator is known as the parametric g-formula estimator ([37]). Under regularity
conditions, the parametric g-formula estimator 0 (7)) satisfies that \/n {6 (7)) — 6 (n)} converges to a
mean zero Normal distribution if the parametric regression models assumed for each 7, k = K, ..., 1
are all correct. However, 6 (7)) is not even consistent if one of these models is misspecified. A well
known strategy that yields an estimator that confers some protection against mispecification of the
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models for 7 is to add to 6 (7)) the quantity P, [M (ﬁ,ﬁ)] where h = (ﬁl, ...,EK) is a vector of

preferred estimators of the hj s and for any ht = (hJ{, e hk) and nf = (QS»UL ey 77}() ,
M (hT,nT) =m (O;h*,nT) (2.5)

Ig ey (4) B B
{o; } V7
h) (4141, L) {ULH (Frer) = (L’“)}

Il
] =
E?r

k=1 | j=1

with 77}{+1 (Lx+1) = % (Lr+1) (125, [I]). Note that M (h',nT) does not depend on g} and that
when At = h and 77;2 = forall k=1,..., K, i.e. when n}; is equal to the true iterated conditional
expectation under p = gh, then E,{M (h,n)} = 0, where here and throughout E, (-) denotes
expectation under the law p = gh.

This strategy yields the estimator
0=0() +P, [M (ﬁ,ﬁ)] .
It is well known that the random variable
LF (hyn) = M (hyn) +m (L1) = 0 (n)

is the, unique, influence function of the parameter 6 (n) under a non-parametric model for the law
P of O ([l, [40]). Then, since P, [71 (L1)] = 6 (7)) , we observe that the estimator 6 is equal to the
semiparametric efficient one step estimator under a non-parametric model, i.e.

=0 +P, [IF (ﬁﬁ)} .
Another important algebraic identity shows that the one step estimator ) is, in fact, the so-called

Augmented Inverse Probability Weighted (AIPW) estimator, familiar in the missing data and causal
inference literature ([44]). Specifically, some algebra gives

K I{a;} (A)

T Tty — T
YA (L1)+M(h‘ 1 ) - p— p— K}(LK+1)
1—1:[1 ny (A1, L))
K [k=1  Ig .y (A I (A
I = {aji( 7)7 { T {a"i( k)f ] - 1}77;1 @)
=1 | =1 by (A;]4;_1,L;) h) (Al Ak-1, L)
0
where [] (1) = 1. The AIPW estimator is precisely the sample average of the right hand side of
j=1

the equality when, for each k, hz and n;; are replaced by estimators ﬁk, M-
Under regularity conditions, if the ;s and the hj s are estimated under parametric, generalized
linear, regression models, e.g. the hj s are estimated under logistic regression models if the Ajs

are binary, then /n {5 -0 (n)} converges to a mean zero Normal distribution if either (i) the

parametric regression models assumed for each ng, k = K, ..., 1 are all correct, or (ii) the parametric
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models assumed for each hy, k = K, ..., 1 are all correct, but not necessarily both (i) and (ii) hold
simultaneously. This property, whose heuristic proof is reviewed in Section is referred to as
double-robustness, since 6 confers the data analyst two opportunities of obtaining correct inferences
about 6 (1), one by modeling the 7 s correctly and another by modelling the hj s correctly.

The one step estimator becomes specially attractive when the 7,k = 1, ..., K, in steps 2 and
3 above are estimated under a non-parametric model defined solely by smoothness or sparsity
assumptions. In such case, the plug in estimator 6 (7)) may not be a useful estimation option as
it may not even converge at rate /n ([31]). In contrast, provided one uses an appropriate sample
splitting approach explained in detail in Section below, the one step estimator 9 that uses
nonparametric estimators 7, and hy is y/n—consistent for 8 (n) and asymptotically normal with
mean zero provided 7, and hy, converge sufficiently fast to 7, and hy, (B9, 8], [I1], [57]). Moreover,
when K = 1, it has been well established that convergence at rate \/n of the one step estimator
can be obtained by trading off slower rates of convergence for the estimator of one of the nuisance
functions, 71 or hq, with faster rates for the estimator of the other nuisance ([39], [31], [8], [11I,
[57]). In contrast, little has been reported in the literature about the specific trade offs in rates
of convergence for estimation of the nuisances n and h conferred by the one step estimator when
K > 1, the exception being [3I]. One goal of this chapter is to study which trade offs, if any, in
convergence rates of the nuisance function estimators are conferred by 6 when K > 1.

Recently, a number of articles have pointed out ([53], [24]) that when the 7} s are estimated
under parametric models, one can obtain estimators that confer even more protection against
model misspecification than the preceding one step estimator. The following modification to step
3 above yields one such estimator:

3_MR. sequentially for k=K —1,...,1, compute N, mr (fk) as a preferred estimator of the condi-
tional mean of 741 (fk_H) given Lj among subjects with Ay = @}, obtained by pretending
that the unknown "outcome" 7511 (Zk+1) is equal to the pseudo-outcome

I{“ZH} (Ak+1)

Qrt1 = Terr,mr (L) + = {@k+2 — Mk+1,MR (Zk+1)}

T (@117, Disa )
where @KH =K (ZK+1) .

The papers of [46] and [47] have defined and advocated the use of the pseudo-outcomes Q1
to produce double robust estimators. It was not until the article of [53] that it was noticed that
indeed using these pseudo outcomes produces estimators that confer further protection against
model misspecification. R

Denote the one step estimator that uses 7, amrr instead of 7y, (as in step 3 above) with 0g, i.e.

Orir = 0 (vrr) + Py, [M (ﬁ, ﬁMR):|

where Ny r = (Go, M, MRs s K —1,M R, 1K) -
It can be shown that, when the models used to compute 7 ar, and those used to compute

ﬁk, k=1,..., K, are parametric, GAM g in fact agrees with the estimator of the coefficient associated
with a7 in the MSMM of Chapter 1 of this thesis, in the special case in which the baseline co-
variates (denoted in that chapter as Z) are nill, the MSMM is saturated in @x and the functions
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Jk (EK,Zj,l;yk) ,k =1,..., K (used in Subsection m to model the p)s) are also saturated in
ax. The former is true if, in addition, (1) the models for the 7 (fk)/ s are those implied by the

compatible parametric models for the 7y (d}‘{, fk)l s defined in Section of that chapter and (2)
the parameters indexing the models for the 7, s are computed via weighted regression as in that

chapter. Then, it follows from that chapter that, under regularity conditions, 1/n {5 MR — 0 (n)}

converges to a mean zero Normal distribution when, for each k = 1,..., K, either the parametric
model for hy used to compute hy, is correct or the parametric model for 7 used to compute 7 v r
is correct. This property, whose heuristic proof is provided in Section [2:4.2] for arbitrary parametric
models and arbitrary parameter estimators, not just those used in Chapter 1, is known as multiple
robustness ([53], [24]) and has been called sequential double robustness in ([22]). It implies that
HAM r confers more protection to model misspecification than 0 because it ensures valid inferences
not only when all the 7, s are correctly modeled, or all the hj s are correctly modeled, but also when
a subset of the 7, s are correctly modeled so long as for the k’s for which the n, s are incorrectly
modeled, the hj s are correctly modeled.

Whereas the robustness benefits of é\M r over and above those of 0 appear to be well understood
and documented in the literature when the nuisance functions h and 7 are estimated under paramet-
ric models, the same is not true for the case in which h and 7 are estimated under non-parametric
models. Thus, a second goal of this chapter is to investigate, when h and 7 are estimated under
non-parametric models defined solely by smoothness or sparsity assumptions, whether 7y arr con-
fers additional trade offs in the requirements on the rates of convergence of the nuisance parameter
estimators over and above those already conferred by the one step estimator that uses 7.

To be concrete about the contributions of this chapter, in order to ensure /n— consistent
estimation of 6 (n), we start by writing a decomposition of the centered difference between the
one step estimator and the true parameter which is typically used when analyzing the asymptotic

properties of the one step estimator. In what follows, ht = (hi, e h}() and nf = (987771[7 ...,77}%)

stand for placeholders for arbitrary estimators of h and n and
ot =0 (nT) +P, [M (hT,nT)] .

Note that, when gg =qo, 0 (T}T) =P, {771r (Ll)} , so that

0" =0(y") +B, [M(hl,n")]
=Py [} (L1) + M (nT,n")]
=P, [Q(r'.n')]
where
Q (h',n') = ¢ (O;ht,n")

(L) + M (R, n")

Note that @ (hT, nT) does not depend on gg.
When ht = h and nt =7 then 0! coincides with the doubly robust estimator 6 and when ht = h
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and nf = 7y then ot is equal to the multiply robust estimator GAM Rr- Write

Va{ft =0} = G {Q (hm)} + G {Q (0" = Q (hm)}

+Vn (B, {Q (h',n')} =6 (n)]
= Tl,n + T2,n + T3,n

where

E, {Q (hT,nT)} = /q (0; hT,nT) dP (o)

Gn () = VnPu {- — E, ()}
is the centered empirical process, Y1, = G, {Q (h,n)}, Yo, = G, {Q (hT,nT) —Q (h, 77)} and
T3,n = \/H{Ep {Q (hTJ]T)} -0 (77)}

By the Central Limit Theorem, the term T , converges to a mean 0 normal distribution pro-
vided Varg, [Q (h,n)] < oo,

The term Y, is the difference of two centered empirical processes, one evaluated at (h,7)
and the other evaluated at its estimator (hT, nT) . If sufficient smoothness or sparsity conditions are
placed in the functions (h,n), then one should be able to construct estimators (hf, n') converging to
(h,n) at sufficiently fast rate, so that T ,, would be o, (1). One can make this term o, (1) under very
mild regularity conditions, even without restrictions on smoothness or sparsity by employing the
following strategy known as cross-fitting. First split the sample into a finite number, say U, of equal,
or nearly equal, sized subsamples, designating one of them as the "main estimation subsample" and
the remaining as the "nuisance estimation subsamples". Next compute 1’ and h' using data from
the union of the nuisance estimation subsamples and compute the one step estimator from the
main estimation subsample replacing the unknown 7 and h with their estimators computed from
the union of the nuisance estimation subsamples. Next, repeat the procedure, U—1 times, each
time designating a distinct subsample as the main estimation subsample. Finally, compute the
estimator 6fof 0 (1) as the average of the U one step estimators. The use of cross-fitting to avoid
imposing conditions on the model complexity has been noticed long ago (J49], Chapter 25 of [58])
but has been emphasized and advocated only lately (see, for instance, [45], [63] and [8]). In Section
we describe the precise steps of this procedure.

Assuming cross-fitting has been employed, then \/n {@L -0 (n)} will be bounded in probability

provided
T30 = Vn[E, {Q (h,07)} =0 ()] (2:6)

is Oy (1) . Furthermore, v/n {@L -0 (n)} will be asymptotically normal with mean zero and variance

Varg, {@Q (h,n)} if this variance is finite and Y3, = o0, (1). Thus, the term which is often
referred to as the "drift" term or the "bias" term ([58]), is crucial in determining the asymptotic
distribution of .

The key contribution of this chapter is the derivation of distinct expressions for the drift term. To
our knowledge, none of the expressions that will be derived in this chapter have been reported earlier
in the literature. Each of these expressions helps visualize the general structure of the robustness
properties -in terms of trade offs of the rates of convergence of the non-parametric estimators of
n and h- conferred by the doubly robust estimator 6 and the multiply robust estimator 6;r. For
the special case in which the estimators of each 7 are linear in the outcome, we will additionally
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provide a further expression for the drift that will allow us to investigate in detail and compare the
asymptotic behavior of # and 6);r when the 7 are estimated by series estimation.
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2.2 Notation

In this section we summarize the notation that will be used throughout the chapter.
For any k € N, [k] = {1,...,k}.
For 1 < j <k < K and any {Uj}1<j<K, we let

U = (V1. ,0k), 0 = (Vky -« -, VK ) and@? = (vj,...,0%)

As in the introduction, we let At = (h]i, e hk) and nf = (gg, 771, e 7]}() stand for placeholders

for arbitrary estimators of h and 7. In a slight abuse of notation, we write for any k € [K]
W (Lr) = hi (k| Lk, @} )

Furthermore, B B
77}<+1 (Li+1) =5 (Lr+1)
and, for k € [K],
—K
Qz = h; = (h;...ﬁk) and QZ = (n,t, ...,nT ) .

For k € [K] and j € [k], we let

k k
= =k
I =Ip,y (A), Tn = 1_11 Iazy (Ar) and T} = [ ] Ty (Ar),

r=j
k k
k= H hi (ZT) and W.;[k = H hl (fr) ,
r=1 r=j
k k
k= H h, (ZT) and 7r]l-f = H h, (Zr)
r=1 r=j

and for any j € [K], T;H =1, Hi:jﬂ ()=1and Z£:j+1 ()=0.
For any collection of sets {C;}, ;- and any k € [K], we write

6k201><"'><0k andgkzckx...ch

For any vector v = [vi],,,, € RP, ||v|| denotes its Euclidean norm (3=, v?)l/Q :

For any matrix A = [a;;], ;<) 1< <, € RF™9, || A denotes its Euclidean norm sup {||Av|| : v € R? with [jv]| = 1}.
For any function f: X C RP — RY, || f| ., denotes sup,cx || f (z)||.
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We use the notation a, < b, to denote a,, < cb, for some constant ¢ > 0 and a, <p b, to

~

denote a,, = O, (b,) . Moreover, we say that a, < b, if a,, S b, and b, S a

~

2.3 Parametric vs non-parametric estimation of 4 and 7

For ease of reference in the rest of the chapter, it will be convenient to define here what we will
mean by parametric and non-parametric estimation of the functions hj and 7.

Suppose that we postulate working models hy, ,,, (fk) for
hk (fk) =P (Ak = CZ;;|Z]§_1 = E};,l,fk) and IR (Zk) for Nk (Zk) =F [nk—H (Zk+1) |Zk = Ez,fk]
indexed by finite dimensional, i.e. Euclidean, parameters. For instance, we might postulate the
logistic regression model for hy (fk) :

—_ exp{yén (L)}
P, (Lk) 1 -+ exp {l/;ﬂ&k (zk)} (2'7)

and, for 7, we might postulate the model:
M (Li) = W {ron (Li) } (2.8)

where ¢y, (fk) = (¢k,1 (fk) yeees O (fk))/ is some given vector function of L; of dimension
my, and W (-) is a given link function -for example ¥ (u) = u if k (Lx 1) is a continuous random
variable. Here, we assume the same transformation ¢y (fk) of Ly, is used in both working models
to simplify the presentation in this section only.

If we assume that the dimension mj does not change with the sample size n, then when the
working models are correct, under regularity conditions on the smoothness of the maps v, —
R, (fk) and Yr — Nk.y, (fk)7 on the moments of ¢y, (fk) and on the error variance

E, {{mﬂ_l (fk_H) — Mk (fk)}2 |Ay = Ez,fk} it is possible to find estimators 7y and 12;6, such that

the functions Ay, () =hikp, (-) and 7 (-) () satisfy for all k =1,..., K

= M,

= [ / {Be (1) = huc (1) }2 P (zk)} " 0, (n712) (2.9)

[ =

L2 (P)
and
) o, _q1/2
15 = il Ly ) = U (7 (Te) —ne (1)} dP (zk)] ~=0, (n*W) (2.10)
For instance, since the true values of v and v, solve the population moment equations
Ep [tk (Zk, Vk) Tk-—l {Ik - h’k,l/k (Zk)}] = 0, k= 1, ...,K

and
Ey [te (Li; i) Tk {mb+1,00 1 (Lit1) — e, (L) }] =0,k =1,..., K

for any given arbitrary my x 1 vector function ¢ (+;-), then solving the empirical version of these
moment equations, i.e. solving

]P)n [tk (Zk, Vk) Tk—l {Ik - hk,l’k (Zk)}] = 0,]{1 = 1, ...,K (211)
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and recursively solving for k = K, ..., 1,
Py [te (Lii¥e) Te {10000 (Lis1) — e (L) }] =0,k =1,..., K (2.12)

where 711,441 (ZKH) =k (ZKH) , Tesults in estimators 7 and Jk, k =1,..., K, that, under
regularity conditions, satisfy that \/n {Uy — v} and \/n {1;;C - 1/%} converge to mean zero Normal
random variables (Section 5.3 of [58]). This, in turn, implies that under regularity conditions,
and hold.

In this chapter, we will say that hy (likewise 7;) is estimated parametrically or at parametric
rates if the estimator hy, (likewise 7)) satisfies (likewise (2.10)) and we will refer to T (likewise
Mk) as a parametric estimator of hy, (likewise of 7). In an admittedly abuse of terminology, we will
refer to any estimator f (likewise 7y) that does not meet the condition (likewise (2:10)) as a
non-parametric estimator of hy (likewise of 7).

Admittedly, the appellative non-parametric is an abuse of terminology because even when the
parametric models and are correct, hy (-) = hy p, (-) may fail to satisfy and 7, (1) =
Ul (-) may fail to satisfy (2.10) under a triangular array asymptotics in which model is
correct but the dimension my increases with n. For instance, the condition fails even in
the very simple case in which K = 1, model holds with ¥ (u) = w, Ly is a Unif (0,1)
random variable, ¢1 (L1) = (¢1,1 (L1), - - -, $1,m, (L1)) are the first my elements of the Fourier basis
(1,cos (2m;Ly) ,sin (2m;L1)),j = 1,2, .... and 121 is the ordinary least squares estimator of 11, i.e.
solving with ¢ (L1;¢1) = ¢1 (L1). It is well known (see, for example, [2]) that in such
case, 71 (+) = Uins () satisfies |71 —mllp,p) = Op (v/™*) but does not satisfy [|71 — Mz, ey =
op (/) - So, if my increases with n and it = o(1), then [[i — i ;,(py converges to 0 in
probability but not at the parametric rate O, (nil/ 2) .

As another example, suppose again that K = 1, model holds with ¥ (u) = u but now with
¢1 (L1) = Ly where Ly is an my X 1 vector. Consider the Lasso estimator

mi
LASSO argnqlpin P, [{n (Lz) — w’lLl}Q} + )\Z 11,4
1 Jj=1

where A is a tunning parameter. Letting |[¢1||, = #{j : ¥1,; # 0} it is well known that when
A</ % and [|[1]|, < s1 then under regularity conditions, 4959 (1) = M jrasso (+) satisfies

HﬁlLAsso _anLQ(P) _ O,,( /Slloi(ml)) but ||77{‘ASSO _n1||L2(P) _ op< Slloi(md)) does not

s1 log(ma)

hold (see, for example, [2] and [4]). So, when = o(1) but s; and my grow with n,

HﬁfASSO —m HLQ(P) converges to 0 but not at the parametric rate O (n_1/2) .

The appellative non-parametric applies more generally to any procedure yielding an estimator
Nk (hi) that does not meet the condition ((2.9)) under the assumed model for 7y (hg). For
instance, the appellative applies to any estimator of 7;, under a model that assumes only conditions
on the smoothness of 71 because in such case it is well known that there exists no estimator 7; that
converges at the parametric rate O, (n™1/2) | i.e. that satisfies |7 — M,y = Op (n=1/2) (]510).
We will also refer to estimators of the nuisance functions hy and 7 obtained by modern machine
learning algorithms as non-parametric. These include algorithms for which results on their Ly (P)
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convergence rates have only recently started to become available in the literature such as neural
networks ([I2]) and boosting ([23]).
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2.4 The expressions for the drift

In this section we derive, as anticipated in the introduction, different expressions for the drift term
Ts0=vn [, {Q (h,0")} — 0 (n)]

Although At = (hl{, ...,h}) and nf = (9877717«-«777;() are placeholders for estimators of the

unknown nuisance functions h = (hq, ..., hx) and n = (go, 71, ..., Nk ), nevertheless in the expectation
that appears in the expression for Tj,, the functions (h*,nf) are regarded as fixed and known,

since recall that
B Q")) = [a(ostl ') dp (o)

Thus, throughout this section, At and 1" will be regarded as fixed and known functions.

The first expression for the drift that we will describe is stated in part (i) of Lemma [7] below.
Although this expression has not appeared in printing, it can be deduced rather easily from Lemma
A.2 of [40]. Such Lemma provides a special decomposition of the influence function @ (h,n) — 6 (1)
for 6 () under a non-parametric model. The form of the drift given in Lemma [7] below, can be
deduced rather easily from such decomposition. Nevertheless, in the Appendix we provide an
alternative derivation of this expression which does not require invoking the fact that @ (h,n)—0 ()
is the influence function for 6 (n) .

Define Q41 ( J;(+1’77K+1) =k (ZKH) and sequentially for j € [K] define,

Qj (hjgj) =q (LK+17]] ,hj,n ) (2.13)

=k

)+ Z I’[k {%H (Lr+1) =i (Lk)}

k=j

Il
d —t

Notice that hT is equal to the entire function vector h. Furthermore, (1 (h{, ) agrees with

771 (L) + M (hT,n ) where M (hJ‘,n ) was defined in the introduction section. Also recall that

M (hT,nT) depends on n' only through QI. Thus, we conclude that with @ (-,-) defined as in the
introduction,

@1 (ﬂaﬂ) =Q(h',n")

A quick calculation shows that for any j € [K]|, Q; < o1 ) admits the following alternative
expression

TK K Tk Tk—l
T _ J T ] j T (T
Q; (kfnf) = —fn (Licen) z{;k - T()}n (Th).
ﬂ'j k=j 7Tj 7rj

g eeey Ly

Furthermore, @), (ﬁ}, ﬂ;) satisfies the following recursive formula, for j = K, K — 1

@ (1) = () + s { @ (10 0) =) )
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Thus, when nT is the vector of estimators obtained in steps 2 and 3_ MR described in the introduc-

tion, and hJr = hj, then Q; ( ot ) coincides with the "pseudo outcome" @j of step 3_MR of the

mtroductlon.
Next, define for any p = gh, and any (hT, nT) ,

K
EZEP
=1

i (it o) (LB - @Y s

and, for j € [K],

_ K 7! I I _ _
T . _ 1 k k +
aj (ﬁj+1’ﬂ;+1’LJ) = > By, LT(J;FU (hk (Tx) (Lk)> {le (Zx) = (L’“)}

k=j+1 j+1

4; =j,j]

Part (i) of the following lemma establishes thaty/na? (h',n") is equal to the drift (2.6)) . Part (ii)
provides an important generalization which is used to prove two further expressions for the drift
that are stated in the subsequent Lemma[§ Lemmas [7] and [§] are proved in Appendix

Lemma 7 For p = gh, the following holds:

i)
E, {Q (h,n")} —0(n) = a? (h',n'), (2.15)

i) for any j € [K],

g i {QJH ( J+1’7’I;+1>)Z =a Lj} —n; (L;) = aj (h;(+1777;+15zj> : (2.16)

Notice that part (i ( ) of Lemmaimplies that the drift of @ (Ayrr) is equal to /naP (h',n") when

we replace ht with h, and nt with 7 (Marg).
The expressiony/na? (hT,nT) for the drift of the one step estimator is useful for analyzing the

properties of the double robust estimator § when the nuisance functions h and n are estimated under
parametric models, as illustrated in subsection There exist, however, two other alternative
expressions for a? (h,n") which appear to better highlight and point out to the properties of the

estimators 6 and 0,;r, because they are written in terms of the differences between the estimated
values 77}; (fk) and the conditional mean of the "pseudo outcomes" used to compute them. To
define these alternative expressions we introduce the following notation.

For any k € [K], let

Ay (7711’7711“;9!@') =1y [77/]; (Lx) — Eg, {77/:+1 (ka)‘Zk = Ezaka
and

Fk‘ (hk+17nk’gk7hk+1> = Tk [nl-i. (Zk}) g hk+1 {Qk‘+1 ( k+17nk+1)‘zk :EZ,Z!@}}

where recall 77}{+1 (Lx+1) =6 (Lr41) -

82



Define

K
1 1
cP (hT,nT) = ZEP { <7T'k - 71-1'16) Ak (77]1;777]];-0-179]9)} (217)

K
1 1 1 -
tot :Z — 1 f.
(') = By {n(k—l) (hk (Lv) (Lk)> b (h’f“’"k’gk’h’fﬂ)}' (2.18)

Note that if for each k € [K], 77;2, stands for the estimator 7 from step 3 in the algorithm of
the introduction section, then for I, =1, Ay (17,1, 77;2 e gk) is precisely the difference between the

estimated mean and the true conditional mean of the pseudo outcome 711 (Zk+1) . Likewise, if
instead 77,Tc stands for the estimator 7 prg from step 3_MR in the algorithm of the introduction

section, then I'y (ﬁlﬂ’ﬂbﬂk’ﬁkH) for I, = 1 is precisely the difference between the estimated

mean and the true conditional mean of the pseudo outcome ©k+1- So, cP (hT,nT) and bP (hT,nT)
depend on these differences respectively.

The following Lemma, proved in Appendix provides two alternative expressions for the
drift of the one step estimator.

Lemma 8 a” (hT,nT) = 0P (hT,nT) =cP (hTﬂ?T) .

2.4.1 Heuristic argument for the double robustness of f when h and i
are estimated parametrically

As indicated in the introduction, the double robustness of 9 when h and 7 are estimated under
parametric working models for them has been well documented in the literature ([36], [25], [1]).
Nevertheless, in this section we illustrate the usefulness of the expression a? (hT,nT) for the drift
term to derive the asymptotic property of 5, by providing a heuristic explanation for why 9 is
doubly robust when i and 7] are parametric estimators of h and 7.

Specifically, suppose that we postulate working parametric models hy, ., (fk) for hy, (fk) and
Mo, (L) for i (Li) = E [nks1 (Lit1) Ak =@}, Ly] , i.e. models indexed by Euclidean parame-
ters whose dimension does not vary with n. Let 7j be the maximum likelihood estimator (MLE)
of v,,. Then v}, solves for some tg (-, ). For instance, under model the MLE 7}, of v,
solves for ty (fk, z/k) = ¢ (fk) . On the other hand, suppose that the vector

v = (wl,...,QZK>, solves the system of equations (2.12) for k¥ = 1,..., K and given functions

tr (fk, 1/%) . Then, 0y (Li) = Mg (fk) meets the definition given in step 3 for estimating 7 (+) in
the introduction when the preferred estimator is the, possibly weighted -depending on the function
ti (-, -) — least squares estimator of the regression function 7y (-) pretending that the outcome is
Me+1 (L) = LR (Lk:+1)~

Unlike the case in which h and 7 are estimated nonparametrically, we will argue below that cross-
fitting is not needed, so we will assume in this subsection that hg (fk) and N (Lg),k=1,.., K

and 0 are all computed from the entire sample D = {0; :i=1,...,n}.
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The estimators 7 = (71, ..., Ux) and 12 = (@1, cery @K)/ ultimately solve a system of estimating
equations. So, under standard regularity conditions for solutions of estimating equations, there
exist v* = (vf,...,v)) and ¥* = (Y7, ..., ¥} ) such that \/ﬁ{(@ﬁ, ﬁ) — (v, V*)} converges in law to
a mean zero normal random vector. Furthermore, v} is equal to the true parameter value vy, if the
model hy, ., (fk) is correct and, if the models 7, 4, (fk) ,k € [K] are all correct then 95 is equal to

the true parameter value ¢, for every k € [K]. Now, letting ny- = (9()7771,111; (L1), e MK %, (ZK)),
hy« = (hl,ufa“'ahK,u;‘{) g = (90’771,@1 (Ly), o MK Dy (ZK)) and hy = (h1.5,, ..., Ry ) Write

V{0 -0} = Cu{Q(ho mu)} + Cu {Q (hormg) = Q (hurimue) }
+ v [B,{Q (hoyng) } ~ 0 ) (2.19)

Assuming that, for all £ € [K], the maps ¢, — 7y, (fk) and vy, — hy, (fk) are continu-
ously differentiable a.s.(fk) and that the parameter spaces for ¢, and vy are compact, the term
G, {Q (hg, 7713) = Q (hy~, 771!1*)} can be shown to be o, (1) (see Example 19.7 of [58]). On the other
hand,

Vi B, {Q (hoing) =0 )] = v [B, {@ (hounz) } = BoAQ (hurimu)} |
V(B {Q (o 1)} — 0 ()] (2:20)
=Vn {Ep {Q (haﬂ?@)} - E,{Q (hu*and)*)}]
+v/na? (hy-, ny-)

If for all k, the model 7, 4, (Zk) for ny (fk) is correct, then 7y« is equal to the true 5. In such
case, aP (h,«,ny+) = a? (hy~,n) = 0. Likewise, if for all k, the model kg, for hy is correct, then
hy+ is equal to the true h. In such case, a? (hy«,ny-) = a? (h,ny+) = 0. So, in both cases, the drift
is equal to

Vi [B,{@Q (hong) } = By {Q (b my)}] (2.21)
If the map (¢, v) — E,{Q (hy,ny)} is continuously differentiable, then the delta method gives that
(2.21)) converges to 0 if all working models are correct (since in such case,

%EP {Q (hy, nw)}‘(w ) = 0) or to a mean zero Normal distribution otherwise. This then

concludes the heuristic proof that 0 is doubly robust, i.e. that /n {5 -0 (77)} converges to a mean

zero Normal distribution if either (i) the parametric regression models assumed for each 7y, k € [K]
are all correct, or (ii) the parametric models assumed for each hg, k € [K] are all correct, but not
necessarily both (i) and (ii) hold simultaneously.

2.4.2 Heuristic argument for the multiple robustness of §MR when h and
7 are parametrically estimated

The multiple robustness property of O r when h and Ny g are computed under parametric models
has been shown for K = 2 in [53] and for arbitrary K it can be derived from Lemma 6 of [24].
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In this section we use the expression bP (hT, 17T) for the drift to provide a heuristic explanation for

why é\M g is multiply robust. As in the preceding subsection, we will assume that h, n and 6 are
estimated from the entire same sample, i.e. mno cross-fitting is employed. Recall that the only
difference between 05,z and 6 are the "pseudo outcomes" used in the estimation of the iterated
conditional expectations. Thus, as in the preceding section, we shall assume parametric models
Nk, and Ay, for n, and hy. For concreteness, we shall also assume the working model and

that ¢ v r is computed recursively, for k = K, K —1,...,1, as the, possibly weighted, least squares
estimator of a finite dimensional parameter 5, in the regression of the "pseudo-outcome"

A= + T A _
Qr+1 = nk-‘rlﬂZkJrl,MR (Lk+1) + m {Qk+2 - nk’+17$k+1,MR (LkJrl)}

on L under model (2.8) using units that satisfy A = ay,. That is, 'l//J\k,MR solves

P, [Tktk (L tow) {@kﬂ — U {4} bx (Zk)}}] =0

for some vector-valued function ¢ (-, -) of the same dimension as ). Then, just as we reasoned ear-
lier, to analyze the limiting distribution of é\MR we first note that the vectors zZMR = (zZLMR, s zZK’MR)/
and Uy, ultimately solve a joint system of estimating equations, so under regularity conditions,
there exist ¢}, and v* such that \/n { (QZMR, ﬁ) — (YiiRs 1/*)} converges to a mean zero Normal

distribution. Next, repeating the expansion (2.19) but with 0 MR instead of 57 zZ MR instead of 12 and
Yy p instead of ¥*, and arguing as in the preceding subsection that under regularity conditions,

Gy, {Q (h;, 77@) -Q (hw , nw;m)} = 0, (1), the asymptotic distribution of \/n {(?MR -0 (77)} de-
pends on the asymptotic behavior of /n {Ep {Q (h;m@MR)} — 9(77)} . Writing the expansion

(2.20) but with @MR instead of 12 and 9}, instead of ¥*, we conclude just as in the preced-
ing subsection that if the map (v,v) — E, {Q (hy,,ny)} is continuously differentiable then by the

delta method, /n {Ep {Q (hg, nleR>} - E, {Q (h,,* , 77¢Xm) }} converges to either 0 or to a mean

zero Normal distribution. Thus, v/n é\M r — 0 (n) ¢ converges to a mean zero Normal distribution
if and only if a? (hl,* , nw\m) =0.
We will next argue that GAM r is multiple robust by arguing that, under regularity conditions,
aP (hl,* , 771/’7»“3) , or equivalently bP (h,,* , nwl*vm) satisfies
b (hy=,my:, ) = 0 if for each k € [K], either model 7y, or model Ay, is correct (2.22)

To argue why should be true under regularity conditions, it will be convenient to define
the collection H}, of laws for the observed data O such that hj is equal to hy ,, for some v, and
likewise to define the collection Gj, of laws for the observed data O such that n is equal to 7y 4,
for some 1;,. Notice that the assertion that model hy ., is correct or model 7y, is correct is the
same as the assertion that the true data generating law p of O belongs to Hj U Gi. Also, define

Mur = nw?\437h = hy-

We will argue that (2.22)) should be true under regularity conditions by arguing that, under
regularity conditions, the following fact should hold for each k € [K].
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Fact 1 ny y: = i if (i) model 7 4, is correct and (ii) for each k < j < K either the model
M, 18 correct or the model h; . is correct

Heuristic argument of why fact 1 should hold under regularity conditions. We argue
by reverse induction in k. For k = K, z/;K MR is the estimated coefficient from the, possibly
non-linear, least squares procedure with outcome (L K+1) and covariates ¢x (L K) among

units with Ax = @y, under the model Nk (ZK) for £ [/1 (ZK_H) |ZK = E}(,ZK] . If this
model is correct, then under standard regularity conditions, the probability limit ¢} \/p of

wK MR is equal to the true value g . Consequently, NK b3 MR is equal to nx and therefore
fact 1 holds for k = K. Next, suppose that fact 1 holds for k = K, ..., j+ 1. Noticing that, by

construction, Qj_H = Qj+1 (hj‘f‘l’ﬂMR,j-i-l) , we conclude that under regularity conditions,

iijR solves
0 =Py [Ti65 (L) { @51 (Bt Wy my0) — ¥ {075 (T3)}}] + 00 (1)

Suppose p € G;N [ﬁff_ﬂ_l (Hi U gk)} Then, for each k = j+1, ..., K, either p € Hy or p € G.

If p € Gy, then since p also belongs to N 41 (HrUG,) we have, by inductive hypothesis, that
77,67MR = k. If p € Hy, then A} = hy. Thus, for every k = j+1,..., K, h} = hy or n;;MR = k.

Consequently, by part (ii) of Lemmaﬂ E, {Qﬁ_l < J+1’77MR3+1>}ZJ = E;,fj} =, (L;) .
Furthermore, since p € Gj,7; = 14, for some "true" ¢; and therefore the equation

0=E;5 7, Fﬂﬁj (L) {Qa+1 ( J+1: R J+1) — U {y e (Zj)}H

is solved at the true ;. Then, under regularity conditions for the consistency of M — estima-

tors, the probability limit ¥y, of ¥ mr is equal to the "true" 1; which shows fact 1 holds
for k = j. ‘

We now argue why (2.22) should hold under regularity conditions, by arguing that for p €
NE, (K, UG,) it should hold that

1 1 1
Egk 1,hE |:7T(k 1) (hk h*) Fk (thrlvnMRkagkvthrl)] =0 (223)

Suppose then that p € "X, (H, UG,). If p € H;, then under regularity conditions h} = hy, and
thus holds. If p & Hj then p € G N [ﬂffzkH (H, U gr)]. Then, under regularity conditions,
fact 1 implies that Mie,mr = Me- In addition, forr =k+1,...,K, either p € H, in which case,
again under reg. conditions, h} = h, or p € G, N [ s i1 (H U gb)] in which case, again by fact
L0} prr = - Thus, we conclude that when p € Gy N [N, (K, UG)], ni g = Mk and for
r=k+ 1,..., K, either n; ,,p = 0y or hy = h,. Thus, since by Lemmam we know that

Ty (hkﬂ,nk,gk,th) =0if nk = ng and for j > k, either 7]] =1, or h = h;, (2.24)

we conclude that T'y, (ﬁzﬂ,ﬂij k;gk’hlﬁ-l) = 0, which then implies that (2.23)) holds. This ends

the heuristic proof of the multiple robustness of O/ g.

86



2.5 The proposed estimators of / when the functions /» and
n are estimated non-parametrically

In this section we provide the precise steps for computing the estimators 0 and 1/9\1\/1 r when h and 7
are estimated non-parametrically.

In what follows, given a sample S and a positive integer J, the operation of randomly splitting
S into J equally or nearly equal sized subsamples stands for the operation of randomly partitioning
S into J disjoint subsamples, S', ..., S”, such that the size of each S7 is either | N/J| or |[N/J]| +1,
where || is the floor function, i.e. [z] is the greatest integer less than or equal x.

The algorithm for computing 0 and @M R starts by randomly splitting the entire sample
D ={0;:i=1,...,n} into a fixed number U of equally or nearly equally sized subsamples D%, u =

1,..., U. The algorithm then computes one estimator " and one estimator 8}, for each u following
the procedure indicated below. The final estimators are defined as
1
j— u
b=5>0
u=1
and

~ 1 v ~
eMRE ﬁ;e}(/ll%

__ To facilitate the understanding of the algorithm for computing the proposed estimators 9" and
0% r we first describe it for the special cases K = 2 and K = 3 and subsequently we state it for an
arbitrary K.

Procedure for computing 9 and gjde when K = 2.

e Designate sample D" as the main estimation sample and designate its complement
N =D — D as the nuisance estimation sample. Randomly split N into 2 equally or nearly
equally sized, subsamples A'! and N2.

o FEstimation of hi and hs.

— using data from subsample N'! compute the preferred non-parametric estimator El (+) of
hi (7).

— using data from subsample N2 compute the preferred non-parametric estimator /};2 (+) of
ha (+) .

e FEstimation of ny to be used in constructing both 9 and gMR. Using data from subsample N2,
compute the preferred non-parametric estimator 7z (-) of n2 (-) = E [k (L3) A2 = @3, Ly = -] . Let
M2mr () =02()-

o FEstimation of m

— FEstimation of 11 to be used in constructing b, Using data from units in subsample N!
with A; = a] and the already estimated function 7 () compute the preferred non-
parametric estimator 7 (+) of m1 (-) = E [n2 (L2) |41 = a}, L1 = -] obtained by pretend-
ing that the unknown "outcome" 7 (fz) is equal to the "pseudo outcome" 7 (fg) .
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— Estimation of m to be used in constructing é\MR. Using data from units in subsample
N with A; = a} and the already estimated functions (7/7\2’MR (), ha ()) compute the

preferred non-parametric estimator 71y (-) of m (1) = E [772 (fg) |Ay = a3, L1 = ] ,
obtained by pretending that the unknown "outcome" 7)o (fg) is equal to the "pseudo-
outcome"

~ — 2~
Q2= q2 (L37]25ﬁ2’ﬂ27MR)

A hEL) CIARSAY

Using the already estimated functions /ﬁl,/ﬁg, 71 and 72 compute

~ 1 = 52~
0 = Zpu Z T (L3,i,l1,i;h777)

1:0,ED®

Using the already estimated functions /}\ll,/ﬁz, T, mr and 72 prr, compute

N 1 5
ONir = = q (L3,i7[ i;h7ﬁMR>
M #Du i:Ole:D“ :

Procedure for computing g and é\}QR when K = 3.

Designate sample D" as the main estimation sample and designate its complement
N =D — D% as the nuisance estimation sample. Randomly split N into 3 equally or nearly
equally sized, subsamples N, N2 and N3.

Estimation of hi,hs and hg.

— using data from subsample N* compute the preferred non-parametric estimator ﬁk )
of h (), k=1,2,3.

Estimation of ns to be used in constructing both 9 and éMR. Using data frch subsample N3,
compute the preferred non-parametric estimator 73 (-) of n3 (-) = E [ (L4) |A3 =@}, L3 = -] . Let
Msmr () =13 () -

Estimation of 1o and 7y

— Estimation of mo and 1y to be used in constructing 9.

* Using data from units in subsample A? with A = @} and the already estimated
function 73 (-) compute the preferred non-parametric estimator 75 (-) of
n2 (*) = E [n3 (L3) |A2 = @}, Ly = -] obtained by pretending that the unknown "out-

come" 73 (L3) is equal to the "pseudo outcome" 73 (fg) .
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* Using data from units in subsample A'! with A; = a} and the already estimated
function 7, (-) compute the preferred non-parametric estimator 7; (-) of
m()=E [772 (Lg) |Ay = a3, L1 = ] obtained by pretending that the unknown "out-
come" 7 (fg) is equal to the "pseudo outcome" 7, (ZQ) .

— Estimation of 2 and 1; to be used in constructing gMR.

% Using data from units in subsample A2 with Ay = a5 and the already estimated func-
tions (7/’]\3’MR ) s ()) compute the preferred non-parametric estimator 2 arr (+)
of 2 () = E [n3 (L3) [A2 = @3, Ly = -], obtained by pretending that the unknown
"outcome" 73 (fg) is equal to the "pseudo-outcome"

~ = .7 -
Q3 =qs3 (L47[37b3an3 AfR)

{# (La) = Ts.arr (La) }

= 73,MR (Z )

ha ( 3)
* Using data from units in subsample N'! with A; = a} and the already estimated func-
tions (ﬁ37MR ) s ()) and (?]2 Mr (), hs ()) compute the preferred non-parametric

estimator my pr (1) of m () = E [772 (Lg) |A; = aj, L1 = ] , obtained by pretending
that the unknown "outcome" 7 (Lg) is equal to the "pseudo-outcome"

~ — 73 ~ ~
Q2 =2 (L4712§h27ﬂ27MR>

- I o
=M2o,mr (L2) + = {M3,mr (Ls) —2,mr (L2) }

hy (L)

1213 -~ T
23 (L) — msn (T
ey (e )~ e ()
Iy - =3~ . —
=omr (L2) + i (L) {QS (L47]3;ﬁ3,ﬂ37MR> —N2,MR (L2)}

e Using the already estimated functions /ﬁl,/ﬁg,/ﬁg, 71,72 and 73 compute

~ 1 — =3~ )
0 = Zpu > @ (L4,i,f1,i;h777)

1:0,ED®

e Using the already estimated functions 711,712,713, M, MR, T2,mr and 73 pr compute

. 1 — =3~
MR = pu Z T (L47i7[1,i§h777MR)

:0;, €D

Procedure for computing g and 5%/[ p for arbitrary K.

e Designate sample D* as the main estimation sample and designate its complement
N =D — D" as the nuisance estimation sample. Randomly split A/ into K equally or nearly
equally sized, subsamples N'!, ..., N'K.
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o Estimation of h.

— using data from subsample N* compute the preferred non-parametric estimator ﬁk ()
of hk- () 5 k= 1, ...,K.

o Estimation of ni to be used in constructing both 0 and é\MR- Using data from subsample /\/;K,
compute the preferred non-parametric estimator g (-) of nx () = E [Ii (LK+1) |Ax =@, Lk = ] .
Let fg,mr () = 7k () -

o FEstimation of ny for k=K —1,...,1

— FEstimation of m for k= K —1,...,1, to be used in constructing 9. For k=K — 1,..,1
repeat

* Using data from units in subsample N* with Ay = @} and the already estimated
function 741 (-) compute the preferred non-parametric estimator 7y, (-) of
() =FE [mﬁ_l (Lk+1) |Ar =a, Ly, = ] obtained by pretending that the unknown
"outcome" Ny41 (fk_H) is equal to the "pseudo outcome" 711 (ka) .

— FEstimation of ny for k= K —1,...,1,to be used in constructing §MR. Fork=K-1,...,1
repeat

* Using data from units in subsample N* with A, = @} and the already estimated
functions (ﬁkH,MR ) ,/Hk-Jrl ()) s eees (ﬁK’MR ) ,ﬁK ()) compute the preferred non-
parametric estimator 7y ppr(-) of n, (1) = E [nkﬂ (ZkH) |A =@}, Ly = ] , ob-
tained by pretending that the unknown "outcome" 741 (Zk+1) is equal to the
"pseudo-outcome"

~ — 7K ~ —~
Qr+1 = qrt1 (LK+1, Ik+1;hk+1’ﬂk+17MR)

K—-1 T

_ - I; ~ _ ~
= Nes1,mR (Lig1) + Z H ~L {Mr+1,m8 (Lrs1) — Trar (Lr) }
r=k+1 | j=k+1 hj (LJ)

K

' j]gFlﬁj-Eij) {# (Lrc1) =ik (k) }

= Mht1,mR (Lit1)

Tt — K o~ R N _
+— {Qk:+2 (LK+17 Tyoi byyos 1, MR) — k+1,MR (Lk+1)}
Pt (Lit1) '

— K ~ R —
where qx 41 (LK+1’IK+1;ﬁK+1’QK+17MR> =K (LK+1) .

e Using the already estimated functions h= (ﬁl, ...,EK> and 7 = (71, ...,k ) , compute

. 1 _ K -~
0= 2= > (LK+1,z',I1 i hvﬁ)
#D :0; €DV
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e Using the already estimated functions h= (ﬁl, ...,EK) and Tayrr = (M1, MR, -, K, MR) s COM-
pute

_ 1 T T 05
:0,€D®

The sample splitting strategy employed by our algorithm is important and worth summariz-
ing for clarity. Specifically, for each u, 0" and 0Y},, are computed by averaging the estimates

— K~ — K ~ L .
qn (LK+1,11 ;h,n) and ¢ (LK+1,11 ;h,nMR) over units in the subsample D“. The functions

hi,k = 1,..., K are each estimated from an independent subsample N* of N = D — D*. The
functions n;,k = 1,..., K are estimated, in turn, from units in A/ = D — D" as the result of a
recursive process. The recursive process differs depending on whether the goal is to construct
0" or 6%, ,. In both cases, in the recursive process, for k = K, ..., 1, each function n (-) is es-
timated from units in an independent subsample N* of N using, either just the already esti-
mated function 741 (+) to construct the pseudo outcome -if the ultimate goal is to compute 6%-,

or using the function g1 (~, ';Ek+1’ﬁk+1 MR) , that depends on the already estimated functions

Met1,MR () 5 -, xR (-) and Tzk+1 ), b (), to construct the pseudo outcome -if the ultimate
goal is to compute % R

The estimation of each hj and each 7, from a distinct subsample N'* of the nuisance estimation
sample J\[ is carried out to allow the derivation of bounds on the rates of convergence of the
drifts of 6pr and 6z when the 7, are estimated via series estimation. These drifts depend on
quantities that include least squares fits of outcomes that are, in turn, data dependent functions
of O. Without sample splitting, these outcomes cannot be treated as i.i.d. and the drifts become
analytically intractable without making further assumptions (see the Remarkat the end of Section

and Remark [2] of Appendix [B.6).

To explain the reason why we compute gu (0%, r) by averaging over units in D" the values
of ¢ (ZKHj{(;ﬁ,ﬁ) (¢1 (fKH,T{(;E,ﬁMR)) using estimated functions /]7\,77/’]\ (ﬁ7ﬁMR) computed
from an independent sample N'= D — D*, denote with NN, the sample size of D* and let
Gn, = VN,Pn, { — E, (-)} be the centered empirical process over the sample D". Because the
subsamples D" were obtained from a process that sample splitted D into equal or nearly equal size
subsamples, each N, is either equal to [n/U] or to |n/U]| + 1. Then, letting

N = |n/U]
we have that
N <N, <N +1, (2.25)
UN,—-1)<n<U(N,+1) (2.26)

Since U is a fixed constant, then from (2.26) we have that
N, — o0 asn— oo (2.27)

and consequently from ([2.25) we have that N — oo as n — oo and
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Furthermore, from ([2.26)) we have
op (1) as N, — 00 < 0, (1) asn — oo (2.29)

Now, noting that ¢; (ZKij{;E, 77) (@ (ZKij;iAl, ﬁMR)) agrees with @ (AT, nT) as defined
in the introduction when (hT, nT) is replaced with (iAz, 77) ((E, ﬁMR)), then just as in the introduc-

tion, we can write

VN =0 )} = G, {Q (hm)} + G, {Q (A1) = Q ()}
+ VN [Bp {Q (hT,n")} = 0(n)]
where 61% denotes 9" if (hT,nT) is replaced with (/f;, ﬁ), 91 denotes 5}\‘/”% if (hT,nT) is replaced
with (/fz,ﬁMR> and
Gn, {Q (hT,0") —Q(h,n)} =

\/jv S {Q (1), - Q) — B, [Q (W) — Q (hym) IN]}
U §:0;€Du

with Q (h',7"), = @ (ZK—&-l,iani?thnT) and Q (h,m); = @1 (ZK—H,ivjfi;ha 77) . Sample splitting
D into D* and N' = D — D% and computing (hT, nT) from the independent sample D — D" results
in Gy, {Q (hT,nT) -Q (h,n)} to be equal to v/ N, times an average of IV,, random variables that,
conditionally on the data in N, are independent and identically distributed, and have mean zero.
Thus, under the very mild requirement that

E, [{Q (hT, ") —Q(h,n)}le} Nui 0 (2.30)

— 00

and consequently, by (2.27)), as the sample size n of D converges to oo, an application of the
Dominated Convergence Theorem gives that

Gy, {Q (b, n") —Q (h,m)} nf;)o 0. (2.31)

For completeness, in Appendix [B.3|we show that (2.30) implies (2.31]) . We qualify the requirement
(2.30) as very mild because it typically holds under weaker conditions than those required to ensure
that the drift term /N, [E, {Q (hT,n")} — 6 (n)] is 0, (1). In Section we illustrate this point

for K =2 and K = 3 when 17};, k =1,.., K, are series estimators of 7 as defined in the following
subsection.
Now, suppose that having established that (2.31]) holds for the particular estimators (hT, nT) of

(h,n) ((ﬁ, ﬁ) or (ﬁ, ﬁMR>), we could find conditions that ensure that the drift term

VN [Ep {Q (RT,n") } — 6 (n)] converges to zero in probability as N,, converges to co, then we would
conclude that under such conditions,

VNAB =0} = Gx QUM +0, (1) (2.32)

92



showing then that asymptotically, gt —p (n) behaves like a sample average of N,, mean zero random
variables. This highlights the obvious fact that by sample splitting we loose the information about
¢ available in the n — N, units in the nuisance estimation sample. We recover the information
lost due to sample splitting by computing one 6% for each u = 1, ..., U and designating our final
estimator of 6 as the average of the 8% over u. To show this, assuming that holds, we first
write

ﬁ

VN{a -0} = VN {at -0} +{ Nﬂ - 1} VN =0}

= VN AT =0} +o, (1)

v 2 Q= B[R} +o0, (1)

—

NuzO,ED“
:\/% ST {Q(hm), — By 1Q ()]} +
1:0;,EDY
(1 M) LS QU - By QU] + 0, (1)
N mi:O¢ED“

== 3 Q= B QU] +0, (1)
1:0,€D¥

where the second equality and the last equality hold if varg, [@ (h,7)] < oo because by the Central
Limit Theorem, \/% > i0,epu 1Q (hyn); — Ep [Q (h,m)]} = O, (1) and thus /N, {HT’” -6 (n)} =

O, (1) and, by ([2:28), (\/Nzufo =0, (1) and (1 %‘) =o0,(1).

Now let §f = U™ ZUU:1 gt If holds for all u = 1,..., U then the last display gives
VN
Vol —o@m) = ”{Ul N [gt — g }
(oo} =[5 (o v o)
no.__1 A
- {\/; Uy r X Q-5 (h,m]}} +op (1)
= {]\V/EUZ{Q (hyn); = Ep[Q (h, 77)}}} +op (1)
=1

= =@ ), ~ B Qb))

+yo 1) % > (@)= B Q) + 0, (1)

=Gn{Q(h,n)} +0, (1)

where the last equality in the last display follows because ( joi i 1) = (L"’nJU — 1) =o0(1) and
T
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by the Central Limit Theorem, ﬁ Y {Q (hn); — Ep[Q (h,n)]} = 0, (1).

We have then arrived at the conclusion that, asymptotically, ot — o (n) behaves, as gt — g (),
like a sample average of @ (h,n) — E, [@ (h,n)], except that in the latter the average is over units
in D* whereas in the former the average is over units in the entire sample D, thus proving the
announced recovery of lost information obtained by 7.

The preceding analysis makes clear that the choice of U does not impact on the asymptotic
distribution of A'so long as U is fixed. For the goal of this chapter, the choice of U is therefore
inconsequential. However, the finite sample performance of #" will be affected by the choice of
U. As U grows, the size of each nuisance estimation sample D — D" increases thus improving the
estimation of the functions h and 7. However, as U grows, the size of each main estimation sample
D* decreases, thus making the normal approximation of the distribution of 8% less accurate. The
investigation of methods for selecting U so as to improve the finite sample performance of A" is an
interesting topic but it is beyond the scope of this work.

2.5.1 Series estimation of 7

A concrete example of a "preferred estimator" used to estimate each function 7y in the preceding
algorithm is the series estimator. Series estimation of the function 7y, (+) is estimation via ordinary
least squares on a covariate vector ¢y, (L) = (¢r,1 (Lk) +- - Ok (fk))l comprised by the first
my elements of a dictionary of approximating functions {¢ ; ()}, <j<oor In series estimation, my
changes with the sample size n. We discuss the selection of my later in this subsection.

For the purposes of our calculations in the next sections, it is convenient to define the series
estimator in the following way. Given the k' nuisance estimation sample A%, define for any scalar
function r (O) of O = (ZKH,ZK) ,

I [r] (-) = 44, (r) 6 () (2.33)

where .

’

Ur (r) = Z Tyi0n (L) &r (L) Z Iyion (L) 7 (0;)

i:0; ENE i:0; ENF

Then, if in the algorithm for computing g% one employs series estimation, the estimated function
Mk (+) is computed recursively for k = K, ..., 1, as

i () = Yo () (2.34)
where zzk = Jk (Mk+1) - Likewise, if Mg amrr (+) is computed by series estimation, then
i () = Uk arrdn () (2.35)

where Yr Mr = Yk (Qk+1 (', ';@k+17ﬁk+1,MR>) .
The map r — II* [r] is an operator that maps functions of O to functions of Ly. If the outcome
7 (O) is not used in the selection of the dimension my, of the vector ¢y (-), then the operator I1* is

linear, that is,
" [7‘1 + 7‘2] =" [7“1] + " [7‘2]
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In Subsection we will derive yet another expression for the drifts of # and 6,z when cach
M and 7y arr are computed as the result of recursively applying arbitrary linear operators 1% [-] .
Using these expressions when IT¥ [] is the linear regression operator we will calculate bounds
on the rates of convergence of the drifts of 9 and HAM r under the assumption that the functions
Nk () belong to Holder balls with known smoothness order.

For X CR? and for s € (0,1], the Holder ball of radius p > 0 and smoothness order s, denoted
as H (X;s,p), is defined as the set of all functions f : X —R such that

If @)= f@<plz—2z|°

for all z,Z € X. For s > 1, H (X;s,p) is defined as follows. For a d — tuple o = (a1, ..., aq) of
nonnegative integers, let

D* =03 ...0.%.
Then, H (X; s, p) is defined as the set of all functions f : X —R such that f is |s] times continuously
differentiable and

1Df (x) — DOf (@) < pllz — Z)|°¥ and |DPf (2)| < p

for all z,7 € X. and all d — tuples a« = (a,...,aq) and 8 = (B4,...,Bq) of nonnegative integers
satisfying a1 + -+ aqg = |s] and B +--- + Ba < [s] .

The asymptotic behavior of series estimators of a conditional mean function has been widely
studied by several authors for different dictionaries, under the assumption that the conditional
mean function belongs to a Hélder ball. Here, we briefly review the findings, which we will use in
the derivation of our bounds for the drifts. Given a generic outcome Z, a d x 1 vector X and n
i.i.d. copies of (Z, X) with unknown cdf F, consider the series estimator g (X) of g (X) = E (Z| X)
defined as N

3(X)=Fp(X)

where p (X) = (p1 (X),...,pm (X)) is the vector of the first m elements of a dictionary {p; (:t)}j>1
and B = [P {p(X)p(X)'}] - P, {p(X) Z} . Different authors have investigated the rate of con-

vergence of

151, = [ (G00) - 9 @) aFx (2

for different dictionaries, under the assumption that g (z) belongs to a Holder ball H (X;s, p) for
some finite p (see, for example, [26], [7], [5]). In a recent article, Belloni et al. ([3]) provide
a unifying theory which demonstrates that for dictionaries {p; (a:)}j>1 satisfying certain optimal
approximation properties, which include Cohen-Daubechies-Vial wavelet, B-splines and local poly-
nomial partition series, and with m =< na¥T , under regularity conditions, the series estimator
satisfies

~ 2 __2s
15— 9113, (k) = Op (7). (2.36)

In the literature on non-parametric estimation the rate n~ 7% is referred to as the "optimal"
convergence rate for estimating conditional mean functions in a Hélder ball H (X;s, p). This is
because, if X has compact support and var(Z|X) < o2, the rate is minimax in that

2s

inf s e {5 g}, ) 20T
9 g:geH(X;s,p)
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See Chapter 3.2 of [I5].

In our derivation of the bounds for the drifts of  and §M r that use series estimation of 7, we
will assume that each 7 belongs to a Holder ball H (Zk; Sk, pk) with known smoothness si. Here,
L}, is the sample space of Ly, and, as defined in the notation section, £, = L1 X --- x Ly, k € [K].
We will assume that the number of dictionary elements my is non-data driven and grows with n

d 2s
at the rate n@ 3 where dp = dim (fk), so that the optimal rate n” T+ would be achieved
by the series estimator if it could be computed using the -unavailable- outcomes 741 (ka) . By
assuming that my, is pre-specified, i.e. non-data driven, we can then express the series estimator as
a linear operator II¥ and then exploit the special expressions for the drifts of 8 and 57 when the
estimators of 7y are obtained through recursive application of linear operators.

Admittedly, the results we will obtain are of theoretical interest but do not cover the realistic
scenario in which the smoothness s; order is unknown and my is selected adaptively, i.e. via a
data driven procedure. In Section 2.9 we briefly discuss the reasons why our results do not extend
straightforwardly to scenarios in which my, is data driven, as would be the case if, for instance, my
was selected from V-fold cross validation. Although we have not succeeded in producing rigorous
results for the case in which my, is selected adaptively, in Section 2.9 we will point to some results
in the literature on cross validation, which suggest that our conclusions about the relative merits
of 0 vs 0, Mg should remain valid when my is selected by V-fold cross-validation.
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2.6 Global comparison of the drifts of the split-specific es-
timators 6“ and 0},, that use arbitrary non-parametric
estimators of 1 and 7

In this section we will apply the expressions for the drifts of arbitrary one step estimators of 6
derived in Section to make some general remarks on the comparison of the drifts of the split
specific estimators 6* and 6%, that use arbitrary non-parametric estimators of h and 7.

In what follows, we fix u and we let M = D“ denote the main estimation sample. We let
N denote the size of M. This is a minor change of notation with respect to the notation used
in Section where we have used N,, to denote the size of D* and N to denote [n/U]. This
change greatly alleviates the notation from inconsequential subscripts. As in Section [2.5] we let
the set N' = D — D" denote the nuisance estimation sample, N7, ..., X denote the partition of
N into equal or nearly equal subsamples, and 7 and 7, pr denote the two distinct estimators of
Nk, k =1, ..., K, defined in the algorithm for computing 0% and 511(/13 described in Section

Recall from the introduction section that the drift of the one step estimator of # based on N
i.i.d. copies of O = (ZKH,ZK), that uses arbitrary estimators of (hy,...,hx) and (n1,...,nK),

say (hJ{, e h}{) and (771[, ...,77;() , and with the law of Ly estimated by its empirical cumulative
distribution éo, is equal to VN times
Ep{Q (0"} =0 () (2.37)

where

K k
=ni (L) + Y111 va ~ ks @) =l (T)
77}(.;.1 (ZK-H) =K (ZK—H) and

B Qb)) = [a(ostl ') dp (o)
The specific estimators (hJ{, ...,hk) and (7]1, ...,77};) used by one step estimators 9 and é\J“V[R,

namely (ﬁh ...,EK> and (71, ...,k ) , and (ﬁl, ...,EK) and (M1, MR, ---» K, MR) Tespectively, are com-

puted using data from the nuisance estimation sample N, so
[a () ap (o) = £, [@ (h.7)| V]
and
/ a (0,7 P (0) = By | Q (it )| V] -
Likewise, if in the expression cP (hT, nT) for established in Lemma the outcome 771JZ;+1 (ka)

in B, {U;TCH (Lit1) ‘ Ay = a’,;,fk.} is replaced with 741 (Lg+1) one obtains

/ﬁk+1 (Lit1) dF (Liy1|Ax = aj, L) = By, {ﬁk+1 (Lit1) | Ar = ELZmJ\JkH}
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where
k+1 _ | K
N =U; k+1N

Similarly, if in the expression bP (hT nT) for established in Lemma | the outcome
Qk+1 ( k+1’77k+1> = Qk+1 (LK+1,Ik+1,h£+1,7]k+1) m Eg N {Qk+1 k+1’77k+ ’Ak :aZazk}

is replaced by Q41 = Qi1 (ﬁk+17ﬂk+l,MR = qrg1 (Lrg1, Iy hk+1’77k+1 MR one obtains
/Qk+1 (fKﬂjfﬂ;Ek“@kHMR) dF (ZK+177§+1|Z16 = Ez,fk) =
= Eq, {Qkﬂ (Ek-&-l’/ﬁ\k-&-l,MR) ‘ Ay = aztika/lkﬂ}
= By, { Quia| A = a1, T, A4}

Now, using the expression c? (hT, nT) for (2.37)) evaluated at (ﬁ, ﬁ) , we conclude that the drift
of 0¥ is /N times the quantity

5 [Q(h.)| V] -0 - (2.39)
:éEp{1k<1k 1)[nk(Lk) By, { st (Tis)| Ak =@, T, N ’Nk}

and using the expression b (hT, nT) for (2.37)) evaluated at (ﬁ, ﬁMR) , we conclude that the drift of
9AX4 R is VN times the quantity

E { @1 (E,ﬁMR) ‘ N} —0(n) = (2.39)
> nd 2 (e ) o ©) - B {0 |- T 4}

hi (L) hy, (Ly)
The preceding expressions for the drifts of % and 5}{4 r are sums, from £ = 1 to K, of terms that

are expectations of objects involving the product of two estimation errors. For both fv and % R
one of these estimation errors is a pseudo-outcome estimation error i.e. the difference between the
true and estimated conditional mean of the pseudo-outcome used by each procedure in place of the
unknown outcome 7441 (Li+1):

e (L) = Egy {fiers (Dsn)| A = @i, T, A4
and B
ek (L) = By by, {QkJrl) Ay, = ay, Lk,Nk+1}

In the drift for 517(4 r, the second estimation error is ﬁ - % , whereas in the drift for 0" it is
k

Lfifzk: 1 1 1
b wh e\ by (L) Ry (L))

Jj=1




This decomposition of 71k — %k shows that both drifts involve a term for each k corresponding
to the product of the pseudo-outcome estimation error for that k, times the estimation error for
hi. Yet, for each k, the drift of % involves additional terms corresponding to the product of the
pseudo-outcome estimation error for that k, times the estimation error for each hj,j < k.

Although the drift of f" has many more terms than the drift of §“M R, at this level of generality,

i.e. without specifying the specific non-parametric procedure used for estimating
Egk {7/7\;@+1 (fk+1) | Zk = az,fk,ﬁk“} and

Egk N {@kﬂ ‘ A = az7fk,ﬂk+1}, it does not seem possible to quantitatively compare the size
of the drifts of the two estimators. Notice that even if one were to use the same non-parametric pro-
cedure for estimating both conditional means (but applied to the two distinct outcomes 711 (Lk;Jr])

and @k+1)7 we could nevertheless not make much progress without knowing the specific pro-
cedure, since the pseudo-outcomes themselves depend on the procedures that are applied for
E+1,k+2,.. K.

In the next section we will show that when the non-parametric procedure used to estimate the
n;,$ is series estimation, it is possible to derive yet two more expressions for the drift that permit
direct comparisons of the rates of convergence of upper bounds for the drifts of the two estimators,
under the assumption that the 7} s lie in Holder balls.
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2.7 Analysis of the drifts of §* and @\%4 r When 7, is estimated
via series estimation

2.7.1 Formulae for the drifts of 6" and é\]“w r When 7, is estimated via an
arbitrary linear estimator.

The aim of this section is to provide rates of convergence on bounds for the drifts of v and 9\}{/1 R
that compute each 7 and 7, arr by series estimation. To calculate these bounds, we will start by
deriving new expressions for the drifts that are valid when 7, and 7, ;g are obtained by applying
a linear map to some transformation r of the data O = (Ax, Lx41).

Given the data in the subsample N*, the series estimators 7, and Mk, mr of Ny defined in

and ([2.35) can be written as
e (1) = T [fi1] ) (2.40)

Memr (1) =T [Qkﬂ (', ';Ek+1,ﬁk+17]\4R>} () (2.41)
where recall that, as defined in (2.33)), for any function r of the data O,
1% [r] (-) = 5, (r) 65 () (2.42)

with
—1

S Teatn (Tui) 6x (Trs) S Tritn (Tns) 7 (0))

i:0; ENF :0;ENF

T,’Z;k (7” =

~—
\

If, as we shall assume until Section the dimension my of ¢y (fk) does not depend on r, -as it

is the case if my is a predetermined, i.e. non-data driven, increasing function of n—, then Jk (r) is
a linear function of 7 and therefore I17 -] operates linearly on 7.

As a second example of an estimator obtained by applying a linear operator, consider the
multivariate Nadaraya Watson kernel regression estimator 7y, of n, ([20], [21]). This estimator is
also of the form where now

> Ks(Lii—-)r(0;)
i:0;,eNF

> Ko (Lii—>)

1:0,ENE

o~ () = (2.43)

with s (u) a multidimensional kernel of dimension dj, = dim (fk) If the bandwidth vector § is
not data driven, then I17 [-] defined in operates linearly on functions r of O.

An example of a non-parametric estimator 7y (-) for which there exists no linear operator IT*
such that holds, even when its tunning parameter A is assumed to be non-data driven, is the

Lasso estimator 7 (+) = N;fASSO (Mk+1) ¢k () where for any r (O),
1 dim(fk)
- ) — 42
$EASSO (1) = arg min IV Z {{r (0;) — YLy} } +A Z |9k,
i 0, ENF j=1
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To state the next theorem which establishes the special expressions for the drift when the
estimators 7, and 7 ar are obtained by applying a linear map, we need the following definitions.

In the following definitions, hf = (hJ{, cee h}) is a given fixed, non-random, function. Further-
more, for j € [K], I/ -] stands for a given linear map, from functions of O to functions of L;.That
is, II7 [] maps functions, say 7 (-), of O = (Ax, Lx41) to functions II7 [] (-) of L;, and in addition,
for any two functions r1,75 of O, Tl [ry + ro] = I7 [ry] + 117 [ry] .

For0 <j<u<K,let

—u—1
v, i ( Ly Ly )
Jru P = —

”;Srl D\ (Lu) bl (L)

. _ I; I; _ Ii— I I
In particular, V, 11 = i - i1 and Vo = =5 E o — 2k )
P PV = ha(B) W (B AN (Y By
For any function r of O define

1. for j € [K],

I, [r] = TP

I,
E,| —ZX _+(0)
g (hj+1 (Lj41)

where I 11 = hg i1 (ZKH) =1.

2. for1<j<k<K,
Hprjk(r] = (HfDR o...0 HkD}l) [r]
where here and throughout o denotes the composition operation. In particular,
Iprjj+1[] =Mpp -
. forl<j<u<K,
Mgl =V [E, (Viur (0)|A; =a5, Ly = )]
Note that

J

Hrpjj+1[r] =11

I; I _ _
E i B g+l r(O)A; =@, T4 = -
p{ <hj+1 (Lj+1) h;+1 (Lj+1) / J !

4. For1<ri<ro<...<ry <K,

IR g 1] = (MR e © - 0 TRy gy © iRy 1) (7]
We also need the following definitions.
a) for j = K,K —1,..., 1, recursively define
.ok = IV [741,0R)

where 77K+1,DR (ZK—H) =K (ZK+1)~
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b) for j € [K] define '
ni,pr = IV [nj41]
where Nx 41 (ZKH) =K (ZKH) and 71,...,Nx are the true unknown iterated conditional
expectations as defined in .

¢) For j = K, K —1,..., 1, recursively define
mimpr =11 |:qj+1 (', ';b}+1aﬁj+1,MR)}
here L To:ht n =k (f ) and where, recall ¢; ( L Tl ot
w IK+1 \ DR+ ARG B 15 e g g ) = K+1 w ) 95 \FE+1: 45 5051

is defined in (2.13)),j € [K
d) For j € [K], define

- j T
nj,mR = nj,pr+1V |:Qj+1 (, hyT MR) {Q]-H ( 1y MR) Aj=aj, Lt

K*

Note that by definition of the maps IV, j € [K], the functions 7;, DR777J DR,ﬁj7MR and n; MR
are functions of L Furthermore, when I is equal to the linear operator (|2 and At is replaced

by the estimator 1 used to compute gv and GMR, then 1, pr and N MR c01nc1de with the series

estimators 7); and 7; ar used to compute §" and 9%4 R Tespectively.
Throughout the rest of the chapter, unless unclear, to alleviate notation we write functions
without explicitly writing the variables where they are evaluated. Thus, for instance,

By {% (;{’; - E) Oprk,j[0j,prR — 77j]} stands for

ﬂlflfz:_ll) (hkékLk) — é’i )) Uprk;[m,pr — 0j) (Lk)} where, recall, 71(*~1) was defined in Sec-

aSﬂ'W“1 HhT( r) -

The proof of the followmg theorem is given in Appendix [B-4]

By
tion
Theorem 2 Let 7 pr and N mr, k € [K] be the random variables defined in (a) and (c) above

and hL,k € [K], be an arbitrary probability of Ay = a} given Ap_1 = @j_, and Ly, k € [K]. The
following identities hold.

1. for k € [K]
K
Mk,DR — Mk = Nk, DR — Nk + Z IpRk,j Nj,0r — )] (2.44)
j=kt1
2.
X _
B Tow (I 1.\ -
aP (hT,nDR) = ;Ep {ﬂ—T(kl) (hzk — h;i) (nk,DR - nk)}
X _
Iy I, Iy
=N"g JfEt [k K —
kz::l p{ﬂ(k_l) <hk hzt) (M, DR T]k)}
Inn (I Iy
+ D> B {WT(k ) (hk h’r) Mon.k.; nj.on = 77-7]}
1<k<j<K
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K —
ITx—q I, I
> B { 7 T—1) <hk - h};) (e, MR — k)| L1 } (2.45)

k=1

K p—

I Iy I
:ZEp{kl< ) (e, MR — M) Ll}
T )
1 7'['T( ) hk h‘k
K

+ > > B {VorTIr o, s 000 = 15] L1}

0#{r1,.ru CIK—1] j=ru+1
ry<ro<..<ry

4.
K —
Iy 1 I
p (Rt & = k=1 [k _ 2k ) (& _
a? (b, vr) = ;Ep {ﬂ(k—l) (hk hL) (M, MR T)k)}
K —
Inw (I Ik
:ZEp{ r—1 (‘) (UkMR—nk)}
— T s
k=1 rfE=U \ e b
K
+ Z Z Ep{NVo.r IlnR iy .. g M5 R — 15]}
0#{r1,....,ru }C[K —1] j=ru+1
rp<rg<...<ry
Notational remark: in parts (3) and (4) of the Theorem, the summation Z is

Q);é{rlv"wru}g[K_l]

ri<ro<...<ry
over all non-empty subsets of [K — 1] = {1,..., K — 1}, where r; < 73 < ... < 1, denote the ordered
elements of a subset with cardinality w.
In the special case in which K = 2, the expressions for the drift given in parts (2) and (4) of
Theorem [2] are

a? (hY,7pR) = (2.46)

=K, { <}IL11 - 2) (m,pr — 771)}

2 I
it <h2 hT> (772,DR - 772)}
{ ( - ) [Ep { }1722 ("727DR —12)

-

and
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a? (hY, ur) =

=Ep { (fILi - ;&) (m,mr — 771)}

+ Ep {hI;l (;LQ Z) (m2,MR —772)}

+Ep { <fIL11 - IE) i Ep{ (;{2 - Z) (n2.mr — M2)| @y, Lo

When K = 3, these formulae are

CL >7IDR ZE {

Iy
th—1

) (Mk,DR — ﬁk)}
k

hT

(

T

(2.47)

gl

-}

I
o))
o)

+ E, { <}IL11 - lﬁ) It [Ep { }% (n2,pr —M2)| a3, Ly = H }
+ E, {};[]‘11 (Z - Z) IT? |:Ep { }% (n3,pr — m3)| @3, Ly = H }
(i) [ o [ men s
and
a” (h',7vr) = g:lEp :;E;;ln (;IL: - iE) (kMR — 7776):
+E, (lﬁ — I}{> 1t Ep{ (Z Z) (n2,mr — m2)| @i, Lo
+E, {thl <}IL2 ZE) 12 Ep{ <fILZ Z) (13,m 7 — M3)
+Ep{ %1 — Z&) It E, {}IE (Z — ZE) (773,MR—773)
AR (R AT -

ag,Lg,:-H

(2.48)

(2.49)

)

For calculating bounds on the rates of convergence of the drift of f* under smoothness assump-
tions on the functions 7, the formula in part (2) of Theorem 2]is more convenient than the formulae
given in Section because it is expressed in terms of the estimation errors ny, pr — 7 of the ideal,
but unfeasible, estimator ny, pr = II* k1] of mi, = Ep {41 (Lik+1) [Ak = @k, Li, = -} that use the
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true, but unknown, outcomes 741 (Zkﬂ,i) , for units ¢ in AN*. One can then use known results for
rates of convergence of the estimation error of specific -linear- non-parametric regression estimators
of a conditional mean function under smoothness assumptions on it to bound Tk, DR~ k- We follow
precisely this strategy in the next subsection to derive bounds for the drift of g%. On the other hand,
the formula in part (4) of Theorem |2 I expresses the drift of 9 YR in terms of

Mk,MR — Nk = NMk,DR — Tlk
k ~ - =
+11 {QkJrl ('7 ';EZH’QHLMR) {Qk+1 ( k1o g MR) ‘ Ap =g, Ly = H

where 7, pr — 7k is the same estimation error as the one appearing in the expression for the drift

of 6. In the next subsection we show that, for series estimation, this estimation error dominates
the size of ng, R — Mk -

2.7.2 Application of the formulae to the analysis of bounds for the drifts
when 7, is estimated via series estimation

In this section we will derive bounds, under the assumption that each 7, belongs to a Holder ball
with known smoothness order, for the rates of convergence of the drifts of % and 9 Vr in the special
case in which both estimators use series estimators of 7. We will present a rigorous analysis for
the cases K = 2 and K = 3. Our rigorous analysis can be generalized to arbitrary K but at the cost
of complicating significantly the notation. Thus, for an arbitrary K we will state without proof a
conjecture on what the convergence rates should be for the bounds of the drifts of g% and O R

To derive the rate of convergence of upper bounds for the drift of 0 and 0 Vg, we will use the
formulae stated in parts (2) and (4) of Theorem I for the special linear operator 1T [-] defined in
[2.42) -whose very definition depends on the data in subsample N'* — . Because, as pointed out
earlier, these formulae depend on the estimation errors n; pr — 7k, our results will depend on the
rates of convergence to 0 of these estimation errors (in an appropriate norm) as the size of * grows
to 0o. However, because the ratio between the size of N* and the size n of the entire sample D is
bounded below and above by non-zero constants, then the rates of convergence of the estimation
errors can be expressed in terms of n rather than it terms of the size of A*. In our calculations
we will therefore express the rates of convergence for our bounds on the drifts in terms of n rather
than in terms of the sizes of each N'*, as in doing so we will avoid unnecessary complications of
notation.

Throughout this section we therefore assume that IT¥ -] , k € [K] is defined as in .
Letting N denote the nuisance estimation sample D — D“,Ek be the estimator of hy used by
the estimators 8* and 0},, and M and 7N arr the series estimators of 7, used by 6% and 0%,
respectively, define for k = 1,2, 3,

x}.

Tk, I I
(5kDR = Ep { %k—i <hk - > (nk DR — nk)

T,
ka Ik Ik
R =E, { %k—_i <hk — E/) (M, MR — Mk) N} )
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I I I
Phi-p, (2 -2 )2 -
&3 p{hl R n3,pr — N3] | N
I I I I I —
gé\gR—Ep{Al <2A2) I’ {Ep{ <3A3) (n3,mr —M3)| A2 = @5, L3 7N}”N}
1\ 2 hs 3
I I
& = Ep{ (hl - A1> 1" [I1? [n3,pr — n3]] ‘N}
1 h1
I I I I I —
E%R EEP{ (1 - A1> ! {Ep{A2 < > 3) (n3,mr —m3)| A1 =al, Ly = ,/\/'}”/\/'}
1 1 ho hs ha
and 54 =

MR _
=5, { (- ) m [ { (- 2) B { (- ) tmasw— |35 T =} 0. T = Y )| )

Equations [2 and with hf = h and with 7y pr and 7, pmr being the series estimators 7y,
and Mg mr of Mk ubed by 6% and QX/[ r Tespectively, give that for K = 2

B, {Qu (h.0) |V} = 0.(n) = 877 + 557 + £F

and

By { Qr (Reiinn) | N} —0.(n) = 6117 4 037 + ¢4,
while equations [2.48| and [2.49] give that for K = 3,
E, {Q1 (A7) [N} =0 () = 607 + 087 4 0P 7 + P 4+ DR + €DF (2:50)
and

By { Q1 (Biiar )| N} =0 () = 17 4+ 0377 + 617 + lif 1+ MR + 7 4048 (251)

We will now compute bounds for the rates of convergence to 0 of a? (Tl, ﬁ) and a? (E, v R) under

the assumption that each 7y, () belongs to a Holder ball of finite radius and known smoothness order
and when a specific subset of the following conditions below hold for each k - the subset depending
on the estimator 7 or 7y r and on whether K =2 or K = 3-.

Condition Hélder(k) 7y () lies in a Holder ball H (Ly; sk, p) with p < oo and known smooth-
ness order s; > 0.
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Condition R(k) Assumptions 2 - 5 of Lemma |17 in Appendix are satisfied with Ly in the
place of X, nmgi1 (Lk+1) in the place of Y, n (-) in the place of g(-), the distribution of

Zk+1|2k = aj, in the place of the distribution of (Y, X’), ¢k (Zk) in the place of p(x),
H (Zk; Sk, pk) in the place of G and v = s/ dim (fk) in the place of ~.

Condition B(k) there exists £ > 0 such that hy, (Zk) > ¢ for all [y, .

Condition Hconvergence(k) Hﬁk — th =0, (1).

Condition HrateInf(k) Hﬁk — th = O, (a,n) for some sequence oy, converging to 0 as n

goes to oo.

. 2
Condition HrateL2(k) \/Ep {Ik <hk — hk) ‘N} = O, (Bk,n) for some sequence [, converg-
ing to 0 as n goes to oo.

In what follows whenever Condition Holder(k) holds and dj, denotes the dimension of the vector

Ly, we let
Yk

27+ 1

Ve = Z—Z and r, =

In addition, recall that my is the dimension of the vector ¢ (fk) used to construct the series
estimators 7, and 7 v g (see definition )

Condition B(k) is the standard positivity assumption routinely invoked in causal inference.

Conditions R(k) and HrateL2(k) are used in the calculations on the bonds of the drifts of
both 6% and @I\QR as we repeatedly invoke the Cauchy-Swartz inequality. Condition R(k) lists
standard regularity conditions in the literature on series estimation, including conditions on the
approximation properties of the chosen dictionary and conditions on the eigenvalues of covariance
of the covariate vector, under which

VB [T o~ m?| ] = 0, (n5557). (252)

For completeness, in LemmalI7]of the Appendix[B.5 we show a general result on the convergence
of series estimators from where (2.52) follows under Condition R(k). Condition HrateInf(k) is
additionally used in the derivation of our bounds for the drift of §“M Ry as we invoke Holder’s
inequality to bound the components §%€R, j < k, of the drift.

Conditions HrateInf(k) and HrateL2(k) are expressed in terms of generic estimators hy, because
in our calculations of the bounds we use the expression of the drift established in Theorem [2] which
holds without any restrictions on the form of the estimators of hi. Nevertheless, for completeness,
in Subsection below we provide regularity assumptions under which Conditions HrateInf(k)
and HrateL2(k) holds if Ty is a series estimator and hy, is assumed to belong to a Holder ball
with known smoothness order. In Appendix we provide further discussion of all the preceding
conditions.

The following results are proved in Appendix
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Theorem 3 Assume that K = 2 and that Conditions Holder(k), R(k), B(k), Heonvergence(k)
and HrateL2(k) hold for k =1,2. If my < n>x¥1 for k =1,2, then

ST =0y (Bran™™), 877 =0y (Baan™™) and 57 = O, (B1,an™ ")

Consequently,
E,{ @1 (R.7)| N} =0 () = 0y (Do)

where
UDR,n = Max {ﬁl,n’n_r1 ’ 627nn_r2a Bl,nn_T2 }

Theorem 4 Assume that K = 2, that Conditions Holder(k), R(k), B(k) and HrateL2(k) hold for
k = 1,2, that Condition Hconvergence(k) holds for k =1 and that Condition Hratelnf(k) holds for

k=2 Ifm = NI for k=1,2, then
5{\/[R = OP (51,nn_rl) ) 5£4R = OP (Bg,nn_”) and gi\gR = Op (61,na2,nn_r2) .

Consequently,
Ep { Q1 (ETA}MR) ‘ N} —0(n) = Op (urmRn)

where
HMR,n = INAX {/Bl,nn_rl ) B2mn—r2; ﬂl,nalnn_rz } .

Suppose that in the two preceding theorems the smoothness s; and s were the same. Then,
because dy < da (since Ly is a superset of L1), we would have 77 > 75 and consequently r; > rs.
If, in addition, it were the case that 81, = 0(B82,), as would be the case if hy and hs also
belonged to Holder balls with the same, sufficiently large, smoothness order, and iz\l and /};2 were
appropriate series estimators (see Subsection below), then we would conclude that parp., =
UDR;n = B2,,n~"2. Thus, for such setting the preceding Theorems indicate that both g" and % R

would be /n-consistent, i.e. n'/? {é“ -0 (77)} =0, (1) and n'/? {é}f/[R -0 (77)} =0, (1), so long

as ﬂgmnl/ 2=r2 = O (1). Then, for equally smooth functions 7; and 72, and equally (sufficiently)
smooth functions hy and ha, the preceding Theorems suggest that for the purposes of ensuring
v/n—consistency, there is no gain in using 6%, instead of 8*, when both are computed using series
estimators of the unknown hj; and the unknown 7. However, if it happens to be the case that
UDR;n = Pi1nn~ "2 because at the particular data generating law ho is so much smoother than
h, that the estimation error of, say an appropriate series, estimator of hs converges at a rate
B2, much faster to O than the rate /3, of the estimation error of, say the appropriate series,
estimator of hy then we would have that uaygr, = o(ttprn). In such case, it could then happen

that n'/2 {(9\}(4}3 — 9(77)} = 0, (1) even though n'/? {1/9\“ -0 (77)} diverges. Thus, the preceding

Theorems suggest that, as far as ensuring \/n-consistency, it never hurts to use 5}(4 r instead

of " and on some exceptional circumstances, it may help. We emphasize that we use the verb
"suggest" instead of "imply" because the rates of convergence pupr, and pag,, established in

Theorems [3[ and [4f are upper bounds on the rates of convergence of £, {Ql <ﬁ, ﬁDR) ‘ N} —6(n)
and E, {Ql (ﬁ, ﬁMR> ) N} — 0 (n), which may not be sharp.
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Theorem 5 Assume that K = 3 and that Conditions Holder(k), R(k), B(k), Heconvergence(k)
and HrateL2(k) hold for k =1,2,3. If my < n?>*+1 for k =1,2,3 then

5P =0, (Beun ™),k =1,2,3

and
PR =0, (Bran™") 1<k<j<3.
Consequently,
B, { Q1 (h7)| N} = 00) = Oy (uprn)
where

HDR,n = max {Bl,nnirl ) BQ,nn7T2 ) 53,71”77‘37 ﬂl,nn77‘2 ) 51,71”77’37 ﬂQ,nn7T3 } .

Theorem 6 Assume that K = 3, that Conditions Holder(k), R(k), B(k), and HrateL2(k) hold for
k = 1,2,3, that Condition Hconvergence(k) holds for k = 1 and that Condition HrateInf(k) holds

for k=2,3. If my < R for k=1,2,3 then
6]]€WR = Op (ﬁk’nn_r") ,k = ]_, 27 3,

G =0, (Benojun ™) 1<k <j<3

and
%{‘é{% =0, (ﬁLnOéQ’nO[gm‘TLiTS) .
Consequently,
Ey { @1 (ﬁvﬁMR) ‘ N} =0 () =Op (urirn)
where

KM R,n = Max {ﬂl,nnir1 ) BZ,nnirz ) ﬁ?&,nnirav Bl,nQZ,nnimv Bl,na&nniwa BZ,nOlB,nnirg} s

An important first lesson from the results of Theorems 3] to[f} is that the structure of the bounds
for the drifts for K = 2 and K = 3 shares a common pattern. Specifically

i The bounds ppr,» and pa g,y for 0% and é\}f/f g are each equal to the dominating rate in a distinct
set of convergence rates.

ii Both sets include the products of the Lo (P) convergence rates of the errors for estimating hy
and 7y, for all k.

iii The set corresponding to gu additionally contains the products of the Lo (P) convergence rates
of the errors for estimating hj and n; for k < j.

iv In contrast, the set corresponding to 5};1 r additionally contains the product of the L, (P) con-
vergence rates of the errors for estimating hj and n; times the L, convergence rate of the
error for estimating h;, for k < j.

v Thus, for each k < j, the product in the set corresponding to 5}\‘4 r is of smaller order than the
corresponding product in the set associated with 6%.
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vi Note also that the bound on the rate of convergence of %{\g’% is irrelevant and does not appears in
the definition of pasr » because it is of smaller order than the bound on the rate of convergence

of f%R.

It can be shown that the features (i)-(v) generalizes to an arbitrary K. Furthermore, point (vi)
also generalizes to arbitrary K in that the drift of GA“M R is a sum over more terms than that of
the drift of 8“, but the additional terms in the drift of % p are irrelevant because their rate of
convergence to 0 never dominates the convergence rate of the drift of GA“M R

We can then make analogous general qualitative remarks as those made for the case K = 2.
In general, when the smoothness orders sj of 7 are the same for all k, and the smoothness of hy
are the same for all k£ and both hy and 7y are estimated by appropriate series estimation, both
0" and 6%, will be \/n-consistent so long as BKynnl/zer = O(1). If it just happens that that
UDRn = Brnn~ "7 for some k < j, because at the particular data generating law hy, (77j) are so much
wigglier than the remaining hjs (n;s), then we would have that yry g, = o(upr,») and it could
then happen that n'/? {5}\‘“3 —0 (17)} = 0, (1) even though n'/? {5“ -0 (77)} diverges. Thus, as
in the case K = 2, Theorems and|§| suggest that, as far as ensuring /n-consistency, it never hurts
to use guM r instead of 9% and on some exceptional circumstances, it may help.

Remark 1 to arrive at the bounds for all the terms in the expression for the drift of 57151% and

67}\‘413 in the proofs of Theoremsla tola it was crucial that the estimation of the n;,s was separately
conducted from independent samples N*. To see this, consider for example

I I
281 = | { (12 = 2 ) 10 b = ml| ]
1 h1
N}\/Ep {11 ' [n2,pR — 772}2’/\[}

I I\
E L
p{(hl h1>

In E, {Il ' ne.pr — 172]2‘]\/} , 1Y [n2, pr — m2] is the least squares projection of the data dependent

IN

outcomes 12, pr — N2. When n2, pr — 12 depends only on data in N2 and IT' is computed from data
in Nt we can treat the outcome n2 pr — 12 as i.i.d. and thus apply results for the Ly norm of least
squares projections. See Remark[d of Appendiz[B.4 for the specific details on this point.

Sample splitting is additionally needed to handle the drift of 0%;. To see this, recall that

Ne,MR — Nk = Nk, DR — Mk
1 (s (5 BBy ) = B { Quit (Bisns By ) | Ak = @ s = - A0 ]

Because E,H_land ﬁk+1,MR depend on N**1 = N LU . U NE which is independent from the
sample N'* which is used to compute the projection II*, then conditional of./L/'kH,

Qk+1 (Ekﬂ’ﬁkH,MR) -E, {Q}g+1 (£k+1’/ﬁ\k+1,MR) ‘ A = 6}271;6“,&’“'1} is a mean zero random
variable. Thus, since IIF is applied to conditionally i.5.d. mean zero random variables it follows
that TI% [QkJrl ('a '%EkH@kH,MR) - Ep{QkJrl (EkJrl?ﬁkJrl,MR)‘Zk =y, Ly = HZ is of order

O, (my/n) where, recall, my, is the dimension of the covariate vector ¢y (fk). Without sample
splitting the nuisance sample N we would have no way of controlling this term.
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The drifts when the h) s are also estimated by series estimation

In this subsection we consider the special case in which the hj s are also estimated by series es-
timation under the assumption that they belong to Holder balls H (Lk;uk,ak). To apply the
results of the preceding subsection we will find the sequences oy, and B, such that the conditions

d
Hratelnf(k) and HrateL2(k) hold. We will assume that the series are computed using M}, =< nTRET
elements of an appropriate dictionary, so that, under regularlty condltlons stated in Lemma[J] below,
condition HrateL2(k) holds for the optimal rate By, = n ~= 4% The key technical challenge we
must overcome to finalize our calculation is to find what is the Lo, rate of convergence ay y, of the
series estimator of hy when the estimator is computed using the number of dictionary elements My,
which yields the optimal Lo rate of convergence. Using results in the article of Belloni et al.([3]),
we will derive rates ay, when Ay = vy /dy > 1/6 where dj, = dim (fk) . We have not succeeded in
finding results in the literature that will aid us in the computation of these rates when \; < 1/6.
Even more, we were unable to find results in the literature that would even ensure consistency in
L, i.e. that Hﬁk — th = 0p (1) when Ay < 1/6. In fact, we suspect that the rates we find for
(o]

the case 1/6 < A < 1/4 are new.
Henceforth, assume that the estimator hy (-) used by 6" and 6}, is equal to

i, (-) = 7w (-) (2.53)

where )

’

T = Z T—1,i0% (Liy) or (Lii) Z Ti-1,i0k (Liyi) Inyg
:0;ENF i:0,EN*
and
Pk (fk) = (SOk 1 (fk) <o Pk, M, (fk))/

are the first M) elements of an appropriate dictionary. Note that the range of the functions
Tog (-) may not fall inside the interval [0, 1] even though the range of hy (-) does. This is inconse-
quential for our calculations since they are based on results on the Ly and Lo, convergence rates
of the estimation error hk — hj that are valid without requiring that hk () have the same range as

he (4).
The following lemma follows immediately from Lemma [T7] in Appendix We state it here
for ease of reference.

Lemma 9 Suppose that, for k € [K]|

1. hy () lies in a Holder ball H (Zk;l/k,ak) with o, < 0o and known smoothness order vy > 0,
and

2. the assumptions 2 - 5 of Lemma mn Appendix are satisfied with Ly, in the place of X, I,
in the place of Y, hy (+) in the place of g (-), the distribution of (Ik,fk)‘zk,l =ajy_, in the
place of the distribution of (Y, X'), vk (Zk) in the place of p(x), H (Zk; Vk,ak) wn the place
of G and A\, = Z—’; in the place of 7.

Then, for k € [K], if My =< n“;“, it holds that
IEON 2 A
\/Ep {Ik (i = 1) ‘N} ~0, <n—m$+1) .
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In the next lemma, we establish bounds on the convergence rates of Hﬁk — th when A\ > %.
oo
This lemma is an immediate corollary of Lemma 1§ in Appendix

Lemma 10 Suppose that, for each k € [K],

1. hy (v) lies in a H(')'lder ball H (Zk;vk, ak) with o, < 0o and known smoothness order vy such
that A\, = ”’“ > 7, and

2. the assumptions 2 - 6 of Lemma m Appendi:p hold with?k in the place of X, Iy, in the
place of Y, hi () in the place of g (-), the distribution of (Ik,Lk)| Ap_1 = aj_, in the place
of the distribution of (Y, X'), ¢, (Ix) in the place of p(x), H (Lk;vk,ox) in the place of G

Uk

and A\, = i in the place of .
Then, for k € [K], if My = n™71, it holds that
~ —1
a) b —hil| =0, <n By \/logn> Jif # <X < %, and

~ A
b) ||hg — hg =0, (n_2’\k+1 10gn> if Ak > %

In particular,

c) ﬁk — hy =0, (1) for all A\ > %.

(oo}

Applying Lemmas[9|and [I0] we conclude that under the assumptions of Theorem [3]and Lemmas
[0 and [10] for K = 2, we have that

,(Aikﬂ,—yiJ)
ppRn = Op | max n \FweH st
: 1<k<j<2

and if additionally, the conditions of Theorem [ hold,

,(LJFL) ( FECES Tl S )
0, [ max { max n~ \Fart=5T) - (ST 571 Viogn if L<p< !
P 1<k<2 ' 6 1

HMRn = _(Aik_‘r-yik) _( M X w )
O, [ max< max n \ZFT72%+T) i \22F1 7 2% F1 729251 ) Jog if g > 1
P 1<k<2 ' 23

__ This result formalizes the discussion in the preceding section regarding the benefits offered by
0% r relative to gv. Specifically, if hy and hs are equally smooth and n; and 7, are equally smooth,
then A\; > Ay and 73 > 2. In such case, the preceding condltlons for uDRn = o( 1/2) and

UMRm = O ( *1/2) agree and reduce to the same requirement that > 1/2, so our re-

2,\ Tt 272-;-1

sults suggest that 9 v r does not offer gains relative to 9% insofar ensuring /n—consistent estimation

of 6 (n) . However, if it just happens to be the case that hy is so much less smooth than ho that Ay <
(21 72

Az, then it may happen that the dominating term in ppg , isn (“1“ + 2”2“) whereas the dominat-

6Xg—1
ing term in parpnisn (2*1+1+“2+2+2”2+1) Viogn 1f <A < 4 orn (”1+1+2*2+1+272+1> log n if

Ay > 4 7- In such case, pprr.n = 0 (D R,n), therefore anlylng the possibility that par,, is 0 ( 1/2)
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- and consequently that %R =0, (n‘1/2) — even though upg,, is not even O (n_1/2) -and thus
raising the possibility that 9" is not O, (n_l/Q) —.

A similar analysis holds when K = 3. Specifically, if the assumptions of Theorem [5]and Lemmas
[9 and [I0] hold, then

=0 max nf(’“z%Jr%)
R =2 \ 1 s '
Also, if the assumptions of Theorem [ and Lemmas [9] and [I0] hold, then
A . A Y4
pmrn = Op (maX { max {”_(Wﬁﬁ%) } ,  Imax {n_<wk+1+2wj+l+sj) log H}D

1<k<3 1<k<j<3

where, for j = 2,3,

[

6\;—1 e 1 1
R if § <A<y
J j : . 1
X,+1 if Aj > 1
From the expressions for ptipr,» and gy, we can deduce similar qualitative conclusions. As
far as ensuring \/n— consistency is concerned, it never hurts and on some exceptional occasions it

may help to use 5}(4}2 as opposed to 6*.
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2.8 Analysis of the centered empirical process when h; and
1, are estimated by series estimation.

In this section we argue that, under the assumptions of Theorems [3| and 4| (if K = 2) or Theorems
and [6] (if K = 3), the condition

E, [{Q (nf,n") —Q(h,n)}QIN} N0 (2.54)

holds, when (hT, nT) are replaced by the estimators (ﬁ,ﬁ) used to compute " when the n,s are

series estimators, or when (hf,n') are replaced by the estimators by R) used to compute 57” R

when the m MRS are series estimators. As indicated in Section [2.5) and proved in the Appendix
when holds, then the centered empirical process Gy, {@ (hT, nT) —Q (h, 77)} converges
to 0 as NV, — oo.

This result and the expansion

VNAE -0} = Gx, {Q (hm)} + G, {Q (W) — @ ()}
+ /N [Ep {Q (hT,n")} — 6 (n)]

imply that, under the conditions of the aforementioned theorems, and with ppr,, and par,, as
defined in these theorems, the estimator §“ (5}(4 ) will be /N,-consistent (and thus y/n-consistent)
and asymptotically normal so long as ptpr, = 0 (n_l/z) (UMRm =0 (n‘l/Q)). In what follows, h
stands for the vector whose components are the estimators Ek used to compute 9% and 5% r» Which

need not be series estimators. On the other hand, 7 stands for the vector of series estimators 7y
used to compute 0%, and Mg stands for the vector of series estimators n, mr used to compute

0% k-
In Appendix [B:7] we prove the following result for the special cases K = 2 and K = 3..

Lemma 11 Suppose that for each k € [K], the conditions Hélder(k) , R(k), B(k) and Hconvergence(k)
hold and my, =< NI . Then (12.54) holds with (hT,nT) replaced by (Tl,ﬁ) and it also holds with

(hT,nT) replaced by (’ﬁ,ﬁMR> .
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2.9 Series estimation with the number of dictionary ele-
ments chosen by cross-validation

As indicated in Subsection , our comparisons of the asymptotic behavior of g" and gﬁ/[ r When
these use series estimators of the ) s heavily rely on Theorems |3|- @ These theorems assume that
d

the number my of dictionary functions is chosen so that my =< N Thus, our calculations
assume that one knows the smoothness order s; of the Holder ball where ny lies. However, in
practice sy is typically unknown, and my is selected using a data adaptive procedure, such as V-
fold cross-validation. Unfortunately, when my, is data driven, the results of Subsection [2.7.2] do not
immediately apply for a couple of reasons. To explain them, we will focus attention to the case in
which my is selected via V-fold cross-validation. So we first briefly review this procedure.

As in Subsection suppose that one has a sample D comprised of n i.i.d. copies (Z;, X;)
of (Z,X) where dim (X) = d. Randomly split D into V equal or nearly equal size sub-samples
D!, ...,DV. For a given dictionary {p; (m)}j>1 ,and foreachr =1,...,V,let g"("™ () = BT’(m)/p(m) ()
where p™ (-) = (p1 (-) ..., pm (-))’ and

-1

grim) = > p™ (X3) p™ (X)) > p"™ (X)) Z;

i:(Z;,X;)€ED—D" i((Z;,X;)€ED—D"

The V-fold cross validated number of dictionary elements over a set M is defined as

v 2
- = 3 . — A",f(m) .
m = arg :nnel&z Z [Z1 7 (Xz)} :
v=14:(Z;,X;)ED"
Finally, the cross validated estimator of g (z) is given by (™ (-) = B p(i) (+) where for any m
—1

prm= 3 A ) () > M)z

i:(Z;,X;)€D i:(Z;,X;)€D

An important subtle point is that whereas, for a fixed m, (" () depends linearly on the outcome
vector Z = (Zy, ..., Zy), the cross-validated estimator (™ (-) does not, because of its non-linear
dependence on Z through m.

The cross-validated m attempts to approximate the ideal number of dictionary functions

2
i = i - (@) dF
m = arg #né&/ (z g™ (x) (2,2)
that would select an oracle that could compute the true risk of each the M = #M estimators
g™ (z) . Dudoit and van der Laan, ([I0], Section 3) showed that the V-fold cross-validated es-
timator §(™ performs asymptotically as well as the oracle estimator §(™ in that if log (M) =

0 (nEF [f (z —g'™ (x))ZdF (z,x)]) then

~—

[{o(@) =3 @)} dF @) 5

[ {g(x) — g™ ()} dF (z) "=
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If g belongs to H (X; s, p) and M is chosen large enough, one would expect ﬁlxnﬁ, since as we
have indicated in Subsection the optimal number of dictionary functions grows as nTEa,
Consequently, one would expect that [ (g (z) — g™ (m))2 dF () < O, (nf(m))

The result of Dudoit and van der Laan suggest that if one uses V-fold cross-validation within
each subsample N* to compute the number 7y, of dictionary functions, the conclusions about how
0" and 0}, are compared should remain the same as when my, is non-data driven and optimal.
However, this assertion is tempered by two facts. First, our calculations in Subsection [2.7.2] heavily
rely on the series estimator being a linear operator, i.e. depending linearly on the outcome vector,
in order to use the alternative expressions for the drift derived in Subsection [2.7.1} However, as
indicated earlier, the series estimator with number of dictionary functions selected by V-fold cross-
validated does not depend linearly on the outcome vector. Second, M) would be computed using
the pseudo-outcomes 711 (ka) or Qx+1 in place of the unknown true outcome 741 (fk_H) . The

impact that these replacements have on the behavior of f {nh DR (Zk) — g (Zk) }2 dF’ (ka = 62)
is unclear.
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2.10 Resumen

El objetivo de este capitulo es investigar y contrastar las propiedades asintéticas de los esti-
madores doble y multiple robustos del pardametro de la g-férmula de cédlculo longitudinal (tam-
bién conocida como g-férmula) de Robins ([29]), a partir de n replicaciones i.i.d. de un vector
O = (01,...,0k,Lk+1) donde O = (Ag, L),k = 1,..., K, Ay es una variable discreta (que
representa el tratamiento recibido en el momento t;) y Ly es un vector aleatorio, posiblemente
multivariado (que contiene a los datos registrados en el sujeto justo un instante previo a recibir el
tratamiento Ag).
Sea p la densidad de la ley P de O, con respecto a alguna medida dominante. Definimos

K K

p(o) = Hgk (b1 [Ty ax) Hhk (anlli, ar—-1),

k=0 k=1

o abreviadamente p = gh, donde hy, (akﬂk,ak,l) =P (A;c =ap|Ly =, Ap_1 = Ek,l) Y gk (lk+1|lk,ak)
es (una versién de) la densidad condicional de Lyy;. Aqui y en lo que sigue, para 1 < k < K y
cualquier {Uj}1<j<K , denotamos v, = (v1, ..., V%) .

La g-formula (J29]) se define como

0 (p) = Egh* {H (ZKJrl)}

donde x es una funcién a valores reales dada y, para cada k = 1, ..., K, h} (akﬂk, Ek,l) es una funcién
de probabilidad puntual dada, es decir conocida, tal que p* = gh* es absolutamente continua con
respecto a p = gh y Egp- (-) denota esperanza bajo p* = gh*. Explicitamente,

K

0 (p) = /cp (o) [T ox (tks1llk @) dpa (o) (2.55)

k=0

donde (ly,@o) =nill y

K
¢ (o) = {th (ak|lk,ak—1)} K (Ikt1) - (2.56)
k=1
es una funcién conocida, es decir, especificada, de o.
Bajo elecciones particulares de hj, arribamos a expresiones de 6 (p) equivalentes a pardmetros
de interés en la inferencia causal y en el andlisis de datos faltantes. Estas elecciones son revisadas
en el Apéndice [B:I] Un ejemplo importante corresponde al caso en que

hy (akﬂk,ak_l) = I{a;;} (ar) (2.57)

que, bajo el supuesto de que no existencia de confusores no medidos, conlleva a un 6 (p) igual a la
esperanza de la variable de respuesta contrafactual cuando se fuerza a toda la poblacién a seguir
un determinado régimen de tratamiento fijo, es decir, no dindmico, Ay = a},k =1,..., K ([29], [32]
and [33]). Para evitar tecnicismos y simplificar la notacién, en este capitulo nos centraremos en este
caso particular, es decir, asumiremos que hj, es la funcién de probabilidad puntual . Nuestros
resultados se generalizan ficilmente a h}’s arbitrarias.
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Para la funcién de probabilidad puntual hj de la g-férmula se reduce a
0 (p) = Ego [Egl [ . EQK—l [EQK {H (ZK-H) ‘ZK = E*vaKHZK—l = a}(—lﬂfK—l] s |A1 = aT’Llﬂ

donde Ey, (-|-) denota la esperanza condicional bajo g. Esta expresién deja en claro que 6 (p)
depende de p solo a través de g; mds precisamente sélo a través de la ley marginal go de L1, a través
de la esperanza condicional

i (Li) = Egie {5 (L) [ Ak =@, Lic}

y a través de las esperanzas condicionales iteradas definidas secuencialmente para k = K —1,...,1,
como

Mk (L) = Eg, {mks1 (Lis1)| Ax = a5, Li } - (2.58)
Por lo tanto, de ahora en mds denotaremos a 6 (p) como 6 (1) con 7 = (go, N1y -y M) -
Una primera eleccién natural para estimar 6 (1) es mediante el estimador 6 (7)) llamado "plug-in"
donde 7 = (90,71, -, NK) ¥

1. g0 = d@o donde éo es la distribucién empirica de L1,

2. Tk es un estimador preferido de la media condicional de s (ZKH) dado Ly entre los indi-
viduos con Ay =@}, v,

3. secuencialmente para k = K —1,...,1, i (fk) es un estimador preferido de la media condi-
cional de ng41 (Zk+1) dado Ly entre los individuos con Ay, = ay,, obtenido simulando que la
"variable de respuesta" desconocida 741 (Li+1) es igual a su estimador Mg41 (Lpt1) -

Cuando los estimadores 7 (fk) ,k = K +1,...,1, son calculados bajo modelos de regresién
paramétricos, al estimador "plug-in" se lo conoce como el estimador paramétrico de la g-férmula
([B1). Bajo condiciones de regularidad, el estimador paramétrico de la g-férmula 6 (7)) satisface que
vn {0 (n) — 0 (n)} converge a una distribucién normal con media cero si los modelos paramétricos de
regresion asumidos para cada ng, k = K, ..., 1 son todos correctos. Sin embargo, 8 (7)) ni siquiera es
consistente si uno de estos modelos esta mal especificado. Una estrategia muy conocida que produce
un estimador que confiere cierta proteccién contra la especificacion incorrecta de los modelos para

las 7;,s consiste en sumar a 0 (7)) la cantidad P, [M (ﬁ, ﬁ)] donde h = (ﬁl, ...,ﬁK) es un vector de

estimadores preferidos de las hj s y para cualquier ht = (hJ{, e h}() ynl = (QS»UL e 77}() ,

M (BT, ") =m (O; AT, n') (2.59)

S 3 Al Ten) il (Te))

con 77}(4—1 (Lk+1) = 6 (Li+1) (25], []). Notemos que M (h',n") no depende de gg y que cuando

hf=hy 777C = n para todo k = 1,..., K, es decir cuando 77;2 es igual a la verdadera esperanza
condicional iterada bajo p = gh, entonces E, {M (h,n)} = 0 donde, de ahora en mds, E,, (-) denota
esperanza bajo la ley p = gh.
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Siguiendo esta estrategia conseguimos el estimador
0=0() +P, [M (ﬁ,ﬁ)] .
Es bien sabido que la variable aleatoria
IF (hyn) = M (h,n) +m (L1) — 6 (n)

es la unica funcién de influencia del pardmetro 6 (1) bajo un modelo no paramétrico para la ley P

de O ([1], [0]). Por lo tanto, dado que Py, [ (L1)] = 6 () , resulta que el estimador 6 es igual al
estimador semiparamétrico eficiente a un paso bajo un modelo no paramétrico, es decir

0=0(@) +P, [IF (E,ﬁ)} .
Otra identidad algebraica importante muestra que el estimador a un paso 0 es, de hecho, el asf
llamado estimador "Augmented Inverse Probability Weighted" (AIPW), familiar en la literatura

de datos faltantes e inferencia causal ([44]). Especificamente, mediante ciertos cdlculos algebraicos,
se puede ver que

R (ZK+1)

1 * (Ak) o
{ak} _ 1
hi (Ak|Ak1,Lk)1 1} i (L)

o Iy (4))
th {J}

m (Ly)+ M (hf,n") = { (4,
j=1 4 (A4,

K k-1 Iy . (A)
B {“j} ’
Z H h; (A;]4;-1, L) {

k=1 | j=1

0
donde [] (1) = 1. El estimador ATPW es precisamente la media muestral del lado derecho de la
j=1
igualdad cuando, para cada k, h; y 77;2 son reemplazados por estimadores hy, 7.
Bajo condiciones de regularidad, si las ;s y las h].s son estimadas bajo modelos paramétricos,

lineales generalizados, de regresién (por ejemplo, las hj s son estimadas bajo modelos de regresién
logistica si las A s son binarias), entonces /n {5— 0 (17)} converge a distribucién normal con media

cero si o bien (i) los modelos de regresién paramétricos asumidos para cada ng, k = K, ..., 1 son
todos correctos, o bien (ii) los modelos paramétricos asumidos para cada hy k = K, ..., 1 son todos
correctos, pero no necesariamente (i) y (ii) se satisfacen simultdneamente. Esta propiedad, cuya
demostracién heuristica se detalla en la Seccién es conocida como doble robustez, dado que 0
otorga al analista dos oportunidades de obtener inferencias correctas sobre 6 (n), una modelando
las ms correctamente y otra modelando las hj s correctamente.

El estimador a un paso resulta especialmente atractivo cuando las 7, k = 1, ..., K, en los pasos
2 y 3 anteriores se estiman bajo un modelo no paramétrico definido tinicamente por suposiciones
de suavidad o raleza. En dicho caso, el estimador "plug-in" 0 (7)) puede no ser una opcién util de
estimacion ya que es posible que ni siquiera converja a tasa /n ([31]). En cambio, si se utiliza una
estrategia apropiada de division de la muestra, explicada en detalle en la Seccién [2.5 el estimador
a un paso que utiliza estimadores no paramétricos 7 y hx es /n— consistente para 0 (n) y asin-

toticamente normal siempre que 7 y hi converjan lo suficientemente répido a ng y hy ([39], [8],
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[0, [57]). Més ain, cuando K = 1, se ha demostrado que es posible obtener convergencia a tasa
\/n en el estimador a un paso, compensando tasas de convergencia mds lentas para el estimador de
una de las funciones de ruido, 77 o hy, con tasas més rdpidas para el estimador de la otra funcién
de ruido ([39], [31], [8], 1], [57]). Por el contrario, poco se ha reportado en la literatura sobre las
compensaciones especificas en las tasas de convergencia para la estimacién de las funciones de ruido
1y h otorgado por el estimador a un paso cuando K > 1, a excepcién de [31]. Uno de los objetivos
de este capitulo es estudiar qué compensaciones ofrece é\, si es que ofrece alguna, en las tasas de
convergencia de los estimadores de las funciones de ruido, cuando K > 1.

Recientemente, varios articulos han senalado ([53], [24]) que cuando las ;s son estimadas bajo
modelos paramétricos, es posible obtener estimadores que otorgan incluso mayor proteccién con-
tra la incorrecta especificacién de los modelos que el estimador a un paso anterior. La siguiente
modificacién del paso 3 anterior produce uno de dichos estimadores.

_ MR. secuencialmente, para k = K—1,...,1, calcular iy pr (fk) un estimador preferido de la media
condicional de 741 (Z;H_l) dado Ly entre los individuos con A; = ay,, obtenido simulando
que la "variable de respuesta" desconocida 741 (fk;Jrl) es igual la pseudo respuesta

Toi} i)

ékJrl = Nk+1,MR (fkﬂ) + =

——{Qurz = oo (L) }
hies1 (01 |05, Lisr)

donde @K+1 =K (ZKH) .

Los articulos [46] y [47] han definido y defendido el uso de las pseudo respuestas @kﬂ para
producir estimadores dobles robustos. No fue hasta el articulo de [53] que se noté que el uso de estas
pseudo respuestas produce estimadores que otorgan una mayor proteccién contra la especificacién
errénea de los modelos.

Notemos al estimador a un paso que utiliza 75 arr en vez de 7 (como en el paso 3 anterior) con

éMR, es decir
Orir =0 (ar) + Py, [M (ﬁv ﬁMR)]

donde Mk = (G0; M1, MRs - K —1,MR, K ) -

Se puede demostrar que, cuando los modelos utilizados para calcular 7y p g, y aquéllos utiliza-
dos para calcular ﬁk, k =1,..., K, son paramétricos, é\M r de hecho coincide con el estimador del
coeficiente asociado a @y en el MMEM del Capitulo 1 de esta tesis, en el caso particular en que las
covariables basales (denotadas en ese capitulo como Z) son nulas, el MMEM es saturado en @y y las
funciones gy, (EK,fj,l; %) ,k=1,..., K (utilizadas en la Subsecciénpara modelar las p) s) son

., _ . . . , — \/
también saturadas en @k . Lo anterior es cierto si, ademds, (1) los modelos para las 7y, (Lk) s son

aquéllos que se derivan de los modelos compatibles paramétricos para las 7 (6}{,fk)/ s definidas
en la Seccién 7.1 de ese capitulo y (2) los pardmetros que indexan los modelos para las 7;.s son
calculados mediante regresiones pesadas como en ese capitulo. Por lo tanto, de los resultados del

Capitulo 1 se deduce que, bajo condiciones de regularidad, /n {éM r—10 (77)} converge a una dis-

tribucién normal cuando, para cada k = 1,..., K, o bien el modelo paramétrico para hy utilizado
para calcular hy es correcto o bien el modelo paramétrico para ny utilizado para calcular 7 prr €s
correcto. A esta propiedad, cuya demostracién heuristica se detalla en la Seccién [2.4.2] para mo-
delos paramétricos arbitrarios y estimadores de los pardmetros arbitrarios, no inicamente aquéllos
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utilizados en el Capitulo 1, se la conoce como miiltiple robustez ([53], [24]) y se la ha llamado doble
robustez secuencial en ([22]). Esto implica que O otorga mayor proteccién contra la incorrecta
especificacion de los modelos que gya que garantiza inferencias validas no sélo cuando todas las ;s
son modeladas correctamente, o todas las h} s son modeladas correctamente, si no también cuando
un subconjunto de las 77;,s son modeladas correctamente siempre que para los k’s para los cuales
las 7;,s son modeladas incorrectamente, las hj s sean correctamente modeladas.

Si bien los ventajas en cuanto a robustez de §MR sobre 0 parecen estar bien documentados
y comprendidas en la literatura cuando las funciones de ruido h y n se estiman bajo modelos
paramétricos, lo mismo no es cierto para el caso en el que h y 1 se estiman bajo modelos no
paramétricos. Por lo tanto, un segundo objetivo de este capitulo es investigar, cuando h y 1 se
estiman bajo modelos no paramétricos definidos inicamente por suposiciones de suavidad o raleza,
si las ﬁ;c MRS otorgan compensaciones adicionales en los requisitos sobre las tasas de convergencia
de los estimadores de los pardmetros de ruido sobre los que otorga el estimador a un paso que usa
las 7.

Para ser concretos sobre las contribuciones de este capitulo, para garantizar una estimacién
consistente a tasa y/n, comenzamos escribiendo una descomposicién de la diferencia centrada entre
el estimador a un paso y el verdadero pardmetro que se utiliza normalmente para analizar las

propiedades asintéticas del estimador a un paso. De ahora en més, hf = (h];, e hk) y

nt = (gg, 771[, e 17%) representan estimadores arbitrarios de h y n y

@—emw+inummwy

Notemos que, cuando gf = go, 0 ( Pn,{nj (L1) }, de modo que
0" =0(n") +P, [M(hl,n")]
:mh* +Mmmﬂ
=P, [Q(r'.n')]
donde
Q (h!,n') = ¢ (O;ht,n')

] (L1) + M (ht,n")

Notemos que @ (hT, n ) no depende de 90

Cuando At =} ynl =7, gt coincide con el estimador doble robusto ) y cuando Al = h y
T]T = MR, 0f es igual al estimador multiple robusto 9M r. Escribamos

Va{ft =0} = 6. {Q (b)) + G {Q (0" = Q (hm)}

+Vn B, {Q (h',n')} =6 (n)]
= Tl,n + T2,n + T3,n

donde
E, {Q (hT,nT)} = /q (0; hT,nT) dP (o)
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Gy () = Vol { - E, (1)}

es el proceso empirico centrado, Y1, =G, {Q (h,n)}, Y2, =G, {Q (hT, nT) - Q (h, 77)} y
Yo = Vi {B, {Q (b)) — 0 ()}

Por el Teorema Central del Limite, el término Y, , converge a una distribucién normal con
media cero siempre que Varg, [@Q (h,n)] < co.

El término Yy, es la diferencia entre dos procesos empiricos centrados, uno evaluado en (h,n)
y el otro evaluado en su estimador (hT,nT) . Si las funciones (h,n) son lo suficientemente suaves
o ralas, entonces deberfa ser posible construir estimadores (hT,nT) que converjan a (h,7n) a una
tasa lo suficientemente rapida, como para que Yo, sea o, (1). Es posible hacer este término o, (1)
bajo condiciones de regularidad muy moderadas, incluso sin restricciones de suavidad o raleza,
empleando la siguiente estrategia conocida como "cross-fitting". En primer lugar, se divide a la
muestra en un numero finito U de submuestras de igual o casi igual tamano, designando a una de
ellas como la "muestra principal de estimacion" y al resto como las "muestras de estimacién de
ruido". Luego, se calculan nf y A' utilizando los datos de la unién de las submuestras de estimacién
de ruido y se calcula el estimador a un paso a partir de la submuestra principal de estimacién
reemplazando las 1 y h desconocidas por sus estimadores calculados a partir de la unién de las
submuestras de estimacion de ruido. A continuacion, se repite el procedimiento U—1 veces, cada
vez designando una submuestra distinta como la muestra principal de estimacién. Finalmente, se
calcula el estimador #7de 6 (1) como el promedio de los U estimadores a un paso. La utilidad de
la estrategia "cross-fitting" para evitar imponer condiciones en la complejidad del modelo se ha
observado hace mucho tiempo ([49], Capitulo 25 de [58]) pero sélo recientemente ha sido enfatizado
y recomendado (ver, por ejemplo, [45], [63] y []]). En la Seccién se describen con precisién los
pasos de este procedimiento.

Asumiendo que se ha utilizado un procedimiento "cross-fitting", entonces y/n {é\T -0 (77)} estard

acotado en probabilidad siempre que
Ysn=vn[E, {Q (")} —0(n)] (2.60)

sea Op (1). Mas atn, \/ﬁ{éf - 9(77)} serd asintéticamente normal con media cero y varianza

Varg, {Q (h,n)} si esta varianza es finita y Y3, = 0,(1). Por lo tanto, el término (2.60) que
usualmente se conoce como término del "drift" o término del sesgo ([68]), es crucial para determi-
nar la distribucién asintética de 1.

La contribucién central de este capitulo es la derivacién de distintas expresiones para el término
del "drift". A nuestro entender, ninguna de las expresiones que se derivaran en este capitulo se
han informado anteriormente en la literatura. Cada una de estas expresiones ayuda a visualizar
la estructura general de las propiedades de robustez, en términos de compensaciones de las tasas
de convergencia de los estimadores no paramétricos de n y h, otorgadas por el estimador doble
robusto 0 y el estimador de miltiple robusto 6,;r. Para el caso particular en el que los estimadores
de cada ny son lineales en la variable de respuesta, proporcionaremos una expresién adicional para
el "drift" que nos permitird investigar en detalle y comparar el comportamiento asintético de 6 y
O r cuando las 7 son estimadas mediante estimacién por series.
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Appendix A

Appendix of Chapter 1

A.1 Proof of the variation independence of Robins et al.’s
parameterization functionals for the special case K = 2

The following proposition establishes that the functionals f (v|z), f (I2|l1,a1),m0 (G2, 2) , p1 (G2, 1)
and po (62, lg) are variation independent.

Proposition 2 Let f* (v|z) and f* (I2|l1,a1) be arbitrary conditional densities for V' given Z, and
Lo given (L1, Ay) respectively. Let ng (az, z) be an arbitrary function of (aa, z) and let pi (Go,11) and
p5 (@2, 12) be any functions satisfying p} (Gz,2,v =vo) = 0 and p3 (@2,l1,ls = l2) = 0, for fived
given values vy and lao. Then, there exists a distribution for (L1, Ay, Lo, A2, Y') with joint density

f verifying that f (v]z) = f* (v]z), f (lalli,a1) = f* (l2ll1,a1) , no (@2, 2) = ng (@2, 2), p1(@2,01) =
P31 (G2,11) and py (62,[2) = 0 (62,[2) where Mg, p1 and p2 are the functionals defined in Sections

and [1-5) applied to f.
Proof. Define
15 (a2, 12) =05 (@2, 2) + {p] (@2, 1) — T7 (@2, 2)} + {p5 (a2, l2) — T5 (az, 1)},

where Fik (62, Z) = Ef*(u\z) {,01'< (ag, Ll) ‘Z = Z} and F; (62, ll) = Ef*(b”l,(ll) {p; (ag,fg) |A1 = CL17L1 = ll} .
Let f be the density corresponding to a distribution function of (L1, A1, Lo, A2, Y’) such that

f(V|Z)=f"(VIZ), f (L2|L1, A1) = f* (La|L1, Ar) and E (Y|Az, L) = 03 (A2, L2) . (A1)

We will show that any f satisfying (A.1) also satisfies that 7o (@2, 2) = ng (@2,2), p1 (@2,01) =
pT (62711) and P2 (EQJQ) = p; (62,12). L o o
The fact that ps = p5 follows because 72 (Ag, Lg) =F (Y|A2, Lg) =, (Ag, Lg) and then,

P2 (52,22) =12 (EQ,Zz 02 (G2,1l1,l2 = l20)

=5 (a2, l2) — 15 (@2, 1,12 = l20)
= p5 (@2,12) — p5 (a2, 11,12 = lap)
= p; a2772) .
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Analogously, to see that p; = pj it is enough to show that 7, = 1] where

m (@2, 1) = 1 (@2, 2) + {p7 (@2, 1) —

To prove that 7, = nj, first note that, by definition,

M (a2, 1)
Now, by (A.1)) and the fact that ne = 13,
m (@z2,11)

and, by definition of nj and 73,

= Efo)tr,a1) {m2 (G2, L2) |A1 = a1, L1 =11 } .

7 (az,2)}.

= Epe(aty,00) {5 (@2, L2) [A1 = a1, Ly =l },

Epe(talts,an) {5 (@2, L2) [A1 = a1, Ly =l } =

0 (@2, 10) + Epe(y)14,00) [{05 (@2, L2)

=13 (aZ,Ll)} A1 = a1, L1 = ll} .

(A.3)

The second term in the right hand side in (A.3|) is zero by definition of I'5, which implies that

m = n3. Consequently,

p1(@2,01) =

—m (@2, z,v = vp)
—ny (@2,2,v = o)
*
1

—p (627271} = UO)

The argument leading to the fact that ny = 7 is analogous to the one used to prove that 17, = nj.

Specifically, it holds because
(1) mo (@2,2) = Ef(u)z) {m (@2, L1) |Z = 2},
(v]z) = f* (v|z) and m = 7y,

(ii) f
EH;) Epe oy Ani (@2, L1) |Z = 2} = ng (@2, 2) + Ef« o)) [{p7 (@2,11) —T7 (@2,2)}|Z = 2], and

V) Ef«(u)z) [{p7 (@2, L1) — T} (a2,
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A.2 Heuristics for fact (IV) of Subsection [1.6.4]

Throughout this section, we use 7j and 7; to denote the trues n; and 7; respectively, j € {1,2}.
Here, we give an intuitive argument, invoking counterfactuals, that the estimator 7, constructed
in step 4 of Subsection is itself doubly robust in the sense that, under regularity conditions,
it is consistent for nj under the model that assumes that R; holds and that either Ry or P holds.
Recall that, under the identifying assumptions, nj (az, L1) = F (Yz,|A1 = a1, L1). Thus,
m (A1,a9, L1;1,71,71) can be regarded as a MSMM for the conditional mean of the counterfactual
outcome in a point exposure study with treatment variable A;. Hence, we are effectively replicating
our model formulation with K = 1, with (Aj, L1) playing the role of Z and with Ly playing the
role of V. Invoking the theory of Molina et al. ([24]), we conclude that for any given dy (A2, L1) ,
the function

U(}l {(1/)7'7177—1) 7772,7@} = Siil (772,7T2) + S(,llio {(¢a7177—1) a772} )

where
di (As, L _
St (n2,m) = M {Y —n2 (A2,L2)} and
S;QO {(hyy, 1) me} = Z dy (A1, a2, L1) {m2 (A1, a2, La) —m (A1, a2, Li;, 7, 71) } s
azE A2

satisfies that, under model Ry, E [Uj {(¢*, 77, 7) ,m2, m2}] = 0 if either 5y = 13 or w3 = 73. Now
consider estimators of (¢)*,~;) solving

P {5 (o, 7o) |+ Pu [S3 {0, 71) 7} | =0 (A1)

where (il is a, possibly data dependent, function, and 71,72 and 7o are consistent for 77, 75 and
75, under Ry, Ry and Ps respectively. Under regularity conditions, such estimators of (¢*,~7) are
CAN under the model that assumes that R; holds and that either Ro or Py holds. The estimator

(12(1),%1)) computed in step 4 of the algorithm of Subsection [1.6.4] solves an equation of the form
(A4) with dy(-,-) = 77 "0, (-, 12(2),%2)) and with Ty, 71 and 7> computed in steps 1, 2 and 3 of that
estimation algorithm and, hence, consistent for 73,7 and 73 under P2, R and Ro respectively.
To see this first note that, by step 4, ({ﬂ\(l), %1)) solves P, [ ;A’O {(¥yy1,71) ,7/’]\2}:| = 0. In addition,

by step 3 and the fact that 7, is a subvector of 1y, P, {Sclﬁl (ﬁz,%)} = 0. Note that if, in the
equation of step 4, 7.71 would have been evaluated at (1, 71) instead of (15(2),%2)) , then it had not
been true that (12(1),%1)) solves an equation of the form , unless m and g; are linear in the
parameters. This explains why evaluation of 7.71 at (12(2)7%2)) in step 4 is essential to ensure the

double robustness of (@Wﬁp) and hence, the multiple robustness of @M R-
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A.3 Proofs of results of Section [1.10
A.3.1 Proof of Lemma [1]

First, note that the equations solved in steps 1 and 2 of the estimation algorithm of Section [1.7.2

are P, (¢§k) =0 and P, (¢K+k) = 0 respectively, k =1,..., K. Hence, é\k = Qy, solves

0K 1k
P" ((blgk) =0

and O = Ty solves
K+Ek\ _
P’n (¢9K+k> - 07

k=1,....K.
Then, we would arrive at the desired result if we show that
035411 solves P, (gﬁ%ifiif) =0, (A.5)

for k=0,...,K.
To see (A.5) for & = K, note that the equation in step 3 of the estimation algorithm is the

equation in s 1 given by
P, (qﬁK“ ) =0.
025,02k 41

By assumption of the lemma, this equation has a solution. Then, by definition of (@K L%f)) in
step 3 of the estimation algorithm, §2K+1 = (zZ(K),%g()) is a solution of

P, 2K+ = 0 and, hence, 52K+1 solves P, ( EK'H) =0
025,025k 11 02K 11

To see (A.5) for £ = 1,..., K — 1, first note that the equations in step 4 of the estimation
algorithm are the equations in 035 11— given by

K.k
O3k 41— (k4+1):03K+1—k

for k = 1,..., K — 1. By assumption of the lemma, these equations have a solution. Then, by
definition of (J(k),%,ik)) in step 4 of the estimation algorithm, §3K+1_k = (i(k),%,(ck)) is a solution
of P, (gp’f’k > =0, so that
O3k —k,03K+1—k
= k.k . . _
03511k solves P, (g%yﬂlik) =0fork=1,..., K —1. (A.6)

Now, the fact that (A.5) holds for k =1,..., K — 1, follows from the facts that

. SK+1—k __ k,j
(1) ¢§3K+1—k o Zj:k §0§3K+1—j’

(i) P, (go ) — 0 by (A3),

O3 +1—k
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93K+1—j 93K+1*j

(iii) for j=k+1,..., K -1, P, (gpﬁ’j > = 0 because P, (g@l’j ) = 0 by (A.6) and 7'7k

. L]
is a subvector of 7;, and

(iv) P, <¢E’K > = 0 because P, ( ZK“) =0, by ([A5) for k = K, and 7, is a subvector of

02k 41 02541

Nk -
Finally, to see (A.5)) for k = 0, first note that the equation in step 5 of the estimation algorithm

is the equation in O3k 1,
P, | ¢2° = 0.
" <S003K793K+1

By assumption of the lemma, this equation has a solution. Then, by definition of @M R in step 5 of

the estimation algorithm, §3K+1 = 7ZMR is a solution of P, <<p9’0 ) =0, so that
03K ,03K +1
5 0,0 .
03511 solves Py, (90%;(“) =0. (A7)

Hence, the fact that (A.5) holds for k = 0 is a consequence of the following facts:
(1) §K+1 — ZK 0,7

03K 41 Jj=0 §0§3K+1—j’
(ii) Py, (go?’o ) =0 by (A7),
O3k +1
(iii) for y=1,...,. K = 1, P, (@Q’j > = 0 because P, (cpl’j > =0 by (A.6) and m is a
03K 41—5 035K +1—j

subvector of 7.7j7 and

(iv) P, (@9’1{ > = 0 because P, < ZK“) = 0 and m is a subvector of 7).

O2rc+1 O2x 41

A.3.2 Proof of Proposition
We start with the proof of fact (a). First, recall that,

K-1

Ua (0,7, 7) = S5 (e, 7ic) + 3 S (e s 7o) + 83 (7).
k=1
where
St (e o) = o )4 — e (A o)
d ) %f{ (ZszK) ) )
fork=1,..., K —1,
. . o~ d(Ar, a1, 7)) (.  — _ o _
S(IiC (Ukﬂlkﬂ,ﬁ-) = Z m {7716+1 (Ak,Qk+1,Lk+1) — Nk (Ak,gk+1,Lk)} ,

a1 €A

and

Sq @) = Y dlay, 2){in (a1, L1) — m(ay, Z;9)} -

ay EAl
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Here, for arbitrary functions 7;,j = 1,..., K, with range in (0,1) and domain in the sample space
of (Aj,Lj) ,for k=1,..., K, we denote

k
(@ le) = [[ 7 (3@.15) -
j=1
Now, define the following functions. Let

~ d(Ax,Z -
ME (07) = g O (A ),
1(Ax.2)

m {ik (Ax, L) —m (Ak, Z;9)},

M (i1, i) =

and, for k=1,..., K — 1, let

Myt (%ﬁkﬂﬁk) = Y

21«+1€Ak+1

d(Ap,a..1,2) ,_ _ _ _
M {nk+1 (Ak,Qk+1,Lk+1) —m (Alca@k+17 Z§¢)}

and

d (Zk7gk+1v Z)

Aﬂ,i (Z]“Zk) {ﬁk (Zkagk+1azk) —m(zkanerZ;w)} .

>

Qk+1€Ak+1

MZ;JC (M ﬁkv%k)

Finally, let
MO (i) = Y d(ay, 2) (i (ay, L1) — m (ay, Z39)} -
QleAl

Since
MR (T ) = MES (073, 7o) = S (T T )
fork=1,..., K —1,
Mf“’k <7/)a7~7k+17%k) - M;’k (7/1777k7%k> =Sk (ﬁk»ﬁk-&-la%k)

and
M;70 (waﬁl) = Sl(‘lj (wa)ﬁl)a

then we can write
Ud (¢7ﬁ7 %) = M;{J’_LK (¢7%K> - M;{J{ (w7ﬁK7%K)
K-1 N N
+ Z {Mfﬂ’k (w,ﬁkﬂﬁk) - Mp* (Zﬁ,ﬁkﬁk)}
k=1

+ M;70 (wa ﬁl) .
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Rearranging the terms in the last display, we arrive at

Ua (,1,7) = MfH’K (¢,%K> - i {Mfk (¢aﬁk7%k) - M;’k_l (¢7ﬁka%k—1>}

= (M @ T - My° () |

Our proof of (a) relies on the following facts:
(1) For k=2,...,K,

B (M (5 ) - ME (0 } =0
for every P4, 7, and Ty_y if 7, = 75, and
Ep {Mé’l (W, 1, m1) — M;’O (1/’,771)} =0

for every P, and 1 if 711 = 1.
(2.a) Fork=1,...,K — 1,

EP {MC];-’_Lk (% ﬁk-‘rh%k) - MSJC (w’ﬁk;%k)} =0
for every P,1 and Ty if k1 = es1 and 7 = 7,
(2.b) Ep {M;{H’K (w,%K) — M;{’K (%/J,ﬁK,%K)} = 0 for every P, and T if Nk = Nk, and
(2.c) Ep {MC}’O (¢ (P) 7171)} =0 for every P € M if 1 = ;.
Fact (1) follows from the fact that, for k =2,... K,
Ep {Mfk (wvﬁka%k> |Zk71,fk} = M(];’kfl (%ﬁk,%kq)

for every P,,n; and Ty if 7 = T and

Ep {M}" (0,7, 70) L} = M (0,70)

for every P, and 7; if ™ = m1. This is because, for any random random vector (W, X) with W

discrete and for any function g (w,z), F { lfr((vg}f;)) |X} = ,9wX).

Fact (2.a) follows from the fact that, for k=1,..., K — 1,

Ep {M(Ifﬂ’k ('@[}777k+17%k> |Zkvzk} = M[]fk ("/}vnka%k>
for every P,1 and 7. This is because

Ep {Uk+1 (Zk>Qk+17Zk+l) |Zkafk} ="Mk (Zk,QkJrlafk)

for every a;,, € Ay -
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Likewise, fact (2.b) follows from the fact that
Ep {MfH’K (M%K) |ZKaZK} = MKK (1/)7771077}{)

for every P,¢ and T, because Ep {Y|Ak,Lx} =nk (A, Lk).
Fact (2.c) follows from the facts that

Ep{m (a1, L1)|Z} = no (a1, 2)

for every a; € A, by definition of 1, and 1o (a1, Z) = m (a4, Z;v (P)) for every P € M.
Now, let P € M, d any function and let 7 = (71,...,7k) and T = (71,...,7Tk) such that, for
each k € {1,..., K}, either 7y, = ny or 7y = 7). Define
C={ke[K]:nx=m},
with [K]={1,...,K} and B
C = [K]\C,

Thus, for each k € {1,..., K}, if k € C, then 7, = n;, and, if k € C, then 7y, = 7. Also, define the
function s : CU{K + 1} — CU{0} / s(k) = max {r € CU{0}: r < k}. Note that s is a bijection.
For notational convenience, we define 7y = 170 = Ng41 = nall. Now define

Merl K (1/)777K+177TK) = Mf+1 K (w;WK) ) d ('(/1,7]1,77'()) = d (%771) and
MS” (v, M0, 7o) = 0. Then, we can write

K

Ug (0, 7,7) = {Mf“”c (zb, ﬁkﬂ,%k) — M (w, ﬁk%k)}
k=0
K+1

K
Z kk—1 ~ = Z kk ~ =
= Md (¢7nk,ﬂk—1) - Md (wankvﬂ-k) .
k=1 k=0
Hence, rearranging the terms in a convenient way, we arrive at

Ua (Y0, 7) = Z {Mf’k_l (wﬁk,%kq) . VA (¢,ns(k),ﬂs( ))} (A.8)

keCU{K+1}

=3 (Mt (e Fe) = M (0 T ) } -

keC

To see this note that, since s is a bijection of C U {K + 1} in C U {0},

S oy (%55( 7rs<k) > My (¢,ﬁk,%k>

keCU{K+1} keCu{o}
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Therefore, the right hand side of (|A.8]) is equal to

Z Mf’k_l (w7ﬁka%k—l) - Z Mf,k (Tp)ﬁka%k:)

keCU{K+1} keCu{0}

= 30 M (0 F) + D0 MR (7 T )
keC keC
K+1 K

=30 MR (0 T ) = 0 M (7T
k=1 k=0

= Ua (7, 7).

Equation (A.8]) implies that, to prove fact (a), it suffices to prove that

(1) Ep g My*1 (¢ (P) 77719;%19—1) — M) (¢ (P) 7775(1@),%8(1@)} =0
for every k € CU{K + 1} and P € M, and

() Ep {M5* (v (P) iie, 7 ) = MEF (%(P) e Faer ) } = 0
for every k € C and P € M. B

Fact (II) follows from fact (1) above because 7y, = m, when k € C.

To prove of fact (I), we consider the following six settings:
(ikeCand1<s(k)=k—1,
(ii) ke Cand 1 <s(k) <k—1,
(iii) k € C and s (k) =0,
(ivik=K+1land s(K+1) =K,
(V) k=K+1land1<s(K+1)< K, and
(vijk=K+1and s(K+1)=0.
Under setting (i), 7x = nx because k € C. Also, s(k) =k —1 and s (k) € C by definition of s (-)
and because s (k) > 1. Then, 7jy_1 = nr—1 and, hence,

Ep (M5 (9 (P) s Tt ) = MEP W ((P) T, o) }
= Ep {MEF (6(P) e Foor) = METHT (6(P) i1, T ) }
which is equal to zero by (2.a).

Under setting (ii), 7x = nx because k € C. Likewise, 75k = 15k since s (k) € C, by definition
of s(-) and because s (k) > 1. Hence,

M (0 (P) i Fien) = MO (0P g )

= Mg’k_l (¢ (P) 777k,%k—1> - Mj(k)’s(k) (w (P) 7775(1@),%5(@) .
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Now, we apply a telescopic sum and write

Mk,kq (1/1 (P) ,nk,%k—1> - M;(k)ys(k) (1/1 (P) vnS(k)v%s(k))

i (7 (0(P) g Foma) = M ((P) ey Ty )}

j=s(k)+1

+ {Mg’j (¢ (P) ﬂ?jv%j) - My (1/) (P) anjv%j—l)}-

j=s(k)+1
Notice that, for j = s (k) +1,...,k,
Ep {Mi’j_l (¢ (P),ﬁj7%j—1) — My (¢ (P)anj—la%j—l)} =0
by (2.a). Also note that, under this setting, for j = s (k) +1,...,k — 1, 7; = m; and, hence,
Bp {037 (v(P) m; %) = M7 (0(P) 0 7y ) = 0
by (1). This concludes the proof of fact (I) under (ii).
Under (iii), 75 = nx because k € C. Also, k = min C because s (k) = 0 and, hence, 7; = 7, for

j=1,...,k—1. Then,

Mg,k71 (1/) (P) ’ﬁ]ﬁ%’f—l) - M;(k)’S(k) (1/) (P) 7ﬁs(k‘),%s(k))
= MEFL (4 (P) ey Ter) — MO (4 (P) 70, 7o)
= M§7k_1 (w (P) ankvﬁk—l) .

Again, we apply a telescopic sum and write

Mk’k_l (Y (P),nk, Tr-1)

> (M (P i) = M @ P) s T

+

M ZMw

(M3 (6 (P) ) — MG (0 (P ) |+ M (0 (P) ).

j=1

Notice that, for j = 2,...,k,
J,j—1 = j—1,5-1 = _
Bp {MJ ™" (@ (P) njyw50) = M7 (0 (P) g1, 750) = 0

by (2.a). Also, for j=1,...,k—1,
Bp {M}7 (6 (P),mj,7) = M7~ (& (P),mj i) | = 0

by (1), and Ep {MC}’O (¥ (P) ,771)} =0 by (2.c). Hence, fact (I) also holds under this setting.
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Under setting (iv), k = K + 1 and s (K 4+ 1) = K, hence 7jx = nx and
Ep {Mf’k_l (ZZ’ (P) ,ﬁk,%k—1) — My (¢ (P) ,ﬁs(k),%s(k))}
= Ep { M (9 (P) Fic) = M (0(P) nie, T ) |
which is zero by (2.b).
Under (v), k=K +1and 1 <s(K +1) < K, then 7y(x41) = Ns(kx+1) and
MER (0 (P ik o) = M (6(P) gy T

= M (v (P) T ) = MDY (3 (P) iy R )

Analogously to setting (ii), applying a telescopic sum, we have that the right hand side of last
equation is equal to

M (0 (P) T ) = M (4 (P) e, T )
K

+ Z {M(g’jil (1/1 (P) 777ja%j71) - Mcjl;l’jil (1/} (P) ,T}jfl,%jfl)}
j=s(K+1)+1
K
3 M (v @) F) = M (0 (P) )
j=s(K+1)+1

Notice that

Ep {MI 5 (p(P), 7 ) = MY (v (P) mie, ) b =0
by (2.b) and, for j =s(K +1)+1,..., K,
Ep {Mg’Fl (1/1 (P) ,77]'7%;'71) o/ (1/1 (P) anjfla%jfl)} =0
by (2.a). Also note that, under this setting, for j = s (K +1) +1,..., K, 7; = 7; and, hence,
Ep {M}7 (4(P).m; %) = MJ7 (¢ (P),ms, 750) | =0
by (1). This concludes the proof of fact (I) under (v).
Finally, under setting (vi), s (K 4+ 1) = 0, which implies that C' = 0 and, hence, that 7; = 7;
for j=1,..., K. Then,
EP {M§7k_1 (1/} (P) 7ﬁk7%k71> - MdS(k)ys(k) (1/1 (P) ’ﬁs(k)7%s(k))}
= Ep { MK (0 (), 7x) = MJ© (6 (P) 70, o) |
= Ep { M (0 (P),7) |
which is zero because Ep [wf( (ZK,ZK)71 {Y —m (ZK, Z: (P))} | Ak, Z} =0 by [35].

Fact (b) follows from fact (a) because, for each k =1,..., K —1, the model for ny, (A, aj 1, L)
implied by Ry, can be regarded as a MSMM with parameter (¢ (P),7, (P), 7k (P)) in longitudinal
study with K — k time points, outcome Y, treatment variables Ay 1, ..., Ax, and with (A, Ly)
playing the role of Z and Lj41 playing the role of V.
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A.3.3 Proof of Lemma 2]

Fact (a) follows immediately from the assumptions of the lemma. To see fact (b), first note that,
by part (iv) of Condition SPob, it suffices to show that ) (P) = 05x1 (P) solves the equation in
111} = 03K+17

EP {¢3K+l } —0.

@;K(P),GSKH)

Now, notice that

3K+1 B _—
¢(§;K(P),93K+l) =Uq (¢,n',7")

with Uy the function defined in ([1.20]) and with
d(aK7 Z) = T.TL (aKv Z; Z/JT(K) (P)) )

nf = me (@, B v @ (P), 71 (P), 7L ()

and B
7T;L = Tk (Ek,lk;a,z (P)) R

k=1,...,K. Then, to see (b) ti suffices to show that, for every P € F, ¢ (P) solves

Ep{Uq (¢,n',7")} =o0.

Since F C M, Proposition [1| implies that it holds if, when P € F, for each k € {1,..., K}, either
77;2 =7 Or 77,1; = 7. Now, the facts that Ry C Rg—_1,k=2,..., K, and Ry C M imply that model

F can also be written as X«
]—":Mﬂ{ﬂ (PkURk)}.

k=1

Thus, if P € F then, for each k = 1,..., K, either P € Py or P € [Ren {41 (P URY ] Tt
implies that, to prove (b), it suffices to show that
(1) for each k € {1,..., K}, if P € Pj, then 7r;£ = 7, and

(2) for each k € {1,..., K}, if P € Ry N {mf:m (PSURS)} then ] = 1.

Fact (1) follows from the fact that az (P) = oy, (P) for P € P,k =1,...,K. This is because
(a) if P € Py, then ay, (P) solves Ep (¢% ) = 0 since ¢f (o) is the score for a; under model Py

and Condition D is verified, and (b) the equation in ay, Ep (q’)’;k) = 0, has a unique solution at

oz,t (P) by assumption (i).

To see fact (2), first note that, for each k = 1,..., K, if P € Ry, then 7',1 (P) =71 (P). Tt
follows from the facts that (a) 7 (P) solves Ep (¢X+F) = 0 when P € Ry, and (b) the equation
in 7, Ep (¢5%) = 0, has a unique solution at 7} (P) by assumption (ii). Moreover, since Ry, C
Ri_1,k = 2,..., K, then 7| (P) = 7, (P) when P € Ry, k = 1,..., K. Thus, we would arrive at
the desired result if we show that

(W(K) (P), 7t (p)) = (4 (P), 7 (P)) if P € Ry (A.9)
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and that, for each k =1,..., K — 1,

K
(v1® (P) 7LD (P)) = (v (P) 7, (P)) ifPeRkﬂ{ M <7’5UR5>}- (A.10)

s=k-+1

We will prove (A.9) and (A.10) by backward induction. Fact (A.9) follows from assumption (iii) and
from the fact that, when P € R, (¢ (P),75g (P)) solves the equation in (w(K),ig()) =0k 11,

Ep{ ¢l =0.
P {¢<0;K(P)792K+1)

This is because R i is a regression model for the outcome Y with covariates (ZK,ZK) and ﬂ( (P) =
T (P) if P € Rg. Now, given 1 < j < K — 1, assume that (A.10) holds for £k = j + 1,..., K.
We now show that (A.10) holds for k¥ = j. By assumption (iii), it is enough to show that, if

PeR;N {ﬂs —jt1 (PsU Rs)} , then (¢ (P),7; (P)) solves the equation in (w(j),7§j)) = O3k 41-j,

E 3K+1—j } _o.
i {¢(93K+1 G+ (P):03x 41— J)

If PeR;N {m (P, U Rs)} , then 7! (P) =7 (P) and, hence,

s=j+1

¢3{(f+17j ) _ Ugj {(w( 7,},53) (P)) ,ﬂ;f.Jrl,E}_._l}

(03K+17(j+1)(P)793K+17j
with Ugj the function defined in (|1.36) and with

d; EK,Z' = - S—
’ ( j) HZ:1 Ts (Avas;al (P))

)

_ (1 f
ﬂ;+1 = (77]+1”77K)

and
— T
E}+1:(7Tj+17...,71—;().

Propositionimplies that, if P € R, then (¢ (P),7; (P),T; (P)) solves the equation in (w,ﬁj,ﬂ) ,

Er [Ui {w,7) 0l xln ] =0,

whenever, for each s € {j +1,..., K}, either ni = n, or 7 = m,. Then, to prove fact (A.10] for
k = j, it is enough to show that, if P € R; ﬂ{ﬂs —jr1 (Ps URS)} then, foreachs € {j+1,..., K},

(i) if P € Ps then 7l = 7, and (ii) if P € Ry N {ﬂr sr1 (PrUR, )} then n! = n,. Again, fact

(i) follows from the fact that, if P € Ps then ozl (P) = as (P),s = j+1,..., K. Finally, fact
(ii) follows from the facts that, for s = j + 1,..., K, 7L (P) = 7, (P) for every P € R, and

(Ws) (P), 71 (P)) — (W (P),7,(P)) for every P € Ry N {mr s (PLUR )} by inductive
hypothesis. This concludes the proof.
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A.3.4 Proof of Lemma [3

To prove Lemma [3] we need to introduce the following proposition, which follows from Theorems
5.41 and 5.42 of [58] on consistency and asymptotic normality of Z-estimators.

Proposition 3 (from Theorems 5.41 and 5.42 of [58]) Let B be an open subset of an Fuclid-
ean space and let X be a random vector with range in some subset X of an Fuclidean space. Let
{q5 (): X —=RN:B¢€ B} be a collection of Borel measurable functions. Also, assume that

(i) there exists By € B such that E (gs,) = 0,

(i) qp (z) is twice continuously differentiable w.r.t. 5 for each x € X,
2

(iii) B (llga|*) < oo,

(iv) the matriz E (i]ﬂo) exists and is nonsingular, and

(v) the second-order partial derivatives of qs () w.r.t. 5, %% (1),1<14,5 <p, are dominated
iPj
by a fixed integrable function in a neighborhood of By.

Then, for i.i.d. copies X1,...,X, of X, we have that

(a) there exists a sequence En solving Py, (gz) = 0 with probability tending to one, which converges
to By in probability, and

(b) every estimator sequence Bn such that P, (qE ) = 0 with probability tending to one, that
converges to By in probability, satisfies

Vit (Bu=0) = =B (i) = 3 s (X0 + 00 (1)
n |\ Bn — o)=— (Q> 7= 2480 \(Xi) Hop(l).
%0 \/ﬁizl
that is, is asymptotically linear for By with influence function

N
@) =-E(q,) am@).

In particular, the sequence \/n (En — ﬁo) converges to a mean zero Normal distribution with

. -1 : -n"
variance E (qﬁ,o) E (qgoqﬁTo) {E (qﬁo) }

As noticed by Van der Vaart [58], the assertion of the proposition does not guarantee the
existence of a consistent and asymptotically normal sequence of estimators. The only claim of
Proposition [3| is that a clairvoyant statistician (with preknowledge of 5y) can choose a consistent
and asymptotically normal sequence of roots. However, as also noticed by Van der Vaart, if the
solution of the estimating equation P, (¢g) = 0 is unique with probability tending to one, then
this unique solution must agree with that of the clairvoyant statistician and, hence, it must be
CAN for By. Therefore, we can derive the consistency and asymptotic normality of € by finding
conditions guaranteeing that, for i.i.d. copies Oy,...,0, of O ~ P € F, (a) ¢y and 6 (P) verify
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the assumptions of gz and fy in Proposition (b) the equation in 0, P, (¢9) = 0, has at most one

solution with probability tending to one under P, and (c) 0 solves that equation with probability
tending to one under P. By part (a) of Lemma if P € F verify Condition SPob and Condition
D holds, then ¢y and 67 (P) verify the assumption (i) of ¢g and Sy in Proposltlonl In addition,
conditions (b) and (c) hold if ¢y and 6t (P) verify the assumptions of g5 and Sy in Pr0p051t10n
and the Condition S holds. These observations are key to prove Lemma [3] which we do now.

Proof of Lemma First note that, by Lemma Ep {¢91‘(P)} = 0. This observation, together

with Conditions D(¢g) to Domination, imply that ¢, and 6 (P) verify the assumptions of g

and Sy in Proposition Hence, there exists a sequence gn solving P, (¢9) = 0 with probability
tending to one under P that is asymptotically linear for 67 (P) with influence function & (0) =

. 71 ~ ~
—Ep <¢8T(P)> b9t (p) (0). Thus, to conclude the proof, it suffices to show that 6,,(= 6) is equal to

5,1 with probability tending to one under P. Let B, = {571 solves P, (¢g) = O}. In what follows,
for simplicity, we omit the subscript n in 'én,én,cn and B,,. Since P(C N B) — 1, it suffices
to prove that (CNB) C ﬂ3K+1 {9 = 9 } Here, for s = 1,...,3K + 1,55 is the vector whose
elements are the components of 0 having the same subscripts as the components of 0 that make
up the vector . The fact that (CnB)C {é\k = gk} Jk=1,..., K, follows from the facts that,
for k=1,...,K, (i) B C {gk solves P, ((l)’gk) = O} (i) 85, solves P, (¢§k) = 0 by the definition
of O (= Q) in the estimation algorithm, and (iii) C' C {P, (¢f ) = 0 has at most one solutlon}

With an identical argument, we can show that C N B C {9K+k = 9K+k} k=1,...,K. Finally,

the fact that CN B C {03K+1_k = 93K+1_k} ,k=0,..., K, follows by backward induction in k,
from the following facts:

(i) BC {§3K+1k solves the equation in 03541 %, Py ( SK+1-k ) = 0} ,

O3k 41— (kt1):03K+1—k

(11) if (Cﬂ B) g {§3K+17(k+1) = 53K+17(k+1)} then

(CNB)C §3K+1_k solves the equation in Osp 41—, Py, [ 351K =0y,
(93K+1—(k+1)793K+1—k)
(iii){§3K+1—(k+1) = §3K+1—(k+1)} - <¢3K+1 k > P, | p35+1-F ;
O3k 41— (kt1),03K+1—k (03K+1 (k+1),03K+1— k)

and ~ ~
(IV) if (C N B) - {93K+17(k+1) = 93K+17(k+1)} then

(C'N B) C{ the equation in O35 1_x, P, | #3517 k =0, has at most one solution ;.
(93K+1 (k+1),03K+1— k)

Fact (ii) follows from the facts that
B C {the equation in Os3x 1k, P ( SK+1-k ) =0, has a solution} and, hence, C'N

O3k 41— (k+1),03K+1—k

B g {§3K+1—(k+1) = 03K+1—(k+1)} 1mphes that
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CnNnB C {the equation in O3x 11k, Py, <¢3K+1k )> =0, has a solution}. Also, if

(§3K+1—(k+1),931<+1—k

CnB C {53K+1_(k+1) = 53K+1_(k+1)} then CNB C {]P’n ( EKH_UH_I)) = 0}. Therefore, to con-

03K 11— (kt1)

clude the proof of fact (ii), it suffices to show that, for k = 0,..., K, if (1) P, <¢)§K+l_(k+l) =0and

03K +1—(k+1)

(2) the equation in O35 41—, P, P3EH1-k = 0, has a solution, then §3K+1_k solves
(03K+1—(k+1)703K+1—k)
the equation in O35 11—, Py, | @SEF17F = 0. When k = K, it follows by the definition
(93K+1—(k+1):93K+1—k)

of §2K+1 in step 3 of the MR estimation algorithm of Section To see this for k =0,..., K —1,
first note that if P, ((;SEKH_(I“H)) = 0, then P, (Zf_lﬁ_l apﬁ’j > = 0. This is because

03K +1—(k+1) O3k +1—j
K k,j . 3K+1—(k+1 . e .
Zj:kH o= is a subvector of ¢ F1=(k+1) by being 7, a subvector of 0, k=1,..., K —1,
O3k +1—j 03K 41— (k+1)
° ° E _
and m a subvector of n,. Hence, P, PIEH1-k =P, @’é’k , so that
(03K+1—(k+1),931{+1—k> O3k 41— (k+1):03K+1—k

(2) implies that the equation in O35 11—k, Py <<pf’k > = 0, has a solution and, then,

N \_ O3k 41— (k+1):93K+1—k
035 +1—k solves that equation by definition of O3k 11 in step 4 of the MR estimation algorithm if
k=1,...,K —1orinstep 5if £ =0.

Fact (iv) follows from the facts that

(a) C Cqif P, ( iKH(kH)) = 0, then the equation in Osx41_p, Py, | ¢3EH17F =0,
O3k +1-(k+1) (93K+1—(k+1)703K+1—k>
has at most one solution},

(b) B C {]P’n <¢§K“‘(’“+”) = o} , and

03K 11— (k+1)

(c) {§3K+1—(k~+1) = §3K+1—(k+1)} c {Pn <¢§K+1_(k+1)> =P, <¢§K+1_(k+1)> }

03K 41— (k+1) O3k 41— (kt1)
This concludes the proof. m

A.3.5 Proof of Theorem [l

To prove Theorem we will exploit the fact that Ep <¢e> is a lower-triangular-block-matrix

by using a recursive formula (provided in Lemma to compute each component of a vector
u = —A~1v when A is a nonsingular lower-triangular-block-matrix. We start by introducing the
definition of lower-triangular-block-matriz.

Definition 1 A lower-triangular-block-matriz is a square matriz, having main diagonal blocks
square matrices, such that the upper-diagonal blocks are zero matrices. A lower-triangular-block-
matriz A has the form
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A A o Ay
Az Agy -+ Aoy )
A= . . ) . where Agj is a (d; x d;) matriz and As; = 0g,xq; if 1 <@ <
Ayt Anz -+ Apnn
j<N.
Lemma 12 Let A be a real-valued lower-triangular-block-matrixz with nonsingular diagonal blocks,
i.e., let

Ay A o A
Az Agy o Aoy

A= ) ) ) where
Ant An2 -+ Apnn

(i) A;; € RG*di 1< j<N
(it) Aij = 04,xq;, if 1<i<j <N and
(i1i) Ay is nonsingular for every 1 < i < N.
Then

(a) A is nonsingular and

(b) given u = (uf,...,uzj\})T and v = (vf,...mf,)T with u;,v; € R% i =1,...,N, if u =
—A~tw, then
Uy = —Al_111}1

and, fori=2,..., N,
i—1
ui = A v+ Y Ay,
j=1
Proof of Lemma Fact (a) follows from the fact that, since A is a lower-triangular-block-

N
matrix, then det (A) = H det (A;;), which is non zero by assumption 3 of the Lemma. To prove
i=1

fact (b), note that v = ~Au and, hence,

N
Vi = _ZAUUJ fOI‘iZ 1,...,N.
j=1
Then, since Ajj = 0g,xq, for i < j, we have that (1) v; = —Aj;u; and, hence, u; = *Al_llvl’

and (2) for i > 2, v; = — 23;11 Ajjuj — Ayiug, which then gives u; = —Ai_il (vi + Z;;ll Aiju]) . u

Part (a) of this lemma implies that Condition NonSing holds if the Condition NonSing2 is
verified.

Proof of Theorem To see (a), note that, since Ep (q.ﬁm( P)> is a lower-triangular-block-

matrix with diagonal s—block given by Ep { (%qﬁ% )‘5 QT(P)} ,s = 1,...,3K + 1, Condition
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NonSing2 and part (a) of Lemmaimply that Ep (égf(P)) is nonsingular. Then, Conditions S,

D(¢g), Moment2, NonSing2 and Domination and Lemma imply that g is an asymptotically linear
estimator of #' (P) with influence function

) -1
£(0) = —Ep (qsmp)) b1y (0)

Hence, for each s =1,...,3K + 1, 55 is an asymptotically linear estimator of 8] (P) with influence
function &, (-) where the &, (-)’ s are such that

T
T
E0) = (6O i )
and each & (+) has the same dimension as 6. The fact that Ep <é§m( P)) is lower-triangular-block-

matrix with nonsingular diagonal blocks and with (s, j) —block given by Ep { (%qﬁ% ) ‘g eT(P)} , 1<
J,s < 3K + 1 imply, by part (b) of Lemma that ’

§1(0) = —Ep { <6(Zl ¢é1>

and, for s =2,...,3K + 1,

-1 s—1
a S S a s
&s (0) =—-FEp { (aes %5) OS—QE(P)} ?i(p) (0) + ;EP { (3%(;595) 95—92(P)} gj (0)

Furthermore, the fact that, for s = 2,...,2K, o depends on @, only through 6, implies that
8%41)55 ()=0,j=1,...,5s—1, and hence, for s = 1,..., 2K,

~1
a S S
Ep { <898¢9s> 95=01(P)}] 01(P) (0).

This concludes the proof of fact (a).
To prove (b), we first introduce the following notation. For 1 < j < s < 3K + 1, define

0
As’ = EP <¢5 >
’ { 00; %) lg.~a1(p)
N o .
Asj = Pn { (80] 93) GS_ES} .

& (O) = 7A1_11 ;I(P) (0)

—1
(blw‘ (o)
91—94{(13)} %)

s (0) = —

and

Then,
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and, for s =2,...,3K +1,
s—1
& (0) = AL Bi ) (0) + DAy (o)
; —

Also since ae gbs ()=0forevery j=1,...,s—1 and s =2,...,2K, the E;s defined in (|1.38))
and ([1.39) verify the equations
& (0) = ~A7/ 6} (o)
if 311 is nonsingular and, for s = 2,... 3K + 1,

s—1

£ (0) = =A% § 02 (0)+D_As¢; (0)

j=1

if 355 is nonsingular.
Our proof of fact (b) relies on the following facts:
(1) ﬁs]gAsj,l<j<s<3K+1 under P,
(2) A,, is nonsingular with probability tending to one and A! 5 A7, 1 < s < 3K + 1 under

S8

P, and
(3) P, <¢§ ¢§T> 2 FEp <¢; e ¢;T(P ) ,1<s,j<3K+1, under P.
s 05
4) P, <¢§ gf) 2 Ep <¢;T(P)g} > under P for every 1 < j < s < 3K +1,

(5) Pn (ég) — Ep (glfl ) and

(6) P, (Ef,{) 2 Ep (6¢7) under P for every 1 < j,k < 3K,j # k.

By Conditions Domination and M, there exists a neighborhood of 8 (P), throughout denoted
by N such that (a) ¢y (0) and its first-order partial derivatives w.r.t. 6 are measurable w.r.t. o

for every 6 € N, and (b) the second-order partial derivatives of ¢g (0) w.r.t. 6 are dominated by a
fixed integrable function in N.

To see fact (1), note that 9 converges in probablhty to 9 (P) under P. Then, Lemma
in Appendix implies that fact (1) holds if 5 ¢9 (o) is regular in some neighborhood of
51 (P),1 < s < j < 3K +1, according to Deﬁnltlon of Appendix where o plays the roll
of x and 0, plays the roll of 3. Let N, be a compact convex neighborhood of 5 (P ) included
in {0,:(0,,0,,,) €N for some 6, ,}. Here, 0, = (0Z,,,... ,H?TKH) Note that (bé (o) is
regular in NV, 1 < s < j < 3K + 1, because of the following facts:

Q8] a%jq%s (0) is measurable w.r.t. o for every 6, € N, by Condition M,

(IT) %q% (0) is dominated by a fixed integrable function in N by the mean value theo-
J s
rem because (a) N is compact and convex, (b) the first-order partial derivatives of %¢% (o)
J S
w.r.t. 6 are dominated by a fixed integrable function in Ny by Condition Domination, and (c)

oo { ()

. 9*(13)} exists by Condition NonSing?2, and
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(III) for each fixed o, 36 o5 (0) is a continuous of , in N by Condition D(¢pg).
Fact (2) follows because for 1 <s<3K+1, Ag is nonsingular by Condition NonSing2 and
Ay B A, under P by (1).

To prove fact (3), assume, without loss of generality, that s < j. Since §; converges in probability

to 5: (P) under P, Lemma/l4{in Appendiximplies that fact (3) holds if ¢5 (o) q%_ (0)" is regular

in some neighborhood of 5 (P) (according to Definition [2] of Appendixwhere o plays the roll of
x and 0, plays the roll of B) which is verified if (;55 (0) is regular in A, for every s =1,...,3K + 1.
Given s € {1,...,3K + 1}, the fact that d)s‘ (0) is regular in N, is a consequence of the followmg

facts:
(I o5 (0) is measurable w.r.t. o for every 6, € N, by Condition M,

(IT) ¢S (0) is dominated by a fixed integrable function in Ny by the mean value theorem, because
(a) N is compact and convex, (b) the first-order partial derivatives of ¢z (o) are dominated by a

fixed integrable function in N, and (¢) F ((/50 (P)) =0 by Lemma and

(II1) for each o, ¢ (o) is continuous w.r.t. fs in Ny by Condition D(¢g).
Turn to fact (4). Given s =2,...,3K + 1, we will show that

s ¢T s T
P, (d%sg_, ) — Ep (¢0 (P)g ) (All)
under P for every 1 < j < s — 1 by induction in j. When j = 1, (A.11]) follows from facts (2) and

(3) and from the facts that
() - ) ()

if Aq7 is nonsingular, and

s TY _ 1T -\T
Er (‘be L(p) 51) T ( 9L(P) 0*<P>> (Air)-
Now, given 2 < j < s — 1, assume that P, ((bé é’,{) — Ep (¢; (P)£k> forevery 1 <k <j—1. We

want to show that P, <¢§ g) 2 Ep (d)s

§T) . Note that
ol (P)

Py, (d%sgf) =P, ¢%S <¢J + ZAJké-k A 1

i asior

if 355 is nonsingular, and
s i'T T
Ep ( o) P)£T> - { (% TP d)je (P ) +ZEP ( ol(P) )A } (A"
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s ¢T
Then P, <¢§S§j > — Ep <¢9T(P)
Now, fact (5) follows from facts (2) and (3) and from the facts that

P, (6) = A2, (o4, 087) (B3))

& ) by inductive hypothesis and facts (1)-(3).

if 311 is nonsingular, and
T 1T -\ T
P (5151) = EP( GT(P) 9{(1))> (All) .
Finally, to see fact (6), first note that it is equivalent to the fact that, for k =2,...,3K,
P, (ZJE,CT) 2 Ep (,gjg,{) for every j =1,...,k — 1. (A.12)

We will prove (A.12)) by induction in k. When k = 2, (A.12) reduces to the fact that P, (E@T) 2
p (£1£3) , which follows from facts (1), (2), (4) and (5) and from the facts that

e (68) = -pa (8 {0 + 828 )") (3:1)”
——{pu (@) +e. (68) 51} (33
if Aoy is nonsingular, and
Ep (61]) =~ {Br (902 )) + Br (6a]) AL | (25) "

Now, given k = 3,...,3K, suppose that P, (@5}{) 2 Ep (@f}f) for every 1 < j < h—1 and

1 < h<k-—1. We want to show that P, (EJE,{) 2, Ep (fjfg) for every 1 < j < k — 1. But, note
that

_ T
NG {E <¢§k 5> 35) } ()
h=1
_ {Pn (&) + S, (&¢) M’L} (32)
h=1

if Ay is nonsingular, and

k—1

P(fjfg):_{ (fJ 9(P>+ZEP &€ ) A }(Akk)T'

Then, P, (@5,{) 2 Ep (&€ by facts (1), (2), (4) and the inductive hypothesis.
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We are now in conditions to show (b). We will prove it by induction. Fact (b) for s = 1
follows from fact (5). Now, given s = 2,...,3K + 1, assume that P, (Ejgf) 2 Ep (gjng) for every

1 <j<s—1. We want to show that P, (égf) EN Ep (gsggf) . To see this, note that
PN - T
P, (£87) = A e, (3,87) (B.))

Ep (gsg )_A LEp (0, 07) (A7)

with \II = ¢A + Zj 1 Asygj and \I] = + ZS ! Asy€j~
Also notlce that

if Ags is nonsingular, and

ACHEACTD z (%8) z (67) + £ 38 (661) 3
; j=1 ; j=1 ; j=1 Q;;
+§ P, (&€7) AT
j=1

and

s—1
‘;T T T T
Ep (V.¥,) = Ep (¢; ') %! <P))+ZEP( 9*(13) )ASJ‘JF,Z}ASJEP (qu%;(m)
p=
s—1s—1

+ZZASJEP Sjgk: A +ZASJEP fjg )
k=

j=1 1 j=1
k#j

Then, facts (1)-(4) and (6) and the inductive hypothesis imply that P, (ESEST) 2 Ep (&:€T) as we
wanted to show. m

A.3.6 Proof of Lemma [5
First note that, for k =1,..., K, the identity (1.44)) implies that

P o
Wﬁk (GK,lka¢a7k77k) = Hy (aKalvak‘) .

Then, ¢?5*1 ) (O) can be written as a term that does not depend on (WK),W%()) minus

ax, T, E) 5

)
— N s
k (Ax, Lx;7k) Hi (Ax, Lk Tk) M

Hf:l Ts (Zsa L; as)

¥a
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HK(ZK7ZK§?1I-<(P))HK(AKaZK??}{(P))/

Therefore, the nonsingularity of Ep {

tion in (w(K),ﬁ(If)> ,

} implies that the equa-

2K+1 —
b {¢(ak<P>,TL<P),w<K>,w5§“) } =0

has a unique solution that we denote indistinctly by 9;K+1 (P) or <¢T(K) (P) ,7%1{) (P)) Here

a} (P) and F];( (P) are the parameters defined in parts (i) and (ii) of Condition SPob respectively.

Also, for k= K —1,...,1, 35 1=k (O) can be written as a term
’ T M (@m0 A0 et FERD (0 5()

that does not depend on (w(k),ﬁl(ck)) minus

Q)
Z Hy, (Ak, ap 1, Li; Tr) He (Zk&Hl,fk;?k)/ 7§k)
H]::1 Ts (stzs;as) :

ap1€AL (:k)
Tk
Then, the nonsingularity of Ep < > Hi (A DT (P)) He (A gy LT (P)) implies that
’ 8 Y P Ay €A 15, 7 (As ,fs;aI(P)) p
the equation in (Wk),ﬁ,(ck)) ,
3K+1—k _
Ep (qba}{(P),T;(P),wm(PmL“”(P>,...,w<k+1)(P)n,iﬁ”(P»Ww;’”) =0,

has a unique solution, that we denote indistinctly by 0§K+1—k (P) or <1/1W“) (P) ,ﬁl(k) (P))

Finally, note that ¢3%+!

Sk ) @ . (O) can be written as a term that does not
(@ Frc ) T 0 3D )

depend on ¥ minus

Y m(a, Z)m(ay, 2) 9.

ay EAl
Hence, the nonsingularity of Ep {ZaleAl m(a;, Z)m(ay, Z)/} implies that the equation in 1),
3K+1 _
Ep (¢04J;((P),T;{(P)’T/JT(K)(P)»“/%K)(P)»mﬂb“l)(P)vﬂ(l)(P),il}) =0,

has a unique solution, which we denote indistinctly by 9; K41 (P) or o1 (P). This concludes the
proof.

A.3.7 Proof of Lemma

. . —2K
Throughout this, we use the notation ¢g, = ((bél, e (béi(, gbéi:rll, A qbgi() = ( (1117 R LN

Note that, by Condition SLin, it suffices to show that, for each k =0, ..., K, the event C,, ; occurs
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with probability tending to one under P where C), , =“the equation in 035 1_p, Py, {qﬁgf{ﬂk

0, has a unique solution”. To see that for kK = K, note that the linearity of m and the g} s implies

that ¢2K+? (0) <_ p2EAL 0 (0)> can be written as a term that does not depend on
K

025,025 +1 ax T,
(¢(K),7§§)) minus

- L )

Hyc (A D7) Hic (Aie, T 7ie) | )

15, 7 (A, L @) :

On the other hand, note that: (1) by Condition SPobLin and Lemma we have that Ep {%i(m } =
0, and (2) assumptions (i) and (ii) of the lemma imply that 5%:; (0) is twice continuously differen-
tiable w.r.t. f25. Then, assumptions (i) and (ii) of the lemma and Conditions Moment2, NonS-
ing2, Domination and SPobLin imply that 5%5; and 5; i (P) verify the assumptions of ¢z and G
in Proposition [3| Also, Condition SLin imply that the estimating equation P, é(bz;) = 0 has at
most one solution with probability tending to one under P. Hence, Proposition [3] and the fact that

Oorc = (EK,%K> solves that equation, imply that

(ﬁK,?K) EN (a} (P),7h (P))

Hic (@x k57 ) Hie (@ k57K )

under P. Then, since =
’ [T, 7o (s olsss )

[A~4] implies that
H (ZK;EIG%K) Hyg (ZIOZK?%K)/ v o Hyg (ZK,ZK;?TK (P)) Hpg (ZK,ZK;ﬂ( (P)>l
[, (A Ta) o 1, 7. (Ao, Lusod (7))

is regular by Condition R, Lemma in Appendix

Pr

under P. But the expectation in the right hand side of last display is nonsingular by Condition

SPobLin. T‘hen7 ]P)n {H(AK»I%I;(;TK)(H;((;{KA,L)K;TK)
s=1Ts(As,Lsiq

} is nonsingular with probability tending to one

under P and, therefore, the equation P, ( 2E+1 > = 0 has a unique solution with probability

025,025 1
tending to one under P, that is C, x occurs with probability tending to one under P.

_ 1 43K+41-k _ B3K+1—k
Analogously, fork =1,..., K—1, ¢2 (0) ( 10) SO Gk S5 0 50 (O))

03k k03K 11—k EKV%KW"L\(K)VPYK
can be written as a term that does not depend on fsx 1 = (w(k),ﬁl(ck)) minus
- o - o (k)
Hy, (Ak,QkH,Lk;?k) Hy, Ak,QkH,Lk;ﬂ;) vik)
k - = ~
HS:1 Ts (AS7 Ly; Oés)

>

2k+1€Ak+1

.k:
o
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Also, Lemma [14] in Appendix the convergence in probability of (3;6,%@) to (EL (P) ,?2 (P))

Hy, (@ gy 1 biiTr ) Hy (ko0 0 0067

under P, the regularity of > and the nonsingularity of

A 1€AL [Tk, = (Es js;as)
Hk(Zk1Qk+17Zk;?]Z(P))Hk(zkagk+17fk;?£(P))l .
Ep {Zak+leAk+l T~ (Zs,fs;al(P)) imply that
ch(Zk72k+1,flﬁ%k)Hk(ZkaﬂkJrl’Zk?%k)/ . . . o1 .
P, {Z%H €Ay [T, = (. Loia ) is nonsingular with probability tending to one
under P. Hence, the equation P, | ¢2K+1=F = 0 has a unique solution with probability
O3k —k.03K+1—k

tending to one under P, that is, for k =1,..., K — 1,C, ; occurs with probability tending to one
under P.
Finally, 63K+1 (0) (: P31 T (O)) can be written as a term that does

sk ,035c 41 @i Ty
not depend on % minus

> m(ay, Z)m(ay, 2) .

ay eAl
Furthermore, the nonsingularity of EFp {Zﬂl ca, M (a1, Z)m(a,, Z)'} imply that
P, {ZgleAl m(a,,Z)m (a, Z)/} is nonsingular with probability tending to one under P and,

hence, that the equation P, ( SK+1 ) = 0 has a unique solution with probability tending to

O35k ,03K +1
one under P, that is ), ¢ occurs with probability tending to one under P. This concludes the proof.
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A.4 Technical results for Section [I.10l

In this appendix, for completeness, we present some results used in Section despite being
known in the literature. Throughout this appendix, B denotes a subset of a Euclidean space with
non-empty interior and X denotes an m x 1 random vector with law G in R™. We start by intro-
ducing the definition of regular function.

Definition 2 Given a subset B C B with non-empty interior, a function ¢ : R"™ x B — RP*9 s
said to be reqular in B if

(i) ¢ (x,B) is measurable w.r.t. x for each B € E,

(ii) ¢ is dominated in B, in the sense that there exists a function b : R™ — R such that || (z, B)| <
b(x) for every (z,8) € R™ x B and Eg {b(X)} < o0, and

(11i) ¢ is almost sure continuos in [5’: in the sense that, for each fixed B € B , the event
{limy—g { (X,v) = ¢ (X, B)} has probability 1 (dG).

The measurability and domination assumptions (i) and (ii) ensure that the expectation
v (6) = E{C(X,P)}

exists for every 8 € g, while the almost sure continuity assumption (iii) implies, by dominated
convergence, that ¥ is a continuous function of £ in B.

The following lemma, proved by Tauchen [52], states that if ¢ is regular in a compact subset of
B, then the sample average P, {¢ (X, 8)} converges uniformly almost surely to its expectation ¥ ()
in that subset. Although Tauchen proved this result for vector functions, the argument leading the
result for matrices functions is entirely analogous.

Lemma 13 (from Lemma 1 of Tauchen, 1985) Let B be a compact subset of B with non-
empty interior and let { : R™ x B — RP*Y be a regular function in B. Then, E{¢(X,5)} is
continuous in 3 and

sup [P, {C (X, 8)} = E{C (X. )} “* 0.

BeB

The following lemma is an immediate corollary of the previous one.

Lemma 14 Let By be a point in the interior of B. If { : R™ x B — RP*? s reqular in some
neighborhood of By then

P {¢ (X.50) } & B{C(X,B0))

for every sequence Bn that converges in probability to By.
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Appendix B

Appendix of Chapter 2

B.1 Examples of counterfactual contrasts that correspond
to a g-formula

In this appendix we provide several examples of parameters of interest in causal inference and
missing data analysis that correspond to a g-formula.

B.1.1 Example 1.

Mean of an outcome in a longitudinal study with ignorable drop-out. Consider a longitudinal study
with drop-outs. Define L, to be the data vector L, that is recorded on a subject randomly selected
from a target population if the subject is still on study at the k** study cycle and to be equal to an
arbitrary vector in Ly, say s, otherwise. Assume no subject misses the first cycle. Then L, = Lj.

Let Ar = 1 if the subject is on study at the (k + 1)th study cycle and Ax = 0 otherwise. Thus,
K K

Ly =As 1L+ (1—Ap_1) 5. Let p= ngth be the law of (ZK,ZKH) . Under the missing
j=0 j=1

at random assumption that

Ly y 1L Ay | (A;C,l =1, Lk) for each kK = 1,..., K, and the positivity assumption that for all

k=1,...,K, Pr{h (1]4;_1 = 1,Lj) > 0} = 1, the mean of the, potentially missing, last cycle

outcome Lj, 1, i.e., of the outcome that would be recorded if the study did not suffer from drop-out,

equals

Eg [Eg - By, { Bgse (Lr+1/Ax =1, Lg)|Ag—1 =1,Lg—1}...|A1 =1,L4]]. (B.1)

The expression in agrees with 6 (p) if we take h} (ak|Zk,ak,1) =q; and K (ZK+1) =gy
(291, [43]). Note that the positivity assumption is the same as the assumption that gh* << gh.
Note also that because Ay is a binary variable, 6 (p) actually involves only integrals over Iy, ..., k41
as, for each k, the integral over aj is indeed a sum with a single non-zero term.
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B.1.2 Example 2.

Outcome mean under a sequence of fixed treatments. Suppose that in a longitudinal study Lg
denotes the vector of variables measured at the k' study cycle on a subject randomly selected from
a target population. Assume that immediately after recording L; the subject decides which of the

available treatments in a set A he will take until the next study cycle. Let Ay € Ai denote the
K K

subject’s treatment choice. Let p = ngth be the law of (ZK,ZKH) . Also, let LKH@{ be
Jj=0 j=1

the counterfactual outcome at the end of follow-up if, possibly contrary to fact, the subject took
treatment Ax = @y for some fixed aj; = (a7, ...,a} ). Contrasts of the mean of L 14 involving
different @}, quantify treatment effects. For instance, the average treatment effect (ATE) comparing
the always on treatment vs never on treatment regimes is defined as the mean of Ly, 7 minus
the mean of LK+1,6- Under the consistency assumption that Ax = ay = LK+L: LK+1,E;{7£he
no-unmeasured confounding assumption that for k =1,..., K, Lgsias AL Ay | (Ak—l =q;_q, Lk)
and the positivity assumption that for £k = 1,..., K, Pr {hk (a,’;|a,”;71,fk) > 0} = 1, the mean of
Lrcy1.a;, equals ([29])

Ego [Eg1 [ "EgK_1 {EgK (LK+1‘ZK = a;(afKHZK—l = ﬁ}_l,f[(_l} . |A1 = (Z)lk,Ll]] . (BQ)

This expression agrees with 6 (p) if we take A}, (a|lk, @r—1) = I{a;;} (ax) and K (Ig41) = lk41
where throughout, Ip (z) = 1 if x € D and Ip (z) = 0 otherwise. Note that in Example 1
we could arrive at the formula from the formula if, in that example we regard Ay
as a sequence of time-dependent treatments indexed by k and consider estimation of the mean
of Lk1 had, contrary to fact, all subjects followed the treatment regime specified by a;, = 1 for
k=1,..., K; that is, the regime in which no subject had dropped-out. Robins ([29], p. 1491; 1987a,
sec. AD.5) provided additional discussion of the usefulness of regarding missing data indicators as
time-dependent treatments.

B.1.3 Example 3.

Outcome mean under a non-random dynamic treatment regime. Assume that the recorded data
O are as in the longitudinal study of Example 2. However, suppose that we are now interested
in estimating the mean of Ly if, contrary to fact, the entire study population followed a given
non-random dynamic treatment regime which stipulates that right after study cycle & and un-
til just prior to study cycle k + 1, a patient with covariate and treatment history (a,H,Zk) re-
ceives treatment A, = dj (Ek,ljk). Similarly to Example 2, the average treatment effect for
comparing the two such regimes, say d and d’, is defined as the mean of L1 4 minus the mean
of Li41,4 where for any treatment regime d = {di,...,dx}, Lx+1,4 denotes the counterfac-
tual outcome at the end of the study if, possibly contrary to fact, the subject had followed
treatment regime d. Under the consistency assumption that Ax = Dg = Lxy1 = Lgii4,
where for any j =1,...,K,D; = d,; (Zj,l,fj) , the no-unmeasured confounding assumption that
for k = 1,...,K, Lgy1q 1L Ag | (Zk_l :Ek_l,fk), and the positivity assumption that for
k=1,...,K, Pr[Pr(Ay = Dy|Ax—1 = Dy—1,Li) > 0] =1, the mean of Lx 1,4 is

By (B [ By { Egre (Licas| Ak = D, Iie)| Ag—1 = De—1. Lc—1} ... |Ay = Dy, L] .
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This expression agrees with 6 (p) if we take hj (ax|ly, ar—1) = I{dk (1)} (ar) and k (Ix41) =
lx+1- Note also that the positivity assumption is the same as the assumption that gh* << gh.

B.1.4 Example 4.

Outcome mean under a random dynamic treatment regime. Assume that the recorded data O are as
in the longitudinal study of Example 2. Suppose that we are now interested in estimating the mean
of Ly, if, contrary to fact, the entire population followed a random dynamic treatment regime
which stipulates that at study cycle k a patient with covariate and treatment history (Gk,l,zk)
is randomized to receive treatment Ay = aj with probability A} (ak|6k,1,ik) where aj, is in the
set A of treatments available at time k. Similarly to Example 2, the average treatment effect for
comparing the two regimes, determined by h* and h**, is defined as the mean of Ly~ minus

the mean of Lg 1 p+ where for any h* ={h} :k=1,...,K}, Lgi1 - denotes the counterfactual
outcome if, possibly contrary to fact, the subject had followed the random treatment regime h*.
Under the consistency assumption that Ax = Ap- k = Lgy1 = Lgpip- forallk =1,..., K

where Ap-; is the treatment received at cycle k when the subject follows the random regime,

the no-unmeasured confounding assumption that Ly i1+ 1L Ay | (Ak_l =ap_1,Ly = lk) for all
k-1

(Ek_ljk) such that I_Ih;k (aj\ﬁj_ljj) > 0 and the positivity assumption that gh* << gh, the
j=1

mean of L1 - is precisely equal to 6 (p) if we take & (ZK+1) =lK11-
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B.2 Proof of Lemmas [Tl and

B.2.1 Proof of Lemma [T

The identity coincides with for j = 0if A; and L; are defined as nill when j = 0 and
n; (L;) is defined as 6 (n) if j = 0. It thus suffices to show for an arbitrary j € {0,..., K}.
We prove it by reverse induction. For j = K the result holds by definition of nx (ZK) since
QKr+1 (Egil,ﬁ}(ﬁ) =k (Lg+1) - Suppose now that holds for a given j € [K], we want to
show that it also holds for 7 — 1. Now,

{QJ( g7n)‘AJ 1 =5 1Ly 1}_77j—1 (zj—l):

=E, {QJH ( ]H,ﬂjﬂ) - nj} +n} Ay = a;“l,LJ11 —nj—1(Lj-1)
I T - —_x T e —x% T

=Ly hT {QJH( j+1 1 H)‘ i = 4 vLj} Ajar=aj 4, L
J
N

-k { %77; Aj1= aglejl}
hj

B | A =@ T ) -y (B)

p ;| Ai-1 j—1sLj—1 Nj—1 (Lj-1




where the third equality is by the inductive hypothesis and the last one follows from the fact that
E,{u(Lj) | Ay = 6;71,fj,1} =E, { }IL—”]u (L) ‘ Ay = =aj_ L } for any w (-). This concludes
the proof.

B.2.2 Proof of Lemma

The proof of Lemma [§] invokes the following lemma.

Lemma 15 For k € [K] and for arbitrary n;,j € [K], it holds that

K —J
- T T - s T T
Eq, {7711+1 (Lk+1)‘f4k = ak7Lk} —m. (Ly) = Z By hyps { j+ 9; (77;’77;+139.7'> Ap = amLk}
j=k+1 Te+1
with B B -
dj (77;777;“;9;‘) =n! (L;) — By, {UJT-H (L J+1)’A ijj}-
Proof of Lemma Given k € [K] and j > k+ 1,
Ik+1 T T —* T
Eyp d; (77]"77]'+1§gj) Ay =ay, Ly,
k+1
o B B B B
=B, | 22 gl — By, (0] |4 = @, 1) b Ak = a1, T
0
L Th+1
e
:Ep ji{'r]] Eg] (nj+1’Ak—ak,Ak+17 )} Ak—ak7Lk
L Th+1
T v 4 | 7
=Ep | {nj - 773+1} A =ay, Ly
0
k+1
=E, ( ! | A _ak,Lk> - E, (HH N | A =aj, Ly | -
Tt k+1
But, we prove bellow that, for k € [K], j > k and any function u (Zj+1), it holds that
Tj+1
E{Ik+1u( JH)‘ A, = ak,Lk} E{ hki w(Tia)| Ax = ak,Lk} (B.3)
J
Thus, invoking (B.3|) with u (ZjJr]_) replaced by % we obtain
Th41 +1
7 A
k 5 —x T k —x T
Ep ( j+177;f+1 Ak:ak,Lk> :Ep ( iin;rJrl Ak:ak,Lk> .
Te+1 Tit1

Hence, for j > k+1,

Ti’-‘rl
Ep{ 7 9j (77;’77;+1§9j)
Th+1

- _ T
Ay aZ,Lk} = Ep (I;HT];L

Tt
T Jt1

Ay = aZ,Lk-) —-E, < Jil .
Th+1

Th+1

Z az,Lk>
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and, therefore,

3 5 { Bts, (o) -7
j=k+1 Tht1
I I
= Ep (th Me+1 A = ak»Lk> - E, ( k+177K+1 A = akaLk)
k 7Tk+1
I I
=E, <hk+1 77;1“ A = aZJk) - E, (?15 (Lg+41)| Ak = a/iva) :
k+1 Tt1
Now, if in (B.3)) we set j at k, we arrive at
5 — - = Iy + T T
o {u(Lisr)| Ak = a5, L} = E, el (Lit1) | Ae = a5, Lic ¢ - (B.4)
+1

Then, invoking (B.4) with u (zk+1) replaced by n}; 41 (ZkJr]), we arrive at

Ipi1 4
E
P ( Rit1 i

k+1

Ak = ak,Lk> = Ep (77]1+1‘Zk :az,fk> .

Then, we would arrive at the desired result if we show that

=K

_ I _
o T2) = 5 ( et )

Th+1

Zk‘ :aZaLk> (B5)
for all k € [K]. We prove (B.5)) by reverse induction. For k = K, (B.5) is verified since, by definition
nNK (ZK) = Ep { K (ZK+1) ’ ZK = E},ZK}

TK
= Ep { 71‘%11 I (LK—H)

ZK a}‘(,LK} .
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Suppose (B.5) holds for k = j + 1. We will show that it holds for k = j.

0 (L;) = By {nj+1 (Li+1) | 4; = @}, L}
=
= EP{EP ( or (L) | Ay =Tj1, J+1> A =aj, L }
i Lo - v a*
3 Ey K (LKH) Aji1 = Ajt1s LJ+1

7Tj+2
I8
T2

=K

Tj livs — 7 —x

hj Ep ( JK K (LK+1) AjJrl = aj+17LJ+1
7T<+

Tjt2

—K
=E, { hﬁ_ E, ( J}? K (LK+1) Aj = j7Aj+ L7+1>

o
Ep{hki (Lj+1) Ak—akaLk}
J
o -
=Ep, | Ep k+1u(Lj+l) Ay :aZaAiJrl,Lj—H A =ay, Ly
hjt1
Thir (7 T R S b S
=Epq 7 1U(Lj+1)Ep (Ij+1|Ak :akaAkJrlaLjJrl) Ay =ay, Ly
J+
jj
k+1 T vy
ZEp{h_+ u(Ljs1) By (Ijp1| Aj =@}, Ljs1) Ak—ak7Lk}
j+1
:EP{T +1u( ]+1)‘Ak—ak,Lk}

since hj+1 (fj+1) =P (Aj+1 = Gf;+1|Zj = E;7Zj+l) = E;,, (Ij+1\Zj = a;,fj+1) . We thus con-
clude the proof. =
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Proof of Lemma 8, We prove by reverse induction that for k& € {0,1..., K},

- S 1 /1 1
Ik(nk_ﬁk>zrk+1k ZEp sy hf—ﬁ

s=k+1 k+1 s

Ty AImLk} (B.6)

with Iy = 1,m9 = 0 (n), (Ao, Lo) = nill, Zf k41 () =0and T'g = Ty (ﬁi ,ﬁBK,g,h) = —
Eyn {Ql (EIK, ﬁJ{K)} where to simplify notation we use the shortcut I'y, = I’y (hkﬂ, 039 hkﬂ)
Applying this equality to k = 0 with

=B, {@ (A".7")} (B.7)

we obtain that

S K . 1 (1 1
oler o (W) ] e 02 {5 - )

s=1 1 S

Iy Zo ZGS,L()}.

Recalling that In = 1,m0 = 6 (n), (ZO,ZO) = nill and that, with 778 defined as in (B.7), 'y =

{Ql (h1 fTK)} =0, we conclude that
1 1 1 ,
= <h - m) Fs} = (hf,n")

K
—TK _tK
B e ()} -0 =305 |-
which, invoking Lemmam proves that b? (hT,nT) =aP (hT, nt
We now prove identity by induction. For k = K, (B.6) holds because by definition
TK(WT_U)—I [ Eg, {r (L )‘Z =ax, L }}
K K K |k — Pgx K+1 K K LK
— K _ — e
=1k [ﬁK — Egy {QKJrl (hK+1777];(I{+1> ‘ Ak =a, LKH
=Ik.

Suppose holds for k = K, ...,j + 1. We will show that it holds for k = j. By Lemmamwe
have

7 (=) =T [o) = oy { Qs (B an ) 1A = .
+7 |: ]Jrl {Qj+1 ( j+17 7+1> |A :7J7Zj — 7’]j:|
K F(k—1)
7 I Iy Ik t T T
=L+ Z EQ,-’@_H—l Tj(k 1) <hk— - ,TT (nk - 77k) Aj= ijj
k=j+1 Ti+1 k
K
= 1 1 1\- _
=T;+1; > E,p {k1<_>lk(nT_nk) A
9.1 _ T k 777 )
i O LAY Ve g

where the last equivalence follows from the fact that I, E {U (O)| A; =@}, L;} = I,E {I1,U (O)| 4;,
for any function U (-).
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Then, invoking the inductive assumption we obtain

ad 1 11

I (”J_”j)zrfrjj > By, {k1<_)rk
9;+h, - T
j+1 71';(5'_1 ) h’k h’k

Aj,Lj}
k=j+1

K K
_ 1 1 1\~ 1 1 1
LY Byn, | = [ - — I(—)rs
T & : 9551 er(kl) (hk hL) Pt \ b, Rl

J+1 k+1

Now, rearranging the terms in the double-sum and using the fact that I,I'y =T, for all s > k + 1,
we obtain

1 1 1\- 1 1 1 _
St Lo (L
Zj 7] 1 k—1 T s—1 T s g4
k=j+1 s=k+1 ’ [ ;3-1 ) <hk hk) Tht1 hs  hl
K s—1
1 1 1 1 1 1 _
= Y Ey o, (-)Fs > {m(‘) P 1} j» Ly
s=j+2 ™ he  nl k=j+1 WJT(H )\ P hz Tht1

and we prove below that

s—1
1 1 1 1 1 1
> =i |l = - B.8)
k—1) t s—1 s—1 s—1 (
k—j—i—l{ Jsrl (h’f h‘k:) 7rk+1} Tit1 J(+1 )

_ — 1 1
At — ) =T ) - = )
1 (77j 77]) =T +I]Egj,ﬁj+1 { (hj+1 5 1) it

i+

1 1 1
+I Z J+1{ 'I‘(s 1) (h _hT>FS

s=j+2 Tit1

K
— 1 1 1 1
+1; Y By v T <—
J et 985 +1 { (WH_% t( 1)) h hl

Ti+1

K
_ 1 1 1
I Z 25 7J+1 { s—1 <h5 - hl) FS

s=j+1 Tj+1

Thus,

as we wish to show.
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We now show (B.8)) .

St 1 1) 1
> =0 \ b~ l

k=1 Tkl 7TkJrl
~ i 11 i 11

k=j+1 Wj% Dt WS T T
BRI R S N D B B
N FJS—I% k=j+2 T ;ﬂcl Y WZ ' k=j+1 W;il ﬂ-’z*} ;rjrll
_ 1

755111 33-51 Y

This concludes the proof that bP (hT, nT) =aP (hT, 77T).
We now prove that c” (hT, nT) = aP (th7 nT). Lemma implies that

s - I -
Eg, {77;2+1 (Lk+1)’Ak = akaLk} e (L) Z By, i { I;'H 0; (77;"77;’“3%) Ap = akaLk}
j=k+1 T+1
where recall that
o (nfsnai0:) =) (L)) = By, {nfs ) |4 =@, L, }
Hence,
i (T) — e (L) =0} (i) — By, {77;2“ (Zk+l>‘zk = Eij} (B.9)

+ £, {al (Tss) | B = . B} — e (T

K Tj
_ k+1 LS
- Egkaﬁkﬂ { - d; (77]"77]‘+1agj>
j=k k+1

Zk :CLZ,L;C}.
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Then,

Ik 1
255 (7];,77;.',-1;9]')

{

Zk a27Lk}

AkaLk}

Ik 1
255 (7];777;+1§9j)
7Tk+1

k=1 | j=k 7rlc+1
K T i (7 7
Inv (I Ix \ Ipiq
=3"E, |5 (nt,ntﬂ;gj) 3 {k_ ( _ ) :
S IR =Y \ e nf )
K r J
— 1 1 1 1
S E (1) 2]
=1 L T k=1 wt0=D \ b nf Tht1

where the third equivalence follows from the fact that I,u (Zk,fk) =Tiu (Ez, fk) for any function

The result cP (hT, nT) =a? (hT, nT) is then proved if we show that

1 1 1 1

But (B.10]) follows from (B.8) by evaluating in (B.8)) j at 0 and s at j + 1. This concludes the
proof. =
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B.3 Analysis of the empirical processes difference term

In this appendix, we show that (2.30)) implies (2.31)) when (hT,nT) are replaced by the estimators
(iAL, ﬁ) used to compute % or by the estimators (ﬁ, e R) used to compute ’0\}(4 R
Assume that

B, [{Q ('.0") = Q(hm)} V] = 0, (1) as m — oc, (B.11)

with (hT, 77*) equal to the estimators (E, 77) used to compute g% or to the estimators (}\L, ﬁMR> used

to compute 6%, . We must show that
Gn, {Q (') = Q (h,m)} = 0, (1) as n — oc.
Note that
G, {Q (W) =@ (hm)} =

Eﬁv S {Q (), — Qhm), — B, [Q (1) — Q () INT}
U 4:0,eDu

- 61— B, (671) }

_\/Niu-‘ogpu{i p( |
with

5l =Q (hh,nh), — Q(h,n),
=q (05 h%,n") — q (043 h,n)

and

st =Q (h',n') — Q (h,m)
=q(0;h,n") = q(O;h,m).

Then, it becomes clear that, as noted in Section Gn, {Q (hT,nT) -Q (h,n)} is equal to
/N, times an average of N, random variables that, conditionally on the data in A/, are i.i.d. and
have mean zero. It implies that

E, [Gn, {Q (hT,n") —Q (h,n)}|N] =0
and that
Var, [Gyn, {Q (h',n") —Q (h,n)}| N] = Var, [Q (AT, n') — Q (h,n)| N]
< B, [{Q (W) — Q)| N] =0, (1)

as n — oo by .
Now, given € > 0 let R, . = P [|(GNu {Q (hTJﬂL) -Q (h,n)H > E|N] . Then,

Var, [Gy, {Q (h',1") = Q (h,n)}| V]

Ry.=P[|Gn, {Q (hT,n") = Q(h.n)}| > ¢|N] < 2

=0, (1)
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as n — oo. But, R, . is a sequence of random variables that converges to 0 in probability and is
bounded (by 1). Then, E, (R,,.) — 0, which implies that
n—oo

P(Gx {Q (') - Q)| >2) = o

n—oo

as we wanted to show.
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B.4 Proof of Theorem [2

The proof of Theorem [2] invokes the following Lemma.
Lemma 16

For any j € [K],
EP{QJ( w”)‘ Jj— 1*“1 17LJ}*77j(fj): (B.12)
- K I(k 1) I I . B I
Proof of Lemma Recall that, given j € [K],

Qj (ﬁ}’ﬂ;) = h ( 3 {Q]Jrl ( J+1777;+1> —77; (fj)} —l—n; (L)),

then

5 {@ (1)) A =5 B} = B[ {@ees (Wer) ) A =70 T+
J

and we prove below that, for any function u (-) with domain in the sample space of O,

B, {Lu(0)|4;_1 =a'_,,I;} = h; (I;) B, {u(O)|4; =@}, T;} . (B.13)
Hence,
{0 () s =T = @ () = T
J
- 31 (0 (et ) =5} ] o
h

= [a?? (hjﬂ,an’L ) - nﬂ +)
J

where the last equality follows from Lemmal[7} Thus,

L h h; _
Ep{Qj (h}aﬂ;)’Aj—lzaj—lej}777]': ( f;) (77;[777)+h1t ?(hj«klvnj_i_l?[ﬁ)'
J

But




where the last equality follows from (B.13)). Then, we would arrive at the desired result if we show
that

Zj,1 = ;1,[/]‘} .

b Tk ! 1 I
;Ti“? (hjﬂ’ B ) Z Ey { {C=] (ﬁ‘;i) (’7’1_”’“)

k=j+1
Now,
K —k—1
hi vt .t T h; { Iin (Ik fk) t T T
—a? (bt L) =2 > B 2 - = (ol —m) |4 =a). L
t @ \ Ly 15 45 4 T P (k—1 1 k 7T
hj ( J+ ) hj M 7Tj+1) hi hl ( )
7o/ /
+1 k k T T
- £ { (- ) i)
k=j+1 k
7/ /
_ Z E{ ‘ (hk) ()| A= L}
k—1 T k J =1y (>
again by (B.13) . We now show (B.13)) . Note that

E{Iu \Ajl—aj 1,L} E,

This concludes the proof. m

Proof of Theorem [2 We prove part (1) by induction. Part ( ) follows immediately.

fOI‘ k=K, (|2.44 is true because ﬁK,DR = 1K,DR since 77 NK+1,DR (LK+1) = NK+1 (LK+1) =
K (LK+1) .

Suppose (2.44)) is true for k = K, ..., j + 1. We will show it is true for k& = j.

.08 =05 =W [Mj41.0r (Ljt1)] —n
= (j,pr — ;) + 1V [fj41,0r (Lj+1)] — nj.pr
= (nj,or —n;) + IV [M41,0r (Lj+1) — nj+1 (Ljt1)]

and we prove bellow that, for any function u (L;11) and for j € [K],

0 [0 (Ty1)] = Wy [ ()] (B.14)
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Hence,

Mi,or — N = M;.pr — ;) + Mg 41,08 — Njt1]
K

= Mj,pr =) + Mg [Mj41,08 — 41 + Z Uprjt1,k [Mk,0R — K]
k=j+2

= (j,0r = 1) + g 041,08 — Nj11] + Z I (pr 1.6 {608 — Nk }]

k=j+2
K
= o =)+ > Tprjk okeor — 18]
k=j+1

The second equality is by the inductive hypothesis and third is by the assumed linearity of the
operator II/ which induces linearity of the operator 117, . This concludes the proof of part (1).

We now show (|B.14]) . Note that, by definition
, _ 4 I _ _ _
0pp [u (Li)] =1V {EP (};H“ (L) | 45 = %"Lﬁl) } ’
j+1
— — u(L; _ _
; :a;,LjH) _ (L) B, (|4 =at, L)

hiv1 (Lj1)

=u(Ljz1),

*

but

from where (B.14)) follows.
We now prove part (3) by induction in K. Part (4) follows immediately. First we show ([2.45) is
true when K = 1. For K = 1, we have
I } _

Ep{<h1 ) 771MR—771)
=E, {(hl ;)(ThMR 1) L1}
-}

+ > > By (VorTatkirs mo,.oruk kaar — 18] L1)

1<ri<re<..<r, <K-—1k=r,+1

where the first equality follows because when K = 1,Q- (E,Z MR) = k(L2) so ,mr =
It [Qz (E;,Z MR)] =1II' [k (L2)] = m1,mr and the second equality is true because Z ()=

1<r;1<re<...<r, <0

0 . This proves (2.45)) for K = 1.

166



Next, assume (2.45)) is true for K — 1, we will show it is true for K. If (2.45)) is true for K — 1,
then it holds that
Ala LQ}

—k—1
Ik L I\ -
ZE { oD (M) (M, MR — M)

it

= ZEP { Vi @rarr — )| A1, Lo}
k=2

K
= ZEP { Vi (marr — el A1, Lo}
k=2
K

+ Z Z By {Vl,ﬁHMR,ﬁ,Tz,m,m,j [mj.mr — 15| AlaZZ}

2<r1 <re<...<ry <K—1j=ry+1

Note that in the preceding expression we used the inductive hypothesis pretending that our
study started at cycle 2 instead of cycle 1, i.e. with (Al,fg) playing the role of L;, with each A;
playing the role of A;_;,j =2,..., K, with each L; playing the role of L;_1,j =3,..., K +1, and
with V4 playing the role of Vo 1,k =2,..., K.

We also have that

Ni,MR — ™ = T1,MR — T,MR + 1,MR — T
- (771,MR - 771) + Hl QQ ( 2’772 MR):| - Hl ["72 (ZQ)]
~ 10 Q2 (571, 5y) = B { @2 (170, ) | A1 = 0 T ]

= (Mm,mMrR — M) + 10 Ep {QQ ( 2’772 MR)’AI = CLT,ZQ} — N2 (ZQ)}

K I(k 1) I I
k k
= (m,mr —m) + 1" ZEP{ 2k 5 (hk hT>(77kMR_77k)
k=2 T

r K
= (mor —m) + 1 | B, { Vg (ke —me)| A1 = ai, Lo}
[=2

K
= (m.mr —m) + 11! ZEp [Vik (karr — me)| AL = a7, Lo
k=2

+ 10 Z Z Ep {vlhnMRmm ..... T'u][anR 77JHA1—G,1,L2}

2<r1<ro<..<ry <K—1j=ry+1
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where the fourth equality follows after invoking Lemma [16| and the sixth is by the inductive hy-

pothesis. Hence,

K
M,mr =M = (N,mr — M) + Z gk [Me,m R — Mk (B.15)
k=2
K
+ > > TMR1mranra i = ;]
2<r1 <ro<. .. <1y <K —1 j=ry,+1
So,
K —
I 1 (I Ik
;Ep{ﬂkl (hk— hL) (M, per — )| L }
K k-1
I I, I, I\ - —
= B, Ep{ - () (Uk,MR*Uk) Al,Lg} 14
2 P e
I I
+Ep{<_ )(ThMR—m)L}
h1 h}
K k-1
1 I I I - _
=Ep { nt ZEP { TZk 1 <hk - hT) (e, MR — Mk) A1,L2H L1}
1 [k=2 ) k
I I
+Ep{<— )(ﬁlMR Ul)L}
h1 h’;
1 [X
=B, { h:; ZE {Vir Okour — )| Ar, Lo} | | Ly }
1 [k=2
I I ~
+Ep{ <h11 - i;> (M1,mR — M) Ll}
=E, TZE {Vik Omir — )| Ar, Lo} | Ly
hlk 2
I K _
+ Ep % Z Z Ep {V1r MR rarrug Mimr — 03]l A1, Lo} | | Ly
hy 2<r1 <ro< .. <ry <K —1j=r,+1
L L
+Ep{<— >(771MR_771)L}
hi hi
K
I I
+ Ep { <h11 };) ZHMR,l,k [k, v r — ]| L1 }
1 =2
L T K
1 1
+ By (h_T> Z Z R, 1,y s,y Tuj[nJMR T/J]L
U hy ) g cmecr <K -1 jomrat1
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The last equality follows by inductive hypothesis and by (B.15]). Thus,
I [ I Ip \ -
E, — - — — Ly, =
Z { 71-Tk 1 (hk h;;) (nk,MR 771<:) 1}
K

Z » A Vo (M, mr — 1) L1 }

K
+ > > By (VorTrirs ro..o g Mjarr — 1511 L1)
2<r1<re<..<ry <K—1j=r,+1
K
+ > By {Voullyr, oear — mill L1}
k=2
K
+ Z Z Ey (Vorllsrr 1 vy g, [Mj.00R — 15]| L1)
2<r1<ro<...<ry <K—1j=ry+1
K
= Ep{Vox (lk.sr — i) L1}
k=1
K
+ > > By (VorTnirs ro,.o g Mjarr — 1511 L1)

1<r <re<..<ry <K-1j=r,+1

This concludes the proof of Theorem [
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B.5 Technical results on the convergence of series estimators

The results presented in this appendix rely on results about the L? (F) and uniform rates of con-
vergence of least squares series estimators proved in [3]. To introduce them, it will be convenient
to define some notation. As in [3], we consider a sequence of models indexed by the sample size n,

Y; = g(Xl) + &4, E(Ei‘Xi) = 0,
X, eXCRY i=1,...,n (B.16)

where Y; is a response variable, X; is a vector of continuous covariates with distribution F, &; a
noise and g (z) = E (Y;|X; = x) a regression (conditional mean) function; that is, we consider a
triangular array of models with Y; =Y ,,, X; = X ,6; = €5, and g = g,. We assume that g € G
where G is some class of functions. Since we consider a sequence of models indexed by the sample
size n, we allow G = G,, to depend on n. In addition, we allow X = X, and d = d,, to depend on
n, as well but we assume that the diameter of X" is bounded from above uniformly over n. We also
assume that X is compact. For notational convenience we omit indexing by n where it does not
lead to confusion.

Although the results in this appendix are used in Subsection [2.7.2] in the special case in which
the model is fixed, i.e. not changing with n, we present them in the more general case in which the
model is allowed to change with n.

Condition A.1 (Sample) For each n, random vectors (Y;, X/)',i =1,...,n are i.i.d. and satisfy

-

Suppose we approximate the function g (z) by linear forms p (z)' b where

/

p(x)= (P (@),...,pm (¥))

is the vector of the first m elements of a dictionary of approximating functions {p; (-)},-, that
can change with n; in particular, m may increase with n. The next assumption imposes regularity
conditions on the regressors p; (X;),j=1,...,m.

Condition A.2 (Eigenvalues) Uniformly over n, eigenvalues of Q = E {p (X;) p (Xi)/} are bounded
above and bellow away from zero.

Condition A.2 imposes the restriction that p; (X;),...,pm (X;) are not too colinear.
Given f € G, let

By = argmin {7 (X,) ~p (X0 b}’]

and, for all z € X, let
ry () = f(z) —p(2) By

The function p (z)' 8 ¢ provides the best linear approximation to the function f (z) in norm L? (F')
and, hence, r () represents the approximation error in that norm. Let

9=y = argminB [{g (X;) ~p (X2)' 0}’
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Model (B.16)) implies that § = arg minE {{Yi —p(Xy) b}Q] Hence, the least squares estimator of
beR™
B is

I~ . _ 1412
B:%%imnpn [{Y p(X) b} }

This estimator induces the estimator

for the target function g ().
For any function f in L? (F), we denote 1l sy = \/fxex f(x)? dF (z). We also denote

Em = llpll
and
_ ’
do oy le@ 0@
z,x' €X xFx! ||:Ij -z ||

with a (z) = %.
The following condition is related to the approximation properties of the dictionary {p; (-)}

j=>1
to the functions in the class G.

Condition A.3 (Approximation) For each n and m there are finite constants ¢, and I, such
that
i supseg |ITfllp, (py < cm and
i supreg |77l < lmCm-
together ¢, and [, characterize the approximating properties of the underlying functions under
L? (F) and uniform distances. Note that constants c¢,, = ¢, (G) and l,,, = l,,, (G) are allowed to

depend on n but we omit indexing by n for simplicity of notation.
Let ¢ > 2. The following assumption imposes restrictions on the tails of the regression errors.

Condition A.4 (Disturbances) Regression errors satisfy

sup B (|e[*] X; = o) S 1.
zeX

We will also need the following assumption on the dictionary to hold with the same g > 2 as in
that in Condition A.4

Condition A.5 (Basis) Dictionary functions are such that (i) g2a/(a=2)
logm, and (4i7) log &, < logm.

PR S 1, (i) log &l S

n

Finally we denote

and o
Rop = /logm.lpy,cp,-

Next, we introduce two results derived from Theorems 4.1 and 4.3 in [3]
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Theorem 7 (from Theorem 4.1 of Belloni et al. - L? rate of convergence) Assume that Con-
ditions A.1, A.2 and Condition A.3 (part i) are satisfied. In addition, assume that (i) 5’"1%

0 and (%) sup,ecx F (Eﬂ X; =x) S 1, then
19 = 9ll,p) SP Vm/n+ cp.

Theorem 8 (from Theorem 4.3 of Belloni et al. - uniform rate of convergence) Assume
that the conditions A-1-A.5 are satisfied. Then

n—oo

||/g\_ g”oo SP \5/7% (\/ logm"'_ﬁln +R2n) + lmcm

In what follows, we assume that the class of functions G to which the regression function g
belongs, is contained in a Holder ball with finite radius and known smoothness order s > 0. Let

ulw

v

where recall d is the dimension of the covariates. Since G is allowed to change with n, s is also
allowed to depend on n. Furthermore, d may change with n. However, in what follows we assume
that v = 2 is constant, that is, independent of n. Recall that in Subsection @ we apply the
results of this appendix for the case in which the whole model is fixed, so that the requirement that
~ is independent on n is satisfied in that setting.

The following Lemma[I7) shows that, under regularity conditions, if the number m of dictionary
elements is chosen to balance the trade off between approximation error and sampling error, the
optimal L? rate of convergence of nonparametric estimators n~ % - of regression functions in
a Holder ball H (X;s,p) - can be achieved by series estimators that use dictionaries satisfying
certain optimal approximation properties. Then, in Lemma we show that, under regularity
conditions, if we choose a dictionary satisfying certain more restrictive approximation properties
and if the number m of dictionary elements is chosen to yield the L, optimal rate of convergence,
then the series estimator is L, consistent if, in addition, v > %. Furthermore, we find the L. rate of
convergence of the series estimator under these conditions. Both Lemmas([17 and[L§ assume that (1)
&m < 4/m. In addition, Lemma [17|requires that (2) part i of Condition A.3 holds with ¢, verifying
that ¢,, < m~7. Finally, Lemm also assume that (3) Condition A.3 is holds with [,,, and ¢,

~

such that l,,,¢,, < m~7. Examples of dictionaries satisfying (1) and (2) are Cohen-Daubechies-Vial

wavelets, B-spline and local polynomial partition series. If, in addition, uniformly over n, the pdf
of F' is bounded from above and bellow away from zero, these dictionaries also verify (3), (see [3]).

Lemma 17 Assume that
1. G is contained in a Holder ball with finite radius and known smoothness order s > 0,
2. Conditions A.1 and A.2 are satisfied,
8. Part i of Condition A.3 is verified with ¢y,
4- &m S Vm, and
5

. supE (2| X; =2) S 1.
TEX

< miﬂ/’

~
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1
Then, if we set m < n®+1, we have that
~ < .
19 = 9llp, ) Sp ™=
1
Proof. First note that, since &, < /m and m < nZ+1,

&2 logm . mlogm

,Snﬁ*llog(nﬁ) - 0

n ~ n n— 00

Thus, all the assumptions of Theorem [7] hold, so that

||§_g||L2(F) SpV/m/n+ e
Svm/n4+m™Y

by assumption of the lemma. Now, the fact that m < nTF implies that
i

M) /m/n=n 7" and
() m=7 < 717ﬁ
from where we arrive at
19~ 9l oy Sp =5

as we wanted to show. m

Lemma 18 Assume that

1. G is contained in a Holder ball with finite radius and known smoothness order s > 0 such that
T=5>5

2. Conditions A.1 and A.2 are satisfied,

3. Condition A.8 is verified with lycm S m™7,

4. Condition A.4 is satisfied for some q > 2 + %,

5. & S \/m, and

6. logél <logm.

Then, if we set m =< nﬁ, we have that
~ _6y-1 .
a) 19— 9l = Op (n 4v+2\/10gn>, zf% <y < i, and

D) 15~ glloc = Op (n~ 5 logn) if 7> &.

In particular,

¢) I3 = gllo = 0p (1) for all v > 5.
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Proof. Note that assumption and the fact that m =< nz+ imply that

/(o BT a0 OB st o ()
' n n

But, Tlﬂq%z — 1< 0since g > 2+ % by assumption 4} Hence, the sequence in the right hand side

of previous display tends to zero and, thus, part (i) of Condition A.5 is verified for the same ¢ of the
Condition A.4. Furthermore, part (ii) of Condition A.5 is verified by assumption |§| of the lemma.
Finally, assumptionalso implies part (iii) of Condition A.5, since log&,, < logy/m < logm. Then,
all the assumptions of Theorem [§| are verified, so that

16~ 9l Se S22 (Viogr + Ran + Ran) + o B
Now, since ¢ply, S m™7 and &, < /m by assumptions [3[and [5} the bound in (B.17)) becomes,
15— gll. <p \/f (Viog + oo + R +m,

Here, recall that Ry, = v/Iogm.l,ucpm. But cpuly, < m™7 <1 and, hence, Ry, < +/logm. Thus,

\/T(@‘*‘R%)S mlogm

n

- mlogm m— _
19— 9l <P/ ng +,/zR1n+m v,

1
Now, since m =< n+1, we have that

=27 _1 = =
(I) \/ml‘;# < \/nhﬁl log (n?vH) = n=t TIH logn < n>* /logn, and

(1) m~7 < nt.
[m]1 .
MO8M | < nit4/logn (B.18)
n

Then,
m— . _6y-1
\/ —Rin S max {n =+ logn,n~ T2 \/logn} . (B.19)
n

To see this, note that, since &, < /m and ¢ply S m™7,

[e2
Ry, = 57"1% (nl/q1 /log m + \/E.lmcm)
< V/log m\/f (nl/q\/logm + \/ﬁ.m_"’)

L (1-v)
= \/ﬁn(iff) log m + Vlogmm
Vn
an ~—_——
bn

which yields

Next, we will show that
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1 — .
Now, using again that m < n2¥1, we arrive at

m 1_ =27 41 _1 =27 41
—a, = m.n(q 1) logm < NI Ty log (n2v+1) < nHI T log n.
V n

But —2% 4+ % < —5L= since ¢ > 2 + % by assumption E of the lemma. Thus, we have that

2v+1 2v+1
\ /man < n~ =7 logn. (B.20)
n

\/Rbn = m(%_'y)nflx/logm hS n" B 1/log (nﬁ) < n” v logn. (B.21)
n

Finally, (B.20) and (B.21) imply (B.19).

Then, (B.18)) and (B.19) imply that

Also

19— glloc Sp max {n= 7 logn, = %5 \flogn } .

1. N _6y-1 . .
But, 515 < ijﬁ; iff v > 1, then |[g—gll, Spn T2 lognif § <~y < +and |79l Sp

n~ P2 Viogn if v > i, which concludes the proof. m
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B.6 Proofs of Theorems 3 to

In this appendix, we prove Theorems [ to[6} To do that we need to introduce some results, which
we do now.

B.6.1 Previous technical results

N\ =2
The following result is used in the proofs of Theorems [3|- H to bound the L., norm of (hk) ke
[K].

Lemma 19 Let G be a fized real-valued function and let @n be a sequence of random real-valued
function, both with domain in the same subset X CRY. If Hén - GH =0, (1) and |G (x)] >0 >0
for all x € X, then =
1

(oo}

This lemma is an immediate corollary of the following result.

Lemma 20 Let G be a fized real-valued function and let @n be a sequence of random real-valued
function, both with domain in the same subset X CR®. If Hén — GH =0,(1) and |G (z)] >0 >0
for allx € X, then =

Proof. For each fixed z there exists 7}, (z) satisfying

1 1

5—@ :Op(].).

oo

IN

T, (z) - G (Js)‘ ‘@n (z) — G (z)| such that

1 1 —2 ~
R Te i ARG

—

1 1
Gn(z)2  G(w)?

Then, sup,, < (ot |; o sup, |Gy (z) — G (x)‘ . Since
sup,, ‘én () -G (zr:)‘ = o, (1), if we prove that inf,

~

Ty (m)‘ > 0 /2 with probability tending to one,

then we have the desired result. But,

T, (x)’ = inf ‘G (z) [G (z) — T (z)] ]
T (a) - G (a)|}
2 |

T (x) = G (2)

inf
T

> ir;f{|G(x)| -

> inf |G (x)| — sup

> 0 —sup én (x) —G(J?)’

~

Now, given € > 0 choose ng such that P (supme;{ ‘Gn () -G (x)’ > %) < ¢ for n > ny. For such
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P (mf

T, @)| > a/2) > P <sup Gue) - G )] < ;’) S1-e

reX

then inf, [T, (x)’ > 0/2 with probability tending to one, as we wanted to prove. ®

The results in the following Lemmas 21 and 2] are crucial to prove Theorems[3|to[6] Specifically,
part (d) of Lemma is used to bound the terms involving successive application of the linear
operators 17 [] to different functions of the estimation errors Mk, DR—Nk O Nk, M R—"k, for § < k, by
terms involving only the functions of the estimation errors 7y pr—7% or Nk arr—nNk. On the other
hand, Lemma [22] is used to show that in the estimation error

Mk, MR — Tk = Nk,DR — Tk
+ Hk |:qk+1 ('7 ';hk—‘rl?ﬁk_;rLMR) - Ep {Qk+1 (hk+lﬂﬁk+17MR> ’ Zk = az7fk+1 = '7Mk+1}:| ’

the term that dominates the Lo rate of convergence is ni, pr—nk. As will become clear next, to apply
this lemmas to our problem, we strongly use the fact that each 7 is estimated using a different
subsample N'* of the nuisance sample N. The proofs of these results rely on arguments used in the
proof of Theorem 4.1 of [3].
To present these results, we need first to introduce some notation. Consider a sequence of
datasets
S, ={0;:i=1,...,n} (B.22)

of i.i.d. copies of O = (X, A,W) with X a random vector with sample space X C R¢, A a discrete
random variable with sample space A and W another random vector. We also consider a sequence
of vector-valued functions p(™ (-) : X — R™("),

!/

p(") (z) = (p1 (%), s Py (x)) , (B.23)

containing the first m (n) elements of a dictionary {p; (-)},5,, where m (n) may change with n.
Throughout, to alleviate the notation, we omit indexing by n where it does not lead to confusion.
Then, we write m instead of m (n), p (z) instead of p(™) (x).

Given some fixed a € A, we define

Ia = I{a} (A), (B.24)
Qo =E {Lp(X)p(X)'} (B.25)

and
Qu =Py {Ip(X)p(X)'}. (B.26)

Note that, although not explicit in the notation, @a depends on n, moreover (), depends on n
since p (-) does. Now, consider another sequence of datasets S; independent of S,, and let i () be
a real-valued function with domain in the sample space of O that may depend on the data in S;.
Finally denote

mgl()=8p() (B.27)
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with

B=Q; Py {Lp(X)7(0)}
= {Z Iay (Ai)p (Xi)p(Xi)/} {Z Iray (Ag)p (Xi)/ﬂ(oi)}
i=1 i=1

the least squares coefficient in the regression of Y = 7y(0) on p(X) in the subsample of S,, of
observations with A; = a. Note that 3 is a function of S,, and S;.

Lemma 21 Let S, p (), 1o, Qa, Qa, S5, 7 (-) and IL[7] () as defined in (B.22) — (B.27). Also, let

P, be the empirical distribution of units in S,,. Suppose that

1. uniformly over n, eigenvalues of Q, are bounded above and bellow away from zero,

2. lpllo < vm and

S m=n®with)<a<l,

Then, for O = (X, A, W) independent of S,, and S,

o) B 1A 0F[s.si] < 8]

b B[ <r 2{ri07|s:}.

o) 3] e 1B, L7 ©)p NP,

and therefore,

4) E [ L ATG (XOY| S0, Si) S E{L5(0)%] 3} and
¢) B | LA (X)}] 0. 83] Sp IPa {15 (0)p (O

Lemma 22 Let S, p(+), la, Qu, @a,S:;,ﬂ(-) and I1[g] (+) as defined in (B.22)) — (B.27). Suppose
that

1. uniformly over n, eigenvalues of Q. are bounded above and bellow away from zero,

2 Pl S Vm,

S m=xn®wth0<a<l,
Also, suppose that, for O = (X, A, W) independent of S,, and S},

4. E{1,§(0)|X,8;} = 0 and

5. E{Jagj(O)Q( 3;5} <pl.
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Then, for O independent of S, and S,

B [ 1ALH (X)Y] 8..87] < 2

To prove Lemmas [21] and [22] we first need to show the following results.

Lemma 23 For any sequence of non negative random variables X,, with finite expectation it holds
that X, = O, {E (X,,)}.

Proof. The result follows immediately after noticing that for any M > 0 and any n,
X 1 Xn 1
P M) < —FE = —
(‘E(Xm g > "M ()E(Xm ) M

where the inequality follows from Markov’s inequality and the equality follows because X,, > 0.
]

Lemma 24 Let X,, and W, be sequences of random wvariables such that W, = O, (1), and such
that W, = W,, (D,,) is a function of data D,,. Suppose that for any M > 0 it holds that

W, (D)

P(1Xa| > MID,) < =2

Then, X,, =0, (1).

Proof. We want to show that given any ¢ > 0 there exists M. such that for all n
P(|Xn] > M) <e

Let 6 > 0 and let K be such that for all n,
P(Wn > K(;) < 6.

Then, for any C

P (X >C) = [ Xn| > C|Dy)]

| Xy| > C|D,,, W,, > Ks) P (W,, > K;|D,,)]

|Xn| > C| Dy, Wy, < K5) P (W, < Ks|Dy,)]

W, > Ks5|Dy)] + E [P (| Xn| > C|Dp, W,, < Kj)]

T U

[
[

—~ T~

[

[

K;

n K ~

(W, > Ks) + e
K;
< —
7(5—5-0

IN +
3

E
E
E
E
<P

Now, take 0 = /2 and take C' =

. Then, § + % =¢. So,

P(1x> g ) <

which shows that X, is bounded in probability. m

(6/
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Corollary 1 For any sequence of non negative random variables X, and any a sequence of random
vectors Dy, it holds that X, Sp E (Xp|Dy) .

Proof. Since X,, > 0, Markov’s inequality implies that

Xn
"= M M’

(s

Then, the assumptions of Lemma hold with ﬁ playing the roll of X,, and with 1 playing
the roll of W,,, from where we conclude that % = O (1) as we wanted to show. ®

In what follows, for any matrix M, we use Apin (M) and Apax (M) to denote the minimum and
maximum eigenvalue of M respectively. Also, throughout, we will use repeatedly the fact that if
M € R™ ™ is symmetric, then Apin (M) = minjy = {o'Mu}, Amax (M) = max, = {v'Mu} and,
hence v/ Mv < Apax (M) |Jv]|* for any v € R™. Likewise, we will use the fact that if M € R™*™ is
symmetric, then |[|[M]| < Apax (M) .

Lemma 25 Let {A,}, .y C R™*™ be a sequence of symmetric fived real-valued matrices and
let {A\n} N C R™*™ be a sequence of symmetric random real-valued matrices. Assume that
ne

.- 4%

— 0. Then,

a) if uniformly over n, the eigenvalues of A, are bounded above by a constant C < oo, then with
probability going to one, the eigenvalues of A, are bounded above by %C’, and

b) if uniformly over n, the eigenvalues of A, are bounded bellow by a constant D > 0, then with
probability going to one, the eigenvalues of A, are bounded bellow by %D.

Proof. First note that, since A\n and A,, are symmetric real-valued matrices, Amin (A,) = mMinj, =1 {u Apu},
Amax (An) = max =1 {¢'Anu}, Amin (A\n) = Minj, = {u’;l\nu} and Apax (A\n) = Max||y|=1 {u’gnu} .

To see (a), note that for any n,
N\ 3 .~ 3 .
P Ao (An> <5C) =P (wAu< 5C forallue R™ with [ul| = 1
> P (‘u’gnu —u Ayu
1
<=C
1),

where the first inequality follows from the fact that Apax (A,) < C for alln. But P (Hgn —A,

1
< 50 for all w € R™ with |Ju| = 1)

v

P (Hﬁn — A,

< %C) -
1 since Hﬁn — A,

o and, hence, P (/\max (/Tn) < %C’) — 1 as we wanted to show.
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Fact (b) follows from an analogous argument by noticing that
1 1 'x 1 .
P Auin (An) > 5 =PuAu> iD for all w with |lu|| =1

>P (‘u’//l\nu —u'Au

1
< §D for all w with |lu|l = 1)

ZP(H/L—A,, < ;D> 1,

where the first inequality now follows from the fact that Apin (A,) > D for all n. This concludes
the proof of fact (b). m

The following result follows from Lemma 6.2 of [3] and is a variant of a fundamental result
obtained by Rudelson ([48]), which is a sort of law of large numbers for matrices.

Lemma 26 (from Lemma 6.2 of Belloni et al.) Let Pl(n), .., P™ beii.d. copiesofa M (n)x
1 vector P™ . Assume that there exists a sequence {§n}n21 such that ||P(")|| < &mn) @S-

Let R, = E{PMP"'} and R, =P, {P™P™'} . Then,

log M (n) log M (n)
b €y B feg M)y

n

£ {]f 1.

The following lemma follows from Lemma [26] applying arguments used in the proof of Theorem
4.1 of 3.

Lemma 27 Letp(-),m,Q, and @a as defined in (B.23)) , (B.25) and (B.26)) .

If Hp||§o loem _, 0 and, uniformly over n, eigenvalues of Q, are bounded above, then H@a — Qq

n
0.

P
—

Proof. By Lemma it is enough to show that £ {H@a —Qq

} — 0. Now, note that

Qa = E{ﬁ(XwA)ﬁ(XaA),}

and
@a =P, {ﬁ(Xa A)ﬁ(XvA)/}

with p (X, A) = I,p(X). But, |[p (X, A)| < |p|l, , then we can apply Lemmareplacing P™) by
P (X, A) and &) by [Pl , from where we conclude that

logm logm
b Il =2+ J Ipl% =2 1Qull

E{]|Q. - @

Also, ||Qall € Amax (Qa) < 1 where the inequality follows because @, is symmetric and the bound
follows because the eigenvalues of @), are bounded above, by the assumption of the lemma. Thus,

we arrive at
5 logm

E{]|0. - @

b S Il

[e’e] n _>07
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by assumption of the lemma. This concludes the proof. m
Proof of Lemma To see (a), note that

E (1 NG (Y| S0,83] = E{ 1.8 (X)p (X) B| S0, 3 }
= F'E{Lp(X)p(X)'} B
= B < A (@) 3]
Now, assumption [If of the lemma, implies that there exist constants C; and C5 such that

0 < C1 < Amin (Qa) € Amax (Qq) < Ca < 00 (B.28)

for all n. Here recall that, although not explicit in the notation, Qa may depend on n. Then,

E 1[5 (X)P] 8,8 < o

which concludes the proof of fact (a). To see (b), note that

18] = @ e i3 p 0| = |@2 20 2R {15 (0)p (X))

w

= w'Q; "0 < Amax (@;1) Juwll®

But, (I) Amin (@) > C1 > 0 for all n by [B.28 and (II) H@a - Qq £0. To see fact (IT), note that

assumptions ] and PJ] of the lemma imply that

I 1
Ipll2, 57 m=2 S @D log () = 0, (B.29)
since @ < 1. Thus, assumptlon. 1 of the lemma and Lemma [27) imply that
HQ\a - Qa E’ 0.

Now, facts (I) and (IT) and Lemma|25{imply that Amin (@;) > %Cl with probability going to one,

so that Amax (@;1) = {)\min (@a) }7 < C% with probability going to one. Hence, Apax (@;1) is
bounded in probability, thus yielding

Bl e @z 22t ) 00
= P {LG(O)p(X)}’ Q;Pn{fay(mp(X)}
g

<P, {Iay(())?}, (B.30)
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where the last equality and the last inequality follow from the fact that
P [1o {y (0) — I [y] (X)} I [y] (X)] =0
by projection’s properties. But,
P, {150} Sp E [P {150} 5] (B:31)
by Corollary [1] and
~ 2 * ~ 2 *
E [Pn {Iay (0) }‘ sn} —E { L5 (0) ]sn} . (B.32)
Hence, from (B.30)), (B.31)) and (B.32)), we arrive at

Bl s & {07 i}

as we wanted to show.
To see (c¢), note that

B - @ e g0 e0n
=P, (LG (0)p(X)Y Qazﬂ%{fmomx»
< Mo (@22) [P {15 (0)p (XD}

~

~ 2
But Anax (Q_Q) = Amax (Q_l) , which is bounded in probability as shown above. Hence,

a a

13l e 1P 2 @) p 0N,

thus concluding the proof. =
Proof of Lemma 22l First note that

E 1 AT G (X)Y] S, 85| Sp IPa {15 (0) p (X}

by Lemma [2I] and assumptions [I] to [3] of the lemma. Now

m

Py {27 (O) p (X} = [Pn {15 (0) p; (X)}]?

j=1

SpE { Y P {Lg (0)p; (X))

3;}

-3 BB LT O (N 52

=1

where the “<p” in the second row follows from Corollary [I} Then

E LA (X)Y| .83 5e ZE{ [P {1,5(0) p; (X)}| S3} - (B.33)
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But
EA{Pn {Ly (0)p; (X)} Sy} = E{1.y(0)p; (X)|S;}
and
E{Ly(0)p; (X)[S;} =0 (B.34)

by assumption 4 of the lemma. Hence,
E{ [P, {15 (0) p; (W[ i} = Var [ {15 (0) p; (X)}] 83}
= WVar {Lj(0)p; (X)] 5}
= B [(1.5(0)p (X)|5]

where the last equivalence follows from (B.34)). Then,

_Zm: E{ [P, {15 (0)p; )}]Q\S;}zfjlja[{f{a} (407 (0 p; (X)}] 8]

= LB | (T (40700 p; (X0} ;
= B [Ty (40700 Ip (X0 53]

<p —. (B.35)

where the “<” in the 4" row follows from assumption [2f of the lemma and the “<p” in the last
row follows by assumption 5 of the lemma. Finally, equations (B.33) and (B.35) imply that

E | 1, (T[] (X))’

m
SurSi| S0

as we wanted to show. m

B.6.2 Proofs of Theorems 3l to

Throughout this section, we will use repeatedly the fact that for any fixed p € N and any sequence
{an},en of p x 1 vectors with a,, = (@n,1,...,an,p), it holds that

» 2
(Z an)i> < Z ai)i.

i=1

This is because, as can be easily shown by induction, (3-7_, vz) - v} for every p € N and

(vi,...,vp) € RP. Likewise, we will use the fact that lim,, o n~ (logn ) =0 for any a > 0,b >0
and ¢ > 0, which follows straightforwardly by L’Hopital’s rule.

To prove Theorems [3] to [f] we need first to show some results. Like the Theorems [3] to [f] each
of the following results assumes a specific subset of the conditions defined in Subsection 2.7.2] We
recall them here, for easy of reference.
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Condition Hélder(k) ny () lies in a Holder ball H (Zk; Sk, pk) with pr < oo and known smooth-
ness order s; > 0.

Condition R(k) Assumptions 2 - 5 of Lemmain Appendixare verified with Lj, in the place
of X, 41 (Li+1) in the place of Y, 7y, (-) in the place of g (-) , the distribution of L1 | Ay, = aj
in the place of the distribution of (Y, X’), ¢x (Ix) in the place of p(z), H (L; sk, px) in the
place of G and 7y, = si/ dim (fk) in the place of ~.

Condition B(k) there exists £ > 0 such that hy, () > ¢ for all I}, .

Condition Hconvergence(k) Hﬁk - th =0,(1).

Condition HrateInf(k) Hﬁk — th = O, (ag,n) for some sequence oy, converging to 0 as n
(oo}

goes to oo.

. 2
Condition HrateL2(k) \/Ep {Ik (hk — hk> ‘N} = Op (Bk,n) for some sequence [, converg-
ing to 0 as m goes to oco.

Also recall that, whenever Condition Holder(k) holds and dj, denotes the dimension of the vector

Ly, we let
Tk

2+ 1

Sk
= — andry =
Vi dr k

In addition, recall that my is the dimension of the vector ¢ (fk) used to construct the series
estimators 7y, and 7, amr (see definition (2.42)). Finally, nx, pr and nx am g are as defined in (b) and
(d) of Subsection for the special linear operator 1T [-] defined in (2.42) and with h' replaced

by the estimator h used to compute §* and 6%, 5.
Next, we introduce and show the results used in the proofs of Theorems [3] to [6]

Lemma 28 Suppose that, for a given k € [K],

1. Condition B(k) holds, and

2. Condition Hconvergence(k) holds.

Then,

o @)

b) if, in addition, Condition HrateInf(k) holds, then

=0, (1) and

o0

Ep{1k<1 3) u(O,N)‘N}:Op(ozi,n)Ep{u(O,/\/')N}

b hy

for any nonnegative real-valued function w(-,-) .
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Proof. Fact a) follows straightforwardly by Lemma [19|in Appendix and the assumptions of
the lemma.
To see b), note that, for k € [K],

/1 1\?* - 1 \?/~ 2
In|——=—) =1 — h — h
g <hk hk-> i (hk»hk> ( g k>

< gl s =

by Condition B(k). Thus, since u (-, -) is a nonnegative real-valued function,

1 1)? ~ ~ 2
o< {n (- ) wouo|w < i _[i-n gt

But HEI:QH = 0, (1) by part a) of the lemma. Then, if

’hk — th = Oy (ag,n), we arrive at
o0

E, {Ik (hlk - 3) u(O,N)‘N} = 0, (02.,) By {u (0, N)| N}

hi

[
Lemma 29 Suppose that, for each k € [K],

1. Condition B(k) holds,
2. Condition Hconvergence(k) holds and
3. Condition HrateL2(k) holds.

- 2
Ep

Lo (b I
=t \ he, /h\k
Proof. Note that, for k € [K],

_ 2 - 2
I (I Iy Iy, -~ 2
I =L Ry ()

{%k_l (h‘k hk>} <7Tkhk> ( g k)

o S RACS,

Then, for k € [K],

= Op (Bk,n) .

by Condition B(k). Hence, since H (%k)_QH depends only on N,

(et (-2 o] sl oy
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But H(%k)‘QH <mk
(o]

N2
(hj> = O, (1) by part a) of Lemma and assumptions [1| and [2| of

the lemma. Then, assumption [3| implies that

- 2
g ([l (L Ik
p Tk—1 hi /}\lk
as we wanted to show. ®

The following lemma follows immediately from Lemma [I7]in Appendix [B.5]

N‘| = OP (ﬁk,n)

Lemma 30 Suppose that, for each k € [K],

1. Condition Hélder(k) holds and
2. Condition R(k) holds.

If my < n T for k € [K], then

\/Ep [Tk (Mk.pR — nk)z‘J\/} =0, (n7").
Lemma 31 Assume that K = 2 and suppose that
1. Condition Holder(k) holds for k = 1,2,
2. Condition R(k) holds for k = 1,2,
3. Condition B(k) holds for k =2, and
4. Condition Heconvergence(k) holds for k = 2.

If my, < n%kl“ for k=1,2, then

\/Ep [T nerem =m0 [ V] = 0, (n77%)

Proof. Recall that
2, MR = 1]2,DR

and
m,mr () =m,pr(-)+ I [e2] ()
with R o _
() =g ( ; hZ,ﬁQVMR) —E, {QQ (hz,ﬁgyMR) ’ A =a To = .,N2} .
Hence,
_ 2 - 2
E, {12 (M2, MR — 12) ‘N} =E, [12 (m2,pR — 12) )N}
and

E, [Il (MR — m)ﬂj\/} <E, [Il (R — m)Q‘N} +E, {Ilnl [52]2’/\/} .
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Also, from assumptions 1 and 2 of the lemma and Lemma [30} we have hat
E, Fk (Mk,pR — 771@)2’/\/} <p (n_r’“)z Jk=1,2.
Hence, we would arrive at the desired result if we show that
E, [ 1! [52]2’/\/] <p (n7)7. (B.36)

. . 1 27 27 _ 2
Note that, since we are taking m; < n?n+1, we have that 7t < n~ 21+1 < n 2+ = (n7")".

Then, to show (|B.36)) , it suffices to show that

E, [ 1t [EQ]Q‘N} <p % (B.37)
Note that E,, [Ilﬂl =2 ‘/\/’] [Ilﬂl €] ‘Nl /\/’2} and that e, is function of the observed

data O and N2. Also, note that assumption [2| l 2| of the lemma imply that

(1) the eigenvalues of E, {Il¢1 (L1) ¢1 (L1) } are bounded above and bellow away from zero,
and

(i) 161, < /.

Then, assumptions [l and [2| of Lemma in Appendix hold with S,,,S8}, X, A,a,p (")
and 7 (O) replaced by N1, N? L1, A1, a},¢1(-) and ey respectively. Furthermore, the fact that

my X nﬁ implies that the assumption |3| of that lemma also holds. Note that here we are using
the fact that each 7y amr, k = 1,2, is computed from a different subsample of N, because we are
strongly using the fact that A" and N'? are independent datasets, which is one of the assumptions
of Lemma Then, we would arrive at if we show that

I E, {’162| Li,N?} =0 and

(1) E, { he3| N2} <p 1.

This is because, (I) and (IT) imply that assumptions 4 and 5 of Lemma also hold and, hence,
we would conclude from that lemma.

To see fact (I), note that, by definition, E, {52| A = af,fz,./\/'z} = 0. Then,

Ep {Il€2|IQ,N2} = Ep {€2|A1 = G,T,ZQ,Nz}P(Al = CLTlZQ) =0

and, hence,
Ep {11€2| Ll,N2} = 0.

To see fact (II) note that, since

Q2 (ﬁ2a7/7\2,MR) =2,mr (L2) +

iy 15 )~ ()}

and 72,07 (L2) depends only on Ly and N2, then

_ b I
€2 = hg(Lg) {k(Ls) = M2,mr (L2)} — Ep [hz( )

Thus, to prove (II), it suffices to show that

{# (Ls) = fl2.arre (L2) }

Al = aslﬁ’L27N2‘|
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2
(Il.a) E, {Il {32122) {r (L3) — o,mr (LQ)}} Nz} <p1and

2
32&2) {r(Ls) — T2, (L2)}’ A= a’faL%Nz]

(
(ILb) E, {IlEp { /\/2} <pl.
(

2

I [,}121(-2 {li (fs) — 2, MR (L2)}1 < “E§2"w I {“ (ZS) —2,MR (ZQ)}
Hence,
E, {]1 L {r (L3) — M2,mr (Lz)}]

L)
7 (L NZ}

< HEEQ ‘oo Ey [72 {k(Ls) — o,mr (fz)}g‘/\fz]
Sp Ep :72 {k (Ls) — M2,mr (Zz)}Q‘NQ}

S By [T (s (o) = m (L) Y| N?] + By [Ta e (L) = i (T2) Y| A

where the bound in the third row follows from part a) of Lemma and assumptions and@ But,
- — — 42
By [To s (Ls) = m2 (T2) )| V2] 51
by assumption [2| of the lemma and

Ep [72 {n2 (L2) — Mo.mr (f2)}2‘./\/2} =0, (1)

N2}5p1

by Lemma and by the fact that 72 arr = 12, pr. Then

2

as we wanted to show.
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Fact (IL.b) follows immediately from fact (Il.a), after noticing that

E, { LE,

<E, |LE, {

{r (La) = M2nar (L2) }

2
L Ay = 0, To N2 | | A2
ha (L)
12
I o i
712(7%2){5 (L3) = To,mr (L) } | | A ZGT,L%NQ} Nz}

2

2 {/‘6 (zs) - ﬁZ,MR (Zz)}

B2 (L2)
2 NQ}

Al,Lg,N2} /\/2]

() U ()~ e ()}

Lemma 32 Assume that K = 3 and suppose that

~

. Condition Holder(k) holds for k =1,2,3,
2. Condition R(k) holds for k =1,2,3,

3. Condition B(k) holds for k = 2,3, and

4. Condition Hconvergence(k) holds k = 2, 3.

If my < NI for k=1,2,3, then

\/Ep Pk (M, pR — ﬁk)Q‘N] =0y (7).
Proof. First, note that assumption [2] of the lemma imply that, for each k = 1,2, 3,

the eigenvalues of E, {Tk(bk (fk) Ok (fk)/} are bounded above and bellow away from zero,

(B.38)
10k ll0e S VMU, (B.39)
E, [72 {ns (Ls) —n2 (EQ)}Q‘N2:| Sl (B.40)
and
By |Ts { (T1) = ns (Ls)}] S 1. (B.A1)

Recall that
N3,MR = 1)3,DR
and, for £ =1, 2,
Ner = MR + 10F [eg1]
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with
B ~ ~ T T kt1
er+1 (1) = o1 (', ';ﬁk+1aﬂk+1,MR) -E, {Qk+1 (ﬁk+1’ﬂk+1,MR> ‘ Ay =aj, Ly = N*°F }

where recall that A**1 = Ul N
Hence,

E, {73 (n3,MR — 773)2‘./\/'} =E, [73 (n3,prR — 773)2)-/\/}
and, for k =1,2,

By, [Tk (M, MR — nk)Q‘N] S Ep [Tk (k,DR — ﬂk)z‘/\/] + Ep Fkﬂk [€k+1]2‘/\f} .
Also, from Lemma [30] and assumptions [I] and [2] of the lemma, we have hat
Ep |:Tk (Wk-,DR - Uk)Q‘N} SP (nirk)Z s k= 17 27 3. (B42)
Hence, we would arrive at the desired result if we show that
- k 2 —r 2
E, [Ikn lensi] ‘N} <p (n7™)° for k=12, (B.43)

1 2k %k
As in the case K = 2, since we are taking my < n?»+1, we have that =& xn 2%+ xn 2%+ =

(n_““)2 and, hence, to see (B.43) it suffices to show that
B, [Tt [ekH]Q’N} Sp o fork=1,2. (B.44)

To see , we proceed as in the proof of Lemma Specifically, we first note that, for
k=12 () E, [Tka [5k+1]2‘N} = E, Fkﬂk [5k+1]2’Nk,Mk+1] and (ii) €gx41 (O) depends on
the observed data O and N*!. Hence, to prove , we can apply, for each k = 1,2, Lemma
of Appendix with S, S, X, A,a,p(-) and 7 (O) replaced by N'* N*1 T, Ay @k, o ()
and e respectively. Facts (B.38) and (B.39) and the fact that m; =< n TR imply that all

assumptions 1 - 3 of that lemma are verified with the replacements mentioned above, for k = 1, 2.
Also, for k = 1,2, assumptions 4 and 5 of that lemma hold if

(1) Ep {7k€k+1|zk7fk,ﬁk+l} =0 and
(1) By { Taed 1| N1} S 1.
Fact (I) follows again from the fact that, for k = 1,2, E, {5k+1|Zk = Ez,ka,MkH} =0 by

definition.
To see (II) note that, since

3 -7

- R _ IR _ R _

Qr+1 (ﬁk+17ﬂk+l,MR) = Mes1.rr (Lesr) + Y —— {fjrimr (L) = jmr (L))}
j=k+1 Th+1

and k11, MR (Zk+1) depends only on Zk;Jr] and Afk+1, then

ek+1(0) = Upy1 — vkp1
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with
3

T _ .
w1 = Y = {lrur (Lier) = e (L) }
j=k+1 Th+1
and B B
V1 = B {Um—l\ Ay = ay, Lk+1,Mk+1} .

Then, to prove (II), it suffices to show that, for k = 1,2,

(ILa) E, {T,Cuiﬂwk“} <p1and

(1) By { Tevd | N1} S 1.
We start by fact (II.a). Note that

3 —i \ 2

_ _ T R _ R _

Ty, (us1)” ST, Z (w‘k ) {je1,0r (L) = jmm (Lﬂ')}Q
j=k+1 7Tchrl

3 N _9
=< Z (7%+1>
j=k+1 o0

T {ysraer (L) — iarr (L)}

Hence,

3

E, {T’Cuiﬂ‘ﬁkﬂ} <)

(%@1)_2“ E, FJ‘ {Mj+1,mr (Ljt1) = Mjmr (fj)}Q‘/\Jk“}

Jj=k+1 00
3
Sp Z E, {Tj {ﬁjJrl,MR (fj+1) — ﬁijR (Zj)}2‘.Mk+1} )
j=k+1

N
since, for k = 1,2 and j > k + 1, H(%iﬂ) ’

<p 1 by part a) of Lemma [28 and assumptions
and @ of the lemma. Then, to prove (IL.a), it suffices to show that

Ep [73‘ {jv1mr (Li1) = 0jmm @‘)ﬂﬂkﬂ} Spl
for j > k+ 1 and k = 1,2. That is, it suffices to show that
Ep [73 {r (La) = s (fs)}2’f\/3} Spl (B.45)

and
E, [72 {m3.mr (L3) — o.mp (Zz)}2‘/\/'2 UNB} Sel (B.46)

To see , note that
By [ T3 {n (L) = flan (L) )| N?] S By [T {e (Ta) = s (T))]

+ Ep FS {ns (Ls) — 3, MR (fs)}Z)Nﬂ .
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But _ —_ — 42
E, [13 {# (La) —n3 (L)} } Sl

by fact and
Ey [T {ns (Ls) = s rn () )| ] = 0, (1)

again by Lemma and from the fact that 73 prr = 73, pR-

To see note that
Mo, = 11° {Q3 (?L&ﬁ?),MR)}
= [ asn (L) + 22 (e (T2) = e (53)}
= [ (To)] 4 T |22 (s (E0) = o ()} .
Then,
By [T {flain (Ta) = arn (L)} M2 A7)

S By [T (e (L) = T2 [ o (L))} | 420

ToI12 [g {r (L) = s,mr (LS)}] 2

m]

Hence, to prove , it suffices to show that
Ey [To lsaan (L) = 12 [ (Ls)) )| N2 NP] $p 1 (B.47)

and
- L[ _ R _ 2
E, {IQH LAL {k (Ls) — M3,mr (L3) }}
3

To see , we will apply Lemma of Appendix replacing S,,, S}, X, A,a and 7 (O)

by N2, N3 Ly, Ay, @3 and £—3 {/i (f4) — 3. MR (f;;)} . The assumptions of that lemma are verified
3
with the corresponding replacements from the facts (B.38) and (B.39) for & = 2 and the fact that

N2,N3} <p 1. (B.48)
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1
mgo < n22+1, Thus,

E, {IzH2 EZ {r (La) = s nem (L3)}] 2

J\/2UJ\/3}

2
.

< HE?TQHOO E,p [73 {H (f4) — M3,MR (Z3)}2‘N3}

SpEp [73 {r (Ls) —M3,mr (fg)}Q‘N?’}

Spl,

< B {fz £ () (T2}

[ 0 0 e )]

3

where the bounds in the last two rows follow from Lemma [28| and by fact (B.45) respectively.
To see (|B.47)), note that

E, Fz {M3,mr — 117 [773,MR]}2‘N2 UNs}
=FE, {72 {Ms.mr — 3 +m3 — 1012 (3,007 — m3] — IT2 [773]}2‘/\/'2 UNS}
SE {72 (M3.mR — 773)2‘/\/‘3} +Ep [72 {112 5] — 773}2‘N2}
+ By [Tl [s.asr = ms]? | A2 UN]
Also, note that
By [ Ta1 [fsatn = 1| N2 UN?] Sp B [Ta (s = ma)° | A7)
It follows from applying again Lemma of Appendix with S,,,S’, X, A,a replaced by

N2, N3, Ly, Ay, @5 as before, but with 3 (O) now replaced by (7s,mr — 773). Then, to see (B.47), it
suffices to show that

E, [72 (M3.0mR — 773)2‘/\/3} Spl

and
By [T {11 ] = ma}*| 1] S 1.

Now,
E, {72 (M3, MR — 773)2‘/\/’3} SE,y {73 (M3, MR — 773)2‘-/\/3}

since hs (Zg) > £ for all A by the positivity assumption But, N3, mr = M3,MR = 13,DR, then

E, [73 (M3, MR — 773)2‘/\/'3} =FE, [73 (n3,prR — 773)2‘/\/'3} Sp (H_T3)2

194



by Lemma [30] Hence,
Ey [72 (M3, MR — 773)2‘/\/3} Spl

Likewise, II? [n3] = n2,pr, so that
[IQ{H ns] — s} ‘/\/'2} |:I2{772DR_773} ‘NQ}
=E, {12 {n2.0r — M2 +m2 — 773}2’/\/2}
SE, Fz {n2.pr — 772}2‘/\/2} + LB, {72 {n3 — 772}2‘]\[2} .
a b
But, a <p (n_”)2 as noted above and b < 1 by fact Then,
By [T {1 0] = ms}*| A?] 50 1,

which concludes the proof of fact (B.47) and, hence, of fact (IL.a).
Turn to fact (ILb). We must show that E,, {Tkviﬂ | Mkﬂ} <p 1for k = 1,2, where recall that

_ T T et 1
vpt1 = B {Uk+1| Ap = a5, L1, N } . Then,

Ly {Ik”k+1|Nk+1} E, {Ik [Ep{uk+1|2k:Ez,karth"‘l}r

Nk+1}

by fact (IL.a), which concludes the proof. m

Lemma 33 Given k € [K], if Condition B(k) holds then
B {1 ()} .5, (1))
for any non negative real-valued function u (-,-), where Iy = 1.
Proof. Note that
Ey { T (Ti, N0 )‘N’“} By [ By { Tiu (L, )’Ak 1,LkaHNk]
~E, {T _qu (Zk,/ik) o (I Ay =, Ty ‘/\7/’“}
v (T, NF) b (T )N’“}
Tooyu (T, M) | A}

Y

7a2%

m
. '\.\
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with £ > 0 by Condition B(k). Then
By { Tivu (T M) | A < €72B, {Tou (T M%) | A1

which concludes the proof. m
Proof of Theorem [Bl We want to show that

5" Sp Bran ™™ for k= 1,2 (B.49)

and
&5 Sp Bran " (B.50)

To see (|B.49) note that, for k = 1,2,
“

Iy 1 1

By = (—— = -

’ » { T (hk hk) (k,DR — k)
T, (1 1))

k - 2
(st G =) 9]V (1 mon =]
by Cauchy-Schwarz . But, for each k =1, 2,

I (1 1\’
mh-1 hk ﬁk

by Lemma [29] and Conditions B(k), Hconvergence(k) and HrateL2(k) for k = 1,2. Also, for each
k=1,2,

917"

IN

By,

E, N| <SP Brn

\/Ep [Tk (k,pR — 771@)2‘/\/] Spn™
by Lemma Conditions Holder(k) and R(k) and the fact that my < nTF for k = 1,2. Thus,

(B.49) holds.
To see (|B.50)) , we apply again Cauchy-Schwarz and write

1 1
‘Ep {11 (h - A> IT' (n2,pR — 72] N}’

1 h
\/Ep {hHl [M2.0R — 772]2‘./\/}

(-0
s (- D))

again by Lemma [29] Then, to arrive at (B.50) it suffices to show that

1564

IN

E, N

Now,

N] Spe Bin

E, {-711_[1 M2,pR — 772}2’/\/’17-/\/’2} Sp (TFT?)Q-
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Now, Condition R(k) for k = 1 implies that

(1) the eigenvalues of E, {11 ¢1 (L1) 1 (Ll)'} are bounded above and bellow away from zero,
and

(i) [[¢1]lo < v/ma.

Then, assumptions [1| and 2| of Lemma in Appendix hold with S, S, X, A,a and 7 (O)
replaced by N',N2Lq, A1, a} and 12 pr (fg) — (Zg) . Furthermore, the fact that m; =< nFAT
implies that the assumption [3| of that lemma also holds. Therefore,

E, {111_[1 [M2,DR — 772}2‘N17/\/‘2} Se By {Il (n2,pR — 772)2‘/\/2}
N E, {72 (772,DR - 772)2‘/\/2}
N2 (n7T2)2,

where the second bound follows by Lemma [33| and Condition B(k) for k¥ = 2 and the last bound
follows from again Lemma This concludes the proof. =

Remark 2 Notice that for the validity of the sequence of bounds in the last display of the preceding
proof it was crucial that 2 pr was a data dependent function that depended only on the data in the
sample N2 independent of N, as otherwise we could have not invoked Lemma . Observe that
in Lemma[21], the independence of the sample S}, from the sample S, is crucial for the validity of
the equality @ This highlights the reason why we have chosen to sample split the nuisance
estimation sample so as to estimate the n).s from independent samples. Without sample splitting

we wouldnt know how to bound E, {111'11 [2.pR — 772]2‘]\/} .

Proof of Theorem [4] First, note that Condition R(k) for £ = 1 implies that

(1) uniformly over n, eigenvalues of E, {Il ¢1(L1) 1 (Ll)/} are bounded above and bellow away

from zero and

(i) ler]lo < v/mr-

Then, we have that

A) observations (i) and (ii) and the fact that m; < R imply that the assumptions of Lemma
of Appendix hold with S,,, S, X, A and a replaced by N*, N2, Ly, A1, a} and with
7 (O) replaced by any function of the observed data O and the dataset N2.

Also, note that

B) the Conditions B(k) for k = 1,2, Hconvergence(k) for k = 1 and Hratelnf(k) for k = 2 imply
that the assumptions of Lemma [28 hold for K =2 and k = 1,2,

C) the Conditions B(k) for k = 1,2, Hconvergence(k) for k = 1, HrateInf(k) for k¥ = 2 and
HrateL2(k) for k = 1,2 imply that the assumptions of Lemma hold for K = 2, and

D) the Conditions Holder(k) and R(k) for & = 1,2, Conditions B(k) and HrateInf(k) for k = 2
1

and the assumption that my < n?%*T for k = 1,2 of the theorem imply that the assumptions
of Lemma [31] hold.
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We want to show that
MR <p Ban " for k=1,2 (B.51)

and
Sk 2 SP BiLpqean ", (B.52)

xY.

where, recall that

I I
6{\4REEP{<h11 hl)(mMR—Ul)
1

and

filaT,L2~,Af}}‘Af}.

I I I I
§%REp{<hll/ﬁl)Hl [Ep{<hzﬁ2) (M2,MR — M2)
1 2

To see (B.51)), note that, for k =1, 2,
i

Iy (1 1 ( )
T\ I 7 Nk,MR — Nk
o (1 1 - )
< L _
\IEP {%k_l (hk h,)} \/Ep[fk(ﬁk,MR k) ‘N]
by Cauchy-Schwarz . But, for each k =1, 2,

Iy 1 1
Th—1 hi }\Lk

\/Ep [Tk (kMR — 771«)2’/\/} Spn 't (B.54)

by Lemma 31% Then, from (B.53)) and (B.54)) , we conclude (B.51)).

To see (|B.52)) , we apply again Cauchy-Schwarz and arrive at

|51€%R’: P

2

N

2
E

p

N] SP Brn (B.53)

by Lemma [29) and, for k£ = 1,2,

1 1 1 1 —
= [ {1 (5 ) [ {2 (3, =5 ) e | s =i o=}
1 1\)? 11 2
ShlEp | yh |+ — = N Ey | LT By Iy | — — = ) (no,mr — m2)| A1 = af, Ly = -, N2 N|.
h1 hq ho ho
Now,

/V'] Se Bin




again by Lemma [29] Then, to arrive at (B.52), it suffices to show that

1 1
J E, {Ilﬂl [Ep {12 <h - A> (m2,MR — 72)
2 h2

2
Al = aTvEZ = '7N2}:|

Nl,./\/2} SJP agynn_”.

(B.55)
Let ) )
f (',NQ) = Ep {IQ (h — ,\> (ng’MR —’172) Al = (IT,ZQ = ',N2}.
2 hg
Then
1 1 1 * T 2 ? 1 2
Ep {Illl |:Ep {Ig ( — ,\> ("727MR —772) Al = al,Lg = ',N }:| N ,N }
h? h2
= B, {1 [ (- N2)) | W2 (B.56)

Now, applying Lemma of Appendix with N N2Ly, Ay, af and f (L, N?) playing the roll
of S, S, X, A a and § (O), we arrive at

By {0l [ (N[N sp By { 1 f (Lo, M) | 2 (B.57)
But

11 _ 2
LE, {I2 <h2 - ) (M2,mR — 12) A1,L2,J\/2}

1 1)\?
IlEp {I2 <h2 - ﬁ) (772,MR - 772)2

N2} (B.58)

2

Al,LQ,N2}|N2}

1 1)\? _
hgﬁ) (772,MR*772)2 A1,527N2}|N2}
2
E 7 (1 1)2( )2 N2
= — == (MR —7
A REAY S 2, MR — 12
— (1 1\’ o o
=By L2 5> == ) La(rar =) | N
2 hg
Sp g Ep {72 (m2,MR — ?72)2‘/\/2} (B.59)

by part b) of Lemma 28 and Condition HrateInf(k) for k = 2. Then, equations (B.56) — (B.59)
imply that
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2
Ala){,LQ',NZ}:| Nl,NZ}

1 1
B, {Ilﬂl {Ep {Ig (h - A> (772,MR —12)
2 h2

<p a27n¢Ep {72 (772,MR - 772)2"/\[2}

Furthermore,

\/EP{IQ (772,MR*7]2)2‘N2} SP e (B.GO)
by Lemma [31] from where we conclude that equation (B.55) holds, as we wanted to show. m
Proof of Theorem [5| First, note that Condition R(k), for k = 1,2 implies that, for &k = 1,2,

(i) uniformly over n, eigenvalues of E,, {quﬁk (L) ¢ (Li) } are bounded above and bellow away

from zero, and

(i) loello < v
Then, we have that
A) observations (i) and (ii) for k = 1 and the fact that m; < nFAT imply that the assumptions
of Lemma 21| of Appendix hold with S,,,S}, X, A and a replaced by N, N? = N2 U

N3, Ly, Ay and a} respectively and with 7 (O) replaced by any function of the observed data
O and the dataset N2

B) observations (i) and (ii) for £ = 2 and the fact that my =< N imply that the assumptions of
Lemma [21] of Appendix hold with S,,, S, X, A and a replaced by N2, N3 Ly, A5 and @
respectively and with 7 (O) replaced by any function of the observed data O and the dataset
N3,

Finally, note that:

C) Conditions B(k), Hconvergence(k) and HrateL2(k) for k = 1,2, 3 imply that the assumptions
of Lemma [29] for K = 3 hold,

D) Conditions Holder(k) and R(k) and the fact that my < nTF for k = 1,2,3 imply that the
assumptions of Lemma [30] for K = 3 hold and

E) Condition B(k) for k = 2,3 implies that the assumptions of Lemma [33] hold for k = 2, 3.

We must show that

0P| Sp Bran ™™ for k=1,2,3, (B.61)
6057 Sp Bran ™", (B.62)
6557 Sp Baan ™", (B.63)
and
28| <p Bran™", (B.64)
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where recall that, for k =1,2,3

Iy (1 1
o=, { 25t (F = 5 ) tmom =m0

by, h
vl

“}

and

I I
5?23 = E,, { (1 - A1> g [772,DR - 772]

’ hl hl
I 1 1
PRop,d 2 (—— = )12 - d
&3 = Ep \m [n3,pr — n3]| N ¢, an
DR 2! 5L 1 2
s =Eyq | —= | I' I [n3,pr — 3] || N ¢
hl hl

As in the proof of Theorem |3, (B.61)) follows applying Cauchy—Schwarz and invoking Lemmas
29 and Bal

Also as in the proof of Theorem follows applying Cauchy—Schwarz and invoking Lem-
mas Lemma of Appendix - now with S,,,8*, X, A, a and 7 (O) replaced by N*, N2 =
N2UN3 Ly, Ay, ay and {772,DR (fg) — 2 (fg)} respectively - Lemma and Lemma

To see , we apply again Cauchy—Schwarz and arrive at

i

N \/E,, [T {112 [, o0 — ma] | V2, 3]

I 1 1)\ =
DR E 2 2
== = — — = I —
}52,3 ’ ’ P { Iy <h2 h2> oIl [773,DR 773]

{ ( 2)}
Tl h2 /i\l
71 h2 Eg

by Lemma 29 Then, to arrive at (B.63)), it suffices to show that

IN

Ep

Now,

2
EP

N‘| S/P 52,11

\/Ep [TQHQ [M3.DR — 7]3]2’./\/'2,./\/'3} <pn’ s (B.65)

Now, invoking Lemmain Appendix with N2, V3L, Ay, a5 and {n3 pr (L3) — 03 (L3) }
playing the roll of S,,, S, X, A,a and 3 (O) , we conclude that

Ep [721_[2 [773,DR - 773}2‘/\/2,./\/‘3}
N {72 (n3,prR — 773)2‘N3}
S Ep {73 (n3,.pR — U3)2’N3}

Se (n_r:’)2 ;
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where the bound in the third row follows from Lemma B3| for & = 3 and the last bound follows

again from Lem This concludes the proof of (B.63).

Turn to fact B.64: . Applying Cauchy—Schwarz once more, we have that

1 I
b= { (7~ 7)1 mson ]| ¥ |
1 hl

IN

5, Ny B [ 1000 0 s o~ 2| ]

(-2
(-2

by Lemma [29] so that, to see (B.64) it suffices to show that

But

Ep

N] SP 61,n

\/Ep {Il {IT* [I12 [n3,pr — 773]]}2‘/\/] <pn "

Invoking Lemmain Appendix - now with N1, N2 = N2UN3, Ly, Ay, ajand 1% [n3.pr — 03] (fg)
playing the roll of S,,, S}, X, A, a and 3 (O) respectively - we have that

E, [Il {I1" [I1 [n3,pr — m3] }2’/\/]
=k, {Il {11" [11% [n3,pr — 13]] }Q‘Nl,ﬁz}
SpEp {Ilﬂz [M3,0R — 773]2‘M2}
S Ep {T2H2 [M3,pR — 773}2’&2} :
where the last bound follows from Lemma B3l But

_ Cen2
E, [I2H2 [M3.DR — 773]2‘/\/2} <p(n7")

by (B.65)) and, hence, \/Ep [Il {IT* (112 3. pR — 7)3]]}2‘./\/'] <pn~"3, as we wanted to show. m
Proof of Theorem @ First, note that Condition R(k) for k = 1,2 implies that, for k = 1,2,

(i) uniformly over n, eigenvalues of E, {qubk (fk) Ok (fk) } are bounded above and bellow away
from zero, and
(i) ol < v/mk-
Then, we have that
A) observations (i) and (ii) for k = 1 and the fact that m; < nFAT imply that the assumptions
of Lemma [21| of Appendix hold with S,,, S}, X, A and a replaced by N', N? = N2 U

N3 Ly, Ay and a} respectively and with 7 (O) replaced by any function of the observed data
O and the dataset N2, and

202



B) observations (i) and (ii) for ¥ = 2 and the fact that my =< R imply that the assumptions of
Lemma of Appendix hold with S,,, S}, X, A and a replaced by N2, N3Ly, Ay and @}
respectively and with 7 (O) replaced by any function of the observed data O and the dataset
N3,

Also, note that

C) Conditions B(k) and Hconvergence(k) for & = 1,2,3 imply that the assumptions of Lemma
28 for K = 3 hold for k =1,2,3,

D) Conditions B(k) , Hconvergence(k) and HrateL2(k) for k = 1,2, 3 imply that the assumptions
of Lemma [29] for K = 3 hold, and

E) Conditions Holder(k) and R(k) for &k = 1,2,3, Conditions B(k) and HrateInf(k) for k =

2,3 and the assumption that mj =< n%;“ for k = 1,2,3 of the theorem imply that the
assumptions of Lemma [32| hold.

We want to show that

SME <p Bran " for k=1,2,3, (B.66)
&5 <p Binazan ", (B.67)
&5 Sp Banazan"?, (B.68)
& Sp Brnasan " (B.69)
and
%{\4,21}, Sp Bine2nezan "3, (B.70)

where recall that, for k = 1,2, 3,

Iy (I Iy
' = E, { =1 <hk - %) (kMR — k)

I I I I

MR _ 1 1 Hl 2
1,2 D { <h1 hl) |: D { <h2 h2) (772,MR 772)

I I I I I

MR _ 1 2 2 H2 3 3
23 g { hi <h2 h2> |: v { <h3 h?,) (773, 773)

I T I, (I I
5%}% — Ep{ (hi _ {) ! |:Ep{};2 (hZ — {) (773}MR_773)
1 2 3

and

LI L I Is I
(o L G S L e DL
1 2 3

|A1:GT,ZQZ',N}]|N}.

x.

and
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Fact follows from the same arguments invoked in the proof of Theorem to show ,
but applying Lemma [32] instead of

Fact follows also from the same arguments used in the proof of Theorem EI to show
, but applying Lemma [32|instead of Lemma [31| and replacing N2 with A2

Fact (B.68]) can also be shown with the same arguments used to prove , but now applying
Lemma 21| with N2, N¥L,, Ay, L3, a5 and g (L3, N*) playing the roll of S,,, Sy, X, A, W,a and 7 (O)
respectively, where

Iy I .
g(N?) = Ep{ <h:; - i) (n3,mR —M3)| A2 = @3, L3 = '7N3}

Likewise, to see fact (B.69)), we can apply the same arguments used in the proof of (B.52),
except for two points. First, in this case, we must apply Lemmawith NYN3Ly, Ay, Ly, af and
h (L3, N®) playing the roll of S,,,S;;, X, A,W,a and 3 (O) , where

I I 1
h(-,N?) =E, { i (h‘; - }i;) (M3,m R —N3)

Second, we also need to invoke Lemma to bound ‘ Eng .

Finally, fact (B.70) follows applying the same arguments used to show (B.52) but now us-
ing twice the Lemma and instead of only once. The Lemma is applied first with
NYN?Ly, Ay, Ly, af and uy (Lo, N?) playing the roll of S, S}, X, A, W,a and 5 (O) respectively,

where

T = £, { (1 ) 5 (8~ )t =T = A =T = ).

Then, Lemma [21| is applied a second time with N2, N3Ly, Ay, L, @3 and us (L3, N®) playing the
roll of S,,, S5, X, A, W, a and § (O) respectively, where

I I _ _
Uz (':Ng) = Ep{ (hi - {) (m3,mRr —m3)| A2 = @5, Ly = ',/\/'3}
3
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B.7 Proof of Lemma [11]

In this appendix, we prove Lemma [[1] for the special cases K = 2 and K = 3. As we will see, the
arguments in this proof are valid for any K except when we invoke Lemmas [31| and [32| to ensure
the L? convergence of the 1}, ;,$, since these results assume K = 2 and K = 3 respectively.

Throughout this proof, as in Appendix we will use repeatedly the fact that for any fixed
p € N and any sequence {an}, oy of p X 1 vectors with a, = (an,1,...,0n,p), it holds that

Now, using the formula
azfab:a(éfb)w(afa) (B.71)

we obtain that,

Q(r'n") = Q (k) = 77T —m
+ Z [ {(nkH 77k+1) - <77£ - ﬁk)} + (ﬂikk - frz) (o1 — 771@)} :

Hence,

CIORUE < -m) (B.72)

)}
+z{pxwﬂwm»« [ Eo o]

Throughout, n' stands for a placeholder for 7 or iy r. Likewise, for k € [K] ,77}; stands for a

placeholder for 7y, or Mk, mr and 77}(-4—1 (Lx+1) = Kk (Lk+1) - Equation (B.72) implies that

|
N}w{w o[ ]

N} (B.73)

5 [{a (') e} |x]| s £ | (o - )’

= ] (B ko) (=)}
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by Lemma [33 and Condition B(k) for k = 1. Also, for k € [K],

E, { {;ﬁ {(nZH - 77k+1> - (7711 - nk) }ﬂN}
S H(ﬁk)_zuw [Ep {fk (nziﬂ - 77k+1)2 N} + E, {Ik (nl - %)2’/\/}]
SpEp {IM (nLH - nkH)Z’N} +E, {Ik (mi — nk)Q‘N} (B.74)

by Lemmas [33| and [28 and by Conditions B(k) and Hconvergence(k) for k£ € [K]. Finally, for
ke [K],

A e P e (e o N (O R R (TR
Se H%k - 7Tk||io E, {Tk (M1 — 77k)2} (B.75)

by Conditions B(k) for k € [K] and Lemma |28 But, for k € [K],

|75 — 7|, = op (1)

by Condition Hconvergence(k) for k € [K]. Thus, equations (B.73)) — (B.75)) imply that, to arrive
at the desired result it suffices to show that

E, {Tk (Mos1 — nk)Q} <1for k € [K] (B.76)
and

E, {Ik (nZ - nk)z‘/\f} =0, (1) for k € [K]. (B.77)

Fact (B.76) follows from Condition R(k), since it implies that

sup ez, B { {msr Tnr) = (B Y| B = a1, T =B} S 1,

for k € [K].

Then, to conclude the proof, it suffices to show for n* =7 and nf = Hug.

First note that Condition R(k) and the assumption that my < nTRT for k € [K] imply that
the assumptions of Lemma [21] of Appendix [B.6.1] are verified with S,,, S}, X, A and a replaced by
NE N T, AL and a;, respectively and with i (O) replaced by any function of the observed data
O and the dataset N for any &k € [K]. Also note that Condition B(k) imply that the assumptions
of Lemma [33] hold for k € [K].

Now, we prove for T = 7. First note that Conditions Hélder(k) and R(k) and the

1
[

assumption that my < n?7T for k € [K], imply that the assumptions of Lemma [30[ hold, so that

E, {Tk (Me.DR — nk)Q‘N} = 0,(1) for k € [K]. (B.78)

We will show that 3
By { Th Gipr = m)*| N } = 0, (1) (B.79)
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for k € [K] by reverse induction. First note that, when k¥ = K,fx pr = Nk,pr, then (B.78) for
k = K implies (B.79) for k = K. Now, assume that (B.79) holds for £ = j + 1. We must show that
it holds for k = j. First, note that

Ey {Tj (Mj,pRr — nj)Q‘N} SEy {Tj (j,pr — Uj,DR)Q’N} + Ep {Tj (nj,pr — m‘)Q‘N} :

But, E, {Tj (nj.or — nj)Q‘J\/} =0, (1) by (B.78) , then it suffices to show that E,, {7]- (Mj,pR — 77j7DR)2’N} =

0p (1). Now, note that 1; pr — nj,pr = IV [j+1,0r — Nj+1], SO
E, {Tj (Mj,pr — nj,DR)zl./\/’} =E, {TjHj [Mj+1,0R — 77j+1]2)Nj,Mj+l}
SeEp {Tj (Mj+1,0R — 77j+1)2’Mj+1}
S Ey {7j+1 (ﬁjJrl,DR - 77j+1)2‘Mj+1}

where the bound in the second row follow from Lemma— with S,,,S*, X, A, a and 3 (O) replaced

niyOns

by N* N Ly Ay @) and {;41.08 (Ljs1) — nj41 (Lj41)} respectively - and the bound in the
third row follows by Lemma But, E, {TjH (Mj+1,0R — njH)Q‘Mj“} = 0, (1) by inductive
hypothesis and, hence, E, {Tj (Mj,pr — nj,DR)z‘ j\/} = 0, (1) as we wanted to show.

Now, we prove (B.77) for n' = fjarr. Note that Conditions Holder(k) , R(k) , B(k) and Hconvergence(k)

and the assumption that my =< nTT for k € [K] imply that the assumptions of Lemma [31| hold if
K =2 and also imply that the assumptions of Lemma [32 hold if K = 3. Then, if K =2 or K = 3,
we have that

By {T; (njur = m)*| N} =0, (1) for j € [K]. (B.80)

We will show that 3 ,
By {1 @aan = 1)* | N} = 0, (1) (B.81)
for j € [K] again by reverse induction assuming that K = 2 or K = 3. When j = K, fact (B.81))

follows from the fact that Nk mr = nKx,Mr = Nk, pr and from equation (B.80) for j = K. Now,
assume that (B.81) holds for every j = k+ 1,..., K. We want to show that it holds for j = k.

Since E,, {Tk (Me, MR — nk)z’./\/'} =0, (1) by (B.80), it suffices to show that

E,p {71@ (M, MR — Wk,MR)Q‘N} =op(1).
Note that,

e, MR — Mk, MR =
=T1* {Qk+1 ('a ';ﬁk+1’ﬁk+1,MR)} -1 sy

a
= {E” {Q’““ (ﬁ’“‘l’ﬁk-&-l,MR) ‘ A =Ty, L1 = 'J\Jkﬂ} - Uk+1} -
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Now,

EP { Qk—i—l (bk"'l’ﬁk-i—l,MR) ’ Zk = EZﬂfk-HyMkJrl} =

=Jj

K -7
- Lo - I :
= e+ Y, Ep { L Bk — Njar)| Ak = akaLk+17Nk+1} .

j=k+1 Th+1
Hence,
K
Mo, MR — = 11" [} - 11" [e;
e, MR — Mk, MR = 11 M1, R — Met1] + le),k]
j=kt1
with
T]
— k41 /1~ -~ T =« T _ k-+1
ejk ()= Epq = Mj+1,mr — 0jmr)| Ak = @, Ly = - N :
k1

Then,

K
E, {Tk (M, MR — nk,MR)z‘N} SE, {Tka [Mk+1,MR — 77k+1]2‘N} + Z E, {Tknk [ej,k]Q‘N} .
Jj=k+1

Now,
E, {Tka [Mk+1,MR — 77k+1]2‘~/\/} =FE, {Tka [Mk+1,MR — nk+1]2‘Nk7A/k+l}

Sp By {7k+1 (Mk+1,MR — le+1)2‘&k“}
by Lemmas and But, E, {7k+1 (Mk+1,MR — 77k+1)2) N} = 0, (1) by inductive hypothesis, so
that E, {Tkl_[k [Mk+1,MR — nk“]Q’N} =0, (1). Also

Ey {Tl1* e | W} = By { Tl e | A, A1 |

Sp By {Tkej,k (ZkJrl)Q MHI}

again by Lemma [2I] Thus, we would arrived at the desired result if we show that

By { Trejn (Trun)?| M4} = 0, (1)

forall j=k+1,..., K.
Now,

~J
Th+1

_ 7 ~ I _ _ _
ej (Lit1) = By { LB, (’73‘+1,MR — j,mr| 4 =aj, Ljyﬂkﬂ) Ay = aZ,LkH,N"“}

—J

I _ _ . _ _
_ k+1 -~ =k +1 -~ — k+1
=By | 5 {Ep (Nj41,mrl Aj =@, Li, N°™Y) =0 mr}| Ak = Gy Liy1, N

Ti+1

—=J

I _ _

k1 _ k1

:Ep = Aj Ak:az,Lk-H,-M >

Ti+1
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with _ _ . —
i = Bp (js1,mrl Ay = a5, Lj N7 = i (L)
So,

~

Th+1

. 2
_ _ _ T _
E, { Ire;r (Lk+1)2’Mk+1} =E, | IzE, ( I;H Al Ay, Lk+1,Nk+1> N

=~Jj

_ 2
_ T o
< E, |I:E, <k+1Aj> Ap, Lyr, NPT S AR
Tht1

Tﬁ 2 k+1
=E, Aj7 5 AN
(Wk+1)

~j -2
(7))
oo
T e+ 1
Sp By (1,02 151
where the bound in the last row follows from Now,
Aj = Ep (Mjr1mrl Ay = a5, Lj N77) = 0 (L)
= Ep (41,01 — 01| A5 = @5, L N7 4 (L) — fjmr (L)

since, by definition

S ‘

B, (T;83|A%)

Nj (Zj) = E, {77j+1 (fj+1

Here, recall that Nk 41,mr (Lx+1) = nx+1 (Lxt1) =
Hence,

— — R — e . 2 -
E, {Ikeidf\lkﬂ} SpEy {IjEp (Dj1.mr = nja| Ay =a5, Lj, NV TY) )MHl}JFEp {Ij (Mj,MR — ﬁj)Z‘N} :
But,

X —
|
<.
Il
Sl
el
<
—

£y {Tj (M. R — nj)QlN} =op (1)
for j=k+1,..., K by inductive hypothesis and
By { By (135 = nj1 A = E}Zjv/\ljﬂﬂf\lk“}
By {TjEp (41,000 — 77j+1|Zj,fj7Mj+l)2‘A/j+l}
Ly {Tj (Mj+1,MR — 77j+1)2‘N}
Ep

{7j+1 (Mj+1,MR — 77j+1)2‘/\/}

IN I

A

by Lemma [33] But,
E, { Livr (Mjr1,mMR — 77j+1)2’N} =0, (1)

for j = k+1,..., K by inductive hypothesis and by the fact that k11,07 (Lx+1) = nx+1 (Lr41) =
K (ZKH) . This concludes the proof.
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