
UNIVERSIDAD DE BUENOS AIRES

Facultad de Ciencias Exactas y Naturales

Departamento de Matemática

Métodos numéricos para problemas no locales de evolución

Tesis presentada para optar al t́ıtulo de Doctor de la Universidad de Buenos Aires en
el área Ciencias Matemáticas

Lic. Francisco Vicente Mastroberti Bersetche

Director de tesis: Dr. Gabriel Acosta Rodŕıguez

Consejero de estudios: Dr. Gabriel Acosta Rodŕıguez

Lugar de trabajo: Departamento de matemática, FCEyN, UBA

Fecha de defensa: 6 de marzo, 2019

Métodos numéricos para problemas no locales de
evolución

El objetivo de este trabajo es estudiar aproximaciones numéricas para problemas de
evolución de la forma

C∂αt u+ (−∆)su = f in Ω× (0, T),

donde (−∆)s representa el operador Laplaciano fraccionario en su forma integral y
C∂αt u(x, t) denota la derivada de Caputo.

Para ser más precisos,

(−∆)su(x) = C(n, s) p.v.

ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy,

y

C∂αt u(x, t) =

{
1

Γ(k−α)

´ t
0

1
(t−r)α−k+1

∂ku
∂rk

(x, r) dr if k − 1 < α < k, k ∈ N,
∂ku
∂tk
u(x, t) if α = k ∈ N.

Estudiamos existencia, unicidad y regularidad de las soluciones en el contexto lineal
(es decir, f = f(x, t)). Los casos tratados incluyen contrapartes fraccionarias de los
modelos de difusión estándar y de ondas. Elementos finitos lineales se utilizan para
la variable espacial y técnicas de cuadratura de convolución son usadas para tratar el
operador fraccionario en la variable temporal. Estimaciones del error, uniformes en los
parámetros de discretización para valores de t lejos de cero, son proporcionadas.

Estos resultados son extendidos al caso semilineal con f(u) = u − u3, siendo este
el término no lineal que aparece en las ecuaciones clásicas de Allen-Cahn, utilizadas
para modelar la separación de fases para aleaciones binarias. Adicionalmente, el com-
portamiento asintótico de las soluciones para s → 0 es estudiado en este contexto
particular.

Detalles de implementación, particularmente para el método de elementos finitos, en
el cual se ven involucradas matrices de rigidez fraccionarias no esparsas y cuadraturas
numéricas para núcleos singulares, son cuidadosamente expuestos.

Palabras clave: Laplaciano fraccionario, Derivada de Caputo, Método de Elemen-
tos Finitos.

2

Numerical methods for non-local evolution
problems

The aim of this work is to study numerical approximations for evolution problems
of the form

C∂αt u+ (−∆)su = f in Ω× (0, T),

where (−∆)s stands for the fractional Laplacian operator in its integral form and
C∂αt u(x, t) represents the Caputo derivative.

To be more precise,

(−∆)su(x) = C(n, s) p.v.

ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy,

and

C∂αt u(x, t) =

{
1

Γ(k−α)

´ t
0

1
(t−r)α−k+1

∂ku
∂rk

(x, r) dr if k − 1 < α < k, k ∈ N,
∂ku
∂tk
u(x, t) if α = k ∈ N.

We deal with existence, uniqueness and regularity of solutions in the linear context
(i.e. f = f(x, t)). The cases under study include fractional counterparts of the standard
diffusion and wave models. Linear finite elements are used for the spatial variable and
convolution quadrature techniques for handling the time fractional operator. Error
bounds, uniform in the discretization parameters for values of t away from zero, are
given.

These results are extended to the semi-linear case with f(u) = u− u3 appearing in
the classical Allen-Cahn equations modeling phase separation for binary alloys. Addi-
tionally, the asymptotic behaviour of the solutions for s→ 0 is studied in this particular
context.

Implementation details, particularly for the finite element method involving full
fractional stiffness matrices and numerical quadratures for singular kernels, are carefully
documented.

Key words: Fractional Laplacian, Caputo derivative, Finite Element Method.

3

4

Contents

1 Preliminaries 15

1.1 Fractional Sobolev spaces . 15

1.2 Elliptic regularity . 16

1.3 Mittag-Leffler function . 17

2 Fractional evolution problems 21

2.1 Fractional diffusion equation . 24

2.2 A semilinear fractional evolution problem 31

2.3 Fractional diffusion-wave equation . 40

3 Implementation details for the elliptic problem 45

3.1 Weak formulation . 46

3.2 FE setting . 47

3.3 Data structure and auxiliary variables 49

3.4 Main loop . 51

3.5 Numerical Experiments . 57

4 Numerical approximations for linear evolution problems 63

4.1 Numerical scheme . 63

4.2 Error bounds . 69

4.3 Numerical experiments . 79

5 Numerical approximation for the fractional Allen-Cahn Equation 89

5.1 FEM discretization . 90

5.2 Error estimation . 92

5.3 Asymptotic behavior with s→ 0 . 100

5.4 Numerical experiments . 107

5

A Implementation details 113

A.1 Quadrature rules . 113

A.2 Two auxiliary functions . 131

A.3 Auxiliary data . 132

A.4 Main Code . 141

6

Introduction

The Finite Element Method (FEM) is one of the preferred numerical tools in scientific
and engineering communities. It counts with a solid and long established theoreti-
cal foundation, mainly in the linear case of second order elliptic partial differential
equations. These kind of operators, with the Laplacian as a canonical example, are
involved in modeling local diffusive processes. On the other hand, nonlocal or anoma-
lous diffusion models have increasingly impacted upon a number of important areas in
science. Indeed, non-local formulations can be found in physical and social contexts,
modeling as diverse phenomena as human locomotion in relation to crime diffusion [25],
electrodiffusion of ions within nerve cells [52] or machine learning [73].

The Fractional Laplacian (FL) is among the most prominent examples of a non-local
operator. For 0 < s < 1, it is defined as

(−∆)su(x) = C(n, s) p.v.

ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy, (0.0.1)

where

C(n, s) =
22ssΓ(s+ n

2
)

πn/2Γ(1− s)
is a normalization constant. The FL, given by (0.0.1), is one of the simplest pseudo-
differential operators and can also be regarded as the infinitesimal generator of a 2s-
stable Lévy process [17].

Given a function f defined in a bounded domain Ω, the homogeneous Dirichlet
problem associated to the FL reads: find u such that{

(−∆)su = f in Ω,
u = 0 in Ωc.

(0.0.2)

In contrast to elliptic PDEs, numerical developments for problems involving these
non-local operator, even in simplified contexts, are seldom found in the literature. The
reason for that is related to two major challenging tasks usually involved in its numer-
ical treatment: the handling of highly singular kernels and the need to cope with an
unbounded region of integration. This is precisely the case of (0.0.2), for which just

7

a few numerical methods have been proposed. Effectively implemented in one space
dimension, we mention, for instance: a finite difference scheme by Huang and Oberman
[43], a FE approach developed by D’Elia and Gunzburger [29] that relies on a volume-
constrained version of the non-local operator and a simple one-dimensional spectral
approach [7]. We refer the reader to [3] for a more detailed account of these schemes
and a discussion on other fractional diffusion operators on bounded domains and their
discretizations.

Numerical computations for (0.0.2) in higher dimensions have become available only
recently [3]. In that paper a complete n-dimensional finite element analysis for the
FL has been carried out, including regularity of solutions of (0.0.2) in standard and
weighted fractional spaces. Moreover, the convergence for piecewise linear elements is
proved with optimal order for both uniform and graded meshes.

In that work there are presented error bounds in the energy norm and numerical
experiments (in 2D), demonstrating an accuracy of the order of h1/2 log h and h log h
for solutions obtained by means of uniform and graded meshes, respectively.

On the other hand, since the introduction of Continuous Time Random Walks
(CTRW) by Montroll and Weiss [67], anomalous diffusion phenomena has been an
active area of research among the scientific community. The CTRW assign a joint
space-time distribution to individual particle motions: when the tails of these distri-
butions are heavy enough, non-Fickian dispersion results for all time and space scales.
A heavy-tailed jump (waiting time) distribution implies the absence of a characteristic
space (time) scale.

The equivalence between these heavy-tailed motions and transport equations that
use fractional-order derivatives has been shown by several authors; see, for example [40].
Space nonlocality is a direct consequence of the existence of arbitrarily large jumps in
space, whereas time nonlocality is due to the history dependence introduced in the
dynamics by the presence of anomalously large waiting times.

The evidence of anomalous diffusion phenomena has been thoroughly reported
in physical and social environments, such as plasma turbulence [27, 28], hidrology
[15, 16, 70], finance [62], human travel [23] and predator search [77] patterns. Models of
transport dynamics in complex systems taking into account this non-Fickian behavior
have been proposed accordingly. Also, evolution processes intermediate between dif-
fusion and wave propagation have shown to govern the propagation of stress waves in
viscoelastic materials [34, 61].

Integer-order differentiation operators are local, because the derivative of a function
at a given point depends only on the values of the function in a neighborhood of it. In
contrast, fractional-order derivatives are nonlocal, integro-differential operators. A left-
sided fractional-order derivative in time may be employed to represent memory effects,
while a nonlocal differentiaton operator in space accounts for long-range dispersion

8

processes, as we have mentioned before.

We now describe the problems we are going to consider. Let Ω ⊂ Rn be a domain
with smooth enough boundary, α ∈ (0, 2], s ∈ (0, 1) and a forcing term f : Ω× (0, T)→
R. We aim to solve the fractional differential equation

C∂αt u+ (−∆)su = f in Ω× (0, T). (0.0.3)

Here, C∂αt denotes the Caputo derivative, given by

C∂αt u(x, t) =

{
1

Γ(k−α)

´ t
0

1
(t−r)α−k+1

∂ku
∂rk

(x, r) dr if k − 1 < α < k, k ∈ N,
∂ku
∂tk
u(x, t) if α = k ∈ N.

When α ∈ (0, 1], equation (0.0.3) with a non-linear source term f(u) will be also
considered.

Closely related to the Caputo derivative, the Riemann-Liouville fractional derivative
is needed in the sequel. Let us recall here its definition,

∂αt u(x, t) =

{
1

Γ(k−α)
∂k

∂tk

´ t
0

1
(t−r)α−k+1u(x, r) dr if k − 1 < α < k, k ∈ N,

∂ku
∂tk
u(x, t) if α = k ∈ N.

For 0 < α ≤ 1, equation (0.0.3) is usually called a fractional diffusion equation. On
the other hand, for 1 < α ≤ 2 it is sometimes called a fractional diffusion-wave equation.
Analyzing scaling and similarity properties of the Green function Gα,s associated to the
operator C∂αt + (−∆)s, in [60] it is shown that

Gα,s(x, t) = t
−α
2s Φα,s

(x

t
α
2s

)
,

for a certain one-variable function Φα,s. Notice that in case α = s, although the
CTRW associated to equation (0.0.3) has the same scaling properties as Brownian
motion, the lack of finite moments makes the diffusion process anomalous. On the
other hand, the term fractional wave equation has been utilized to refer to the problem
with 1 < α = 2s < 2, since for this choice of the parameters some features of the
standard wave equation are preserved [58].

In order to obtain a well-posed problem, we impose the initial and boundary value
conditions {

u = 0 in Ωc × (0, T),
u(·, 0) = v in Ω,

(0.0.4)

and the additional condition for 1 < α ≤ 2

∂tu(·, 0) = b in Ω, (0.0.5)

with data v, b ∈ L2(Ω).

9

It is noteworthy that the fractional Laplace operator defined by (0.0.2) does not
coincide with the operator considered, for example, in [18, 69, 79]. Indeed, the spatial
operator considered in those works is a power of the Laplacian in the spectral sense.

Our work does not include the case s = 1, which corresponds to a local-in-space
process, as it is already covered by other authors’ work. For the range 0 < α ≤
1, reference [44] develops a semidiscrete Galerkin method and studies the error both
for smooth and non-smooth data. Naturally, the local-in-space case is also covered
by the previously mentioned works [18, 69, 79] regarding spectral fractional powers
of the Laplacian. For the full range of time derivatives we are considering in this
work, [65] deals with an alternative formulation of (0.0.3) and a method based on the
Laplace transform is developed, while in [68] an approach via discontinuous Galerkin
discretization in time is introduced.

Contributions

Chapters 2, 4 and 5 summarize results from

• [5] Acosta G., Bersetche F., Borthagaray J.P. Finite element approximations for
fractional evolution problems, Submitted, https://arxiv.org/abs/1705.09815

• [4] Acosta G., Bersetche F., Numerical approximations for a fully fractional Allen-
Cahn equation, Preprint, https://arxiv.org/abs/1903.08964

Chapter 3 collects results from

• [6] Acosta G., Bersetche F., Borthagaray J.P. A short FE implementation for
a 2d homogeneous Dirichlet problem of a Fractional Laplacian. Computers and
Mathematics with Applications, 74(4), 784-816.

10

https://arxiv.org/abs/1705.09815
https://arxiv.org/abs/1903.08964

Introducción

El método de elementos finitos (MEF) es una de las herramientas numéricas preferi-
das en ciencia e ingenieŕıa. Cuenta con un sólido fundamento teórico de larga data,
principalmente en el caso lineal para ecuaciones en derivadas partiales eĺıpticas de se-
gundo orden. Este tipo de operadores, con el laplaciano como ejemplo canónico, están
involucrados en el modelado de procesos difusivos locales. Por otro lado, los modelos
de difusión no locales o anómalos han impactado cada vez más en una serie de im-
portantes áreas en la ciencia. De hecho, formulaciones no locales se pueden encontrar
en contextos f́ısicos y sociales, modelando fenómenos tan diversos como la locomoción
humana en relación con la difusión del delito [25], electrodifusión de iones dentro de las
células nerviosas [52] o el aprendizaje automático [73].

El laplaciano fraccionario (LF) se encuentra entre los ejemplos más destacados de
un operador no local. Para 0 < s < 1, se define como

(−∆)su(x) = C(n, s) p.v.

ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy,

donde

C(n, s) =
22ssΓ(s+ n

2
)

πn/2Γ(1− s)
es una constante de normalización. El LF, dado por (0.0.1), es uno de los operadores
pseudo-diferenciales más simples y también pueden ser considerado como el generador
infinitesimal de un proceso de Lévy 2s -stable [17].

Dada una función f definida en un dominio acotado Ω, el problema de Dirichlet
homogéneo asociado al LF se establece como: hallar u tal que{

(−∆)su = f in Ω,
u = 0 in Ωc.

A diferencia de las EDP eĺıpticas, los desarrollos numéricos para problemas que in-
volucran operadores no locales, incluso en contextos simplificados, rara vez se encuentra
en la literatura. La razón de esto está relacionada con dos grandes desaf́ıos, usualmente
relacionados con su tratamiento numérico: el manejo de núcleos altamente singulares y

11

la necesidad de tratar con una región de integración no acotada. Este es precisamente
el caso de (0.0.2), para lo cual solo unos pocos métodos numéricos han sido propuestos.
Implementaciones en una dimensión espacial, podemos mencionar por ejemplo: un es-
quema de diferencias finitas de Huang y Oberman [43], un enfoque de EF desarrollado
por D’Elia y Gunzburger [29] basado en una versión de volumen acotado del operador
no local y un enfoque espectral unidimensional simple [7]. Referimos al lector a [3] para
una explicación más detallada de estos esquemas y una discusión sobre otros operadores
de difusión fraccionaria en dominios acotado y sus discretizaciones.

Técnicas numéricas para (0.0.2) en dimensiones más altas han sido desarrolladas re-
cientemente [3]. En ese articulo un análisis completo de elementos finitos n-dimensionales
para el FL ha sido llevado a cabo, incluyendo el estudio de la regularidad de soluciones
de (0.0.2) en espacios fraccionarios estándar y con pesos. Por otra parte, es probada la
convergencia para elementos finitos lineales con un orden óptimo para mallas uniformes
y graduadas.

En ese trabajo también se presentan estimaciones del error en norma enerǵıa y ex-
perimentos numéricos (en 2D) que demuestran una precisión del orden de h1/2 log h y
h log h para soluciones obtenidas mediante mallas uniformes y graduadas, respectiva-
mente.

Por otro lado, desde la introducción de paseos aleatorios de tiempo continuo (PATC)
por Montroll y Weiss [67], los fenómenos de difusión anómalos han sido un área activa
de investigación entre la comunidad cient́ıfica. El PATC asigna una distribución con-
junta espacio-tiempo a movimientos individuales part́ıculas: cuando las colas de estas
distribuciones son lo suficientemente pesadas, dispersión no Fickiana se aparece para
todas las escalas de tiempo y espacio. Una distribución con salto de cola pesada (tiempo
de espera) implica la ausencia de una escala caracteŕıstica de espacio o tiempo.

Varios autores han demostrado la equivalencia entre estos movimientos de cola pe-
sada y las ecuaciones de transporte que involucran derivadas de orden fraccionario; ver,
por ejemplo [40]. La no localidad espacial es una consecuencia directa de la existencia
de saltos arbitrariamente grandes en el espacio, mientras que la no localidad temporal
se debe a la dependencia de la historia introducida en la dinámica por la presencia de
tiempos de espera anormalmente grandes.

La evidencia de fenómenos de difusión anómalos ha sido exhaustivamente documen-
tada en entornos f́ısicos y sociales, como turbulencia del plasma [27, 28], hidroloǵıa
[15, 16, 70], finanzas [62] y desplazamiento humano [23] y patrones de búsqueda de
depredadores [77]. En conseciencia modelos de dinámica de transporte en sistemas
complejos que tienen en cuenta este comportamiento no fickiano han sido propuestos.
Además, se ha demostrado que los procesos de evolución intermedios entre la difusión
y la propagación de la onda gobiernan la propagación de las ondas de tensión en los
materiales viscoelásticos [34, 61].

12

Los operadores de diferenciales de orden entero son locales, ya que la derivada de
una función en un punto dado depende solo de los valores de la función en un entorno
de la misma. En contraste, las derivadas de orden fraccionario son operadores integro-
diferenciales no locales. Se puede emplear una derivada de orden fraccionario del lado
izquierdo en el tiempo para representar los efectos memoria, mientras que un operador
de diferencia no local en el espacio da cuenta de los procesos de dispersión de largo
alcance, como hemos mencionado antes.

Describimos ahora los problemas que vamos a considerar. Sea Ω ⊂ Rn un dominio
con un borde suficientemente suave, α ∈ (0, 2], s ∈ (0, 1) y un término forzante f : Ω×
(0, T)→ R. Nuestro objetivo es resolver la ecuación diferencial fraccionaria:

C∂αt u+ (−∆)su = f in Ω× (0, T).

Aqúı, C∂αt denota la derivada de Caputo, dada por

C∂αt u(x, t) =

{
1

Γ(k−α)

´ t
0

1
(t−r)α−k+1

∂ku
∂rk

(x, r) dr si k − 1 < α < k, k ∈ N,
∂ku
∂tk
u(x, t) si α = k ∈ N.

Para el caso α ∈ (0, 1], se estudiará también la ecuación (0.0.3) con un término no lineal
f(u).

Relacionada estrechamente con la derivada de Caputo, la derivada fraccionaria
de Riemann-Liouville será utilizada a lo largo de este trabajo. Recordamos aqúı su
definición,

∂αt u(x, t) =

{
1

Γ(k−α)
∂k

∂tk

´ t
0

1
(t−r)α−k+1u(x, r) dr if k − 1 < α < k, k ∈ N,

∂ku
∂tk
u(x, t) if α = k ∈ N.

Para 0 < α ≤ 1, la ecuación (0.0.3) es referida como ecuación de difusión frac-
cionaria. Por otro lado, para 1 < α ≤ 2 suele ser llamada ecuación de difusión-ondas
fraccionaria. Analizando las propiedades de escala y similaridad de la función Green
Gα,s asociada a la operador

C∂αt + (−∆)s, en [60] se muestra que

Gα,s(x, t) = t
−α
2s Φα,s

(x

t
α
2s

)
,

para una determinada función de una variable Φα,s. Notar que en el caso α = s, aunque
el PATC asociado a la ecuación (0.0.3) tiene Las mismas propiedades de escala que el
movimiento browniano, la falta de momentos finitos hacen que el proceso de difusión
sea anómalo. Por otro lado, el término ecuación de ondas fraccionaria ha sido utilizado
para referirse al problema con 1 < α = 2s < 2, ya que para esta elección de los
parámetros se conservan algunas caracteŕısticas de la ecuación de ondas estándar [58].

13

Para obtener un problema bien planteado, imponemos las condiciones iniciales y de
borde {

u = 0 en Ωc × (0, T),
u(·, 0) = v in Ω,

y la condición adicional para 1 < α ≤ 2

∂tu(·, 0) = b en Ω,

con datos v, b ∈ L2(Ω).

Cabe destacar que el operador de Laplace fraccionario definido por (0.0.2) no coin-
cide con el operador considerado, por ejemplo, en [18, 69, 79]. De hecho, el operador
espacial considerado en estos trabajos es una potencia del laplaciano en el sentido es-
pectral.

Nuestro trabajo no incluye el caso s = 1, que corresponde a un proceso local en
el espacio, ya que ha sido cubierto por el trabajo de otros autores. Para el rango
0 < α ≤ 1, [44] desarrolla un método de Galerkin semidiscreto y estudia el error para
datos iniciales suaves y datos poco regulares. Naturalmente, el caso local en el espacio
también está cubierto por los trabajos mencionados anteriormente [18, 69, 79] utilizando
potencias fraccionarias espectrales del laplaciano clásico. Para el rango completo de
derivadas temporales que estamos considerando en este trabajo, en [65] se brinda una
formulación alternativa de (0.0.3) y se desarrolla un método basado en la transformada
de Laplace, mientras que en [68] se introduce un enfoque a través del uso de Galerkin
discontinuo en la variable temporal.

Contribuciones

Los caṕıtulos 2, 4 y 5 resumen resultados de

• [5] Acosta G., Bersetche F., Borthagaray J.P. Finite element approximations for
fractional evolution problems, Enviado, https://arxiv.org/abs/1705.09815

• [4] Acosta G., Bersetche F., Numerical approximations for a fully fractional Allen-
Cahn equation, Preprint, https://arxiv.org/abs/1903.08964

El Caṕıtulo 3 recopila los resultados de

• [6] Acosta G., Bersetche F., Borthagaray J.P. A short FE implementation for
a 2d homogeneous Dirichlet problem of a Fractional Laplacian. Computers and
Mathematics with Applications, 74(4), 784-816.

14

https://arxiv.org/abs/1705.09815
https://arxiv.org/abs/1903.08964

Chapter 1

Preliminaries

In this section we set the basic notation and present some preliminary and necessary
concepts for the analysis of the fractional elliptic and fractional evolution problems
under consideration. We recall elliptic regularity results for the fractional Laplacian
and some important properties of the Mittag-Leffler function.

1.1 Fractional Sobolev spaces

Given an open set Ω ⊂ Rn and s ∈ (0, 1), define the fractional Sobolev space Hs(Ω) as

Hs(Ω) =
{
v ∈ L2(Ω) : |v|Hs(Ω) <∞

}
,

where | · |Hs(Ω) is the Aronszajn-Slobodeckij seminorm

|v|2Hs(Ω) =

¨
Ω2

|v(x)− v(y)|2

|x− y|n+2s
dx dy.

associated to the bilinear form 〈·, ·〉Hs(Ω) on Hs(Ω),

〈u, v〉Hs(Ω) =

¨
Ω2

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy. (1.1.1)

It is a well known fact that Hs(Ω) is a Hilbert space endowed with the norm ‖ ·
‖Hs(Ω) = ‖ · ‖L2(Ω) + | · |Hs(Ω).

Let us also define the space of functions supported in Ω,

H̃s(Ω) =
{
v ∈ Hs(Rn) : supp v ⊂ Ω̄

}
.

This space may be defined through interpolation,

H̃s(Ω) =
[
L2(Ω), H1

0 (Ω)
]
s
.

15

Moreover, depending on the value of s, different characterizations of this space are avail-
able. If s < 1

2
then H̃s(Ω) coincides with Hs(Ω), and if s > 1

2
it may be characterized

as the closure of C∞0 (Ω) with respect to the ‖ · ‖Hs(Ω) norm. In the latter case, it is
also customary to denote it by Hs

0(Ω). The particular case of s = 1
2

gives raise to the

Lions-Magenes space H
1
2
00(Ω), which can be characterized by

H
1
2
00(Ω) =

{
v ∈ H

1
2 (Ω) :

ˆ
Ω

v(x)2

dist(x, ∂Ω)
dx <∞

}
.

Note that the inclusion H
1
2
00(Ω) ⊂ H

1
2
0 (Ω) = H

1
2 (Ω) is strict. We also need to introduce

the dual space of H̃s(Ω), denoted with the standard negative exponent H−s(Ω).

The following well known result implies that 〈·, ·〉Hs(Rn) (recall (1.1.1)) induces a

norm on H̃s(Ω).

Proposition 1.1.1 (Poincaré inequality). There is a constant c = c(Ω, n, s) such that

‖v‖L2(Ω) ≤ c|v|Hs(Rn) ∀v ∈ H̃s(Ω).

Additionally, Sobolev spaces of order greater than 1 are defined in the following
way: given k ∈ N, then

Hk+s(Ω) =
{
v ∈ Hk(Ω) : |Dαv| ∈ Hs(Ω)∀α with |α| = k

}
,

furnished with the norm

‖v‖Hk+s(Ω) = ‖v‖Hk(Ω) +
∑
|α|=k

|Dαv|Hs(Ω).

Also, we can define negative order Sobolev spaces by duality, using L2(Ω) as pivot
space. Of interest in the problems we are considering is the space

H−s(Ω) =
(
H̃s(Ω)

)′
.

1.2 Elliptic regularity

We recall regularity results for the homogeneous problem{
(−∆)su = g in Ω,

u = 0 in Ωc.
(1.2.1)

Even though the fractional Laplacian is an operator of order 2s in Rn, in the sense
that (−∆)s : H`(Rn)→ H`−2s(Rn) is bounded and invertible, the theory is much more
delicate for problems posed on bounded domains.

16

Grubb [38] provides regularity estimates for solutions of (1.2.1) in the setting of
Hörmander µ−spaces. We express these results in terms of standard Sobolev spaces,
and refer to [38] for further details.

Proposition 1.2.1. Let Ω ⊂ Rn be a bounded domain with smooth boundary, g ∈
Hr(Ω) for some r ≥ −s and consider u ∈ H̃s(Ω), the solution of the Dirichlet problem
(1.2.1). Then, there exists a constant C(n, s) such that

|u|Hs+γ(Rn) ≤ C‖g‖Hr(Ω).

Here, γ = min{s+ r, 1/2− ε}, with ε > 0 arbitrary small.

Remark 1.2.2. Observe that, in general, it is not true that solutions of (1.2.1) have
2s more derivatives than the right-hand side function g. No matter how regular g is,
the solution of (1.2.1) is not expected to be more regular than Hs+γ(Rn). In spite of
this, the singular behavior of solutions can be localized at the boundary and described
appropriately in weighted spaces [3, 7].

Remark 1.2.3. In view of Proposition 1.2.1, assuming (−∆)sv ∈ L2(Ω) is weaker than
assuming that v ∈ H2s(Rn). This kind of weaker conditions on the initial/boundary
data are frequently employed as hypothesis throughout this work.

Additionally, the following two theorems summarize classical global and interior
regularity for solutions of (1.2.1) in Hölder spaces, and we refer to [33] for further
details.

Theorem 1.2.4. Let Ω ⊂ Rn be any bounded C1,1 domain, s ∈ (0, 1), and u be the
solution of (1.2.1). If g ∈ L∞(Ω); then u ∈ Cs(Rn). Moreover,

‖u‖Cs(Rn) ≤ C‖g‖L∞(Ω),

where the constant C depends only on Ω and s.

Theorem 1.2.5. Let Ω be a bounded domain of Rn, and let u be a solution for (1.2.1).
If δ(x) = dist(x, ∂Ω), for each ρ > 0 define Ωρ := {x ∈ Ω : δ(x) > ρ}. Then, if β + 2s
is not an integer, for every 0 < ρ′ < ρ we have

‖u‖Cβ+2s(Ωρ) ≤ C‖g‖Cβ(Ωρ′)
, (1.2.2)

with C = C(n, s,Ω, β, ρ, ρ′).

1.3 Mittag-Leffler function

Let α > 0 and µ ∈ R, then the Mittag-Leffler function Eα,µ : C→ C is defined as

Eα,µ(z) =
∞∑
k=0

zk

Γ(αk + µ)
.

17

This is a complex function that depends on two parameters; in particular, it gener-
alizes the exponentials, in view of the identity E1,1(z) = ez for all z ∈ C. The following
properties of this family of functions are useful to derive the regularity estimates we
present below.

Lemma 1.3.1 (cf. [51, Pag 46]). If α, λ > 0, then

C∂αt Eα,1(−λtα) = −λEα,1(−λtα). (1.3.1)

Moreover, the following identities hold for m ≥ 1:

∂mt Eα,1(−λtα) = −λtα−mEα,α+1−m(−λtα).

Lemma 1.3.2 (cf. [51, Eq. 1.8.28]). Let 0 < α < 2 and µ ∈ R be arbitrary, and
απ
2
< µ < min(π, απ). Then for µ ≤ |arg(z)| ≤ π,

Eα,β(z) = −
N∑
k=1

1

Γ(β − αk)

1

zk
+O

(1

zN+1

)
,

with |z| → ∞. Particularly, for µ ≤ |arg(z)| ≤ π we have

|Eα,µ(z)| ∈

O
(1

1 + |z|2
)
, µ− α ∈ Z− ∪ {0},

O
(1

1 + |z|

)
, otherwise.

(1.3.2)

Now we show a result about the behavior of the Mittag-Leffler function under
Laplace transform (see [26, Prop. 2.43] or [63, Eq. (2.2.26)]). Given a locally inte-
grable function f : [0,+∞)→ R we define its Laplace transform as

L(f)[z] :=

ˆ ∞
0

f(t)e−zt dt.

With this definition, we have the following lemma

Lemma 1.3.3. Let α, µ > 0, we have

L(tµ−αEα,µ(−λtα))[z] = zµ−α(zα + λ)−1, (1.3.3)

for <(z) > 0, and λ > 0.

Finally, we end this section by giving a property about the positivity of Eα,α with
a negative argument.

Lemma 1.3.4 (cf. [74, Lemma 3.3]). Let α ∈ (0, 1), we have

Eα,α(−η) ≥ 0, for η ≥ 0.

18

Resumen del Caṕıtulo

En este caṕıtulo se recopilan resultados y conceptos necesarios para el desarrollo tanto
de la teoŕıa de elementos finitos, como de los resultados de existencia y regularidad para
los problemas en consideración.

En la Sección 1.1 se presentan conceptos básicos en relación a los espacios de Sobolev
fraccionarios. La Sección 1.2 está dedicada al repaso de resultados clásicos de regular-
idad para el problema de Poisson fraccionario, mientras que la Sección 1.3 recopila
resultados y propiedades de utilidad para las funciones de Mittag-Leffler.

19

20

Chapter 2

Fractional evolution problems

In this chapter, formulations for the evolution problems under consideration are estab-
lished, as well as existence and regularity results. Since the regularity theory for these
problems is still an ongoing area, we have imposed some requirements on the problem
data in order to avoid some technical details (see Remark 2.1.5). In spite of the fact
that these requirements may be too restrictive in some cases, examples used for the
computation of the numerical convergence rate in Section 4.3 meet these conditions. In
any case, this chapter should be understood as a complementary content to the ideas
displayed in chapters 4 and 5.

Let {(φk, λk)}∞k=1 denote the solutions of the fractional eigenvalue problem{
(−∆)su = λu in Ω,

u = 0 in Ωc.
(2.0.1)

It is well-known that the fractional Laplacian has a sequence of eigenvalues

0 < λ1 < λ2 ≤ . . . , λk →∞ as k →∞,

and that the eigenfunctions’ set {φk}∞k=1 may be taken to constitute an orthonormal
basis of L2(Ω).

Remark 2.0.1. Unlike the classical Laplacian, eigenfunctions of the fractional Laplacian
are in general non-smooth [39, 72]. Indeed, considering a smooth function d that behaves
like dist(x, ∂Ω) near to ∂Ω, all eigenfunctions φk belong to the space dsC2s(−ε)(Ω) (the
ε is active only if s = 1/2) and φk

ds
does not vanish near ∂Ω. The best Sobolev regularity

guaranteed for solutions of (2.0.1) is φk ∈ Hs+1/2−ε(Rn) for ε > 0 (see [20]).

The reduced Sobolev regularity of eigenfunctions precludes the possibility of solu-
tions to equation (0.0.3) being smooth, even for α = 1. This is in stark contrast with the
case of the classical Laplacian. However, solutions of diffusion equations with memory
–local in space but fractional in time– are known to be less regular than their classical

21

counterparts [64]. The effect of fractional differentiation in time is that high-frequency
modes are less strongly damped than in classical diffusion, and the time derivatives of
the solution are unbounded as t→ 0.

In order to represent the solutions in terms of the eigenfunctions, considering t ∈
(0, T], we define now two useful operators, Eα(t), Fα(t) : L2(Ω)→ L2(Ω),

Eα(t)(v) :=
∑
k

Eα,1(−λktα)φk(φk, v)L2(Ω), (2.0.2)

Fα(t)(v) :=
∑
k

tα−1Eα,α(−λktα)φk(φk, v)L2(Ω). (2.0.3)

For technical purposes we define the norm

‖w‖θ,s :=
(∑

k

λθk(w, φk)
2
L2(Ω)

) 1
2
. (2.0.4)

It can be easily verified that ‖w‖0,s = ‖w‖L2(Ω), ‖w‖1,s = |w|Hs(Rn), and ‖w‖2,s =

‖(−∆)sw‖L2(Ω). Additionally, we denote Ḣθ(Ω) ⊂ H−s(Ω), θ ≥ −1, the space induced
by the norm (2.0.4).

The following two lemmas are helpful estimates involving the operators (2.0.2) and
(2.0.3), which will be used later both in regularity results and in error estimates for
numerical approximations.

Lemma 2.0.2. Consider t > 0, then we have

‖Eα(t)v‖p,s ≤ Ct−α(p−q)/2‖v‖q,s, if 0 ≤ p− q ≤ 2, (2.0.5)

‖Fα(t)v‖p,s ≤ Ct−1+α(1+(q−p)/2)‖v‖q,s, if 0 ≤ p− q ≤ 4, (2.0.6)

Proof. From the definition of Fα and Lemma 1.3.2 we have

‖Fα(t)v‖2
p,s =

∑
k

λpk|t
α−1Eα,α(−λk)|2(v, φk)

2

= Ct−2+(2+q−p)α
∑
k

(λkt
α)p−q|Eα,α(−λktα)|2λqk(v, φk)

2

≤ Ct−2+(2+q−p)α
∑
k

(λkt
α)p−q

(1 + (λktα)2)2
λqk(v, φk)

2

≤ Ct−2+(2+q−p)α
∑
k

λqk(v, φk)
2 ≤ Ct−2+(2+q−p)α‖v‖2

q,s,

22

where we have used that supt>0
(λkt

α)p−q

(1+(λktα)2)2
≤ C for 0 ≤ p − q ≤ 4, and then (2.0.6)

follows. Finally, (2.0.5) can be derived with similar arguments.

Another useful result is the following estimation on the time derivatives of the
operator Eα.

Lemma 2.0.3. If v ∈ Ḣq, q ∈ [0, 2], then for m ≥ 1

‖∂mt Eα(t)v‖L2(Ω) ≤ Ctqα/2−m‖v‖Ḣq .

Proof. From (1.3.1), we have dm

dtm
Eα,1(−λtα) = −λtα−mEα,α+1−m(−λtα). Then, by (1.3.2),

we deduce

‖∂mt Eα(t)v‖2
L2(Ω) = ‖

∞∑
k=1

dm

dtm
Eα,1(−λktα)(v, φk)L2(Ω)φk‖2

L2(Ω)

=
∞∑
k=1

(λkt
α)2−qtqα−2mEα,α−m+1(−λktα)2(v, φk)

2
L2(Ω)λ

q
k

≤ ctqα−2m sup
k≥1

(λkt
α)2−q

(1 + λktα)2

∞∑
k=1

(v, φk)
2
L2(Ω)λ

q
k ≤ ctqα−2m‖v‖2

Ḣq ,

and the lemma follows.

Additionally, we define the operator A : H̃s(Ω) ⊂ H−s(Ω) → H−s(Ω) as the one
that satisfies

(Au, ϕ)L2(Ω) = 〈u, ϕ〉Hs(Rn) ∀ϕ ∈ H̃s(Ω). (2.0.7)

From the previous definition, we observe that (Av, v)L2(Ω) = 〈v, v〉Hs(Rn) ≥ 0, for

all v ∈ H̃s(Ω). And also, from the fact that R(A) = H−s(Ω), and A−1 is a compact
operator, it is possible to show that R(I + A) = H−s(Ω), or in other words,

∀w ∈ H−s(Ω), ∃u such that u+ Au = w.

From this, and [22, Proposition 7.1], we can assert that

‖(I + λA)−1‖L2(Ω) ≤ 1, ∀λ > 0. (2.0.8)

Now we finish this section by giving an auxiliary result regarding the differentiation
under the integral sign, when the integral is computed in the Bochner sense.

Lemma 2.0.4. Let f ∈ C([0, T], L2(Ω)), with f differentiable in (0, T) in such a way
that ‖f ′(t)‖L2(Ω) ≤ Ct−γ with γ ∈ (0, 1) for all t ∈ (0, T). Then we have

∂t
(ˆ t

0

f(t− s) ds
)

= f(0) +

ˆ t

0

∂tf(t− s) ds ∀t ∈ (0, T). (2.0.9)

23

Proof. We have ˆ t+h

0

f(t+ h− s) ds−
ˆ t

0

f(t− s) ds (2.0.10)

=

ˆ t

0

f(t+ h− s)− f(t− s) ds+

ˆ t+h

t

f(t+ h− s) ds.

From the mean value inequality in Banach spaces (see [66, Appendix B] for instance)
we can estimate

‖f(t+ h− s)− f(t− s)‖L2(Ω) ≤ h‖f ′(r − s)‖L2(Ω)

≤ Ch(r − s)−γ ≤ Ch(t− s)−γ, ∀s ∈ [0, t).

This, along with the fact that f ′ exists in (0, T), allows us to use the Domitated Con-
vergence Theorem (see [66, Appendix B]) and get

lim
h→0

ˆ t

0

f(t+ h− s)− f(t− s)
h

ds =

ˆ t

0

f ′(t− s) ds. (2.0.11)

On the other hand, from the fact that f(t) is a continuous function in t = 0, we
have

1

h

ˆ t+h

t

f(t+ h− s) ds =
1

h

ˆ 0

h

−f(r) dr =
1

h

ˆ h

0

f(r) dr −−→
h→0

f(0), (2.0.12)

where the convergence is in L2(Ω) sense.

Finally, combining (2.0.10), (2.0.11) and (2.0.12), we obtain (2.0.9).

2.1 Fractional diffusion equation

Considering problem (0.0.3) with α ∈ (0, 1), we say that u is a weak solution of (0.0.3)

if u ∈ W 1,1((0, T), L2(Ω)) ∩ C((0, T], H̃s(Ω)) and satisfies the equation (in L2(Ω))

C∂αt u+ Au = f, (2.1.1)

almost everywhere in (0, T), and u(0) = v. Here A is the operator defined in (2.0.7),
and v ∈ L2(Ω). Note we are forcing u to have a weak derivative in L1([0, T], L2(Ω)),
this condition, in particular, ensures the existence of C∂αt u.

24

2.1.1 Solution representation

Now we formally derive a representation for solutions of (0.0.3) with α ∈ (0, 1), and
then we introduce the concept of mild solution.

Notice that we can write solutions of (0.0.3) by means of separation of variables,

u(x, t) =
∞∑
k=1

uk(t)φk(x). (2.1.2)

Then, for every k ≥ 1 it must hold that{
C∂αt uk + λkuk = fk,

uk(0) = vk,
(2.1.3)

where fk = (f, φk)L2(Ω), and vk = (v, φk)L2(Ω). Existence and uniqueness of solutions
to (2.1.3) follow from standard theory for fractional-order differential equations [31,
Theorem 7.2]. Moreover, solutions of (2.1.3) may be represented as the superposition
of the respective solution of the problem with initial data equal to zero and the solution
of the problem with vanishing right-hand side. Namely, defining

Fk(t)w =

ˆ t

0

(t− r)α−1Eα,α(−λk(t− r)α)w(r) dr,

the solution of (2.1.3) may be written as

uk(t) = Fk(t)fk + vkEα,1(−λktα) (2.1.4)

This fact can be derived from the following result.

Lemma 2.1.1. Considering Fk(t) defined as before, we have

C∂αt Fk(t)w = −λkFk(t)w + fk(t). (2.1.5)

Proof. First, using the relation ([31, Theorem 3.1])

C∂αt w = ∂αt (w − w(0)), (2.1.6)

along with the properties of the Laplace transform involving the fractional integral and
the usual derivative, it is possible to write

L(∂αt w)[z] = zαL(Fkw)[z]− zα−1Fk(0)w.

Note that, since we are deriving a solution representation in a formal fashion, we are
ignoring regularity conditions on w. However, (2.1.1) requires some smoothness on w
(see Remark 2.1.5, below).

25

Applying the Laplace transform at both sides of (2.1.5) we obtain

zαL(Fkw)[z]− zα−1Fk(0)w = −λkL(Fkw)[z] + L(fk)[z], (2.1.7)

and observing that Fk(0)w = 0 we have

L(Fkw)[z] = (zα + λk)
−1L(fk)[z].

Applying L−1 at both sides we get

Fk(t)w = L−1((zα + λk)
−1) ∗ fk(t) =

ˆ t

0

(t− r)α−1Eα,α(−λk(t− r)α)w(r) dr,

where in the last step we have used Lemma 1.3.3. Then (2.1.5) follows.

Note that for the particular value of α = 1 expression (2.1.4) yields the well-known
formula

uk(t) =

ˆ t

0

e−λk(t−r)fk(r) dr + vke
−λkt,

usually derived by the method of variation of parameters.

Summing the solutions for every eigenmode, we obtain the representation

u(t) = Eα(t)v +

ˆ t

0

Fα(t− s)f(s) ds =: M(v, f)(t), (2.1.8)

with Eα and Fα the operators defined in (2.0.2) and (2.0.3) respectively. We say that
u(t) = M(v, f)(t) is a mild solution of (0.0.3). Next result tells us that, under suitable
regularity conditions on the initial data, M(v, f) is a weak solution.

Theorem 2.1.2. Let Ω be a bounded, smooth domain, s ∈ (0, 1) and α ∈ (0, 1] and
u(t) = M(v, f) a mild solution of (0.0.3). Assume that f ∈ C([0, T], L2(Ω)), differen-
tiable in (0, T), and ‖f ′(t)‖L2(Ω) ≤ Ctγ−1 with C > 0 and γ ∈ (0, 1). Finally, assume

that v ∈ Ḣq(Ω) for some q > 0. Then u is a weak solution of (0.0.3).

Proof. Suppose first f ≡ 0. Then u = Eα(t)v. For this case we have

|Eα(t)v|2Hs(Rn) =
∑
k

λkE
2
α,1(−λktα)(v, φk)

2
L2(Ω).

From the uniform convergence of the series with t > 0 we can assert that u ∈ C((0, T], H̃s(Ω)).
On the other hand, from Lemma 2.0.3 we know that ∂tE

α(t)v ∈ C((0, T], L2(Ω)), and

‖∂tEα(t)v‖L2(Ω) ≤ tqα/2−1‖v‖q,s.

26

Then we can conclude that u ∈ W 1,1((0, T), L2(Ω)).

Assume now that v ≡ 0. In this case we have u(t) =
´ t

0
Fα(t−s)f(s) ds. Arguing as

before, it can be seen that u ∈ C((0, T], H̃s(Ω)). Now, using Lemma 2.0.4 , we obtain

∂tu(t) = Fα(t)f(0) +

ˆ t

0

Fα(s)f ′(t− s) ds,

from here we can conclude that ∂tu ∈ C((0, T], L2(Ω)). Moreover, in view of Lemma
2.0.2, we can estimate

‖∂tu(t)‖L2(Ω) ≤ Ctα−1‖f(0)‖L2(Ω) + C

ˆ t

0

sα−1(t− s)γ−1 ds

= Ctα−1‖f(0)‖L2(Ω)+Ct
α+γ−1

ˆ 1

0

rα−1(1−r)γ−1 dr = Ctα−1‖f(0)‖L2(Ω)+Ct
α+γ−1B(α, γ),

where in the third step we have made the change of variable r = s/t, and B(α, γ)
denotes the beta function. Finally, the last estimation implies u ∈ W 1,1((0, T), L2(Ω))
and the statement of the theorem follows.

2.1.2 Regularity of solutions

In this section we state some regularity results for solutions of the problems under
consideration. We split the estimates according to whether the initial values or the
forcing term are null. We also recall also that throughout this chapter we are assuming
that Ω is a domain with smooth boundary, so that Proposition 1.2.1 holds. According
to that proposition, we fix the notation γ := min{s, 1/2 − ε}, with ε > 0 arbitrarily
small.

Theorem 2.1.3. Let 0 < α < 1 and suppose that f ≡ 0. Let u, given by (2.1.2), be
the mild solution of (0.0.3) with initial and boundary conditions according to (0.0.4).

a. If v ∈ L2(Ω), then u ∈ C([0, T];L2(Ω))∩C((0, T]; H̃s(Ω)∩Hs+γ(Ω)) and C∂αt u ∈
C((0, T];L2(Ω)). Moreover, there exists a constant C > 0 such that

‖u‖C([0,T];L2(Ω)) ≤ C‖v‖L2(Ω), (2.1.9)

‖u(·, t)‖Hs+γ(Ω) + ‖C∂αt u(·, t)‖L2(Ω) ≤ Ct−α‖v‖L2(Ω). (2.1.10)

b. Assume that v ∈ H̃s(Ω). Then, u ∈ L2(0, T ; H̃s(Ω) ∩Hs+γ(Ω)), C∂αt u ∈ L2(Ω ×
(0, T)), and the following estimate holds:

‖u‖L2(0,T ;Hs+γ(Ω)) + ‖C∂αt u‖L2(Ω×(0,T)) ≤ C‖v‖Hs(Rn). (2.1.11)

27

c. Furthermore, if v ∈ H̃s(Ω) is such that (−∆)sv ∈ L2(Ω), then u ∈ C([0, T]; H̃s(Ω)∩
Hs+γ(Ω)), C∂αt u ∈ C([0, T];L2(Ω)) and the bound

‖u‖C([0,T];Hs+γ(Ω)) + ‖C∂αt u‖C([0,T];L2(Ω)) ≤ C‖(−∆)sv‖L2(Ω) (2.1.12)

is satisfied for some C > 0 independent of v.

Proof. Using (2.0.5) we can estimate

‖u(·, t)‖L2(Ω) = ‖Eα(t)v‖L2(Ω) ≤ C‖v‖L2(Ω),

from which we can conclude (2.1.9). Next, recalling that ‖u‖Hs+γ(Ω)) ≤ ‖(−∆)su‖L2(Ω)

(from Proposition 1.2.1) and using (2.0.5) with p = 2, q = 0, we have

‖u(·, t)‖Hs+γ(Ω)) ≤ ‖(−∆)su(·, t)‖L2(Ω) ≤ ‖(−∆)sEα(t)v‖L2(Ω) ≤ t−α‖v‖L2(Ω).

Since u is a solution for (0.0.3) with f ≡ 0, we have C∂αt u = −(−∆)su, and using again
(2.0.5) we obtain (2.1.10).

For the second item, proceeding analogously as in the previous step, and using
(2.0.5) with p = 2, q = 1, we have

‖u‖Hs+γ(Ω) + ‖C∂αt u‖L2(Ω) ≤ Ct−α/2‖v‖Hs(Rn).

Noticing that 0 < α < 1, (2.1.11) follows. Finally, (2.1.12) can be derived by means of
similar arguments.

Regularity estimates for the fractional diffusion problem with a non-homogeneous
right-hand side function f are also attainable.

Theorem 2.1.4. Let 0 < α ≤ 1 and consider u, given by (2.1.2), the mild solution of
(0.0.3) with homogeneous initial and boundary conditions. If f ∈ L∞(0, T ;L2(Ω)), then

u ∈ L2(0, T ; H̃s(Ω) ∩Hs+γ(Ω)), C∂αt u ∈ L2(Ω× (0, T)) and

‖u‖L2(0,T ;Hs+γ(Ω)) + ‖C∂αt u‖L2(Ω×(0,T)) ≤ C‖f‖L∞(0,T ;L2(Ω)). (2.1.13)

Proof. First we observe that, as a consequence of Lemma 1.3.4 and Lemma 1.3.1, we
have

ˆ η

0

|tα−1Eα,α(−λktα)| dt =

ˆ η

0

tα−1Eα,α(−λktα) dt = (2.1.14)

− 1

λk

ˆ η

0

∂tEα,1(−λktα) dt =
1

λk

(
1− Eα,1(−λkηα)

)
, η > 0.

28

On the other hand, by means of Lemma 2.1.1, it can be shown that

C∂αt

ˆ t

0

fk(s)(t− s)α−1Eα,α
(
− λk(t− s)α

)
ds (2.1.15)

= −λk
ˆ t

0

fk(s)(t− s)α−1Eα,α
(
− λk(t− s)α

)
ds+ fk(t).

At this point, we can estimate∥∥∥∥C∂αt ˆ t

0

fk(s)(t− s)α−1Eα,α
(
− λk(t− s)α

)
ds

∥∥∥∥2

L2([0,T])

≤ C‖fk‖2
L2([0,T]) + C

∥∥∥∥λk ˆ t

0

fk(s)(t− s)α−1Eα,α
(
− λk(t− s)α

)
ds

∥∥∥∥2

L2([0,T])

≤ C‖fk‖2
L2([0,T]) + C‖fk‖2

L2([0,T])

(ˆ T

0

|λksα−1Eα,α(−λksα)| ds
)

≤ C‖fk‖2
L2([0,T]),

where we have used (2.1.15) in the first inequality, Young’s inequality for the convolution
in the second step, and (2.1.14) in the last inequality. Now, the previous estimate implies

‖C∂αt u‖2
L2(Ω×(0,T)) ≤ C

∑
k

‖fk‖2
L2([0,T]) = C

∑
k

ˆ T

0

|fk(s)|2 ds = C‖f‖2
L2(Ω×(0,T)).

Finally, observing that

‖u(t)‖Hs+γ(Ω) ≤ C‖(−∆)su(t)‖L2(Ω) ≤ ‖C∂αt u(t)‖L2(Ω) + ‖f(t)‖L2(Ω),

and integrating between 0 and T on both sides of the inequality, we obtain (2.1.13).

Remark 2.1.5. It is worth mentioning that regularity conditions on v and f in theorems
2.1.3 and 2.1.4 may not guarantee that M(v, f) is a weak solution. This implies that a
special attention must be paid in some aspects of the classical theory. Specifically, since
we could have u 6∈ W 1,1((0, T), L2(Ω)), C∂αt u may not be well defined. Furthermore,
relation (4.1.12) (also used in [45]) may not be hold. The regularity conditions in
Theorems 2.1.3 and 2.1.4 also allow f 6∈ W 1,1((0, T), L2(Ω)). In that case, equalities
(2.1.15) ([74, eq. 3.8]) and (2.1.7) may not be hold.

In order to avoid these technicalities, throughout this work we are going to as-
sume v and f verify the hypotheses of Theorem 2.1.2. Nonetheless, we think that
the restrictions on f can be relaxed, Lemma 2.0.3 suggests that if v ∈ L2(Ω) and

29

v 6∈ Ḣq(Ω) for any q > 0, then we could have ∂tE
α(t)v 6∈ L1((0, T), L2(Ω)). In fact,

it is possible to show an explicit example of a function v ∈ L2(Ω) in such a way that
∂tE

α(t)v 6∈ L1((0, T), L2(Ω)). Indeed, consider s = 1 for the sake of simplicity, and set
ak := 1/

√
k log(k). We can define

v0 :=
∑
k≥2

akφk. (2.1.16)

Taking t ∈ (0, T] and using the uniform convergence of the series it can be seen that
∂tE

α(t)v0 ∈ C1((0, T], L2(Ω)). Our goal is to prove that ∂tE
α(t)v0 6∈ L1((0, T), L2(Ω)).

To this end, we can estimate

‖∂tEα(t)v0‖2
L2(Ω) =

∑
k≥2

λ2
kt

2α−2E2
α,α(−λktα)a2

k ≥ Ct−2
∑
k≥2

(λkt
α)2E2

α,α(−λktα)a2
k

(2.1.17)

≥ Ct−2
∑
k≥2

(λkt
α)2

1 + (λktα)4
a2
k,

where we have used Lemma 1.3.2 in the last step. So we want to study the behavior of
the last term when t→ 0. To this end, we define the auxiliary function

g(x) :=

 x2, if x ≤ 1,

1

x2
, if x > 1.

Observing that x2

(1+x4)g(x)
∈ O(1), λk ∈ O(k2), and considering t = (1/n2)1−α we can

estimate

∑
k≥2

(λkt
α)2

1 + (λktα)4
a2
k ≥ C

∑
k≥2

g(λkt
α)a2

k ≥ C
∑
k≥2

g((k/n)2)a2
k

≥ C
n∑
k≥2

(k/n)4a2
k = C

1

n4

n∑
k≥2

k3

log2(k)
≥ C

log2(n)
,

where in the third step we have used the fact that (k/n)2 ≤ 1 for all k ≤ n and
the definition of g. The last bound can be obtained, for instance, by means of the
Stolz-Césaro Theorem.

Combining the former inequality with (2.1.17) and recalling t = (1/n)2−2α, we
deduce

‖∂tEα(t)v0‖L2(Ω) ≥ Ct−1 log−1(t2α−2),

for small values of t, from we can conclude that ∂tE
α(t)v0 6∈ L1((0, T), L2(Ω)).

30

Remark 2.1.6. There are many possible settings leading to right formulations of equa-
tions of the type considerer here. For instance, in [49] it is shown that the Caputo
derivative is a linear and bounded operator on a time-fractional Sobolev-Bochner space.
The author considers a variational formulation based exclusively on Sobolev regularity
and proves that if the initial condition belongs to H1−1/α+ε(Ω) for some ε > 0 and
α > 1/2, then the time-fractional problem is well posed with u ∈ Hα((0, T), H1

0 (Ω)).
Another approach is given in [37] Gorenflo, Luchko and Yamamoto, where the authors
define a weak solution as the limit of the solutions with smooth source term, with u
belonging to Hα((0, T), L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)). A special mention deserves
the theory developed by Gal and Warma [35], where a general semilinear problem (in-
cluding the problem treated in this work) is defined by the Caputo derivative directly
through the Riemann-Liouville differential operator. In this way, they obtain global
existence and regularity results under mild assumptions of data.

In any case, the aforementioned alternative formulations do not guarantee the con-
dition u ∈ W 1,1((0, T), L2(Ω)) that is pivotal in our treatment of the numerical error
for the semilinear problem. Since this condition can be obtained under rather weak reg-
ularity assumptions on the initial datum (i.e. v ∈ Ḣq(Ω) for some q > 0), we consider
that our formulation, although not completely general, is appropriate in the context of
this work.

2.2 A semilinear fractional evolution problem

Now our goal is to study a semi-linear version of problem (0.0.3). That is: find u such
that

C∂αt u+ ε2(−∆)su = f(u) in Ω× (0, T],
u(0) = v in Ω,
u = 0 in Ωc × [0, T],

(2.2.1)

where, as before, Ω is a bounded domain in Rn with a sufficiently smooth boundary,
v ∈ L2(Ω), and 0 < α ≤ 1. All the analysis will be made for a very restricted non-linear
term. That is, we are going to consider f : R→ R, such that

f ∈ C2(R), f(0) = 0, and (2.2.2)

|f |, |f ′|, |f ′′| < B for some B > 0. (2.2.3)

The idea is, once we have established the theory for this problem, to extend our
results to other kind of non-linear terms, by taking advantage of certain L∞ bounds. For
example, in Chapter 5, we present the analysis for the fractional Allen-Cahn equation,
where f(u) = u− u3, that obviously does not comply with (2.2.3). There we show how

31

to handle this case by proving that, for a suitable truncation of f verifing conditions
(2.2.2) (2.2.3), the solution remains bounded between 1 and -1. L∞ bounds for u are
first proved for the semidiscrete in time scheme and then extended to the continuous
solution by means of density arguments.

2.2.1 Weak formulation and solution representation

We call u a weak solution of problem (2.2.1) if u ∈ W 1,1((0, T), L2(Ω))∩C((0, T], H̃s(Ω))
and {

(C∂αt u, ϕ) + ε2〈u, ϕ〉Hs(Rn) = (f(u), ϕ) ∀ϕ ∈ H̃s(Ω),
u(0) = v in Ω,

(2.2.4)

for almost all t ∈ (0, T).

Using the operator A defined in (2.0.7), the formulation (2.2.4) can be understood

as find u ∈ W 1,1((0, T), L2(Ω)) ∩ C((0, T], H̃s(Ω)) such that

C∂αt u+ ε2Au = f(u), (2.2.5)

for almost all t ∈ (0, T) with u(0) = v in Ω.

For every v ∈ L2(Ω), the solution of (2.2.5) should satisfy the integral equation

u(t) = Eα(ε2t)v +

ˆ t

0

Fα(ε2(t− s))f(u(s)) ds. (2.2.6)

If u is a solution of equation (2.2.6), we say that u is a mild solution of problem (2.2.1),
and we use the notation u(t) =: M(v, f).

2.2.2 Existence and Uniqueness

For the sake of simplicity we are going to consider ε2 = 1 along this section.

To obtain an existence and uniqueness result for the integral equation (2.2.6), we
base our framework in the one displayed by Larsson in [53] and Mendes de Carvalho in
[26]. With the aim of giving a local existence result, first we define the space

Vq
τ := {w ∈ C([0, τ], L2(Ω)) ∩ C1((0, τ], L2(Ω)) such that ‖w‖Vqτ <∞}

where the norm ‖w‖Vqτ is defined as

‖w‖Vqτ := sup
t∈[0,τ]

‖w(t)‖L2(Ω) + sup
t∈[0,τ]

t(1−q)α/2|w(t)|s + sup
t∈[0,τ]

t1−qα/2‖∂tw(t)‖L2(Ω),

with q ∈ (0, 1]. By means of standard arguments it can be proved that Vq
τ is a Banach

space.

32

Now we give a local existence result.

Theorem 2.2.1. Suppose we have an initial datum ‖v‖q,s ≤ R0 for some R0 > 0 with
q ∈ (0, 1]. Then, there exists τ > 0 small enough, such that equation (2.2.6) has a
unique solution u ∈ Vq

τ .

Proof. First, we define the operator S(u)

S(u)(t) := Eα(t)v +

ˆ t

0

Fα(t− s)f(u(s)) ds, (2.2.7)

and BR = {w ∈ Vq
τ such that ‖w‖Vqτ ≤ R, and w(0) ≡ v}. It can be easily verified

that BR ⊂ Vq
τ is a closed set. Our goal is to show that there are parameters τ > 0 and

R > 0, in such a way that we can apply Banach’s fixed point Theorem. That is, we
look for τ and R, such that S maps BR into itself, and results in a contraction over BR.

Indeed, observing first that S(u)(0) ≡ v for all u ∈ Vq
τ , then the condition u(0) ≡ v

is satisfied for every output of S. Furthermore, by means of Lemma 2.0.4, it can be
seen that S(u)(t) ∈ C([0, τ], L2(Ω)) ∩ C1((0, τ], L2(Ω)). Suppose now u ∈ BR, from
(2.2.7), Lemma 2.0.2, and the definition of f , we have

t(1−q)α/2|S(u)(t)|Hs(Rn) ≤

t(1−q)α/2|Eα(t)v|Hs(Rn) + t(1−q)α/2
ˆ t

0

|Fα(t− s)f(u(s))|Hs(Rn) ds ≤

C‖v‖q,s + Ct(1−q)α/2
ˆ t

0

(t− s)α/2−1‖f(u(s))‖L2(Ω) ds,

computing the integral, and using t < τ , this estimation implies

t(1−q)α/2|S(u)(t)|Hs(Rn) ≤ CR0 + Cτα. (2.2.8)

With the same idea we can obtain

‖S(u)(t)‖L2(Ω) ≤ CR0 + Cτα (2.2.9)

On the other hand, by means of Lemma 2.0.4, we have

∂t
(ˆ t

0

Fα(t− s)f(u(s)) ds
)

= ∂t
(ˆ t

0

Fα(s)f(u(t− s)) ds
)

(2.2.10)

= Fα(t)f(v) +

ˆ t

0

Fα(s)f ′(u(t− s))∂tu(t− s) ds,

and we can estimate

33

t1−qα/2‖∂tS(u)(t)‖L2(Ω) ≤ t1−qα/2‖∂tEα(t)v‖L2(Ω) + t1−qα/2‖Fα(t)f(v)‖L2(Ω)

+t1−qα/2
ˆ t

0

‖Fα(s)f ′(u(t− s))∂tu(t− s)‖L2(Ω) ds

≤ CR0 + CRt1−qα/2
ˆ t

0

sα−1(t− s)qα/2−1 ds

where we have applied Lemma 2.0.3, Lemma 2.0.2, the fact that t1−qα/2‖∂tu(t)‖L2(Ω) ≤
‖u‖Vqτ ≤ R, and t1−qα/2‖Fα(t)f(v)‖L2(Ω) ≤ τ (1−q/2)α‖v‖L2(Ω). The integral in the second
term can be estimated in terms of the beta function B(α, qα/2). That is, making the
change of variables s/t = r, we obtain

t1−qα/2‖∂tS(u)(t)‖L2(Ω) ≤ CR0 + CRtα
ˆ 1

0

rα−1(1− r)qα/2−1 dr (2.2.11)

≤ CR0 + CRB(α, qα/2)τα.

Combining (2.2.8), (2.2.9) and (2.2.11), we have

‖S(u)‖Vqτ ≤ CR0 + CRτα,

where C = C(α). Then, fixing R = 2CR0, we can choose τ > 0 small enough to satisfy
the inequality ‖S(u)‖Vqτ < R . Hence, for this τ , S maps BR into itself.

Now we want to see that S is a contraction over BR. Indeed, let u and w ∈ BR,
using |f ′| ≤ B and Lemma 2.0.2, we have

t(1−q)α/2|S(u)(t)−S(w)(t)|Hs(Rn) ≤ Ct(1−q)α/2
ˆ t

0

(t−s)α/2−1‖f(u(s))−f(w(s))‖L2(Ω) ds ≤

(2.2.12)

≤ CBt(1−q)α/2
ˆ t

0

(t− s)α/2−1‖u(s)− w(s)‖L2(Ω) ds

≤ ‖u− w‖VqτCBt
(1−q)α/2

ˆ t

0

(t− s)α/2−1 ds

≤ Ct(2−q)α‖u− w‖Vqτ ≤ Cτα‖u− w‖Vqτ .

With similar arguments it can be seen that

‖S(u)(t)− S(w)(t)‖L2(Ω) ≤ Cτα‖u− w‖Vqτ . (2.2.13)

34

Recalling the equality (2.2.10), we have that

t1−qα/2‖∂t
(
S(u)(t)− S(w)(t)

)
‖L2(Ω) ≤ t1−qα/2‖Fα(t)

(
u(0)− w(0)

)
‖L2(Ω)

+t1−qα/2C

ˆ t

0

sα−1‖f ′(u(t− s))∂tu(t− s)− f ′(w(t− s))∂tw(t− s)‖L2(Ω) ds.

Using the identity

f ′(u)∂tu− f ′(w)∂tw = f ′(u)(∂tu− ∂tw)− (f ′(u)− f ′(w))∂tw,

and the fact that u(0) ≡ w(0) ≡ v, t1−qα/2‖∂tw(t)‖L2(Ω) ≤ R, |f ′|, |f ′′| ≤ B, we can
write

t1−qα/2‖∂t
(
S(u)(t)−S(w)(t)

)
‖L2(Ω) ≤ t1−qα/2CB

ˆ t

0

sα−1‖∂t
(
u(t−s)−w(t−s)

)
‖L2(Ω) ds

(2.2.14)

+CBRt1−qα/2
ˆ t

0

sα−1(t− s)α/2−1‖u(t− s)− w(t− s)‖L2(Ω) ds

≤ C(1 +R)‖u− w‖Vqτ t
1−qα/2

ˆ t

0

sα−1(t− s)qα/2−1 ds

≤ CB(α, qα/2)τα‖u− w‖Vqτ ,

where the integrals in the last inequality have been estimated in terms of the beta
function, as in (2.2.11), and C = C(R).

Finally, combining (2.2.12), (2.2.13) and (2.2.14), we can conclude that

‖S(u)(t)− S(w)(t)‖Vqτ ≤ Cτα‖u− w‖Vqτ ,

with C = C(α,R), and it is clear that we can choose τ small enough, such that S
results in a contraction over BR. Hence, for that τ , there exists a unique solution for
problem 2.2.1 in the interval [0, τ].

Now, we need to derive an a priori estimate for the time derivative of the solution.
To this end, we first state a useful and well known Gronwall type inequality.

35

Lemma 2.2.2. Let the function ϕ(t) ≥ 0 be continuous for 0 < t ≤ T . Then, if

ϕ(t) ≤ At−1+α +D +B

ˆ t

0

(t− s)−1+βϕ(s) ds 0 < t ≤ T

for some constants A,D,B ≥ 0 and α, β > 0, there exists a constant C = C(B, T, α, β)
such that

ϕ(t) ≤ C(At−1+α +D) (2.2.15)

Proof. Iterating the first inequality N − 1 times, using the identity

ˆ t

0

(t− s)−1+αs−1+β ds = C(α, β)t−1+α+β α, β > 0,

bounding tβ by T β, and
´ t

0
(t− s)−1+βds by T β/β, we obtain

ϕ(t) ≤ C1At
−1+α + C2D + C3

ˆ t

0

(t− s)−1+Nβϕ(s), 0 < t ≤ T

where C1 = C1(B, T, α, β,N), C2 = C2(B, T, β,N), and C3 = C3(B, β,N). Now we
choose the smallest N such that −1 +Nβ ≥ 0, and estimate (t− s)−1+Nβ by T−1+Nβ.

For the case −1 + α ≥ 0 we can conclude (2.2.15) by using a standard Gronwall
type inequality. In other case, we can define ψ(t) = t1−αϕ(t) and obtain

ψ(t) ≤ C1A+ C2Dt
1−α + C3C

ˆ t

0

s−1+αψ(s) ds 0 < t ≤ T.

And again, using a standard Gronwall type inequality, we obtain

ψ(t) ≤ C(A+Dt1−α),

from which we can derive (2.2.15).

The following result gives us an estimation for ‖∂tu(t)‖L2(Ω).

Lemma 2.2.3. Let u(t) = M(v, f)(t) with v ∈ Ḣq(Ω) and t ∈ [0, T], there exists a
constant C = C(α, T) such that

‖∂tu(t)‖L2(Ω) ≤ Ctα/2−1 (2.2.16)

Proof. For h > 0 we can write

u(t+ h)− u(t) =
(
Eα(t+ h)− Eα(t)

)
v +

ˆ t+h

0

Fα(t+ h− s)f(u(s)) ds (2.2.17)

36

−
ˆ t

0

Fα(t− s)f(u(s)) ds

=
(
Eα(t+ h)− Eα(t)

)
v +

ˆ t+h

0

Fα(s)f(u(t+ h− s)) ds

−
ˆ t

0

Fα(s)f(u(t− s)) ds

=
(
Eα(t+ h)− Eα(t)

)
v +

ˆ t+h

t

Fα(s)f(u(t+ h− s)) ds

+

ˆ t

0

Fα(s)
(
f(u(t+ h− s))− f(u(t− s))

)
ds

=
(
Eα(t+ h)− Eα(t)

)
v +

ˆ t+h

t

Fα(s)f(u(t+ h− s)) ds

+

ˆ t

0

Fα(t− s)
(
f(u(s+ h))− f(u(s))

)
ds.

Now, considering h small enough, and taking norms at both sides of the equality;
using Lemma 2.0.3 in the first term on the left side; inequality (2.0.6), and |f | < B in
the second term and the same idea in the last one, we obtain

‖u(t+h)−u(t)‖L2(Ω) ≤ C
(
htqα/2−1+

ˆ t+h

t

sα−1 ds+

ˆ t

0

(t−s)α−1‖u(s+h)−u(s)‖L2(Ω) ds
)

≤ C(T)
(
htqα/2−1 +

ˆ t

0

(t− s)α−1‖u(s+ h)− u(s)‖L2(Ω) ds
)
. (2.2.18)

Finally, applying Lemma 2.2.2 we derive (2.2.16).

Combining the given results, we are now able to prove the global existence of the
solution.

Theorem 2.2.4. Under the hypotheses of Theorem 2.2.1, let u be the solution of (2.2.7)
defined in [0, τ] and consider fixed numbers T and τ0, such that T > τ > t0. Then,
there exists a constant C = C(T, τ0) > 0 such that if 0 < δ ≤ C, u can be extended to
[0, τ + δ] as a solution of (2.2.7).

37

Proof. We are going to consider the space Vq
τ+δ, for some 0 < δ < 1, and BR ⊂ Vq

τ+δ,
defined as BR := {w ∈ Vq

τ+δ such that w(t) ≡ u(t)∀t ∈ [0, τ], and ‖w‖Vqτ+δ ≤ R},
where u is the solution of (2.2.7) over [0, τ]. Observe that, with this definition, BR

is a closed subset of Vq
τ+δ. Our goal is, as in the proof of Theorem 2.2.1, to apply

Banach’s fixed point Theorem, showing that there exists δ > 0 and R, such that S is a
contraction over BR, and maps BR into itself.

Suppose ũ ∈ BR, proceeding similarly as in (2.2.8), using the boundedness of f , we
can obtain

t(1−q)α/2|S(ũ)|Hs(Rn) ≤ CR0 + C(τ + δ)α ≤ C(R0 + τα + δα) (2.2.19)

≤ C(R0, T) + δα.

With the same idea we can obtain

‖S(ũ)‖L2(Ω) ≤ C(R0, T) + δα. (2.2.20)

Also, applying the same arguments used to obtain (2.2.11), along with the fact that
ũ(s) = u(s) for all s ∈ [0, τ], and using t > τ , we can estimate

t1−qα/2‖∂tS(ũ)‖L2(Ω) = (2.2.21)

t1−qα/2‖∂tEα(t)v + Fα(t)f(v) +

ˆ t

0

Fα(s)f(ũ(t− s))∂tũ(t− s) ds‖L2(Ω) ≤

C(T)R0 + t1−qα/2‖
ˆ t

0

Fα(t− s)f(ũ(s))∂tũ(s) ds‖L2(Ω) ≤

C(T)R0 + t1−qα/2‖
ˆ τ

0

Fα(t− s)f(u(s))∂tu(s) ds+

ˆ t

τ

Fα(t− s)f(ũ(s))∂tũ(s) ds‖L2(Ω)

≤ C(T)R0 + CBt1−qα/2
ˆ τ

0

(t− s)α−1sqα/2−1 ds+ CBRt1−qα/2
ˆ t

τ

(t− s)α−1sqα/2−1 ds

= C(R0, T) + (i) + (ii),

where in the last inequality we have used (2.2.16). Now, making the change of variables
s/t = r, we can estimate

(i) ≤ Ctα
ˆ τ/t

0

(1− r)α−1rqα/2−1 dr ≤ C(τ + δ)α
ˆ 1

0

(1− r)α−1rqα/2−1 dr ≤ Cτα + Cδα,

≤ C(T) + Cδα

38

and

(ii) ≤ CRtα
ˆ 1

τ/t

(1− r)α−1rqα/2−1 dr ≤ CRtα(τ/t)qα/2−1

ˆ 1

τ/t

(1− r)α−1 dr

≤ CRtα(τ/t)qα/2−1(1− τ/t)α ≤ CR(t− τ)α ≤ CRδα,

where we have estimated (τ/t)qα/2−1 < C(τ0) using the fact that t ≥ τ > τ0 > 0.

Applying this estimation to (2.2.21), we obtain

t1−qα/2‖∂tS(ũ)‖L2(Ω) ≤ C(R0, T) + CRδα, (2.2.22)

and combining (2.2.22) with (2.2.19) and (2.2.20), we obtain

‖S(ũ)‖Vqτ+δ ≤ C(R0, T) + CRδα.

If we choose R = 2C(R0, T), taking δα ≤ 1/2C we have ‖S(ũ)‖Vqτ+δ ≤ R.

Finally, we only need to show that S is a contraction on BR. Consider ũ and
w ∈ Vq

τ+δ, proceeding as in (2.2.12), and taking advantage of the fact that ũ(s) =
w(s) = u(s) for all s ∈ [0, τ], we can estimate

t(1−q)α/2|S(ũ)(t)−S(w)(t)|Hs(Rn) ≤ Ct(1−q)α/2
ˆ t

τ

(t−s)α/2−1‖f(ũ(s))−f(w(s))‖L2(Ω) ds

(2.2.23)

≤ CBt(1−q)α/2
ˆ t

τ

(t− s)α/2−1‖ũ(s)− w(s)‖L2(Ω) ds

≤ CB‖ũ− w‖Vqτ+δt
(2−q)α/2

ˆ 1

τ/t

(1− r)α/2−1 dr

≤ C‖ũ− w‖Vqτ+δt
−qα/2tα/2(1− τ/t)α/2 ≤ Cδα/2‖ũ− w‖Vqτ+δ ,

where in the last step we use the bound t−qα/2 ≤ C(τ0), with τ > τ0 > 0.

Also, arguing as in (2.2.14), we have

t1−qα/2‖∂t
(
S(ũ)(t)− S(w)(t)

)
‖L2(Ω) ≤ (2.2.24)

t1−qα/2CB

ˆ t

τ

sα−1‖∂t
(
ũ(s)− w(s)

)
‖L2(Ω) ds

39

+CBRt1−qα/2
ˆ t

τ

(t− s)α−1sqα/2−1‖ũ(s)− w(s)‖L2(Ω) ds

≤ C(R + 1)‖ũ− w‖Vqτ+δt
1−qα/2

ˆ t

τ

(t− s)α−1sqα/2−1 ds

≤ C(R + 1)‖ũ− w‖Vqτ+δt
α

ˆ 1

τ/t

(1− r)α−1rqα/2−1 dr

≤ C(R + 1)δα‖ũ− w‖Vqτ+δ .
Then, we can assert that

‖S(ũ)− S(w)‖Vqτ+δ ≤ Cδα(R + 1)‖ũ− w‖Vqτ+δ ,
and we can choose δ such that S results in a contraction. Since R depends on T and
R0, the statement of the theorem follows.

Notice, in previous theorem, that δ does not depend on τ . As a consequence, we
have proved that equation 2.2.6 has a unique solution in Vq

T . Moreover, in view of the
regularity of functions belonging to the space Vq

T , we can assert that a mild solution is
also a weak solution.

2.3 Fractional diffusion-wave equation

The aim of this section is to reproduce the classical results for problem (0.0.3) with
α ∈ (1, 2]. As in section 2.1, we first define the concept of weak solution of problem
(0.0.3). Indeed, we say that u is a weak solution for (0.0.3) with α ∈ (1, 2] if u ∈
W 2,1((0, T), L2(Ω)) ∩ C((0, T], H̃s(Ω)) and satisfies the equation (in L2(Ω))

C∂αt u+ Au = f, (2.3.1)

for almost all t ∈ (0, T), with u(0) = v and ∂tu(0) = b. Here v and b ∈ L2(Ω). Note
that since u ∈ W 2,1((0, T), L2(Ω)) then C∂αt u is well defined.

2.3.1 Solution representation

Arguing as in the fractional diffusion case in Section 2.1, we write solutions of (0.0.3)
by means of separation of variables as in (2.1.2), so for every k ≥ 1, it must hold that

C∂αt uk + λkuk = fk,
uk(0) = vk,
u′k(0) = bk.

(2.3.2)

40

where, as before, fk = (f, φk), vk = (v, φk) , and bk = (b, φk) . Again, solutions of (2.3.2)
may be represented as the superposition of the respective solution of the problem with
initial data equal to zero and the solution of the problem with vanishing forcing term.
Using the same notation as in Section 2.1 the solution of (2.3.2) may be written as

uk(t) = Fk(t)fk + vkEα,1(−λktα) + bktEα,2(−λktα). (2.3.3)

For the particular value of α = 2, in virtue of the identities E2,1(z) = cosh(
√
z) and

E2,2(z) = sinh(
√
z)√

z
, expression (2.3.3) becomes

uk(t) =
1√
λk

ˆ t

0

sin(
√
λk(t− r))fk(r) dr + vk cos(

√
λkt) + bk

sin(
√
λkt)√
λk

.

Finally, summing the solutions for every eigenmode, and defining

Ẽα(t)w :=
∑
k

tEα,2(−λktα)φk(φk, w)L2(Ω), (2.3.4)

we can write the solution as follow:

u(t) = Eα(t)v + Ẽα(t)b+

ˆ t

0

Fα(t− s)f(s) ds =: M(v, b, f)(t), (2.3.5)

and as before, we say that u(t) = M(v, b, f)(t) is a mild solution.

Next result (analogous of Theorem 2.1.2) tells us that under suitable regularity
conditions, a mild solution is a weak solution.

Theorem 2.3.1. Let Ω be a bounded, smooth domain, s ∈ (0, 1) and α ∈ (1, 2] and
u(t) = M(v, b, f) a mild solution of (0.0.3). Assume that f ∈ C([0, T], L2(Ω)), differ-
entiable in (0, T), and ‖f ′(t)‖L2(Ω) ≤ Ctγ−1 with C > 0 and γ ∈ (0, 1), v ∈ Ḣq(Ω) for

some q > 2/α and b ∈ Ḣr(Ω) for some r > 0. Then u is a weak solution of (0.0.3).

Proof. Suppose first f ≡ 0. Then u = Eα(t)v + Ẽα(t)b. Arguing as in Theorem 2.1.2

it is possible to check u ∈ C((0, T], H̃s(Ω)).

Now, using the same ideas for the proof of Lemma 2.0.3, we can obtain the following
bound ([45, Theorem A.2])

‖∂mt u‖L2(Ω) ≤ Ctqα/2−m‖v‖q,s + Ctqα/2−m+1‖b‖r,s, (2.3.6)

for any integer m ≥ 1. From this, we can conclude that if v ∈ Ḣq(Ω) for some q > 2/α
and b ∈ Ḣr(Ω) for some r > 0 then u ∈ W 2,1((0, T), L2(Ω)).

Suppose now v ≡ b ≡ 0. In this case we have u(t) =
´ t

0
Fα(t − s)f(s) ds. Again,

as in Theorem 2.1.2 it can be seen that u ∈ C((0, T], H̃s(Ω)). From Lemma 1.3.1 we
know that

∂mt Eα,1(−λtα) = −λtα−mEα,α+1−m(−λtα).

41

Since α > 1, the function tα−1Eα,α(−λtα) complies the hypothesis of Lemma 2.0.4 and
using this result we can compute

∂tu(t) =

ˆ t

0

∂tF
α(t− s)f(s) ds,

from which we can conclude that ∂tu ∈ C((0, T], L2(Ω)). In view of Lemma 2.0.2 we
have the estimation

‖∂tu(t)‖L2(Ω) ≤ C

ˆ t

0

(s− t)α−2‖f(s)‖L2(Ω) ds ≤ Ctα−1‖f‖L∞((0,T),L2(Ω))

and we can assert ∂tu(t) ∈ L1((0, T), L2(Ω)).

Now, using the the properties of f and again Lemma 2.0.4, we can compute

∂2
t u(t) = ∂tF

α(t)f(0) +

ˆ t

0

∂tF
α(s)f ′(t− s) ds.

Hence ∂tu ∈ C((0, T], L2(Ω)) and we can estimate

‖∂2
t u(t)‖L2(Ω) ≤ Ctα−2‖f(0)‖L2(Ω) + C

ˆ t

0

sα−2(t− s)γ−1 ds

= Ctα−2‖f(0)‖L2(Ω)+Ct
α+γ−2

ˆ 1

0

rα−2(1−r)γ−1 dr = Ctα−2‖f(0)‖L2(Ω)+Ct
α+γ−2B(α−1, γ),

where in the third step we have made the change of variable r = s/t, and B(α−1, γ) de-
notes the beta function. As before, the former previous implies u ∈ W 2,1((0, T), L2(Ω))
and the statement of the theorem follows.

2.3.2 Regularity of solutions

Estimates for the fractional diffusion-wave can be reached as in the fractional diffusion
case by means of Lemmas 2.0.2 and 2.0.3, and similar arguments. The following theorem
summarizes the regularity results for fractional diffusion-wave with a vanishing forcing
term.

Theorem 2.3.2. Let 1 < α ≤ 2 and suppose that f ≡ 0. Let u be the solution of
(0.0.3), given by (2.1.2), with initial/boundary conditions (0.0.4) and (0.0.5).

a. Assume that v ∈ L2(Ω) and b ∈ L2(Ω). Then, u ∈ C([0, T];L2(Ω))∩C((0, T]; H̃s(Ω)∩
Hs+γ(Ω)) and C∂αt u ∈ C((0, T];L2(Ω)). Moreover, there exists a constant C > 0
such that

‖u‖C([0,T];L2(Ω)) ≤ C
(
‖v‖L2(Ω) + ‖b‖L2(Ω)

)
,

‖u(·, t)‖Hs+γ(Ω) + ‖C∂αt u(·, t)‖L2(Ω) ≤ C
(
t−α‖v‖L2(Ω) + t1−α‖b‖L2(Ω)

)
.

42

b. If v ∈ H̃s(Ω) and b ∈ L2(Ω), then ∂tu ∈ C([0, T];H−s(Ω)), and

‖∂tu‖C([0,T];H−s(Ω)) ≤ C(‖v‖Hs(Rn) + ‖b‖L2(Ω)).

c. Moreover, if v ∈ H̃s(Ω) is such that (−∆)sv ∈ L2(Ω) and b ∈ H̃s(Ω), then

u ∈ C([0, T]; H̃s(Ω)∩Hs+γ(Ω))∩C1([0, T];L2(Ω)), C∂αt u ∈ C([0, T];L2(Ω)), and
the following estimates hold:

‖u‖C([0,T];Hs+γ(Ω)) + ‖C∂αt u‖C([0,T];L2(Ω)) ≤ C
(
‖(−∆)sv‖L2(Ω) + ‖b‖Hs(Rn)

)
,

‖u‖C1([0,T];L2(Ω)) ≤ C
(
‖(−∆)sv‖L2(Ω) + ‖b‖L2(Ω)

)
.

Finally, estimates for problems with non-null forcing term have the following form.

Theorem 2.3.3. Let 1 < α ≤ 2, v ≡ 0 and b ≡ 0. Consider u, given by (2.1.2),
be the solution of (0.0.3) with homogeneous initial and boundary conditions. If f ∈
C([0, T];L2(Ω)) is such that (−∆)sf ∈ L2(Ω × (0, T)), then u ∈ C([0, T]; H̃s(Ω) ∩
Hs+γ(Ω)), C∂αt u ∈ C([0, T];L2(Ω)) and

‖u‖C([0,T];Hs+γ(Ω))+‖C∂αt u‖C([0,T];L2(Ω)) ≤
≤ C

(
‖(−∆)sf‖L2(Ω×(0,T)) + ‖f‖C([0,T];L2(Ω))

)
.

Remark 2.3.4. As in the case 0 < α < 1, regularity conditions in theorems 2.3.2 and
2.3.3 do not guarantee that u(t) = M(v, b, f) is actually a weak solution, and this
results in certain problems, similar to those mentioned in remark 2.1.5. As before, in
order to avoid these technicalities we are going to consider through this work v, b and
f as in hypothesis of Theorem 2.3.1. These conditions are more restrictive than those
required for the diffusion case, and we speculate that can be relaxed.

Also, as we have mentioned in Remark 2.1.6, an alternative solution theory can be
developed starting from a weaker definition of the Caputo derivative, where some of
these technical details may be solved without strong regularity requirements.

Resumen del Caṕıtulo

En este caṕıtulo se establecen las formulaciones de los problemas de evolución a tratar,
aśı como también resultados de existencia y regularidad para los mismos. Asimismo, se
discuten hipótesis razonables de regularidad en las condiciones iniciales bajo las cuales
los problemas resultan bien planteados (ver 2.1.5 y 2.1.6).

En la Sección 2.1 se tratan los aspectos antes mencionados para el problema de di-
fusión fraccionaria. La Sección 2.2 está dedicada a una versión semi lineal del problema
anterior, mientras que en la Sección 2.3 se estudia el problema de difusión-ondas.

43

44

Chapter 3

Implementation details for the
elliptic problem

The aim of this chapter is to provide an exhaustive description of a FEM implementation
addressed to approximate solutions for problem (1.2.1). To this end, we have tried to
emulate as much as possible the spirit of [12], where a MATLAB R© implementation
for linear finite elements and local elliptic operators is presented in a concise way.
Notwithstanding that and in spite of our efforts, some intrinsic technicalities make our
code inevitably slightly longer and more complex than that. Just to clarify this point,
we take a glimpse in advance at the nonlocal stiffness matrix K. It involves expressions
of the type ˆ

R2

ˆ
R2

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))

|x− y|2+2s
dxdy, (3.0.1)

where ϕi, ϕj are arbitrary nodal basis functions associated to a triangulation T . Two
difficulties become apparent in the calculation of (3.0.1). First, at the element level,
computing (3.0.1) leads to terms likeˆ

T

ˆ
T̃

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))

|x− y|2+2s
dxdy, (3.0.2)

for arbitrary pairs T, T̃ ∈ T . If T and T̃ are not neighboring then the integrand in
(3.0.2) is a regular function and can be integrated numerically in a standard fashion.
On the other hand, if T ∩ T̃ 6= ∅ an accurate algorithm to compute (3.0.2) is not easy to
devise. Fortunately, (3.0.2) bears some resemblances to typical integrals appearing in
the Boundary Element Method [75] and we extensively exploit this fact. Indeed, a basic
and well known technique in the BEM community is to rely on Duffy-type transforms.
This approach leads us to the decomposition of such integrals into two parts: a highly
singular but explicitly integrable part and a smooth, numerically treatable part. We use
this method to show how (3.0.2) can be handled with an arbitrary degree of precision
(this is carefully treated in Appendices A.1.1, A.1.2, A.1.3, A.1.4).

45

Yet another difficulty is hidden in the calculation of K. Although Ω is a bounded
domain and the number of potential unknowns is always finite, (3.0.1) involves a com-
putation in R2 × R2. In particular, in the homogeneous setting, we need to accurately
compute the function ˆ

Ωc

1

|x− y|2+2s
dy, (3.0.3)

for any x ∈ Ω. That, of course, can be hard to achieve for a domain with a complex
boundary. Nonetheless, introducing an extended secondary mesh, as it is explained
in Section 3.2, it is possible to reduce such problem to a simple case in which ∂Ω is a
circle. We show that in this circumstance a computation of (3.0.3) can be both fast and
accurately delivered (see also Appendix A.1.5). Remarkably, this simple idea applies in
arbitrary space dimensions.

Regarding the code itself, our main concern has been to keep a compromise between
readability and efficiency. First versions of our code were plainly readable but too slow
to be satisfactory. In the code presented here many computations have been vectorized
and a substantial speed up gained, sometimes at the price of losing (hopefully not too
much) readability.

This chapter is organized as follows. In Section 3.1, we set an appropriate weak
formulation for problem (0.0.2). Section 3.2 deals with basic aspects of the FE setting.
The data structure is carefully discussed in Section 3.3 and the main loop of the code
is described in Section 3.4. Section 3.5, in turn, shows a numerical example for which
a nontrivial (i.e. with a non constant source term f) solution is explicitly known.
Moreover, the e.o.c. in L2(Ω) is presented for some values of s. These numerical
results are in very good agreement with those expected by using standard duality
arguments together with the theory given in [3]. Appendix A.1 may be found rather
technical for people not coming from the Boundary Element community and deals with
the quadrature rules used in each singular case. Appendices A.2 and A.3 describe
respectively auxiliary functions and data used along the program. Finally, the full
code, including the line numbers, is exhibited in Appendix A.4.

3.1 Weak formulation

Weak solutions of (0.0.2) are straightforwardly defined multiplying by a test function

and integrating by parts. Indeed, the weak formulation of (0.0.2) reads: find u ∈ H̃s(Ω)
such that

C(n, s)

2
〈u, v〉Hs(Rn) =

ˆ
Ω

fv, v ∈ H̃s(Ω). (3.1.1)

Notice that the inner product

〈u, v〉Hs(Rn) =

¨
Rn×Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy. (3.1.2)

46

involves integrals in Rn.

Throughout this chapter, we assume f ∈ Hr(Ω) for some r ≥ −s. Existence and
uniqueness of solutions in H̃s(Ω) and well-posedness of problem (3.1.1) are immediate
consequences of the Lax-Milgram lemma.

3.2 FE setting

Consider an admissible triangulation T of Ω consisting of NT elements. For the discrete
space Vq

h, we take standard continuous piecewise linear elements over T . With the usual
notation, we introduce the nodal basis {ϕ1, . . . , ϕN} ⊂ Vq

h corresponding to the internal
nodes {x1, . . . , xN}, that is ϕi(xj) = δji . Given an element T ∈ T , we denote by hT and
ρT its diameter and inner radius, respectively. As customary, we write h = maxT∈T hT .
The family of triangulations considered is assumed to be shape-regular, namely, there
exists σ > 0 independent of T such that

hT ≤ σρT for all T ∈ T .
In this context, the discrete analogous of (3.1.1) reads: find uh ∈ Vq

h such that

C(n, s)

2
〈uh, vh〉Hs(Rn) =

ˆ
Ω

fvh, vh ∈ Vq
h, (3.2.1)

providing a conforming1 FEM for any 0 < s < 1.

Writing the discrete solution as uh =
∑

j ujϕj, problem (3.2.1) is equivalent to
solving the linear system

KU = F, (3.2.2)

where the coefficient matrix K = (Kij) ∈ RN×N and the right-hand side F = (fj) ∈ RN

are defined by

Kij =
C(n, s)

2
〈ϕi, ϕj〉Hs(Rn), fj =

ˆ
Ω

fϕj,

and the unknown is U = (uj) ∈ RN .

The fractional stiffness matrix K is symmetric and positive definite, so that (3.2.2)
has a unique solution. Notice that the integrals in the inner product involved in com-
putation of Kij should be carried over Rn. For this reason we find it useful to consider
a ball B containing Ω and such that the distance from Ω̄ to Bc is an arbitrary positive
number. As it is explained in Appendix A.1.5, this is needed in order to avoid difficul-
ties caused by lack of symmetry when dealing with the integral over Ωc when Ω is not
a ball. Together with B, we introduce an auxiliary triangulation TA on B \Ω such that
the complete triangulation T̃ over B (that is T̃ = T ∪ TA) is admissible (see Figure
3.1).

1Notice that even P0 elements are conforming for 0 < s < 1/2. We restrict ourselves to continuous
P1 in order to give an unified conforming approach for any 0 < s < 1.

47

Figure 3.1: A square domain Ω (gray) and an auxiliary ball containing it. Regular
triangulations T and TA for Ω and B \ Ω are shown. The final symmetry of the
admissible triangulation T̃ = T ∪ TA, exhibited in the example, is not relevant.

Let us call NT̃ the number of elements on the triangulation of B. Then, defining
for 1 ≤ `,m ≤ NT̃ and 1 ≤ ` ≤ NT̃

I i,j`,m =

ˆ
T`

ˆ
Tm

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))

|x− y|2+2s
dxdy,

J i,j` =

ˆ
T`

ˆ
Bc

ϕi(x)ϕj(x)

|x− y|2+2s
dydx,

(3.2.3)

we may write

Kij =
C(n, s)

2

NT̃∑
`=1

 NT̃∑
m=1

I i,j`,m + 2J i,j`

 .

As mentioned above, the computation of each integral I i,j`,m and J i,j` is challenging for

different reasons: the former involves a singular integrand if T` ∩ Tm 6= ∅ (Appendices
A.1.2, A.1.3, A.1.4 are devoted to handle it) while the latter needs to be calculated on
an unbounded domain. In this case notice that

J i,j` =

ˆ
T`

ϕi(x)ϕj(x)ψ(x) dx,

with ψ(x) :=
´
Bc

1
|x−y|2+2s dy. Therefore all we need is an accurate computation of ψ(x)

for each quadrature point used in T` ⊂ Ω̄ (notice that ψ(x) is a smooth function up to
the boundary of Ω since |x− y| > dist(Ω̄, Bc) > 0).

Taking this into account, we observe that it is possible to take advantage of the
fact that ψ(x) is a radial function that can be either quickly computed on the fly or

48

even precomputed with an arbitrary degree of precision (see Appendix A.1.5 for a full
treatment of ψ(x)).

For the reader’s convenience, we finish this section with Table 3.1, containing some
handy notations.

Table 3.1: Main Variables
Notation Meaning

T , TA, T̃ Meshes: of Ω, B \ Ω and B resp.
N Nodes of T
E Edges of T
B Boundary edges of T
NT #T
NN #N
NB #B

3.3 Data structure and auxiliary variables

We assume that the mesh T has been generated in advance2. The information related
to T should be encoded in some specific variables p, t, bdrynodes, nt_aux nf R, as
follows:

• p is a 2×NN array, such that p(:,n) are the coordinates of the n-th node.

• t is a NT̃ ×3 index array, and t(l,:) are the indices of the vertices of Tl. Triangles
belonging to TA must be listed at the end.

• nt_aux = #TA.

• bdrynodes is an index column vector listing the nodes lying on ∂Ω.

• nf is an index column vector contiaining the free nodes (those in Ω).

• R the radius of B.

These data have to be available in the MATLAB R© workspace before the execution of
the main code.

Next, we begin by creating some variables that refer to problem (0.0.2):

2For the sake of convenience an stored example mesh -as well as a suitable mesh generator- is
provided together with the source code.

49

s = 0.5;

f = @(x,y) 1;

cns = s*2^(-1+2*s)*gamma(1+s)/(pi*gamma(1-s));

load(‘data.mat’);

Here, s is the order of the fractional Laplacian involved, f is a function handle
containing the volume force (which as an example we have set to be f ≡ 1), and cns is
equal to the constant C(n, s) previously defined.

In order to compute the stiffness matrix we need to estimate the bilinear form
〈·, ·〉Hs(Rn) evaluated at the nodal basis through an appropriate quadrature rule.

To perform an efficient vectorized computation, we require some pre-calculated data,
given in the file data.mat. This file contains information about nodes and weights for
the quadratures performed throughout the code. The content of data.mat is listed in
Table 3.2 and further details can be found in Appendix A.3.

As mentioned before, some auxiliary elements are added to the original mesh in
order to have a triangulation on a ball B containing Ω (see Figure 3.1). The nodes in
this auxiliary domain B \ Ω are regarded as Dirichlet nodes.

Next, we define some mesh parameters and set to zero the factors involved in equa-
tion (3.2.2). The following lines do not need extra explanation beyond the in-line
comments:

nn = size(p,2); % number of nodes

nt = size(t,1) % number of elements

uh = zeros(nn,1); % discrete solution

K = zeros(nn,nn); % stiffness matrix

b = zeros(nn,1); % right hand side

Then, the measures of all the elements in the mesh are calculated:

area = zeros(nt,1);

for i=1:nt

aux = p(: , t(i,:));

area(i) = 0.5.*abs(...

det([aux(:,1) - aux(:,3) aux(:,2) - aux(:,3)]));

end

So, area is a vector of length NT̃ satisfying area(l) = |Tl|, l ∈ {1, ..., NT̃ }.
The quadratures we employ to compute the integrals I i,j`,m (defined in (3.2.3)) depend

on whether the elements T` and Tm coincide or their intersection is an edge, a vertex
or empty. Therefore, it is important to distinguish theses cases in an efficient way.
We construct a data structure called patches as follows, using a linear number of
operations:

50

deg = zeros(nn,1);

for i=1:nt

deg(t(i,:)) = deg(t(i,:)) + 1;

end

patches = cell(nn , 1);

for i=1:nn

patches{i} = zeros(1 , deg(i));

end

for i=1:nt

patches{ t(i,1) }(end - deg(t(i,1)) + 1) = i;

patches{ t(i,2) }(end - deg(t(i,2)) + 1) = i;

patches{ t(i,3) }(end - deg(t(i,3)) + 1) = i;

deg(t(i,:)) = deg(t(i,:)) - 1;

end

The output of this code block is a NÑ × 1 cell, called patches, such that patches{n}

is a vector containing the indices of all the elements in the neighborhood of the node n.

3.4 Main loop

One of the main challenges to build up a FE implementation to problem (0.0.2) is
to assemble the stiffness matrix in an efficient mode. Independently of whether the
supports of two given basis functions ϕi and ϕj are disjoint, the interaction 〈ϕi, ϕj〉Hs(Rn)

is not null. This yields a paramount difference between FE implementations for the
classical and the fractional Laplace operators; in the former the stiffness matrix is
sparse, while in the latter it is full. Therefore, unless some care is taken 3,

the amount of memory required and the number of operations needed to assembly
the stiffness matrix increases quadratically with the number of nodes. Due to this, the
code we present takes advantage of vectorized operations as much as possible.

Moreover, as the computation of the entries of the stiffness matrix requires calculat-
ing integrals on pairs of elements, it is required to perform a double loop. It is simple
to check the identity I i,j`,m = I i,jm,` for all i, j, `,m, and therefore it is enough to carry the
computations only for the pairs of elements T` and Tm with ` ≤ m.

In the following lines we preallocate memory and create the auxiliary index array
aux_ind (to be used in code line 58).

vl = zeros(6,2);

vm = zeros(6*nt,2);

norms = zeros(36,nt);

ML = zeros(6,6,nt);

3In [50, 8] some clever ways to reduce the complexity of the assembling process are analyzed.

51

empty = zeros(nt,1);

aux_ind = reshape(repmat(1:3:3*nt , 6 , 1) , [] , 1);

empty_vtx = zeros(2,3*nt);

BBm = zeros(2,2*nt);

The main loop goes through all the elements T` of the mesh of Ω, namely, 1 ≤
` ≤ NT . Observe that auxiliary elements are excluded from it. Fixed `, the first task
is to classify all the mesh elements Tm (1 ≤ m ≤ NT̃ , m 6= `) according to whether
T` ∩ Tm is empty, a vertex or an edge. This is accomplished employing a linear number
of operations by using the patches data structure as follows:

edge = [patches{t(l,1)} patches{t(l,2)} patches{t(l,3)}];

[nonempty M N] = unique(edge , ’first’);

edge(M) = [];

vertex = setdiff(nonempty , edge);

ll = nt - l + 1 - sum(nonempty>=l);

edge(edge<=l) = [];

vertex(vertex<=l) = [];

empty(1:ll) = setdiff_(l:nt , nonempty);

empty_vtx(: , 1:3*ll) = p(: , t(empty(1:ll) , :)’);

At this point, ll is the number of elements –including the auxiliary ones– whose
intersection with T` is empty and have not been visited yet (namely, those with index
m>l). By considering only the elements with index greater than `, we are taking
advantage of the symmetry of the stiffness matrix. The arrays empty, vertex and edge

contain the indices of all those elements whose intersection with T` is empty, a vertex
or an edge respectively, and have not been computed yet. In empty_vtx we store the
coordinates of the vertices of the triangles indexed in empty.

Then, the code proceeds to assemble the right hand side vector in equation (3.2.2)

nodl = t(l,:);

xl = p(1 , nodl); yl = p(2 , nodl);

Bl = [xl(2)-xl(1) yl(2)-yl(1); xl(3)-xl(2) yl(3)-yl(2)]’;

b(nodl) = b(nodl) + fquad(area(l),xl,yl,f);

Here, nodl stores the indices of the vertices of T`; xl and yl are the x and y coordinates
of these vertices, respectively. The element T` is the image of a reference element T̂ via
an affine transformation,

(x̂, ŷ) 7→ Bl(x̂, ŷ) + (xl(1), yl(1)).

Recall that b stores the numerical approximation to the right hand side vector from
equation (3.2.2), namely, b(j) ≈

´
Ω
fϕj. The routine fquad uses a standard quadrature

rule, interpolating f on the edge midpoints of Tl (see Appendix A.2).

52

Remark 3.4.1. Let 1 ≤ `,m ≤ NT̃ . When computing I i,j`,m or J i,j` , the basis function
indices i and j do not refer to a global numbering but to a local one. This means, for
example, that if T` ∩ Tm = ∅, then 1 ≤ i, j ≤ 6. See Remark A.1.1 for details on this
convention.

3.4.1 Identical elements

The first interaction to be computed by the code corresponds to the case m = ` in
(3.2.3). The values calculated are assembled in the stiffness matrix K.

K(nodl, nodl) = K(nodl, nodl) +...

triangle_quad(Bl,s,tpsi1,tpsi2,tpsi3,area(l),p_I) +...

comp_quad(Bl,xl(1),yl(1),s,cphi,alpha*R,area(l),p_I,w_I,p_T_12);

The function triangle_quad estimates I i,j`,` , while comp_quad computes numerically

the value of J i,j` . These functions use pre-built data from the file data.mat: the first
one employs the variables tpsi1, tpsi2 and tpsi3, and the second one cphi, p_I,
w_I and p_T_12. Implementation details can be found in appendixes A.1.4 and A.1.5,
respectively. The output of both triangle_quad and comp_quad are 3 by 3 matrices,
such that:

triangle_quadij ≈ I i,j`,` , comp_quadij ≈ 2J i,j` .

3.4.2 Non-touching elements

The next step is to compute the interactions between T` and all the elements Tm whose
closure is disjoint T` (so that their indices are stored in the variable empty). In order
to do this, we calculate and store quadrature points for all the triangles involved in the
operation as follows:

BBm(:,1:2*ll) = reshape([empty_vtx(: , 2:3:3*ll) -...

empty_vtx(: , 1:3:3*ll) , ...

empty_vtx(: , 3:3:3*ll) -...

empty_vtx(: , 2:3:3*ll)] , [] , 2)’ ;

vl = p_T_6*(Bl’) + [ones(6,1).*xl(1) ones(6,1).*yl(1)];

vm(1:6*ll,:) = reshape(permute(reshape(p_T_6*BBm(:,1:2*ll), ...

[6 1 2 ll]) , [1 4 3 2]) , [6*ll 2]) +...

empty_vtx(: , aux_ind(1:6*ll))’;

The matrix BBm has size 2× 2 ∗ nt, and it contains nt submatrices of dimension 2× 2.
The m-th submatrix corresponds to the affine transformation that maps T̂ into Tm.
The vectors vl and vm contain the coordinates of all quadrature points in T` and Tm
for m ∈ empty, respectively.

53

Here, the matrix BBm satisfies

BBm(:,2*m-1:2m)’ · T̂ + empty vtx(:,3*(m-1) + 1)’ 7→ Tm,

The matrix p_T_6 ∈ R6×2 was provided by the precomputed file data.mat, and
it stores the coordinates of the 6 quadrature points in the reference element T̂ . In
order to compute vm, we use three nested operations over the 6 × 2 ∗ ll matrix
p_T_6*BBm(:,1:2*ll). To better understand this, suppose we rewrite this matrix
as follows:

p_T_6*BBm(:,1:2*ll) = [A1, A2, ..., All],

whereAi is a 6×2 matrix and i = 1, .., ll. Then, after the application of reshape(permute(reshape(... ’,
we obtain the 6*ll by 2 matrix [A1;A2; ...;All], which can be used as an input in
pdist2. This trick was taken out from [2].

Next, we compute distances from all the quadrature nodes in vl to the ones in vm,
and raise them to the power of −(2 + 2s):

norms(:,1:ll) = reshape(pdist2(vl,vm(1:6*ll,:)),36,[]).^(-2-2*s);

Thereby, norms is a 36× ll matrix such that for m ∈ {1, ..., ll},

norms(:,m) =

‖vl(1,:)− vm(6*m - 5,:)‖−(2+2s)

...
‖vl(6,:)− vm(6*m - 5,:)‖−(2+2s)

‖vl(1,:)− vm(6*m - 4,:)‖−(2+2s)

...
‖vl(6,:)− vm(6*m - 4,:)‖−(2+2s)

...

...
‖vl(1,:)− vm(6*m,:)‖−(2+2s)

...
‖vl(6,:)− vm(6*m,:)‖−(2+2s)

,

where ‖ · ‖ denotes the usual euclidean distance in R2.

At this point, we have collected all the necessary information to compute I i,j`,m for

T` ∩ Tm = ∅ and i, j corresponding to any of the six vertices of these elements. We
employ the pre-built matrices phiA, phiB and phiD, that contain the values of the nodal
basis functions evaluated at the quadrature points of T̂ , multiplied by their respective
weights, and stored in an appropriate way in order to perform an efficient vectorized
operation. Details are provided in appendixes A.1.1 and A.3.2. The code proceeds:

54

ML(1:3,1:3,1:ll) = reshape(phiA*norms(:,1:ll) , 3 , 3 , []);

ML(1:3,4:6,1:ll) = reshape(phiB*norms(:,1:ll) , 3 , 3 , []);

ML(4:6,4:6,1:ll) = reshape(phiD*norms(:,1:ll) , 3 , 3 , []);

ML(4:6,1:3,1:ll) = permute(ML(1:3,4:6,1:ll) , [2 1 3]) ;

So, the matrix ML satisfies

I i,j`,m ≈ 4|T`||Tm| ML(i,j,m).

The last step to complete the computations for the case T` ∩ Tm = ∅ is to add the
calculated values in their corresponding stiffness matrix entries:

for m=1:ll

order = [nodl t(empty(m) , :)];

K(order,order) = K(order,order) +...

(8*area(empty(m))*area(l)).*ML(1:6,1:6,m);

end

The vector order collects the local indices of the vertices of T` and Tm, given as ex-
plained in Remark A.1.1. Recall that I i,j`,m = I i,jm,` and that we are summing over
the elements listed in empty. In particular, this means that ` < m. We multiply
ML(1:6,1:6,m) by 8*area(empty(m))*area(l) instead of by 4*area(empty(m))*area(l)

in order to avoid carrying the redundant computation of I i,jm,`.

3.4.3 Vertex-touching elements

In order to compute I i,j`,m for the indices m corresponding to elements sharing a vertex
with T`, we use the pre-built variables vpsi1, vpsi2 and p_cube as input in the function
vertex_quad. Let us mention once more that vpsi1 and vpsi2 contain the nodal basis
in the reference element T̂ evaluated at quadrature points, multiplied by their respective
weight and properly stored. Moreover, the variable p_cube stores quadrature nodes in
the unit cube [0, 1]3. Further details about vertex_quad and the auxiliary pre-built
data can be found in appendixes A.1.2 and A.3.3, respectively. We compute the integrals
and add the resulting values to K as follows:

for m=vertex

nodm = t(m,:);

nod_com = intersect(nodl, nodm);

order = [nod_com nodl(nodl~=nod_com) nodm(nodm~=nod_com)];

K(order,order) = K(order,order) ...

+ 2.*vertex_quad(nodl,nodm,nod_com,p,s,vpsi1,vpsi2,...

area(l),area(m),p_cube);

end

55

Here, we store in nodm the indices of the vertices of Tm, whereas nod_com dentoes the
index of the vertex shared by T` and Tm. The first entry of order is the index of this
common vertex, followed by the nodes of T` different from it, and then by the indices
of the remaining two nodes of Tm. Observe that, unlike the previous case, here there
are involved five nodal basis, so the output of vertex_quad is a 5 by 5 array, such that:

vertex_quadij ≈ I i,j`,m.

3.4.4 Edge-touching elements

Proceeding similarly, we compute next the case where T` ∩ Tm is an edge. Now there
are only 4 nodal basis functions involved, and the local numbering is such that the first
two nodes correspond to the endpoints of the shared edge, the third is the one in T`
but not in Tm and the last one is the node in Tm but not in T`. Using the pre-built
variables epsi1, epsi2, epsi3, epsi4,epsi5 and p_cube as input in edge_quad (see
appendixes A.1.3 and A.3.4), we proceed as in the previous case:

for m=edge

nodm = t(m,:);

nod_diff = [setdiff(nodl, nodm) setdiff(nodm, nodl)];

order = [nodl(nodl~=nod_diff(1)) nod_diff];

K(order,order) = K(order,order) +...

2.*edge_quad(nodl,nodm,nod_diff,p,s,...

epsi1,epsi2,epsi3,epsi4,epsi5,area(l),area(m),p_cube);

end

The indices of the two nodes not shared by T` and Tm are stored in nod_diff, and
order has the nodes ordered as explained in the previous paragraph. The output of
the function edge_quad is a 4 by 4 array satisfying

edge_quadij ≈ I i,j`,m.

3.4.5 Discrete solution

Once the main loop is concluded, the stiffness matrix K and the right hand side vector
b have been computed, and thus it is possible to calculate the FE solution uh of the
system (3.2.2):

uh(nf) = (K(nf,nf)\b(nf))./cns; % Solving linear system

The entries of K and b needed are only the ones corresponding to free nodes. The nodes
belonging to ∂Ω and to the auxiliary domain B\Ω are excluded, as the discrete solution
uh is set to vanish on them.

56

Finally, uh is displayed, and the auxiliary domain is excluded from the representa-
tion:

trimesh(t(1:nt-nt_aux , :), p(1,:),p(2,:),uh);

3.5 Numerical Experiments

In order to illustrate the performance of the code, in this section we show the results
we obtained in an example problem. Explicit solutions for (0.0.2) are scarce, but it is
possible to obtain a family of them if Ω is a ball. Other numerical experiments carried
with this code can be found in [3] and in [20] (for the eigenvalue problem in several
domains).

According to the theory given in [3, 20] convergence in the energy norm is expected
to occur with order 1

2
with respect to the mesh size parameter h, or equivalently, of

order − 1
2n

with respect to the number of degrees of freedom. Moreover, using duality

arguments, it is expected to have order of convergence s+ 1
2

(resp. − s+1/2
n

) for 0 < s ≤
1/2 and 1 (resp. − 1

n
) for s > 1/2 in the L2(Ω)-norm with respect to h (resp. number

of degrees of freedom).

We first construct non-trivial solutions for (0.0.2) if Ω is a ball. Consider the Jacobi

polynomials P
(α,β)
k : [−1, 1]→ R, given by

P
(α,β)
k (z) =

Γ(α+ k + 1)

k! Γ(α+ β + k + 1)

k∑
m=0

(
k

m

)
Γ(α+ β + k +m+ 1)

Γ(α+m+ 1)

(
z − 1

2

)m
,

and the weight function ωs : Rn → R,

ωs(x) = (1− ‖x‖2)s+.

In [32, Theorem 3] it is shown how to construct explicit eigenfunctions for an op-

erator closely related to the FL by using P
(s,n/2−1)
k . To be more precise, the authors

prove the following result.

Theorem 3.5.1. Let B(0, 1) ⊂ Rn the unitary ball. For s ∈ (0, 1) and k ∈ N, define

λk,s =
22s Γ(1 + s+ k)Γ

(
n
2

+ s+ k
)

k! Γ
(
n
2

+ k
)

and p
(s)
k : Rn → R,

p
(s)
k (x) = P

(s, n/2−1)
k (2‖x‖2 − 1)χB(0,1)(x).

Then the following equation holds

(−∆)s
(
ωsp

(s)
k (x)

)
= λk,s p

(s)
k (x) in B(0, 1).

57

A family of explicit solutions is available by using this theorem. As a first example,
we analyze the solution with k = 0. This gives a right hand side equal to a constant.
Namely, consider {

(−∆)su = 1 in B(0, 1) ⊂ R2,
u = 0 in B(0, 1)c.

(3.5.1)

We have run the code for a wide range of parameters s, while keeping the radius of the
auxiliary ball B equal to 1.1. Orders of convergence in the L2 and energy norm4 are
shown in Table 3.3; these results are in accordance with the theory.

As a second example we illustrate, in Table 3.4, that in problem (3.5.1) the radius
R of the auxiliary ball B does not substantially affect the error of the scheme. This
suggests that it is preferable to maintain the exterior ball’s radius as small as possible.
Since in this problem the domain Ω is itself a ball, for comparison, we also included
the output of the code without resorting to the exterior ball (the row corresponding to
R = 1.0). The table clearly shows that the CPU time grows linearly with respect to the
number of elements NT̃ −NT used in the auxiliary domain. Taking into account that the
final size of the linear system (3.2.2) involved in each case is the same, the computational
cost is, essentially, increased only during the assembling routine. Since considering an
auxiliary domain involves only the computation of the interaction between inner and
outer nodes, a linear behavior of the type described above is clearly expected.

As a third example we return to the setting of Theorem 3.5.1. We consider k = 2 and
compute the order of convergence in L2(Ω) for s = 0.25 and s = 0.75. We summarize
our numerical results in Figure 3.2. These are in accordance with the predicted rates of
convergence. Finally, in Figure 3.3 the FE solution, for s = 0.75 and k = 2, computed
with a mesh of about 14000 triangles is displayed.

Finally, we would like to mention just a few more facts: our numerical experiments
suggest that the condition number of K behaves like ∼ N s

T while over the 99% of the
CPU time is devoted to the assembly routine. Actually, the expected complexity for
assembling K is quadratic in the number of elements, and this seems to be the case in
our tests.

Resumen del Caṕıtulo

Este caṕıtulo está dedicado a la descripción e implementación del método de elementos
finitos para el problema eĺıptico{

(−∆)su = f in Ω,
u = 0 in Ωc.

4A discussion about how to compute errors in the energy norm can be found in [3].

58

Figure 3.2: Computational rate of convergence in the L2(Ω)-norm for the problem with
solution given by Theorem 3.5.1, for k = 2. The left panel corresponds to s = 0.25 and
the right to s = 0.75. The asymptotic rate for s = 0.25 is ≈ (#DOFs)−3/8, whereas for
s = 0.75 it is ≈ (#DOFs)−1/2, in agreement with theory.

En las secciones 3.1 y 3.2 se describe la formulación débil del problema y se establece
el método de elementos finitos en base a esta. En las secciones 3.4 y 3.3 se brinda
una descripción exhaustiva de la implementación del método en lenguaje MATLAB R©,
mientras que en la Sección 3.5 se muestran experimentos numéricos contrastando los
órdenes de convergencia experimentales con los teóricos.

59

Figure 3.3: FE solution with a mesh containing about 14000 triangles. With s = 0.75,
we use f(x) = λ2,0.75 p

(0.75)
2 (x) as a source term (see Theorem 3.5.1).

60

Table 3.2: Variables stored in data.mat

Name Size
Used as input
in function:

Description

p_cube 27x3
vertex_quad

edge_quad

Quadrature points
over [0, 1]3

p_T_6 6x2
None (used in non-
touching case)

Quadrature points

over T̂

p_T_12 12x2 comp_quad
Quadrature points

over T̂

p_I 9x1
comp_quad

triangle_quad

Quadrature points
over [0, 1]

w_I 9x1 comp_quad
Quadrature weights
associated to p_I

phiA

phiB 9x36
None (used in non-
touching case)

See Appendix A.3.2

phiD

vpsi1 25x27 vertex_quad See Appendix A.3.3
vpsi2

epsi1

epsi2

epsi3 16x27 edge_quad See Appendix A.3.4
epsi4

epsi5

tpsi1

tpsi2 9x9 triangle_quad See Appendix A.3.5
tpsi3

cphi 9x12 comp_quad See Appendix A.3.6

Table 3.3: Computational rates of convergence for problem (3.5.1) with respect to the
mesh size, measured in the L2(Ω) and energy norms.

Value of s Order in L2(Ω) Order in H̃s(Ω)
0.1 0.621 0.500
0.2 0.721 0.496
0.3 0.804 0.492
0.4 0.880 0.491
0.5 0.947 0.492
0.6 1.003 0.496
0.7 1.046 0.501
0.8 1.059 0.494
0.9 0.999 0.467

61

Table 3.4: The L2(Ω) and H̃s(Ω) errors for different values of R in problem (3.5.1)
with s = 0.5. In all the cases we are using a fixed and regular triangulation T of Ω,
with NT = 4228. The computations were performed with MATLAB R© version 2015a in
Windows 10, Intel i7 Processor, RAM 8Gb.

R NT̃ CPU time (sec.) Error in ‖ · ‖L2(Ω) Error in ‖ · ‖H̃s(Ω)

1.0 4228 80.3 0.0164 0.1314
1.1 4980 100.7 0.0167 0.1345
1.4 8218 206.6 0.0167 0.1351
1.7 12370 344.7 0.0167 0.1352
2.0 17170 511.9 0.0167 0.1354

62

Chapter 4

Numerical approximations for
linear evolution problems

This chapter introduces and analyzes a finite element scheme for linear evolution prob-
lems involving fractional-in-time and in-space differentiation operators up to order two.
The discrete scheme we develop is based on piecewise linear elements for the space
variable, taking advantage of the ideas displayed in the previous chapter, and a con-
volution quadrature for the time component. We illustrate the method’s performance
with numerical experiments in one- and two-dimensional domains.

A numerical scheme, based on standard Galerkin finite element approximations for
the space variable and a convolution quadrature for the time component, is proposed
and analyzed in Section 4.1. An error analysis for this scheme is carried out in Sec-
tion 4.2. Finally, in Section 4.3 we present some numerical examples that illustrate
the accuracy of our convergence estimates as well as the qualitative behavior of the
solutions.

4.1 Numerical scheme

In this section we devise a discrete scheme to approximate (0.0.3). To this end, standard
Galerkin finite elements are utilized in the spatial discretization (following [3]) and a
convolution quadrature is used for the time variable (following [45]).

4.1.1 Semi discrete scheme

For an appropriate treatment, it is convenient to derive the numerical scheme in two
steps. In first place we discretize in space, and afterwards in time. We follow the ideas
developed in [45], taking advantage of the fact that, from the theoretical point of view,

63

minor changes are required to handle the fractional Laplacian instead of its classical
counterpart.

Let Th be a shape regular and quasi-uniform admissible simplicial mesh of Ω, and
let Xh ⊂ H̃s(Ω) be the piecewise linear finite element space associated with Th, namely,

Xh := {uh ∈ C(Ω) : uh
∣∣
T
∈ P1 ∀T ∈ Th, uh

∣∣
∂Ω

= 0}.

The semidiscrete problem reads: find uh : [0, T]→ Xh such that (C∂αt uh, w) + 〈uh, w〉Hs(Rn) = (f, w) , ∀w ∈ Xh,
uh(0) = vh,
u′h(0) = bh, if α ∈ (1, 2].

(4.1.1)

Here, vh = Phv, bh = Phb, and Ph denotes the L2(Ω) projection on Xh.

Observe that, defining the discrete fractional Laplacian Ah : Xh → Xh as the unique
operator that satisfies

(Ahw, v) = 〈w, v〉Hs(Rn), for all w, v ∈ Xh,

and considering fh := Phf , we may rewrite (4.1.1) as
C∂αt uh + Ahuh = fh,

uh(0) = vh,
u′h(0) = bh, if α ∈ (1, 2].

(4.1.2)

4.1.2 Convolution Quadrature Rule

The aim of this section is to describe a numerical approximation technique for con-
volutions that plays an important role in the assemblage of the numerical scheme we
propose. We give an overview of the main ideas and refer the reader to [56, 57] for
further details.

Dividing [0, T] uniformly with a time step size τ = T/N , and letting t = nτ (n ∈
{1, . . . , N}), we seek for a numerical approximation of the convolution integral

k ∗ g(t) =

ˆ t

0

k(r)g(t− r) dr (4.1.3)

by means of a finite sum
n∑
j=0

ωjg(t− jτ). (4.1.4)

The weights {ωj}j∈N0 are obtained as the coefficients of the power series

K

(
δ(ξ)

τ

)
=
∞∑
j=0

ωjξ
j,

64

where K denotes the Laplace transform of the kernel k, and δ(ξ) is the quotient of the
generating polynomials of a linear multistep method.

To obtain the weights in (4.1.4), suppose that we extend the kernel k by zero over
r ≤ 0 and that for all r > 0 it satisfes

|k(r)| ≤ Crµ−1ecr, (4.1.5)

for some c, µ > 0. Then, the inversion formula

k(r) =
1

2πi

ˆ
Γ

K(z)ezrdz (4.1.6)

holds, where Γ is a contour lying in the sector of analyticity of K, parallel to its
boundary and oriented with an increasing imaginary part. Furthermore, defining Σθ :=
{z ∈ C : |arg(z)| ≤ θ}, θ ∈ (π/2, π), it holds that K is analytic in Σθ and satisfies

|K(z)| ≤ C|z|−µ ∀z ∈ Σθ. (4.1.7)

This condition is in turn equivalent to (4.1.5).

Replacing (4.1.6) in (4.1.3) and switching the order of integration gives

ˆ t

0

k(r)g(t− r)dr =
1

2πi

ˆ
Γ

K(z)

ˆ t

0

ezrg(t− r) dr dz. (4.1.8)

Since the inner integral in the right-hand side is the solution of the ordinary differential
equation y′ = zy+g, with y(0) = 0, we can obtain a numerical estimation by using some
multistep method. For simplicity, suppose we utilize Backward Euler discretization
(BE), that gives the scheme

yn − yn−1

τ
= zyn + gn.

Multiplying by ξn both sides of the equality, and summing over n, we obtain

(1− ξ)
τ

y(ξ) = zy(ξ) + g(ξ), (4.1.9)

where y(ξ) :=
∑∞

n=0 ynξ
n and g(ξ) :=

∑∞
n=0 gnξ

n. Defining δ(ξ) := (1− ξ), from (4.1.9)
we deduce

y(ξ) =

(
δ(ξ)

τ
− z
)−1

g(ξ).

Thus, the numerical approximation of y at time nτ is given by the n-th coefficient of

the power series
(
δ(ξ)
τ
− z
)−1

g(ξ).

65

In order to obtain the desired numerical approximation of (4.1.3) we utilize the
former expression, fix ξ and integrate in z the right hand side in (4.1.8). Using Cauchy’s
integral formula gives

1

2πi

ˆ
Γ

K(z)

(
δ(ξ)

τ
− z
)−1

g(ξ) dz = K

(
δ(ξ)

τ

)
· g(ξ).

Therefore, the numerical approximation of (4.1.3) at t = nτ is given by the n-th

coefficient of the power series K
(
δ(ξ)
τ

)
· g(ξ). Finally, noticing that the coefficients of

the series are the Cauchy product of the sequences {ωn}n∈N0 and {g(nτ)}n∈N0 , where

{ωn} are the coefficients of the power series expansion of K
(
δ(ξ)
τ

)
, we obtain (4.1.4).

Given a complex valued function K, analytic in Σθ and satisfying (4.1.7), we use
the transfer function notation for (4.1.3),

K(z)g(t) := k ∗ g(t) =

ˆ t

0

k(r)g(t− r) dr,

where k is given by (4.1.6), and the notation

K

(
δ(ξ)

τ

)
g(t) :=

n∑
j=0

ωjg(t− jτ)

for the discrete approximation.

Next, we generalize the definition of the Convolution Quadrature Rule to operators
that satisfy (4.1.7) with a negative value of µ. Indeed, let m be a positive integer such
that µ+m > 0, setting K̃(z) := z−mK(z) we define

K(z)g(t) :=
∂m

∂tm
k̃ ∗ g(t) =

∂m

∂tm

ˆ t

0

k̃(r)g(t− r) dr,

with k̃ the kernel associated with K̃. All the results and estimates that are achieved
in the former case are still true upon this generalization (see [56, Section 5]). This is
convenient because we are interested in the particular case of K(z) = zα, that delivers

zαg(t) :=
∂m

∂tm

ˆ t

0

1

rα−m+1
g(t− r) dr = ∂αt g(t).

with m a positive integer such that m − 1 ≤ α < m. Considering this, we set the
notation K(∂t) := K(z) and K(∂τ) := K(δ(ξ)/τ).

The following important result (cf. [56, Theorem 5.2]) bounds the error for the
Convolution Quadrature Rule in case g is smooth on t > 0, but has an asymptotic
expansion in fractional powers of t at t = 0.

66

Lemma 4.1.1. Let K be a complex valued or operator valued function which is analytic
in the sector Σθ, with θ ∈ (π/2, π), and bounded by

‖K(z)‖ ≤M |z|−µ ∀z ∈ Σθ,

for some µ,M ∈ R. Then for g(t) = Ctβ−1, the operator ∂τ satisfies

‖(K(∂t)−K(∂τ))g(t)‖ ≤
{
ctµ−1τβ, 0 < β ≤ 1,
ctµ+β−2τ, β ≥ 1.

Finally, another useful property of the operator ∂τ is the associativity. That is, let
K1, K2 be operators as in Lemma 4.1.1, and k an analytic function, we have

K1(∂t)K2(∂t) = (K1K2)(∂t) and K1(∂t)(k ∗ g) = (K1(∂t)k) ∗ g. (4.1.10)

4.1.3 Fully discrete scheme

At this point, a suitable discretization of the Caputo differentiation operator is required
to obtain a fully discrete scheme. To this end, we employ the convolution quadrature
technique described in the previous section, which allows us to derive discrete estima-
tions of an integral which involve singular kernels.

Upon dividing [0, T] uniformly with a time step size τ = T/N , and letting t = nτ
(n ∈ {1, . . . , N}), by means of the convolution quadrature rule we are able to estimate
the Riemann-Liouville operator of a function g by

∂αt g(t) ≈
n∑
j=0

ωjg(t− jτ) =: ∂τ
α
g(t), (4.1.11)

where the weights {ωj}j∈N0 are obtained as the coefficients of the power series(
1− ξ
τ

)α
=
∞∑
j=0

ωjξ
j.

We are now able to suitably discretize the Caputo differentiation operator. To this
end, we need to reformulate (0.0.3) using the Riemann-Liouville derivative instead of
the Caputo one. It is well-known that these two operators are related by (see, for
example, [31, Theorem 3.1])

C∂αt u(t) = ∂αt

u(t)−
bαc∑
k=0

u(k)(0)

k!
tk

 , (4.1.12)

67

under suitable regularity assumptions on u (see 2.1.5).

Thus, we rewrite (4.1.2) for the fractional diffusion case as{
∂αt (uh − vh) + Ahuh = fh

uh(0) = vh,

and for the fractional diffusion-wave case as
∂αt (uh − vh − tbh) + Ahuh = fh

uh(0) = vh
u′h(0) = bh.

Replacing the Riemann-Liouville derivative by its discrete version given by (4.1.11),
and that we will denote by ∂τ

α
, we formulate the fully discrete problem as: find Un

h ∈
Xh, with n = {1, . . . , N}, such that{

∂τ
α
Un
h + AhU

n
h = ∂τ

α
vh + F n

h

U0
h = vh,

(4.1.13)

or {
∂τ

α
Un
h + AhU

n
h = ∂τ

α
vh + (∂τ

α
t)bh + F n

h

U0
h = vh,

(4.1.14)

for fractional diffusion and fractional diffusion-wave problems respectively, where F n
h =

Phf(tn).

In order to obtain a better error estimation in the diffusion-wave case, it is necessary
to replace F n

h with a corrected term Gn
h := ∂τ∂

−1
t fh(tn).

For the sake of the reader’s convenience, we conclude this section by giving the
vectorial form of the fully discrete scheme. Let {ϕi}i=1,...,N be the Lagrange nodal
basis that generates Xh. Let Un, F n and Gn ∈ RN , n = 0, . . . , N be such that Un

h =∑N
i=1 U

n
i ϕi, F

n
h =

∑N
i=1 F

n
i ϕi and Gn

h =
∑N

i=1 G
n
i ϕi, where Un

h denotes the solution of
the fully discrete problem. Then we formulate (4.1.13) and (4.1.14), respectively, in the
following vectorial equations:

M−1 · (ω0M +K) · Un =

(
n∑
j=0

ωj

)
U0 −

n∑
j=1

ωjU
n−j + F n

and

M−1 · (ω0M +K) · Un =

(
n∑
j=0

ωj

)
U0 +

(
n∑
j=0

ωjτ(n− j)

)
vh

−
n∑
j=1

ωjU
n−j +Gn.

68

Above, M,K ∈ RN×N are the mass and stiffness matrices, respectively. Namely, Mi,j =
(ϕi, ϕj) and Ki,j = 〈ϕi, ϕj〉Hs(Rn).

There are several options to compute the coefficients {ωj}j∈N0 . Recalling that(
1− ξ
τ

)α
=
∞∑
j=0

ωjξ
n, (4.1.15)

Fast Fourier Transform can be used for an efficient computation of {ωj}j∈N0 (see [71,
Section 7.5]) . Alternatively, a useful recursive expression is given also in [71, formula
(7.23)]:

ω0 = τ−α, ωj =

(
1− α + 1

j

)
ωj−1, ∀j > 0.

For the numerical experiments we exhibit in Section 4.3 we have taken advantage of
this identity.

4.2 Error bounds

This section shows error estimates for the numerical scheme discussed in Section 4.1.
The derivation of the error bounds can be carried out following the guidelines from [45]
and [47].

We start by defining the discrete analogue to operators Eα and Fα. Let {φh,1, ..., φh,N} ⊂
Xh be an orthonormal base of egienfunctions of Ah, then we define

Eα
h (t)v :=

N∑
k=1

Eα,1(−λh,ktα)φh,k(v, φh,k)L2(Ω), (4.2.1)

and

Fα
h (t)v :=

N∑
k=1

tα−1Eα,α(−λh,ktα)φh,k(v, φh,k)L2(Ω). (4.2.2)

Discrete analogues to Lemma 2.0.2 and Lemma 2.0.3 (using Eα
h and Fα

h instead of
Eα and Fα) can be easily proved.

4.2.1 L2 and elliptic projection

We start with some estimations on the elliptic or Ritz projection Rh : H̃s(Ω) → Xh.
This operator is defined as the one that satisfies

〈Rhu, ϕ〉s = (Au, ϕ)L2(Ω), ∀ϕ ∈ Xh,

and we have the following estimation.

69

Lemma 4.2.1. Let ψ ∈ Ḣθ(Ω), with θ ∈ [0, 2], then

‖(Rh − I)ψ‖L2(Ω) ≤ hγ(1+θ/2)‖ψ‖θ,s, (4.2.3)

‖(Rh − I)ψ‖1,s ≤ hγθ/2‖ψ‖θ,s, (4.2.4)

with γ = min{s, 1/2− ε}.

Proof. From [19] Proposition 3.3.2 and equation (3.3.3), taking r = 0 and r = −s, we
can assert that

‖(Rh − I)ψ‖L2(Ω) ≤ Ch2γ‖Aψ‖L2(Ω) = Ch2γ‖ψ‖2,s,

‖(Rh − I)ψ‖L2(Ω) ≤ Chγ‖ψ‖L2(Ω) = Chγ‖ψ‖0,s,

‖(Rh − I)ψ‖1,s ≤ C‖ψ‖L2(Ω) = C‖ψ‖0,s,

‖(Rh − I)ψ‖1,s ≤ Chγ‖Aψ‖L2(Ω) = Chγ‖ψ‖2,s,

From this, and using standard interpolation arguments (see [59, Theorem 4.36] for
instance) we can obtain (4.2.3) and (4.2.4).

We end this section with some estimates for Ph.

Lemma 4.2.2 (cf. [46, Lemma 2.1]). For a quasi-uniform mesh, and θ ∈ [0, 1] we have

‖(Ph − I)ψ‖1,θ ≤ h2−θ‖ψ‖H2(Ω), ∀ψ ∈ H2(Ω) ∩H1
0 (Ω), (4.2.5)

‖(Ph − I)ψ‖1,θ ≤ h1−θ‖ψ‖H1(Ω), ∀ψ ∈ H1
0 (Ω), (4.2.6)

‖(Ph − I)ψ‖1,θ ≤ h−θ‖ψ‖L2(Ω), ∀ψ ∈ L2(Ω). (4.2.7)

4.2.2 Discrete norm and inverse inequality

Let (λh,k, φh,k), with k = {1, ...,N}, be an eigen-pair of the operator Ah. Another
important tool in the error estimation is the following discrete analogue of the norm
‖ · ‖θ,s. For every u ∈ Xh we define

|||u|||2θ,s :=
N∑
k=1

λθh,k(u, φh,k)
2
L2(Ω).

It can be shown that both norms |||·|||θ,s and ‖ · ‖θ,s are equivalents in the finite
dimensional space Xh with constants independent of the discrete parameters. Indeed,
this assertion can be easily checked for θ = 1, 0, and the case θ ∈ (0, 1) follows by means
of interpolation arguments.

Also we have an inverse inequality [48, Lemma 3.3].

70

Lemma 4.2.3. There exists a constant C, independent of h, such that for all ψ ∈ Xh

and for any p > q

|||ψ|||p,s ≤ Chs(q−p)|||ψ|||q,s. (4.2.8)

Proof. It is well known that for a quasi uniform triangulation Th the inverse inequality

|ψ|Hs(Rn) ≤ Ch−s‖ψ‖L2(Ω),

holds for any ψ ∈ Xh. From this, observing that |φh,k|Hs(Rn) = (Ahφh,k, φh,k)
1/2

L2(Ω) =

λ
1/2
h,k , we can conclude that max1≤k≤N λh,k ≤ h−2s. Then we have

|||ψ|||2p,s ≤ C
(

max
1≤k≤N

λp−qh,k

) N∑
k=1

λqh,k(ψ, φh,k)
2
L2(Ω) ≤ Ch2s(q−p)|||ψ|||2q,s,

and (4.2.8) follows.

4.2.3 Error bounds for the semi-discrete scheme

Here we focus only on the diffusion-wave case (1 < α < 2), where the error bounds
becomes more laborious. Of course, ideas used for this case can be straightforwardly
applied for the case 0 < α < 1.

In order to establish the error bounds, we first set an integral representation of u for
the homogeneous case f = 0. Define the sector Σθ := {z ∈ C, z 6= 0, such that | arg(z)| <
θ}, then u(t) : [0, T] → L2(Ω) can be analytically extended to Σθ (see [74, Theorem
2.3]). Applying the Laplace transform in (0.0.3) we obtain

zαû(z) + Aû(z) = zα−1v + zα−2b,

where A is the fractional Laplacian with homogeneous Dirichlet conditions. Therefore,
via the Laplace inversion formula, we write the integral representation

u(t) =
1

2πi

ˆ
Γθ,δ

ezt(zαI + A)−1(zα−1v + zα−2b) dz, (4.2.9)

where Γθ,δ = {z ∈ C : |z| = δ, | arg(z)| ≤ θ} ∪ {z ∈ C : z = re±iθ, r ≥ δ}.
Recalling (2.0.8), if we choose θ such that π/2 < θ < min{π, π/α}, then zα ∈ Σθ′

with θ′ = αθ for all z ∈ Σθ. Considering θ in this way, there exists a constant C
depending only on θ and α such that

‖(zα + A)−1)‖L2(Ω) ≤ C|z|−α. (4.2.10)

71

As in (4.2.9), we can write an analogous expression for uh,

uh(t) =
1

2πi

ˆ
Γθ,δ

ezt(zαI + Ah)
−1(zα−1vh + zα−2bh) dz. (4.2.11)

The following technical result can be proved analogously to [14, Lemma 3.3].

Lemma 4.2.4. Let ϕ ∈ H̃s(Ω), and z ∈ Σθ with π/2 < θ < min{π, π/α}. Then there
exists a positive constant c(θ) such that

|zα| ‖ϕ‖2
L2(Ω) + |ϕ|2Hs(Rn) ≤ c

∣∣∣zα‖ϕ‖2
L2(Ω) + |ϕ|2Hs(Rn)

∣∣∣ .
The next lemma sets an error estimate between (zαI + A)−1f and its discrete ap-

proximation (zαI + Ah)
−1Phf , analogous to [14, Lemma 3.4].

Lemma 4.2.5. Let f ∈ L2(Ω), z ∈ Σθ, ω := (zαI + A)−1f , ωh := (zαI + Ah)
−1Phf .

Then there exists a positive constant C(s, n, θ) such that

‖ω − ωh‖L2(Ω) + hγ|ω − ωh|Hs(Rn) ≤ Ch2γ‖f‖L2(Ω).

As before, γ = min{s, 1/2− ε}, with ε > 0 arbitrary small.

Proof. We consider first the case s ≥ 1/2. By definition of ω and ωh, it holds that

zα(ω, ϕ) + 〈ω, ϕ〉Hs(Rn) = (f, ϕ), ∀ϕ ∈ H̃s(Ω),

zα(ωh, ϕ) + 〈ωh, ϕ〉Hs(Rn) = (f, ϕ), ∀ϕ ∈ Xh.

If we set eh := ω − ωh and subtract these two expressions, we derive

zα(eh, ϕ) + 〈eh, ϕ〉Hs(Rn) = 0, ∀ϕ ∈ Xh. (4.2.12)

Applying Lemma 4.2.4 and this identity, we arrive to

|zα| ‖eh‖2
L2(Ω) + |eh|2Hs(Rn) ≤ c

∣∣zα(eh, eh) + 〈eh, eh〉Hs(Rn)

∣∣
= c

∣∣zα(eh, ω − ϕ) + 〈eh, ω − ϕ〉Hs(Rn)

∣∣ ∀ϕ ∈ Xh.

Taking ϕ = Πhω in the previous expression, where Πh is a suitable quasi-interpolation
operator (see, for example, [3, Section 4.1]), we deduce

|zα|‖eh‖2
L2(Ω) + |eh|2Hs(Rn)

≤ c
(
|zα| ‖eh‖L2(Ω)h

1/2−ε|ω|Hs(Rn) + |eh|Hs(Rn)h
1/2−ε|ω|Hs+1/2−ε(Rn)

)
,

(4.2.13)

where we have used the fact that s ≥ 1/2 implies that hs ≤ h1/2−ε.

72

On the other hand, if we choose ϕ = ω in Lemma 4.2.4, we obtain

|zα| ‖ω‖2
L2(Ω) + |ω|2Hs(Rn) ≤ c

∣∣zα(ω, ω) + 〈ω, ω〉Hs(Rn)

∣∣
= c |(f, ω)| ≤ c‖f‖L2(Ω)‖ω‖L2(Ω).

Consequently,

‖ω‖L2(Ω) ≤ c |z|−α ‖f‖L2(Ω) and |ω|Hs(Rn) ≤ c |z|−α/2 ‖f‖L2(Ω). (4.2.14)

From Proposition 1.2.1, we know that for the case z = 0 the estimate |ω|Hs+1/2−ε(Rn) ≤
‖f‖L2(Ω) holds. Utilizing this estimate with −zαω + f instead of f , we obtain

|ω|Hs+1/2−ε(Rn) ≤ ‖ − zαω + f‖L2(Ω) ≤ c‖f‖L2(Ω),

where in the last inequality we used (4.2.14). Combining this with (4.2.13), we derive

|zα| ‖eh‖2
L2(Ω) + |eh|2Hs(Rn) ≤ ch1/2−ε‖f‖L2(Ω)

(
zα/2‖eh‖L2(Ω) + |eh|Hs(Rn)

)
.

This implies that

|zα| ‖eh‖2
L2(Ω) + |eh|2Hs(Rn) ≤ ch1−2ε‖f‖2

L2(Ω), (4.2.15)

and gives the bound for |eh|Hs(Rn). Next, we aim to estimate ‖eh‖2
L2(Ω). For this purpose,

we proceed via the following duality argument. Given ϕ ∈ L2(Ω), define

ψ := (zα + A)−1ϕ and ψh := (zα + Ah)
−1Phϕ.

Thus, we write

‖eh‖L2(Ω) = sup
ϕ∈L2(Ω)

|(eh, ϕ)|
‖ϕ‖L2(Ω)

= sup
ϕ∈L2(Ω)

∣∣zα(eh, ψ) + 〈eh, ψ〉Hs(Rn)

∣∣
‖ϕ‖L2(Ω)

.

We aim to bound the supremum in the identity above. Resorting to (4.2.12) and the
Cauchy-Schwarz inequality, we bound∣∣∣zα(eh, ψ) + 〈eh, ψ〉Hs(Rn)

∣∣∣ =
∣∣zα(eh, ψ − ψh) + 〈eh, ψ − ψh〉Hs(Rn)

∣∣
≤ zα/2‖eh‖L2(Ω)z

α/2‖ψ − ψh‖L2(Ω) + |eh|Hs(Rn)|ψ − ψh|Hs(Rn)

≤
(
zα/2‖eh‖L2(Ω) + |eh|Hs(Rn)

) (
zα/2‖ψ − ψh‖L2(Ω) + |ψ − ψh|Hs(Rn)

)
.

Finally, applying (4.2.15) we arrive at∣∣zα(eh, ψ) + 〈eh, ψ〉Hs(Rn)

∣∣ ≤ h1−2ε‖f‖L2(Ω)‖ϕ‖L2(Ω),

from where we can derive the desired inequality.

The analysis of the case s ≤ 1/2 can be carried out in analogously. Indeed, using
that hs ≥ h1/2−ε we obtain, instead of (4.2.13), the inequality

|zα| ‖eh‖2
L2(Ω)+|eh|2Hs(Rn)

≤ c
(
‖eh‖L2(Ω)h

s|ω|Hs(Rn) + |eh|Hs(Rn)h
s|ω|Hs+1/2−ε(Rn)

)
,

and proceeding as before we arrive at the desired estimate.

73

Homogeneous case

At this point, we are able to give an error estimation for the case f ≡ 0.

Theorem 4.2.6. Let 1 < α < 2, u be the solution of (0.0.3) with v ∈ H̃q(Ω), b ∈ H̃r(Ω)
q, r ∈ [0, 2s], and f = 0; and let uh be the solution of (4.1.1) with vh = Phv, bh = Phb,
and fh = 0. Writing eh(t) = u(t) − uh(t), there exists a positive constant C = C(s, n)
such that

‖eh(t)‖L2(Ω) + hγ|eh(t)|Hs(Rn) ≤ Ch2γ
(
t−α(

2s−q
2s)‖v‖Hq(Rn) + t1−α(

2s−r
2s)‖b‖Hr(Rn)

)
.

Proof. First, suppose v and b ∈ L2(Ω). Combining (4.2.9) and (4.2.11), we can obtain
an integral representation for eh,

eh(t) =
1

2πi

ˆ
Γθ,δ

ezt
(
zα−1(wv + wvh) + zα−2(wb + wbh)

)
dz, (4.2.16)

where wv = (zαI + A)−1v, wvh = (zαI + Ah)
−1Phv, wb = (zαI + A)−1b, wbh = (zαI +

Ah)
−1Phb. Using Lemma 4.2.5 and choosing δ = 1/t in the definition of Γθ,δ we have

|eh(t)|Hs(Rn) ≤ Chγ
(ˆ θ

−θ
ecosψt−αdψ +

ˆ ∞
1/t

ert cos θrα−1dr

)
‖v‖L2(Ω)

+ Chγ
(ˆ θ

−θ
ecosψt1−α dψ +

ˆ ∞
1/t

ert cos θrα−2 dr

)
‖b‖L2(Ω)

≤ Chγ(t−α‖v‖L2(Ω) + t1−α‖b‖L2(Ω)).

With the same idea we can obtain the estimate for ‖eh‖L2(Ω), and this shows the asser-
tion for v, b ∈ L2(Ω).

Now, for v, b ∈ H2s(Rn), first we set vh = Rhv and bh = Rhb. Then eh(t) =
u(t)− uh(t) can be written as

eh(t) =
1

2πi

ˆ
Γθ,δ

eztzα−1
(
(zαI + A)−1 − (zαI + Ah)

−1Rh

)
v dz

+
1

2πi

ˆ
Γθ,δ

eztzα−2
(
(zαI + A)−1 − (zαI + Ah)

−1Rh

)
b dz.

Using the identity zα(zαI + A)−1 = I − (zαI + A)−1A, we have

eh(t) =
1

2πi

(ˆ
Γθ,1/t

eztz−1(wv(z)− wvh(z)) dz +

ˆ
Γθ,1/t

eztz−1(v −Rhv) dz

)

+
1

2πi

(ˆ
Γθ,1/t

eztz−2(wb(z)− wbh(z)) dz +

ˆ
Γθ,1/t

eztz−2(b−Rhb) dz

)
:= (i) + (ii),

74

where wv(z) = (zαI + A)−1Av, wvh(z) = (zαI + Ah)
−1AhRhv, and wb(z) and wbh(z) are

defined analogously. Now Lemma 4.2.5 and the relation AhRh = PhA yield

‖wv(t)− wvh(t)‖L2(Ω) + hγ|wv(t)− wvh(t)|Hs(Rn) ≤ Ch2γ‖Av‖L2(Ω).

Then, we can estimate the first term (i)

‖(i)‖L2(Ω) ≤ Ch2γ‖Av‖L2(Ω)

∣∣∣∣ 1

2πi

ˆ
Γθ,δ

eztz−1 dz

∣∣∣∣
≤ Ch2γ‖Av‖L2(Ω)

(ˆ ∞
1/t

ert cos θr−1 dr +

ˆ θ

−θ
ecosψ dψ

)
≤ Ch2γ‖v‖H2s(Rn).

The second term (ii) can be estimated in a similar way:

‖(ii)‖L2(Ω) ≤ Ch2γ‖Ab‖L2(Ω)

∣∣∣∣ 1

2πi

ˆ
Γ

eztz−2 dz

∣∣∣∣ ≤ Ch2γt‖b‖H2s(Rn),

and the L2(Ω)-error estimate follows. The estimate in Hs(Rn) norm can be obtained
analogously. Finally, for the choice vh = Phv and bh = Phb, we have

Eα(t)v − Eα
h (t)Phv = E(t)v − Eα

h (t)Rhv + Eα
h (t)(Rhv − Phv),

The first term is already bounded. For the second one we have

‖Eα
h (t)(Phv −Rhv)‖p,s ≤ C‖Phv −Rhv‖p,s ≤ Ch2γ−γp‖v‖H2s(Rn), p = 0, 1.

where in the first inequality we have used Lemma 2.0.2, and lemmas 4.2.1 and 4.2.2
(combined with classical interpolation techniques) in the second step. The estimate for
b ∈ H2s(Rn) follows analogously. These estimates along with standard interpolation
arguments complete the proof of the theorem.

Non-homogeneous case

To complete the error estimate for the semi-discrete scheme, it still remains to analyze
the case v ≡ b ≡ 0 and f 6≡ 0. A proper generalization of [47, Theorem 3.2] can be
carried out following the guidelines outlined in that work.

Theorem 4.2.7. Let 1 < α < 2, f ∈ L∞(0, T ;L2(Ω)), and let u and uh be the solutions
of (0.0.3) and (4.1.1) respectively, with fh = Phf , and all the initial data equal to zero.
Then, there exists a positive constant C = C(s, n) such that

‖u− uh‖L2(Ω) ≤ Ch2γ| log h|2‖f‖L∞([0,T];L2(Ω)).

75

Proof. Recalling the results of Section 2.3, we know that if v ≡ b ≡ 0 then

u(t) =

ˆ t

0

Fα(t− s)f(t) ds.

So we can estimate

‖u(t)‖2−ε,s ≤
ˆ t

0

‖Fα(t− s)f(t)‖2−ε,s ds ≤
ˆ t

0

(t− s)εα/2−1‖f(t)‖L2(Ω) ds (4.2.17)

≤ Cε−1tεα/2‖f‖L∞([0,T];L2(Ω)),

where in the second inequality we have used Lemma 2.0.2.

Now, splitting u− uh as

u− uh = (u− Phu) + (Phu− uh) = a(t) + c(t),

and using the relation AhRh = PhA we can obtain the following equation for a(t):

C∂αt a+ Aha = Ah(Rhu− Ahu), (4.2.18)

with a(0) ≡ ∂ta(0) ≡ 0.

Using 4.2.1 and (4.2.17) we can easily estimate

‖c(t)‖L2(Ω) ≤ h2γ−γε/2‖u(t)‖2−ε,s ≤ h2γ−ε‖u(t)‖2−ε,s (4.2.19)

≤ Ch2γ−εε−1tεα/2‖f‖L∞([0,T];L2(Ω)),

for all t > 0.

On the other hand, using (4.2.18) we can write

a(t) =

ˆ t

0

Fα(t− s)Ah(Rhu− Ahu) ds,

and from this we can estimate

‖a(t)‖L2(Ω) ≤
ˆ t

0

‖Fα(t− s)Ah(Rhu−Ahu)‖L2(Ω) ds =

ˆ t

0

‖Fα(t− s)(Rhu−Ahu)‖2,s ds

≤ C

ˆ t

0

(t− s)αε/2−1‖(Rhu− Ahu)‖ε,s ds ≤ C

ˆ t

0

(t− s)αε/2−1|||(Rhu− Ahu)|||ε,s ds,

76

where in the third step we have used Lemma 2.0.2 with p = 2 and q = ε. Further,
using the inverse estimation from Lemma 4.2.3 for |||Rhu− Phu|||ε,s, and then Lemma
4.2.1 on (Rhu− u) and (u− Phu) we obtain

‖a(t)‖L2(Ω) ≤ Ch−sε
ˆ t

0

(t− s)αε/2−1‖(Rhu− Ahu)‖L2(Ω) ds (4.2.20)

≤ Ch2γ−2ε

ˆ t

0

(t−s)αε/2−1‖u‖2−ε,s ds ≤ Cε−1h2γ−2ε‖f‖L∞([0,T],L2(Ω))

ˆ t

0

(t−s)αε/2−1tεα/2 ds

≤ Cε−1h2γ−2ε‖f‖L∞([0,T],L2(Ω)),

where in the third step we have used estimation (4.2.17). Finally, we can obtain the
statement of the theorem taking ε = | log h| in the last inequality.

4.2.4 Error bounds for the fully-discrete scheme

Considering all the theory displayed up to this point, error estimates for the fully-
discrete scheme can be derived in the same way as in [45].

Theorem 4.2.8. Let u be the solution of problem (0.0.3) with v ∈ H̃q(Ω), b ∈ H̃r(Ω)
q, r ∈ [0, 2s], and f = 0; and let Un

h be the solution of (4.1.13) or (4.1.14) with vh = Phv,
bh = Phb, and F n

h = 0. Then, there exists a positive constant C = C(s, n) such that

• If 0 < α < 1, then

‖u(tn)− Un
h ‖L2(Ω) ≤ C

(
t
α(q

2s)−1
n τ + t

−α(2s−q
2s)

n hs+γ
)
‖v‖Hq(Rn).

• If 1 < α < 2, then

‖u(tn)− Un
h ‖L2(Ω) ≤ C

(
t
α(q

2s)−1
n τ + t

−α(2s−q
2s)

n hs+γ
)
‖v‖Hq(Rn)

+ C

(
t
α(r

2s)
n τ + t

1−α(2s−r
2s)

n h2γ

)
‖b‖Hr(Rn).

Proof. In view of Theorem 4.2.6, it suffices to bound Un
h − uh(tn). To this end, we

denote for z ∈ Σθ, θ ∈ (π/2, π), G(z) = zα(zαI +Ah)
−1. Then by (4.1.13) and (4.1.14),

we have
Un
h − uh(tn) = (G(∂τ)−G(∂t))vh. (4.2.21)

From (4.2.10) we have G(z) ≤ C for z ∈ Σθ. Hence, for v ∈ L2(Ω), (4.2.21), Lemma
4.1.1 (with µ = 0 and β = 1), and the L2(Ω) stability of Ph we obtain

‖uh(tn)− Un
h ‖L2(Ω) ≤ Cτt−1

n ‖vh‖L2(Ω) ≤ Ct−1
n τ‖v‖L2(Ω). (4.2.22)

77

For v ∈ H2s(Rn), we first consider vh = Rhv. Using the relation G(z) = I − (zαI +
Ah)

−1Ah, with Gs(z) = (zαI + Ah)
−1, we have Un

h − uh(tn) = (Gs(∂τ) − Gs(∂t))Ahvh.
Using (4.2.10) and Lemma 4.1.1 (with µ = α and β = 1) gives

‖uh(tn)− Un
h ‖L2(Ω) ≤ Cτtα−1

n ‖Ahvh‖L2(Ω) ≤ cτtα−1
n ‖v‖H2s(Rn),

where the last step we have used AhRh = PhA. The estimate holds also for the choice
vh = Phv in view of the L2(Ω) stability of the scheme (4.2.22), and repeating the final
argument in the proof of Theorem 4.2.6. The assertion now follows from interpolation.
The case of 1 < α < 2 is analogous, and hence the proof is omitted.

Remark 4.2.9. In the previous theorem –and in Theorem 4.2.6 as well – we wrote
the orders of convergence in term of various Sobolev norms of the data. For clarity,
hypotheses in theorems 2.1.3 and 2.3.2 just involved either L2 or Hs norms of the data.
For instance, assuming that v ∈ H̃s(Ω) is such that (−∆)sv ∈ L2(Ω) and b ∈ H̃s(Ω),
the conclusions of Theorem 4.2.8 read

‖u(tn)− Un
h ‖L2(Ω) ≤ C

(
tα−1
n τ + hs+γ

)
‖(−∆)sv‖L2(Ω) if 0 < α < 1,

‖u(tn)− Un
h ‖L2(Ω) ≤ C

(
tα−1
n τ + hs+γ

)
‖(−∆)sv‖L2(Ω)

+ C
(
t
α
2
n τ + t

1−α
2

n h2γ
)
|b|Hs(Rn) if 1 < α < 2.

We emphasize that, as stated in Remark 1.2.3, the identity ‖(−∆)sv‖L2(Ω) ≤ C|v|H2s(Rn)

holds for all v ∈ H̃2s(Ω).

Finally, we state the order of convergence of the fully-discrete scheme for the prob-
lems with a non-null source term.

Theorem 4.2.10. Let u be the solution of (0.0.3) with homogeneous initial data and
with f ∈ L∞(0, T ;L2(Ω)); and let Un

h be the solution of (4.1.13) or (4.1.14) with fh =
Phf . Then, there exists a positive constant C = C(s, n) such that

• For 0 < α < 1, if
´ t

0
(t− s)α−1‖f ′(s)‖L2(Ω)ds <∞ for t ∈ (0, T], then

‖u(tn)− Un
h ‖L2(Ω) ≤ C

(
h2γ`2

h‖f‖L∞([0,T];L2(Ω)) + tα−1
n τ‖f(0)‖L2(Ω)

+ τ

ˆ tn

0

(tn − s)α−1‖f ′(s)‖L2(Ω)

)
.

• If 1 < α < 2, then

‖u(tn)− Un
h ‖L2(Ω) ≤ C(h2γ`2

h + τ)‖f‖L∞([0,T];L2(Ω)).

78

Proof. Defining G(z) = (zαI + Ah)
−1, the semidiscrete solution uh and fully discrete

solution Un
h can be written as uh = G(∂t)fh and Un

h = G(∂τ)fh, respectively. Using the
splitting fh(t) = fh(0) + (1 ∗ f ′h)(t) and the associativity property (4.1.10), we have

uh(tn)− Un
h =

(
G(∂t)−G(∂τ)

)
(fh(0) + (1 ∗ f ′h)(tn))

=
(
G(∂t)−G(∂τ)

)
fh(0) +

(
(G(∂t)−G(∂τ))1

)
∗ f ′h(tn)) := (i) + (ii).

Then Lemma 4.1.1 (with µ = α and β = 1) gives us a bound for the first term (i)

‖(i)‖L2(Ω) ≤ cτtα−1
n ‖fh(0)‖L2(Ω) ≤ cτtα−1

n ‖f(0)‖L2(Ω).

Again, by Lemma 4.1.1 and the L2 stability of Ph we have

‖(ii)‖L2(Ω) ≤
ˆ tn

0

‖
(
(G(∂t)−G(∂τ))1

)
(tn − s)f ′h(s)‖L2(Ω) ds

≤ cτ

ˆ tn

0

(tn − s)α−1‖f ′h(s)‖L2(Ω) ds ≤ cτ

ˆ tn

0

(tn − s)α−1‖f ′(s)‖L2(Ω) ds.

This shows the first assertion. For the scheme (4.1.14) (using the corrected term Gn
h =

∂τ∂
−1
t fh(tn) as source) with v = b = 0, we have Un

h = G(z)gh with gh = ∂−1
t fh and

G(z) = z(zαI+Ah)
−1. Hence the relation gh = 1∗fh, the convolution property (4.1.10)

and Lemma 4.1.1 with µ = α− 1 and β = 1 yield

‖uh(tn)− Un
h ‖L2(Ω) ≤ cτ

ˆ tn

0

(tn − s)α−2‖f(s)‖L2(Ω) ds ≤ cT τ‖f‖L∞(0,T ;L2(Ω)),

from which follows the second assertion.

4.3 Numerical experiments

This section exhibits the results of numerical tests for discretizations of problems posed
in one- and two-dimensional domains. Numerical solutions of (0.0.3) were obtained
by applying the scheme described in Section 4.1. The experiments in two-dimensional
geometries were carried out with a code based on the one presented in Chapter 3.

4.3.1 Explicit Solutions

In Section (3.5) it is shown how some families of non-trivial solutions for the fractional
Poisson problem can be constructed. Here we recall these results in order to be applied
to the evolution equation in the cases in which Ω corresponds to a) (−1, 1) ⊂ R and,
more generally, b) B(0, 1) ⊂ Rn.

79

We recall that for n ≥ 1, the function ωs : Rn → R, is defined as

ωs(x) = (1− |x|2)s+.

Then,
u(x) := ωs(x)g

(s)
k (x)

solves {
(−∆)su = f in Ω,

u = 0 in Ωc,

with f(x) = λksg
(s)
k (x), where in case a)

λks =
Γ(2s+ k + 1)

k!
g

(s)
k (x) := C

(s+1/2)
k (x),

and in case b)

λks =
22s Γ(1 + s+ k)Γ

(
n
2

+ s+ k
)

k! Γ
(
n
2

+ k
) g

(s)
k (x) := P

(s, n/2−1)
k (2|x|2 − 1).

Above, C
(s+1/2)
k and P

(s, n/2−1)
k denote a Gegenbauer and a Jacobi polynomial [1], re-

spectively.

Next, let h(t) be a function such that C∂αt h(t) can be easily computed. By means
of separation of variables we can construct explicit solutions of the fractional evolution
problem of the form

u(x, t) = h(t) · ωs(x)g
(s)
k (x).

4.3.2 Orders of convergence

In order to confirm the predicted convergence rate, we show the results we obtained in
three example problems:

a. u(x, t) = Eα,1(−tα) · ωs(x)C
(s)
3 (x), Ω = (−1, 1);

b. u(x, t) = sin(t) · ωs(x)C
(s)
3 (x), Ω = (−1, 1);

c. u(x, t) = Eα,1(−tα) · ωs(x)P
(s,0)
k (2|x|2 − 1), Ω = B(0, 1) ⊂ R2.

For examples (a) and (b) we examine the time and spatial convergence over a fixed
time t = 0.1. A fixed small time step is taking to see the spatial convergence and vice
versa. For the computation of the Mittag-Leffler functions we have used the algorithm
described in [36]. Our results are summarized in tables 4.1, 4.2, 4.3 and 4.4.

80

Example α \ τ 0.01 0.005 0.0025 0.001 Rate (in τ)
(a) 0.5 4.227e-3 2.105e-3 1.055e-3 4.493e-4 0.98
(a) 1.5 2.512e-2 1.261e-2 6.349e-3 2.602e-3 0.99
(b) 1.5 4.867e-3 2.402e-3 1.188e-3 5.362e-4 0.96

Table 4.1: The L2(Ω) error at time t = 0.1 with s = 0.75 using a uniform mesh with
size h = 1/5000. The expected convergence rate in τ is 1.

Example α\ mesh size h 1/250 1/500 1/1000 1/1500 Rate (in h)
(a) 0.5 8.837e-3 3.856e-3 1.781e-3 1.198e-3 1.12
(a) 1.5 9.978e-3 4.350e-3 1.967e-3 1.252e-3 1.16
(b) 0.5 1.162e-3 5.158e-4 4.010e-3 1.640e-4 1.09
(b) 1.5 8.453e-4 3.644e-4 1.632e-4 1.035e-4 1.17

Table 4.2: The L2(Ω) error at time t = 0.1 with s = 0.75 using τ = 1/5000. The
expected convergence rate in h is 1.

The experimental orders of convergence (e.o.c.) are in agreement with the theory
in the case s > 1/2 while our numerical examples exhibit e.o.c. (in space) higher than
those predicted if s < 1/2 (see Tables 4.3 and 4.4). This behavior seems to be due
to the fact that the extra regularity of the data present in our examples can not be
exploited in our arguments; the actual solutions are more regular than what is predicted
by theorems 2.1.3 and 2.3.2.

4.3.3 Qualitative aspects in R2

Finally, we present experiments that illustrate some qualitative effects of the fractional
derivatives. In Figure 4.1, we fix s = 0.5, and show the evolution in time for different
values of the parameter α, ranging from fractional diffusion to fractional diffusion-wave.
Memory effects are present for α = 0.5, while the solution oscillates for α = 1.5.

Figure 4.2, in turn, displays the effect of moving the parameters α and s for a fixed
time. It can be seen that increasing the spatial differentiation order s leads to a faster
spreading of the initial condition. Apparent differences can be noticed among the three
different problems with α = 2s exhibited along the diagonal of the figure.

Our third example, in Figure 4.3, exhibits the persistence of a singularity along
the time due to the memory induced by the fractional in-time derivative. In that
experiment, we have set α = 0.99 and s = 0.9. Notice that the solution vanishes to
0 as time increases, but even though the differentiation parameters are both close to
1, which corresponds to the classical heat equation, the singular behavior of the initial
condition persists in time.

81

α = 0.5, t = 0.05 α = 0.5, t = 0.5 α = 0.5, t = 1.25 α = 0.5, t = 2

α = 1, t = 0.05 α = 1, t = 0.5 α = 1, t = 1.25 α = 1, t = 2

α = 1.75, t = 0.05 α = 1.75, t = 0.5 α = 1.75, t = 1.25 α = 1.75, t = 2

Figure 4.1: In this example we set Ω = B(0, 1), s = 0.5 and the initial conditions
v(x) = χB(0,r) with r = 0.275, and b ≡ 0 for α > 1. The evolution in time is displayed
for several values of α.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

α = 0.5, s = 0.25
−1

−0.5
0

0.5
1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

α = 1, s = 0.25
−1

−0.5
0

0.5
1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

α = 1.5, s = 0.25

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

α = 0.5, s = 0.5
−1

−0.5
0

0.5
1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

α = 1, s = 0.5
−1

−0.5
0

0.5
1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

α = 1.5, s = 0.5

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

α = 0.5, s = 0.75
−1

−0.5
0

0.5
1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

α = 1, s = 0.75
−1

−0.5
0

0.5
1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

α = 1.5, s = 0.75

Figure 4.2: Effect of considering various α and s at time t = 0.05. In this example,
Ω = B(0, 1) and the initial data are v(x, y) = χ{y>0}(x, y) and b ≡ 0 for α > 1.

82

Example α\ mesh size h 1/250 1/500 1/1000 1/1500 Rate (in h)
(a) 0.5 8.571e-2 4.999e-2 2.924e-2 2.139e-2 0.77
(a) 1.5 1.125e-1 6.596e-2 3.859e-2 2.818e-2 0.77
(b) 0.5 1.171e-2 6.845e-3 4.010e-3 2.937e-3 0.77
(b) 1.5 1.154e-2 6.811e-3 4.014e-3 2.943e-3 0.76

Table 4.3: The L2(Ω) error at time t = 0.1 with s = 0.25 using τ = 1/5000. The
expected convergence rate in h is 0.5.

Mesh size h s = 0.25 s = 0.75
0.1 1.790e-1 5.673e-2
0.05 1.102e-1 2.342e-2
0.03 7.077e-2 1.054e-2
0.02 5.206e-2 6.255e-3

Table 4.4: The L2(Ω) error at time t = 0.02 with s ∈ {0.25, 0.75} and α = 0.8, using
τ = 1/5000 for example (c). The observed rates are 0.77 and 1.38, respectively.

4.3.4 Qualitative behaviour in R

Explicit expressions for the fundamental solutions of the problem{
C∂αt u = (−∆)su in R× (0, T],
u(0) = v in R, (4.3.1)

can be derived following the guidelines exposed by Mainardi, Luchko and Pagnini in
[60]. In that work, the authors have studied fundamental solutions for the problem
(4.3.7) with 0 < s ≤ 1 and 0 < α ≤ 2 (including asymmetric kernels), and explicit
expressions suitable for computational representations are provided.

Here, we are going to restrict ourselves to three special cases:

• Space-fractional Diffusion (0 < s ≤ 1, α = 1)

• Time-fractional Diffusion (s = 1, 0 < α ≤ 1)

• Neutral fractional Diffusion (0 < s = α ≤ 1)

Indeed, defining ν = α
2s

, the fundamental solution (or Green function) Gα,β(x, t) can
be expressed as:

Gs,α(x, t) = t−νKs,α(x/tν), (4.3.2)

where Ks,α(x) is referred as the reduced Green function.

83

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.01

0.02

0.03

0.04

0.05

Solution at t = 0.015
−1

−0.5
0

0.5
1

−1
−0.5

0
0.5

1
0

1

2

x 10−4

Solution at t = 0.55

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

1

2

3

4

5

x 10−5

Solution at t = 1
−1

−0.5
0

0.5
1

−1
−0.5

0
0.5

1
0

2

4

6

8

x 10−6

Solution at t = 2.5

Figure 4.3: The effect of a fractional derivative in time: observe the persistence of
the singularity along the time, even for α ∼ 1. In this example we set Ω = B(0, 1),
α = 0.99, s = 0.9 and v(0, 0) = 1 and v(x) = 0 for any other node of the mesh.

For the space-fractional diffusion case, the reduced Green function is a Lévy strictly
stable distribution, that is

Gs,1(x, t) = t−1/2sL2s,0(x/t1/2s), (4.3.3)

where L2s,0(x) denote a symmetric Lévy 2s-stable distribution.

For the second case, i.e. s = 1, 0 < α ≤ 1, the fundamental solution can be
expressed by means of the so-called M function Mα

2
(of the Wright type),

G1,α(x, t) =
1

2
t−α/2Mα

2
(x/tα/2), (4.3.4)

where,

Mγ(z) =
1

π

∞∑
n=1

(−z)n−1

(n− 1)!
Γ(γn) sin(πγn),

with γ ∈ (0, 1) and ∀z ∈ C.

Finally, for the case s = α we have an explicit expression of the reduced Green
function,

Ks,2s(x) =
1

π

|x|2s−1 sin(sπ)

1 + 2|x|2s cos(sπ) + |x|4s
, with x 6= 0, (4.3.5)

and

84

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Exact
Numerical

x
tν

tνu

-6 -4 -2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

Exact
Numerical

x
tν

tνu

Figure 4.4: Time-fractional diffusion case: The numerical solution with initial data
12.5I[−0.04,0.04] at time t = 0.3 in black-dashed, and the exact solution for a Dirac-delta
type initial datum is shown in red. Here, s = 1 in both case while α = 0.5 in the left
figure and α = 1.5 in the right figure.

lim
x→0

Ks,2s(x) =

+∞ 0 < s < 1

2
,

1
π

s = 1
2
,

0 1
2
< s < 1.

(4.3.6)

Recalling that a Green function for the parabolic problem (4.3.7) can be understood
as the solution with initial data v = δ(x), being δ a Dirac Delta function, the aim of the
numerical experiment in this section is to compare the fundamental solution’s behavior
with its numerical counterpart, starting from a suitable domain and initial condition.

Indeed, we apply our numerical method to solve the problem

{
C∂αt u = (−∆)su in [−10, 10]× (0, 0.3],
u(0) = 12.5 · I[−0.04,0.04] in [−10, 10].

(4.3.7)

The obtained numerical solutions are shown in figures (4.4)-(4.6). Here, we have used
a 2000 nodes space discretization, and a time step δt = 0.01. Numerical solutions are
shown in black-dashed, and the explicit solutions, computed from equations (4.3.3)-
(4.3.5), are indicated in red. Solutions are displayed properly rescaled, following the
relation (4.3.2).

85

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

Exact
Numerical

x
tν

tνu

-15 -10 -5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Exact
Numerical

x
tν

tνu

Figure 4.5: Space-fractional diffusion case: The numerical solution with initial data
12.5I[−0.04,0.04] at time t = 0.3 is displayed in black-dashed, and the exact solution for
a Dirac-delta type initial data is shown in red. Here, α = 1 in both cases, s = 0.75 in
the left one, and s = 0.4 in the other case.

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 Exact
Numerical

x
tν

tνu

-10 -5 0 5 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Exact
Numerical

x
tν

tνu

Figure 4.6: Neutral diffusion case: The numerical solution with initial data
12.5I[−0.04,0.04] at time t = 0.3 is presented in black-dashed, and the exact solution for
a Dirac-delta type initial data is indicated in red. Here we have used the parameters
s = 0.75, α = 1.5 in the first case, and s = 0.4, α = 0.8 in the last one.

86

Resumen del Caṕıtulo

En este caṕıtulo se propone y analiza un método numérico para la resolución de la
ecuación

C∂αt u+ (−∆)su = f in Ω× (0, T),

con α ∈ (0, 2].

La Sección 4.1 está dedicada la descripción del método numérico utilizado, el cual
hace uso de elementos finitos en la discretización espacial y cuadraturas de convolución
en temporal. En la Sección 4.2 se obtienen estimaciones para el error de aproximación,
mientras que en la Sección 4.3 se exponen experimentos numéricos verificando los
órdenes de convergencia obtenidos en la sección anterior, aśı como también pruebas
numéricas explorando el comportamiento cualitativo de las soluciones.

87

88

Chapter 5

Numerical approximation for the
fractional Allen-Cahn Equation

In this chapter our study will be focused on the development of numerical techniques
for the so-called fractional Allen-Cahn equation, that can be established as: find u such
that

C∂αt u+ ε2(−∆)su = f(u) in Ω× (0, T],

u(0) = v in Ω,
u = 0 in Ωc × [0, T],

(5.0.1)

where Ω is a bounded domain in Rn with a sufficiently smooth boundary, f(u) =
u− u3, v ∈ L2(Ω), 0 < α ≤ 1 and ε2 close to zero.

The classical Allen-Cahn equation was originally introduced to model the motion
of phase boundaries in crystalline solids [13]. In this context, the unknown function u
represent the density of the components, describing full concentration of one of them
where u = 1 (or −1). Notably, the original formulation of the phase-field models
[24] contemplates nonlocal interactions, which have been subsequently simplified and
approximated by local models. Recently, theoretical aspects and numerical techniques
have been developed for space and time non-local versions of this equation, most of them
based on finite differences or spectral methods. Here, we can cite [55, 41, 78, 54, 42, 11].
Also, numerical techniques have been considered for non-local versions of related phase
separation models, like the Cahn-Hilliard equation. In this way we can mention [9, 10].

In order to make use of the theory developed in Section 2.2, since f does not satisfy
conditions (2.2.2) and (2.2.3), we are going to employ a truncated source term. That
is, all the analysis will be made for the problem

89

C∂αt u+ ε2(−∆)su = g(u) in Ω× (0, T],

u(0) = v in Ω,
u = 0 in Ωc × [0, T],

(5.0.2)

where g : R→ R and

• g ∈ C2(R),

• g ≡ f , in [−1− δ0, 1 + δ0], for some δ0 > 0,

• |g|, |g′|, |g′′| < B for some B > 0.

The goal is to prove that if u is a solution of (5.0.2) with ‖v‖L∞(Ω) ≤ 1, then ‖u‖L∞(Ω) ≤
1 for all time, and then formulations (5.0.2) and (5.0.1) are equivalent. This is carried
out through the analysis of the semi-discrete in time scheme in Section 5.2.3.

5.1 FEM discretization

5.1.1 Semi-discrete Scheme

In view of the weak formulation for the semilinear problem 2.2.1, and using the same
finite element setting as in the linear case (Section 4.1), the semi-discrete problem may
be set as: find uh : [0, T]→ Xh such that{

(C∂αt uh, w) + ε2〈uh, w〉Hs(Rn) = (g(uh), w) , ∀w ∈ Xh,
uh(0) = vh.

(5.1.1)

We recall that vh = Phv, and Ph denotes the L2(Ω) projection on Xh. Also, using the
discrete operator Ah, we may rewrite (5.1.1) as{

C∂αt uh + ε2Ahuh = Phg(uh),
uh(0) = vh.

(5.1.2)

5.1.2 Fully discrete scheme

Arguing as in the linear case, using identity (4.1.12) and replacing the Riemann-
Liouville derivative by its discrete version given by (4.1.4), we can formulate the fully
discrete problem as: find Un

h ∈ Xh, with n = {1, . . . , N}, such that{
∂τ

α
Un
h + AhU

n
h = ∂τ

α
vh + Phg(Un

h)
U0
h = vh,

(5.1.3)

90

For the sake of the reader’s convenience, we include a vectorized form of the fully
discrete scheme. Let {ϕi}i=1,...,N be the Lagrange nodal basis that generates Xh. Let

Un ∈ RN , n = 0, . . . , N be such that Un
h =

∑N
i=1 U

n
i ϕi, where Un

h denotes the solution of
the fully discrete problem. Then, we may formulate (5.1.3) in the following vectorized
non-linear equation:

M−1 · (ω0M +K) · Un =

(
n∑
j=0

ωj

)
U0 −

n∑
j=1

ωjU
n−j + g(Un).

Where M and K are the mass and stiffness matrices respectively. That is, Mi,j =
(ϕi, ϕj) and Ki,j = 〈ϕi, ϕj〉Hs(Rn). Of course, the computation and assembly of the
stiffness matrix in dimension greater than one can be carried out by means of the ideas
exposed in Chapter 3.

Since (5.1.3) is not a linear equation, it is not clear a priori that there exists a
solution. In that way, next result gives us existence and uniqueness for problem (5.1.3).

Theorem 5.1.1. There exists τ small enough, such that problem (5.1.3) has a unique
solution Un

h ∈ Xh for all n ∈ {1, ..., n}.

Proof. Recalling that ω0 = τ−α, dividing equation (5.1.3) by ω0 at both sides, we obtain

(I + ταAh)U
n
h =

(
n∑
j=0

ω̃j

)
U0
h −

n∑
j=1

ω̃jU
n−j
h + ταPhf(Un

h).

Observe that, since (Ahw,w) > 0 for all w ∈ Xh, it is true that

‖(I + ταAh)
−1‖L2(Ω) ≤ 1,

for all τ > 0. Now, suppose by induction, that we have a solution Um
h ∈ Xh for all

m < n, and define T : Xh → Xh as

T (w) = (I + ταAh)
−1
((n∑

j=0

ω̃j

)
U0
h −

n∑
j=1

ω̃jU
n−j
h + ταPhf(w)

)
.

Applying a fixed point argument, if T is a contraction over Xh, then problem (5.1.3)
will have a unique solution. To this end, suppose that we have u and w ∈ Xh. Then,
using |g′| < B we have

‖T (u)− T (w)‖L2(Ω) = ‖(I + ταAh)
−1
(
ταPh(g(u)− g(w))

)
‖L2(Ω)

≤ τα‖g(u)− g(w)‖L2(Ω) ≤ Bτα‖u− w‖L2(Ω).

Taking τ < B−α, we have that T is a contraction, and problem (5.1.3) has a unique
solution.

91

5.2 Error estimation

The error estimation for the numerical scheme presented in the previous section can be
obtained in a similar way to the linear case. For the sake of simplicity we are going to
consider ε2 = 1 throughout this section.

5.2.1 Error estimation for the semidiscrete scheme

First, we give an error estimation for the semi-discrete scheme.

Theorem 5.2.1. Let u and uh be the the exact and the semi-discrete solution of (2.2.4)
and (5.1.1) respectively. And let v ∈ L2(Ω) and vh = Phv with ‖v‖L2(Ω) ≤ R. Then
there exists a positive constant C = C(R, T) such that

‖u(t)− uh(t)‖L2(Ω) ≤ Ch2γ(t−α + | log h|2) , t ∈ (0, T]. (5.2.1)

With γ as in Theorem 4.2.6.

Proof. We can write the solution and its semi-discrete approximation as

u = Eα(t)v +

ˆ t

0

Fα(t− s)g(u(s)) ds,

and

uh = Eα
h (t)vh +

ˆ t

0

Fα
h (t− s)g(uh(s)) ds,

respectively. Then, defining e = u− uh, we have

e(t) =
(
Eα − Eα

hPh
)
(t)v +

ˆ t

0

Fα
h (t− s)Ph

(
g(u(s))− g(uh(s))

)
ds

+

ˆ t

0

(
Fα − Fα

h Ph
)
(t− s)g(u(s)) ds.

Using Theorem 4.2.6 in the first term; |g|, |g′| ≤ B, and (2.0.6) in the second term;
Theorem 4.2.7 with f = g(u) and |g| < B in the last term, we have

‖e(t)‖L2(Ω) ≤ Ckt−αh2γ + CB

ˆ t

0

(t− s)α−1‖e(s)‖L2(Ω) ds+ Ch2γ| log h|2

Then, applying Lemma 2.2.2 we derive (5.2.1).

92

5.2.2 Error estimation for the fully discrete scheme

Consider the discrete problem of find V n
h ∈ Xh, n ∈ {1, ..., N}, V 0

h = 0 such that

n∑
j=0

ωjV
n−j
h = −AhV n

h + fnh , (5.2.2)

with fnh ∈ Xh, for all n ∈ {1, ..., N}. Recalling that ω0 = τ−α, and defining E =
(I + ταAh)

−1, we can rewrite (5.2.2) as

V n
h = E

(n∑
j=1

−ταωjV n−j
h + ταfnh

)
. (5.2.3)

If we define {ω̃n}n∈N as the coefficients of the series expansion of (1 − ξ)α, from the
definition of {ωn}n∈N (4.1.15) we have ω̃n = ταωn for all n ∈ N. And we can write V n

h

as a function of fnh in a recursive expression

V n
h =

n∑
j=1

En−jf
j
h, n > 0, (5.2.4)

with En recursively defined as

E0 = ταE, En = E
(n−1∑
j=0

−ω̃n−jEj
)
. (5.2.5)

As we have observed in the proof of Theorem 5.1.1, we have

‖E‖L2(Ω) = ‖(I + ταAh)
−1‖L2(Ω) < 1.

Then, from (5.2.5), and recalling that −ω̃j > 0 for j ≥ 1, we have

‖E0‖L2(Ω) ≤ τα, ‖En‖L2(Ω) ≤
n−1∑
j=0

−ω̃n−j‖Ej‖L2(Ω). (5.2.6)

Defining the sequence

c0 = 1, cn =
n−1∑
j=0

−ω̃n−jcj, (5.2.7)

it is possible to check that

‖En‖L2(Ω) ≤ ταcn. (5.2.8)

In order to bound the error, it will be useful to know about the asymptotic behavior
of {cn}n∈N. This is analyzed in the next lemma.

93

Lemma 5.2.2. Let {ω̃n}n∈N0 be the coefficients of the power series expansion of (1−ξ)α,
with α ∈ (0, 1), and {cn}n∈N0 the sequence recursively defined in (5.2.7). Then, cn ∈
O(nα−1).

Proof. From the definition of {ω̃n}n∈N0 , we know that

(1− ξ)α =
∞∑
j=0

ω̃jξ
j.

Then, defining g(ξ) = 1− (1− ξ)α, and recalling that w0 = 1, we have

g(ξ) =
∞∑
j=1

−ω̃jξj.

Now, defining f(ξ) =
∑∞

j=0 cjξ
j, from the definition of {cn}n∈N0 , and using the

Cauchy product for power series, the following equality can be easily checked,

f(ξ)
g(ξ)

ξ
=
f(ξ)− c0

ξ
. (5.2.9)

Recalling that c0 = 1, and −ω̃1 = α, from (5.2.9) we can obtain an explicit expression
for f ,

f(ξ) = (1− ξ)−α. (5.2.10)

It is well known that series expansion of f is

f(ξ) =
∞∑
j=0

(−1)j
(
−α
j

)
ξj.

Then

cn = (−1)n
(
−α
n

)
, (5.2.11)

where (
−α
n

)
=

Γ(1− α)

Γ(1 + n)Γ(1− n− α)
. (5.2.12)

Finally, by means of basic Gamma function properties, we can check that
(−α
n

)
∈

O(nα−1), and hence {cn}n∈N0 ∈ O(nα−1).

94

At this point, we are able to obtain a bound for the error.

Theorem 5.2.3. Let u and Un
h = Uh(tn) be the solution of (5.0.2) and (5.1.3) respec-

tively. Consider v ∈ L2(Ω) and vh = Phv with ‖v‖L2(Ω) ≤ R. Then, under the condition
0 < τα < δ < 1, there exists a positive constant C = C(R, T, α, δ) such that

‖u(tn)− Uh(tn)‖L2(Ω) ≤ Ch2γ(t−αn + | log h|2) + Cτt−1
n , (5.2.13)

tn ∈ [0, T].

Proof. In view of Theorem 5.2.1, we only need to estimate ‖uh(tn)−Uh(tn)‖L2(Ω), with
uh the semi-discrete solution. Defining the function G(z) = (zαI +Ah)

−1, analytic in a
sector Σθ with θ ∈ (π/2, π) (see Section 4.1.2), from the semi-discrete and fully discrete
scheme we have

uh = G(∂t)∂
α
t vh +G(∂t)Phg(uh),

and
Uh = G(∂τ)∂τ

α
vh +G(∂τ)Phg(Uh).

Subtracting both expressions we obtain an equation for eh := uh − Uh,

eh = (G(∂t)∂
α
t −G(∂τ)∂τ

α
Ph)v +G(∂t)Phg(uh)−G(∂τ)Phg(Uh) = (5.2.14)

(G(∂t)∂
α
t −G(∂τ)∂τ

α
Ph)vh + (G(∂t)−G(∂τ))Phg(uh) +G(∂τ)Ph(g(uh)− g(Uh))

= (i) + (ii) + (iii).

The norm of the first term (i) can be approximated by means of Lemma 4.1.1. That
is, taking µ = 0, β = 1 in that lemma, we obtain

‖(i)‖L2(Ω) ≤ Ct−1
n τ‖vh‖L2(Ω) ≤ Ct−1

n τ,

with C = C(R).

For the second term, using property (4.1.10), we can split (ii) as follow

(ii) =
(
G(∂t)−G(∂τ)

)(
Phg(uh(0)) + (1 ∗ Ph∂tg(uh(tn))

)
=
(
G(∂t)−G(∂τ)

)
Phg(uh(0)) + (

(
G(∂t)−G(∂τ)

)
1) ∗ Ph∂tg(uh(tn))

= I + II.

Using Lemma 4.1.1 with µ = α, β = 1, along with the fact that |g| < B, we can estimate

‖I‖L2(Ω) ≤ Ctα−1
n τ.

95

On the other hand, noticing that estimation (2.2.16) can be easily extended to ∂tuh
in order to get ‖∂tuh‖L2(Ω) ≤ Ctα/2−1 (since vh ∈ H̃s(Ω)); using again Lemma 4.1.1, the
fact that |g′| < B, and writing ∂tg(uh(t)) = g′(uh(t))∂tuh, we have

‖II‖L2(Ω) ≤
ˆ tn

0

‖(
(
G(∂t)−G(∂τ)

)
1)(tn − s)g′(uh(s))∂tuh(s)‖L2(Ω) ds

≤ Cτ

ˆ tn

0

(tn − s)α−1‖∂tuh(s)‖L2(Ω) ds ≤ Cτ

ˆ tn

0

(tn − s)α−1sα/2−1 ds

≤ Cτt
3
2
α−1

n ,

where in the last inequality we have estimated the integral in terms of the beta function
B(α/2, α), as in Theorem 2.2.1.

Now, we observe that the last term (iii) is a solution for (5.2.2), with fnh =
Ph(g(uh)− g(Uh)). Then, in view of (5.2.4) and (5.2.8), and using again that |g′| < B,
we have

‖(iii)‖L2(Ω) ≤ τα
n∑
j=1

cn−j‖eh(tj)‖L2(Ω),

where {cn}n∈N is the sequence defined in (5.2.7).

Using that

Cτ(t−1
n + t

3
2
α−1

n + tα−1
n) ≤ Cτt−1

n ,

with C = C(T), we can derive the following

‖eh(tn)‖L2(Ω) ≤ Cτt−1
n + τα

n∑
j=1

cn−j‖eh(tj)‖L2(Ω).

Now, recalling that 0 < τα < δ < 1, we have

‖eh(tn)‖L2(Ω) ≤ Cτt−1
n + Cτα

n−1∑
j=1

cn−j‖eh(tj)‖L2(Ω),

with C = C(δ). We can apply a discrete Gronwall type inequality to the former
expression, and get

‖eh(tn)‖L2(Ω) ≤ Cτt−1
n e(Cτα

∑n−1
j=1 cn−j). (5.2.15)

Now, from Lemma 5.2.2, we know that cn ∼ nα−1, and hence τα
∑n

j=1 cn−j . ταnα ≤
ταNα = Tα. From this, (5.2.15), and (5.2.1), we can derive (5.2.13).

96

5.2.3 L∞ bounds

In order to prove that the solution remains bounded between 1 and −1, we are going
to define first the semi-discrete in time problem. That is, find Un ∈ H̃s(Ω), with
n ∈ {1, ..., N}, such that {

∂τ
α
Un + AUn = ∂τ

α
v + g(Un)

U0 = v.
(5.2.16)

Before giving an existence result, we set the following auxiliary lemma.

Lemma 5.2.4. Let {aj}j∈N and {bj}j∈N be two sequences of real numbers, with {aj}j∈N
non-increasing and positive valued. Suppose

n−1∑
j=0

aj(bn−j − bn−j−1) < 0,

for some n ≥ 2. Then there exists j0 < n such that bj0 > bn.

Proof. Suppose bj ≤ bn for all j < n. Since aj−1 ≥ aj > 0 we have

0 >
n−1∑
j=0

aj(bn−j − bn−j−1) ≥ a1(bn − bn−2) +
n−1∑
j=2

aj(bn−j − bn−j−1)

≥ a2(bn − bn−3) +
n−1∑
j=3

aj(bn−j − bn−j−1) ≥ ... ≥ an−1(bn − b0) ≥ 0,

and the contradiction came from the assumption bj ≤ bn for all j < n. Then there
exists j0 < n such that bj0 > bn and the lemma is proved.

The proof of the existence and uniqueness of solutions for problem (5.2.16) is similar
to the one given for the fully discrete case. For the solutions of this problem, we have
the following result.

Theorem 5.2.5. Consider the semi-discrete in time scheme (5.2.16) with U0 ∈ L∞(Ω),
then there exists τ > 0 small enough such that (5.2.16) has a unique solution Un,
n ∈ {0, ..., N}, with Un ∈ Cs(Rn) for all n > 0. Moreover if |U0(x)| ≤ 1 for all x ∈ Ω,
then |Un(x)| ≤ 1 for all x ∈ Ω and n ∈ {1, ...N}.

Proof. Suppose we have a solution with the desired properties for all m < n. From
(5.2.16) we have the identity

97

Un = (I + ταA)−1
((n∑

j=0

ω̃j

)
U0 −

n∑
j=1

ω̃jU
n−j + ταg(Un)

)
, (5.2.17)

where ω̃j := ταωj.

First we want to show that there exists Un ∈ L2(Ω) that satisfies equation 5.2.17.
In order to do that, we define the map T : L2(Ω)→ L2(Ω)

T (u) := (I + ταA)−1
((n∑

j=0

ωj

)
U0 −

n∑
j=1

ωjU
n−j + ταg(u)

)
.

We want to show that T is a contraction in L2(Ω). From the fact that A is a
maximal monotone operator (see [22]), we know that ‖(I + ταA)‖L2(Ω) ≤ 1. Let u and
v ∈ L2(Ω), we can estimate

‖T (u)− T (v)‖L2(Ω) = ‖(I + ταA)−1τα
(
g(u)− g(v)

)
‖L2(Ω)

≤ τα‖g(u)− g(v)‖L2(Ω) ≤ ταC‖u− v‖L2(Ω).

Then, for a small τ we have that T is a contraction. Hence, there exists a unique
solution Un ∈ L2(Ω) for (5.2.17), and the relation

AUn =

(
n∑
j=0

ωj

)
U0 −

n∑
j=1

ωjU
n−j + g(Un) (5.2.18)

is satisfied. Since the right hand side belongs to L∞(Ω), applying Theorem 1.2.4, we
can conclude that Un ∈ Cs(Rn) ∩ C2s(Ωρ) for all 0 < ρ < ρ0.

Now, we want to see that if the initial data is regular enough, then the solution
remains bounded between 1 and −1. Suppose |Um(x)| ≤ 1 for all x ∈ Ω, for all m < n.
The semi-discrete in time scheme gives us the relation

n∑
j=0

ωjU
n−j −

(
n∑
j=0

ωj

)
U0 = −AUn + g(Un),

which can be rewritten as

n−1∑
j=0

aj(U
n−j − Un−j−1) = −AUn + g(Un),

with an =
∑n

j=0 ωj. Suppose there exists some x0 such that Un achieves its maximum
on that point, and Un(x0) > 1. Recall that ‖Um‖L∞(Ω) ≤ 1 for all m < n. Assuming

98

Um ∈ C2(Ω) ∩ Cs(Rn) for all m < n it is possible to show that Un ∈ C2(Ω) ∩ Cs(Rn)
(see Remark 5.2.6). Using this, we can show that AUn(x0) = (−∆)sUn(x0) ≥ 0 (see
[33, Lemma 3.9]). Then, from the fact that Un(x0) > 1, we have g(Un(x0)) < 0, which
implies

n−1∑
j=0

aj(U
n−j(x0)− Un−j−1(x0)) < 0.

Observing the fact that {an} is a positive valued and decreasing sequence, we can
apply Lemma 5.2.4 to show that there exists m0 < n, such that Um0(x0) > Un(x0), and
then 1 ≥ Um0(x0) > Un(x0) > 1. The contradiction came from the assumption that
Un(x0) > 1.

Now we want to see that the same bound holds for less regular initial data. To
this end, applying a density argument, suppose Un is a solution for (5.2.16) with U0 ∈
L∞(Ω), ‖U0‖L∞(Ω) ≤ 1. Consider {U0

k}k∈N ⊂ C∞c (Ω), with ‖U0
k‖L∞(Ω) ≤ 1 for all k, and

U0
k → U0 in L2(Ω).

Let Un
k be the solution of (5.2.16) with initial data U0

k . Calling enk = Un − Un
k , we

have the equation

enk = (I + ταA)−1
((n∑

j=0

ω̃j

)
e0
k −

n∑
j=1

ω̃je
n−j
k + τα

(
g(Un)− g(Un

k)
))
,

and taking norms we obtain

‖enk‖L2(Ω) ≤ ‖e0
k‖L2(Ω) +

n∑
j=1

−ω̃j‖en−jk ‖L2(Ω) + ταC‖enk‖L2(Ω). (5.2.19)

Choosing τ such that ταC < 1, recalling that 0 <
∑n

j=1−ω̃j < 1, and applying a
Gronwall type inequality we have

‖enk‖L2(Ω) ≤ ‖e0
k‖L2(Ω)

e1/1−ταC

1− ταC
= C‖e0

k‖L2(Ω),

with C = C(τ, α, C), and then, ‖enk‖L2(Ω) → 0.

Since ‖U0
k‖L∞(Ω) ≤ 1, then ‖Un

k ‖L∞(Ω) ≤ 1 for all k, and for all n ∈ {1, ..., N}.
Hence, for a fixed n, we can construct a sub-sequence {Un

kj
}j∈N, such that Un

kj
→ Un

a.e. , and conclude that ‖Un‖L∞(Ω) ≤ 1.

Remark 5.2.6. Suppose we have Um ∈ C2(Ω) ∩ Cs(Rn) for all m < n. If we take a
fixed ρ′ > 0 and ρ = 2ρ′ in Theorem 1.2.5, a repeated application of this result, along
with the fact that g ∈ C2(R), implies that Un ∈ C2+2s(Ωkρ0) for some k ∈ N, only

99

depending on s. Since ρ0 can be arbitrary small, we can assert that Un ∈ C2(Ω), and
then, Un ∈ C2(Ω) ∩ Cs(Rn).

Finally, proceeding analogously as in Theorem 5.2.3, we can derive the following
error estimation.

Theorem 5.2.7. Let u and Un = U(tn) be the solution of (5.0.2) and (5.2.16) respec-
tively, with v ∈ L2(Ω), ‖v‖L2(Ω) ≤ R. Then, under the condition 0 < τα < δ < 1, there
exists a positive constant C = C(R, T, α, δ) such that

‖u(tn)− U(tn)‖L2(Ω) ≤ Ct−1
n τ, tn ∈ [0, T]. (5.2.20)

Now, consider ‖v‖L∞(Ω) ≤ 1, a family of nested subdivisions of [0,T] with τ = T/Nk

with k ∈ N, and a fixed tn ∈ (0, T]. Let Uk(tn) be the solution of (5.2.16), and u the
solution of (2.2.4), using 5.2.7 we have that Uk(tn)→ u(tn) in L2(Ω). So, we can extract
a sub-sequence {Ukj(tn)}j∈N such that Uk(tn)→ u(tn) a.e. . Using 5.2.5, we know that
‖Uk(tn)‖L∞(Ω) ≤ 1, and then, ‖u(tn)‖L∞(Ω) ≤ 1. We can summarize this observation in
the following result.

Theorem 5.2.8. Let u a solution of (2.2.5) with ‖v‖L∞(Ω) ≤ 1. Then ‖u(t)‖L∞(Ω) ≤ 1
for all t ∈ (0, T].

This theorem implies that all the analysis displayed up to here remains valid replac-
ing g by f and therefore to the Allen-Cahn equation (2.2.1).

5.3 Asymptotic behavior with s→ 0

Considering now the usual derivative in time (α = 1), the Allen-Cahn equation can be
understood as a gradient flow in L2, minimizing the free energy functional

Fs(u) =
ε2

2
|u|2Hs(Rn) +

ˆ
Ω

W (u), (5.3.1)

with W (u) = (u2−1)2

4
(see for example [9]). It is well known that the size of ε affects

the interface width of the minimizers of Fs. That is, interface width tends to zero with
ε → 0. This fact can be easily derived from expression (5.3.1), observing that the
right term, which penalizes the variation of u, tends to lose relevance as ε goes to zero,
forcing the minimizer u to take values into the set of minimizers of W , that is values
belonging to {1,−1}. However, since ε > 0, the right term promote the minimization
of the interface length (for n ≥ 2), which implies that the limit behavior cannot be
understood as the minimization of Fs with ε = 0. In [76], Savin and Valdinoci show, by
means of Γ-convergence theory, that the limit behavior of the problem of minimizing

100

Fs tends to a minimal surface problem if s ∈ [1/2, 1), and to a non-local version of the
minimal surface problem for s ∈ (0, 1/2).

In our case, numerical experiments (see Figure 5.2) show that the interface width
tends to become thinner when the parameter s goes to zero, suggesting that (as in
the case ε → 0) a minimizer of Fs should approximate a binary function when s →
0. Motivated by the previous observation, the aim of this section is to analyze the
asymptotic behavior of the minimizers of Fs with s tending to zero. To this end, we are
going to follow the ideas displayed in [76], and study the Γ-convergence of a suitable
modification of the functional Fs.

5.3.1 Γ-convergence when s→ 0.

Since Γ-convergence may not be a usual concept in numerical analysis, we start this
section by giving its definition and basic properties, and we refer to [21] for further
details.

Let X be a topological space, and {Fn}∈N, Fn : X → [−∞,+∞], a sequence of
functionals. Then, we say that Fn Γ-converge to F : X → [−∞,+∞], if the following
conditions holds:

• For every sequence {xn}n∈N ⊂ X such that xn → x, then

F (x) ≤ lim inf
n→∞

Fn(xn).

• For every x ∈ X, there exists a sequence xn converging to x such that

F (x) ≥ lim sup
n→∞

Fn(xn).

Also, we define a complementary concept. We say that the family {Fn} has the
equi-coerciveness property if for all c ∈ R exists a compact set Kc in such a way that
{Fn < c} ⊂ Kc for all n ∈ N.

These two concept allow us to say something about the limiting behavior of the
minimizers of Fn in terms of the minimizers of F . That is, if xn is a minimizer of
Fn, then every cluster point of {xn}n∈N (if exists) is a minimizer of F . This can be
summarized as follow

Equi-coerciveness + Γ-convergence⇒ Convergence of minimizers

In order to study the Γ-convergence of Fs, we must set an appropriate domain X
for Fs,

X = {u ∈ L∞(Rn) with |u| ≤ 1, and u ≡ 0 in Ωc}.

101

And we are going to consider this space furnished with the norm ‖ · ‖L1(Ω). Note that

if u ∈ X but u 6∈ H̃s(Ω), then we can define Fs(u) = +∞.

From the definition of Fs, and supposing ε2 < 1, we have

Fs(u) =
ε2

2
|u|2Hs(Rn) −

ε2

2
‖u‖2

L2(Ω) +
ε2

2
‖u‖2

L2(Ω) +

ˆ
Ω

W (u)

=
ε2

2

(
|u|2Hs(Rn) − ‖u‖2

L2(Ω)

)
+

ˆ
Ω

(
W (u) +

ε2

2
u2
)
,

and, denoting F [u](ξ) as the Fourier transform of u, we know from [30] and Plancharel’s
identity that

|u|2Hs(Rn) = ‖F [u]|ξ|s‖2
L2(Rn) =

ˆ
Rn
F2[u](ξ)|ξ|2s dξ,

and

‖u‖2
L2(Ω) =

ˆ
Rn
F2[u](ξ) dξ.

Then we have

|u|2Hs(Rn) − ‖u‖2
L2(Ω) =

ˆ
Rn

(
|ξ|2s − 1

)
F2[u](ξ) dξ,

so we can rewrite Fs as

Fs =
ε2

2

ˆ
Rn

(
|ξ|2s − 1

)
F2[u](ξ) dξ +

ˆ
Ω

W̃ (u),

with W̃ (s) = W (s) + ε2

2
s.

Since we have ε2 < 1, W̃ (s) is a double-well type potential with minimizers±
√

1− ε2.

Noticing that W̃ (±
√

1− ε2) = kε > 0 , we define a new auxiliary functional F̃s

F̃s =
1

2s

(
Fs −

ˆ
Ω

kε
)
,

and, for sake of simplicity, we redefine W̃ as

W̃ (s) = W (s) +
ε2

2
s− kε,

so now W̃ (±
√

1− ε2) = 0.

Fixing s and ε, it is easy to check that u ∈ X is a minimizer of Fs if and only if u
is a minimizer of F̃s. So we focus our study on the asymptotic behavior of F̃s.

Defining the functional

102

F0(u) =

{ ´
Rn ln |ξ|F2[u](ξ) dξ, if u ≡

√
1− ε2

(
IE − IEc

)
+∞, in other case,

(5.3.2)

with E ⊂ Ω and Ec = Ω \ E, we have the following theorem.

Theorem 5.3.1. Let F̃s and F0 defined as before, then F̃s
Γ−→ F0.

Proof. Let us −→ u with s → 0 in X, and suppose w.l.o.g, that s takes values in a
discrete set. First, we want to see

lim inf
s→0

F̃s(us) ≥ F0(u). (5.3.3)

Indeed, suppose that l = lim infs→0 F̃s(us) ≤ +∞, in other case there is nothing to
prove. If we choose a suitable sub-sequence of us such that us → u a.e. and F̃s(us)→ l,
then

l = lim inf
s→0

F̃s(us) ≥ lim inf
s→0

ˆ
Rn

|ξ|2s − 1

2s
F2[us](ξ) dξ + lim inf

s→0

1

2s

ˆ
Ω

W̃ (us) (5.3.4)

We first analyze the left term of the right hand side of (5.3.4). In this case we have

lim inf
s→0

ˆ
Rn

|ξ|2s − 1

2s
F2[us](ξ) dξ ≥ lim inf

s→0

ˆ
|ξ|>1

|ξ|2s − 1

2s
F2[us](ξ) dξ

+ lim inf
s→0

ˆ
|ξ|≤1

|ξ|2s − 1

2s
F2[us](ξ) dξ = (i) + (ii).

From the fact that us → u in L1(Rn) norm, we have F [us]→ F [u] point-wise, and
we also have (|ξ|2s − 1)/2s→ ln |ξ|. Then, using Fatou’s Lemma, we get

(i) ≥
ˆ
|ξ|>1

ln |ξ|F2[u](ξ) dξ > 0

On the other hand, since |F [us](ξ)| ≤ ‖us‖L1(Ω) ≤ |Ω|, we can estimate the second term
as follow

(ii) = − lim sup

ˆ
|ξ|≤1

1− |ξ|2s

2s
F2[us](ξ) dξ ≥ −

ˆ
|ξ|≤1

− ln |ξ|F2[u](ξ) dξ

=

ˆ
|ξ|≤1

ln |ξ|F2[u](ξ) dξ > −∞, (5.3.5)

103

where in the last inequality we have use the reverse Fatous’s Lemma.

Hence, the first term on the right hand side of (5.3.4) must be a finite number. This
implies that

0 ≤ lim inf
s→0

1

2s

ˆ
Ω

W̃ (us) < +∞,

and thus,
´

Ω
W̃ (us)→ 0 with s→ 0.

Since we have chosen us in such a way that us → u a.e., we have that W̃ (u) = 0
a.e., then u must have the form

u =
√

1− ε2(IE − IEc).

Now, we can estimate

lim inf
s→0

F̃s(us) = lim inf
s→0

ˆ
Rn

|ξ|2s − 1

2s
F2[us](ξ) dξ +

1

2s

ˆ
Ω

W̃ (us)

≥
ˆ
Rn

ln |ξ|F2[u](ξ) dξ = F0(u),

and (5.3.3) follow.

Finally we only need the to verify that if u ∈ X, then

F0(u) ≥ lim sup
s→0

Fs(u) (5.3.6)

To this end, suppose u =
√

1− ε2(IE − IEc), otherwise there is nothing to prove. In
this case we have

Fs(u) =

ˆ
Rn

|ξ|2s − 1

2s
F2[u](ξ) dξ.

The fact that (|ξ|2s − 1)/2s ↘ ln |ξ| with s → 0, implies that F̃s(u) is decreasing in s.
Then

lim sup
s→0

F̃s(u) = lim
s→0

F̃s(u) = lim
s→0

ˆ
Rn

|ξ|2s − 1

2s
F2[u](ξ) dξ

= lim
s→0

(ˆ
|ξ|≤1

+

ˆ
|ξ|>1

) |ξ|2s − 1

2s
F2[u](ξ) dξ.

Then, using Monotone Convergence Theorem on the integral over |ξ| > 1, and Domi-
nated Convergence Theorem over |ξ| ≤ 1, we have

104

lim sup
s→0

F̃s(u) = F0(u),

which proves (5.3.6).

5.3.2 Equi-coerciveness of F̃s

To complete the analysis we prove the equi-coerciveness of {F̃s}s.

Theorem 5.3.2. Suppose sn → 0, and {un}n∈N ⊂ X, such that F̃sn(un) ≤ C for all
n ∈ N. Then there exists u ∈ X and a subsequence {unj}j∈N, such that unj → u in X.

Proof. First we observe that, as before, we have

F̃sn(un) =

ˆ
Rn

|ξ|sn − 1

2sn
F2(un)[ξ] dξ +

1

2sn

ˆ
Ω

W̃ (un) dx.

Since (|ξ|2s − 1)/2s↘ ln |ξ| and F̃sn(un) ≤ C for all n ∈ N, we can assert that

ˆ
Rn

ln |ξ|F2(un)[ξ] dξ ≤ C, ∀n ∈ N. (5.3.7)

The fact that un ∈ X, implies ‖un‖L1(Ω) ≤ C0 for all n ∈ N, and then

ˆ
|ξ|≤1

ln |ξ|F2(un)[ξ] dξ ≥ C2
0

ˆ
|ξ|≤1

ln |ξ| dξ ≥ C1. (5.3.8)

Now we want to show that (5.3.7) implies that functions in the set {F2(un)}n keep
a substantial part of their mass uniformly bounded. Namely, given η > 0, there exists
R > 0 such that

ˆ
|ξ|>R

F2(un)[ξ] dξ ≤ η, ∀n ∈ N. (5.3.9)

By contradiction suppose that there exists η0 > 0 such that for every R > 0 there is a
number m = m(R, η0) ∈ N, in such a way that

ˆ
|ξ|>R

F2(um)[ξ] dξ > η0.

Choosing R > 0 such that η0 ln(R) + C1 > C, with C the constant in (5.3.7), and C1

the one in (5.3.8) , we have

105

ˆ
Rn

ln |ξ|F2(um)[ξ] dξ >

ˆ
|ξ|>R

ln |ξ|F2(um)[ξ] dξ +

ˆ
|ξ|≤1

ln |ξ|F2(um)[ξ] dξ

> ln(R)η0 + C1 > C,

which, in view of (5.3.7) results in a contradiction. Hence, assertion (5.3.9) holds.

On the other hand, the fact that {un}n∈N ⊂ X, implies that this sequence is uni-
formly bounded in L2(Ω), and then, we can extract a weakly convergent subsequence
{unj}j∈N. Let u ∈ L2(Ω) such that unj ⇀ u, our goal now is to show that unj → u
strongly in L2(Ω), which implies strong convergence in L1(Ω) since |Ω| <∞.

To this end, we only need to show that ‖unj‖L2(Ω) → ‖u‖L2(Ω) or, equivalently,
‖F(unj)‖L2(Rn) → ‖F(u)‖L2(Rn). From (5.3.9), and the fact that u ∈ L2(Ω), we can
take R large enough, in such a way that

ˆ
|ξ|>R

F2(unj)[ξ] dξ < η, ∀j ∈ N,

and ˆ
|ξ|>R

F2(u)[ξ] dξ < η.

Then we have ∣∣∣‖F(unj)‖2
L2(Rn) − ‖F(u)‖2

L2(Rn)

∣∣∣ ≤ (5.3.10)∣∣∣ ˆ
|ξ|≤R

F2(unj)[ξ] dξ −
ˆ
|ξ|≤R

F2(u)[ξ] dξ
∣∣∣+ 2η.

Since unj is supported in Ω, for all j ∈ N, weak convergence implies F(unj)[ξ]→ F(u)[ξ]
for all ξ ∈ Rn. And, as we have observed before, since ‖unj‖L1(Ω) ≤ C0 for all j ∈ N,
F2(unj)[ξ] ≤ C2

0 for all ξ ∈ Rn. Hence, we can apply the Dominated Convergence
Theorem in (5.3.10) and say that there exists j0 in such a way that if j > j0 then∣∣∣‖F(unj)‖2

L2(Rn) − ‖F(u)‖2
L2(Rn)

∣∣∣ ≤ 3η. (5.3.11)

Since η can be arbitrary small, we have ‖unj‖L2(Ω) → ‖u‖L2(Ω), and the statement of
the theorem follows.

5.3.3 The case of the spectral fractional Laplacian

Besides (0.0.1), it is possible to define a related operator, usually called spectral frac-
tional Laplacian, in the following way

106

(−∆)sΩu(x) :=
∞∑
i=1

λsi (u, ϕi)L2(Ω)ϕi(x), (5.3.12)

with (λsi , ϕi) eigenpair of the classical Laplacian with homogeneous Dirichlet boundary
condition in Ω. The associated spectral semi-norm is defined as

|u|2s :=
∞∑
i=1

λ2s
i (u, ϕi)

2
L2(Ω). (5.3.13)

Ideas used in the proof of theorems 5.3.1 and 5.3.2 can be straightforwardly adapted
in order to extend this results to the spectral case. That is, redefining (5.3.1) and (5.3.2)
as

Fs(u) :=
ε2

2
|u|2s +

ˆ
Ω

W (u), (5.3.14)

and

F0(u) :=

{ ∑∞
i=1 ln (λi)(u, ϕi)

2
L2(Ω) if u ≡

√
1− ε2

(
IE − IEc

)
+∞, in other case,

(5.3.15)

respectively, with E ⊂ Ω and Ec = Ω \ E, it is possible to prove that minimizers of Fs
converge to minimizers of F0.

From this, it can be observed that the minimization problems given by (5.3.2) and
(5.3.15) present a similar behaviour, since both functionals prioritize low frequency
functions. In order to make this point clear, consider first the minimization problem
given by (5.3.15). With the purpose of minimize (5.3.15) we should find a set E ⊂ Ω
in such a way that its associated characteristic function u =

√
1− ε2

(
IE − IEc

)
can be

well approximated using low frequency modes. That is, since ln(λ) is increasing as a
function of λ, we need the largest values of (u, ϕi)

2 associated to small values of λi. A
similar observation can be done about the minimization problem given by (5.3.2).

5.4 Numerical experiments

In this section, three numerical examples are presented in order to explore the behavior
of the solution under fractional parameters s and α.

For the first example, we have used Ω = [−1, 1], a uniform mesh consisting of 3000
nodes, s = 0.005, α = 1, ε2 = 0.5, and the function v = −0.5I(−1,0) + 0.5I[0,1) as
the initial datum. Here, the aim is to obtain some experimental support for the ideas
displayed in Section 5.3, that is, the behavior with a small parameter s. Numerical
results are summarized in figure 5.1, and equilibrium values far from 1 and −1 can be

107

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.1: In red the solution of example 1 at t = 50, in black-dashed the values
±
√

1− ε2. It can be seen that the equilibrium states remain far from 1 and −1, unlike
the behavior in the classic AC equation, and approach the values predicted in Section
5.3 (see (5.3.2)).

observed. Furthermore, equilibrium values seems to be placed near the values predicted
in Section 5.3 or, in other words, the solution seems to approximate a minimizer of
(5.3.2).

Example 2 and 3 (spinodal decomposition) are showed in figure 5.2 and 5.3 respec-
tively. Here we have used Ω as the unitary ball, a uniform triangulation consisting of
16554 triangles, ε2 = 0.02, and random noise as initial data. In example 2 (figure 5.2),
the parameter α is fixed in 1, and results for several values of s are shown. Can be
observed the fact that, as we have mentioned in Section 5.3, the smaller the parameter
s, the thinner the interface. Finally, example 3 (figure 5.3) shows the behavior for
fractional values of the parameter α, with s = 1.

Resumen del Caṕıtulo

En este caṕıtulo se aplican las técnicas desarrolladas en el caṕıtulo anterior a una versión
fraccionaria de la ecuación de Allen-Cahn,

C∂αt u+ (−∆)su = f(u) in Ω× (0, T),

con s, α ∈ (0, 1], f(u) = u− u3.

108

s = 1, t = 2.5 s = 1, t = 5 s = 1, t = 10

s = 0.85, t = 2.5 s = 0.85, t = 5 s = 0.85, t = 10

s = 0.7, t = 2.5 s = 0.7, t = 5 s = 0.7, t = 10

Figure 5.2: In this example we set Ω = B(0, 1), α = 1, and random noise as initial
condition. The evolution in time is displayed for several values of s.

109

α = 1, t = 1.25 α = 1, t = 3.75 α = 1, t = 10

α = 0.7, t = 1.25 α = 0.7, t = 3.25 α = 0.7, t = 10

α = 0.4, t = 1.25 α = 0.4, t = 3.25 α = 0.4, t = 10

Figure 5.3: In this example we set Ω = B(0, 1), s = 1, and random noise as initial
condition. The evolution in time is displayed for several values of α.

110

En la Sección 5.1 se describe el método numérico propuesto (basado en el usado
para el caso lineal), mientras que en la Sección 5.2 se obtienen estimaciones del error.
En la Sección 5.3 se analiza el comportamiento asintótico de las soluciones con α = 1 y
s→ 0+. Finalmente, en la Sección 5.4 se presentan experimentos numéricos explorando
el comportamiento cualitativo de las soluciones.

111

112

Appendix A

Implementation details

A.1 Quadrature rules

Here we give details about how to compute the integrals I i,j`,m and J i,j` (see Section 3.2).

In order to cope with I i,j`,m, we proceed according to whether T` ∩Tm is empty, a vertex,

an edge or an element. Recall that I i,j`,m = I i,jm,`, so that we may assume ` ≤ m.

Consider two elements T` and Tm such that supp(ϕi), supp(ϕj) ∩ (T` ∪ Tm) 6= ∅.
Observe that if one of this intersections is empty, then I i,j`,m = 0. Moreover, it could
be possible that one of the elements is disjoint with the support of both ϕi and ϕj,
provided the other element intersects both supports and I i,j`,m 6= 0.

We are going to consider the reference element

T̂ = {x̂ = (x̂1, x̂2) : 0 ≤ x̂1 ≤ 1, 0 ≤ x̂2 ≤ x̂1},

whose vertices are

x̂(1) =

(
0
0

)
, x̂(2) =

(
1
0

)
, x̂(3) =

(
1
1

)
.

The basis functions on T̂ are, obviously,

ϕ̂1(x̂) = 1− x̂1, ϕ̂2(x̂) = x̂1 − x̂2, ϕ̂3(x̂) = x̂2.

Remark A.1.1. Given two elements T` and Tm, we provide a local numbering in the
following way. If T` and Tm are disjoint, we set the first three nodes to be the nodes of
T` and the following three nodes to be the ones of Tm. Else, we set the first node(s) to
be the ones in the intersection, then we insert the remaining node(s) of T` and finally
the one(s) of Tm (see Figure A.1). For simplicity of notation, when computing I i,j`,m and

J i,j` , we assume that i, j denote the local numbering of the basis functions involved; for
example, if T` and Tm share only a vertex, then 1 ≤ i, j ≤ 5.

113

T`

Tm

1

2

3

4

5

T` Tm

1

3
4

2

Figure A.1: Local numbering for elements with a vertex and an edge in common.

Consider the affine mappings

χ` : T̂ → T`, χ`(x̂) = B`x̂+ x
(1)
` ,

χm : T̂ → Tm, χm(x̂) = Bmx̂+ x(1)
m ,

where the matrices B` and Bm are such that x̂(2) (resp. x̂(3)) is mapped respectively
to the second (resp. third) node of T` and Tm in the local numbering defined above.
Then, it is clear that

Ii,j`,m = 4|T`||Tm|
ˆ
T̂

ˆ
T̂

(ϕi(χ`(x̂))− ϕi(χm(ŷ)))(ϕj(χ`(x̂))− ϕj(χm(ŷ)))

|χ`(x̂)− χm(ŷ)|2+2s
dx̂ dŷ =

= 4|T`||Tm|
˘

T̂×T̂
Fij(x̂1, x̂2, ŷ1, ŷ2) dx̂1 dx̂2 dŷ1 dŷ2.

(A.1.1)

We discuss how to compute I i,j`,m depending on the relative position of T` and Tm,

and afterwards we tackle the computation of J i,j` .

A.1.1 Non-touching elements

This is the simplest case, since the integrand Fij in (A.1.1) is not singular. Recall that

I i,j`,m =

ˆ
T`

ˆ
Tm

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))

|x− y|2+2s
dxdy, 1 ≤ `,m ≤ NT̃ .

Splitting the numerator in the integrand, we obtain

I i,j`,m =

ˆ
T`

ˆ
Tm

ϕi(x)ϕj(x)

|x− y|2+2s
dxdy +

ˆ
T`

ˆ
Tm

ϕi(y)ϕj(y)

|x− y|2+2s
dxdy

−
ˆ
T`

ˆ
Tm

ϕi(x)ϕj(y)

|x− y|2+2s
dxdy −

ˆ
T`

ˆ
Tm

ϕi(y)ϕj(x)

|x− y|2+2s
dxdy.

Note that all the integrands depend on ` and m only through their denominators.
Since ϕi(x) = 0 if i = 1, 2, 3 and x ∈ Tm or if i = 4, 5, 6 and x ∈ T`, given two

114

indices i, j, only one of the four integrals above is not null. Thus, we may divide the 36
interactions between the 6 basis functions involved into four 3 by 3 blocks, and write
the local matrix ML as:

ML =

(
A`,m B`,m

C`,m D`,m

)
, (A.1.2)

where

Ai,j`,m =

ˆ
T`

ˆ
Tm

ϕi(x)ϕj(x)

|x− y|2+2s
dxdy, Bi,j

`,m = −
ˆ
T`

ˆ
Tm

ϕi(x)ϕj+3(y)

|x− y|2+2s
dxdy

Ci,j`,m = −
ˆ
T`

ˆ
Tm

ϕi+3(y)ϕj(x)

|x− y|2+2s
dxdy, Di,j

`,m =

ˆ
T`

ˆ
Tm

ϕi+3(y)ϕj+3(y)

|x− y|2+2s
dxdy.

We use two nested Gaussian quadrature rules to estimate these integrals. These have
6 quadrature nodes each, making a total of 36 quadrature points. Let us denote by pk
and wk (k = 1, . . . , 6) the quadrature nodes and weights in T̂ , respectively. Changing
variables we obtain

Ai,j`,m = 4|T`||Tm|
ˆ
T̂

ˆ
T̂

ϕ̂i(x)ϕ̂j(x)

|χ`(x)− χm(y)|2+2s
dxdy,

and applying the quadrature rule twice, we derive:

Ai,j`,m ≈ 4|T`||Tm|
6∑
q=1

6∑
k=1

wq wk ϕ̂i(pk)ϕ̂j(pk)

|χ`(pk)− χm(pq)|2+2s
. (A.1.3)

Note that the right hand side summands only depend on i and j through their numera-
tors, and on ` and m through their denominators. As our goal is to compute the whole
block A`,m as efficiently as possible, we set the following definitions:

• The matrix ΦA ∈ R9 × R36 stores the numerators involved in (A.1.3), corre-
sponding to the 9 pairs of basis functions and the 36 pairs of quadrature nodes,
respectively. Namely,

ΦA
ij = ϕ̂[i−1]3+1(pd j

6
e)ϕ̂d i3 e

(pd j
6
e)w[j−1]6+1wd j

6
e, (A.1.4)

where [m]k denotes m modulo k and d·e is the ceiling function. Let us make this
definition more explicit. The matrix ΦA may be divided in 6 blocks,

ΦA = (ΦA1 . . .ΦA6),

115

where ΦAk is a 6× 9 matrix:

ΦAk =

ϕ̂1(pk)ϕ̂1(pk)wkw1 ϕ̂1(pk)ϕ̂1(pk)wkw2 . . . ϕ̂1(pk)ϕ̂1(pk)wkw6

ϕ̂2(pk)ϕ̂1(pk)wkw1 ϕ̂2(pk)ϕ̂1(pk)wkw2 . . . ϕ̂2(pk)ϕ̂1(pk)wkw6

ϕ̂3(pk)ϕ̂1(pk)wkw1 ϕ̂3(pk)ϕ̂1(pk)wkw2 . . . ϕ̂3(pk)ϕ̂1(pk)wkw6

ϕ̂1(pk)ϕ̂2(pk)wkw1 ϕ̂1(pk)ϕ̂2(pk)wkw2 . . . ϕ̂1(pk)ϕ̂2(pk)wkw6

ϕ̂2(pk)ϕ̂2(pk)wkw1 ϕ̂2(pk)ϕ̂2(pk)wkw2 . . . ϕ̂2(pk)ϕ̂2(pk)wkw6

ϕ̂3(pk)ϕ̂2(pk)wkw1 ϕ̂3(pk)ϕ̂2(pk)wkw2 . . . ϕ̂3(pk)ϕ̂2(pk)wkw6

ϕ̂1(pk)ϕ̂3(pk)wkw1 ϕ̂1(pk)ϕ̂3(pk)wkw2 . . . ϕ̂1(pk)ϕ̂3(pk)wkw6

ϕ̂2(pk)ϕ̂3(pk)wkw1 ϕ̂2(pk)ϕ̂3(pk)wkw2 . . . ϕ̂2(pk)ϕ̂3(pk)wkw6

ϕ̂3(pk)ϕ̂3(pk)wkw1 ϕ̂3(pk)ϕ̂3(pk)wkw2 . . . ϕ̂3(pk)ϕ̂3(pk)wkw6

.

• The variable dm ∈ R36 is a vector storing the distances between all the quadrature
nodes involved:

dmk =
∣∣∣χ`(p[k−1]6+1)− χm(pd k

6
e)
∣∣∣−(2+2s)

. (A.1.5)

Namely, the vector dm can be written as:

dm =

|χ`(p1)− χm(p1)|−(2+2s)

...

|χ`(p6)− χm(p1)|−(2+2s)

|χ`(p1)− χm(p2)|−(2+2s)

...

|χ`(p6)− χm(p2)|−(2+2s)

...

...

|χ`(p1)− χm(p6)|−(2+2s)

...

|χ`(p6)− χm(p6)|−(2+2s)

.

With these two variables in hand, the computation of the integrals Aij may be done
in a vectorized mode. Defining Â`,m := ΦA · dm, we obtain:

A
[i−1]3+1,d i

3
e

`,m ≈ 4|T`||Tm|Âi`,m

= 4|T`||Tm|
∑
q

∑
k

wqwk
ϕ̂[i−1]3+1(pk)ϕ̂d i

3
e(pk)

|χ`(pk)− χm(pq)|2+2s
, i ∈ {1, ..., 9}.

116

Equivalently, using MATLAB R© notation:

A`,m ≈ 4|T`||Tm| reshape(Â`,m, 3 , 3).

We apply the same ideas to computate the remaining blocks in (A.1.2). We define:

• a 9× 36 matrix ΦB, such that

ΦB
ij = ϕ̂[i−1]3+1(pd j

n
e)ϕ̂d i3 e+3(p[j−1]n+1)w[j−1]n+1wd j

n
e,

• a 9× 36 matrix ΦD, such that

ΦD
ij = ϕ̂[i−1]3+4(p[j−1]n+1)ϕ̂d i

3
e+3(p[j−1]n+1)w[j−1]n+1wd j

n
e.

Then, considering

B̂`,m := ΦB · dm,
D̂`,m := ΦD · dm,

we just need to multiply

B`,m ≈ 4|T`||Tm|reshape(B̂`,m, 3 , 3),

D`,m ≈ 4|T`||Tm|reshape(D̂`,m, 3 , 3).

Is simple to verify that C`,m = B′`,m, so that there is no need to make additional
operations to compute the block C`,m. Moreover, let us emphasize that the matrices ΦA,
ΦB and ΦD depend on the quadrature rule employed, but not on the elements under
consideration; these are precomputed and stored in data.mat. We refer to Section
A.3.2 for details on how this is done. However, in the main loop, the vector dm needs
to be calculated for every 1 ≤ ` ≤ m ≤ NT̂ .

We obtain a matrix ML as follows:

ML ≈ 4|T`||Tm|
(

reshape(ΦA · dm, 3 , 3) reshape(ΦB · dm, 3 , 3)

reshape(ΦB · dm, 3 , 3)’ reshape(ΦD · dm, 3 , 3)

)
.

In addition, this vectorized approach gives us an efficient way to compute I`,m for several
values of m ∈ {1, ..., NT̃ } at once. Indeed, suppose that want to calculate I`,m for m ∈ S ⊆
{1, ..., NT̃ } (along the execution of the main code, S would contain the indices listed in empty).

It is possible to compute Â`,m, B̂`,m and D̂`,m for all m ∈ S using vectorized operations as
follows: (

Â`,m1 , ..., Â`,m#S

)
= ΦA · (dm1 , ..., dm#S) ,(

B̂`,m1 , ..., B̂`,m#S

)
= ΦB · (dm1 , ..., dm#S) ,

117

(
D̂`,m1 , ..., D̂`,m#S

)
= ΦD · (dm1 , ..., dm#S) .

Observe that, fixed ` and S, the distances between interpolation points of the involved
triangles are all the necessary information to obtain the estimation of the matrix ML (given
by (A.1.2)), for m ∈ S.

In order to perform an efficient computation of (dm1 , ..., dm#S), we use the MATLAB R©

function pdist2 in the following way:

(dm1 , ..., dm#S) = reshape(pdist2(X`,

Xm1

Xm2

...
Xm#S

), n2, [])(−1−s).

Here, the vectors Xm are given by

Xm :=

 χm(p1)
...

χm(p6)

 .

The computation of the matrix ML is carried in the main code, and it is implemented in
Subsection 3.4.2.

A.1.2 Vertex-touching elements

In case T` ∩Tm consists of a vertex, define ẑ = (x̂, ŷ), identify ẑ with a vector in R4, and split
the domain of integration in (A.1.1) into two components D1 and D2, where

D1 = {ẑ : 0 ≤ ẑ1 ≤ 1, 0 ≤ ẑ2 ≤ ẑ1, 0 ≤ ẑ3 ≤ ẑ1, 0 ≤ ẑ4 ≤ ẑ3},
D2 = {ẑ : 0 ≤ ẑ3 ≤ 1, 0 ≤ ẑ4 ≤ ẑ3, 0 ≤ ẑ1 ≤ ẑ3, 0 ≤ ẑ2 ≤ ẑ1}.

Let ξ ∈ [0, 1] and η = (η1, η2, η3) ∈ [0, 1]3. We consider the mappings Th : [0, 1]× [0, 1]3 →
Dh, h = 1, 2,

T1(ξ, η) =

ξ
ξη1

ξη2

ξη2η3

 , T2(ξ, η) =

ξη2

ξη2η3

ξ
ξη1

 ,

having Jacobian determinants |JT1| = ξ3η2 = |JT2|.
We perform the calculations in detail only on D1. Observe that if i = 1, which corresponds

to the vertex in common between T` and Tm, then

ϕi(χ`(ξ, ξη1))− ϕi(χm(ξη2, ξη2η3)) = −ξ(1− η2).

118

Meanwhile, if the subindex i equals 2 or 3, it corresponds to one of the other two vertices of
T`. Therefore, in those cases ϕi(χm(ξη2, ξη2η3)) = 0, and

ϕ2(χ`(ξ, ξη1)) =ξ(1− η1),

ϕ3(χ`(ξ, ξη1)) =ξη1.

Analogously, if i ∈ {4, 5}, then ϕi(χ`(ξ, ξη1)) = 0 and so

ϕ4(χm(ξη2, ξη2η3)) =− ξη2(1− η3),

ϕ5(χm(ξη2, ξη2η3)) =− ξη2η3.

Thus, defining the functions ψ
(1)
k : [0, 1]3 → R (k ∈ {1, . . . , 5}),

ψ
(1)
1 (η) = η2 − 1, ψ

(1)
2 (η) = 1− η1, ψ

(1)
3 (η) = η1,

ψ
(1)
4 (η) = −η2(1− η3), ψ

(1)
5 (η) = −η2η3,

we may write

ˆ
D1

Fij(ẑ) dẑ =

ˆ
[0,1]

ˆ
[0,1]3

ψ
(1)
i (η)ψ

(1)
j (η)∣∣∣∣B`(ξ

ξη1

)
−Bm

(
ξη2

ξη2η3

)∣∣∣∣2+2s ξ
5η2 dη dξ

=

(ˆ 1

0
ξ3−2sdξ

)(ˆ
[0,1]3

ψ
(1)
i (η)ψ

(1)
j (η)∣∣d(1)(η)
∣∣2+2s η2 dη

)

=
1

4− 2s

(ˆ
[0,1]3

ψ
(1)
i (η)ψ

(1)
j (η)∣∣d(1)(η)
∣∣2+2s η2 dη

)
,

where we have defined the function

d(1)(η) = B`

(
1
η1

)
−Bm

(
η2

η2η3

)
.

Observe that in the first line of last equation (or equivalently, in (A.1.1)), the integrand is
singular at the origin. The key point in the identity above is that the singularity of the integral
is explicitly computed. The function d(1) is not zero on [0, 1]3, and therefore the last integral
involves a regular integrand that is easily estimated by means of a Gaussian quadrature rule.

In a similar fashion, the integrals over D2 take the form

ˆ
D2

Fij(ẑ) dẑ =
1

4− 2s

(ˆ
[0,1]3

ψ
(2)
i (η)ψ

(2)
j (η)∣∣d(2)(η)
∣∣2+2s η2 dη

)
,

where

ψ
(2)
1 (η) = 1− η2, ψ

(2)
2 (η) = η2(1− η3), ψ

(2)
3 (η) = η2η3,

119

ψ
(2)
4 (η) = η1 − 1, ψ

(2)
5 (η) = −η1,

and

d(2)(η) = B`

(
η2

η2η3

)
−Bm

(
1
η1

)
.

Based on the previous analysis, we describe the function vertex_quad. Let p1, ..., pn ∈
[0, 1]3 be a set of quadrature points and w1, ..., wn their respective weights. In the code we
present, we work with three nested three-point quadrature rules on [0, 1], making a total of
27 quadrature nodes in the unit cube. The data necessary to use this quadrature is supplied
in the file data.mat, and in Appendix A.3.1.

Set h ∈ {1, 2}. Then, applying the mentioned quadrature rule in the cube,

ˆ
[0,1]3

ψ
(h)
i (η)ψ

(h)
j (η)∣∣d(h)(η)
∣∣2+2s η2 dη ≈

27∑
k=1

wk
ψ

(h)
i (pk)ψ

(h)
j (pk)∣∣d(h)(pk)
∣∣2+2s pk,2,

where pk,2 denotes the second coordinate of the point pk. The right hand side only depends

on ` and m through d(h). So, in order to compute Ii,j`,m using vectorized operations, we define
the following variables, in analogy to (A.1.4) and (A.1.5):

• A 25× 27 matrix Ψh satisfying

Ψh
ij = wj ψ

(h)
[i−1]5+1(pj)ψ

(h)

d i
5
e(pj) pj,2.

• A vector dh ∈ R27, such that

dhk =
∣∣∣d(h)(pk)

∣∣∣−(2+2s)
.

Then, defining Î`,m := Ψ1 · d1 + Ψ2 · d2, we obtain

I
[i−1]5+1,d i

5
e

`,m ≈ 4|T`||Tm|
4− 2s

Îi`,m

=
2∑

h=1

27∑
k=1

wk

ψ
(h)
[i−1]5+1(pk)ψ

(h)

d i
5
e(pk)∣∣d(h)(pk)

∣∣2+2s , i ∈ {1, ..., 25}.

Equivalently, using MATLAB R© notation:

I`,m ≈
4|T`||Tm|

4− 2s
reshape(Î`,m, 5 , 5).

Given that the matrices Ψ1 and Ψ2 do not change along the execution, we only need to
compute them once. These are precomputed and provided on the data file; explicit information
regarding its entries is available on Appendix A.3.3.

So, the function vertex_quad computes the previous quadrature rule in the following way:

120

function ML = vertex_quad (nodl,nodm,sh_nod,p,s,psi1,psi2,areal,aream,p_c)

xm = p(1, nodm);

ym = p(2, nodm);

xl = p(1, nodl);

yl = p(2, nodl);

x = p_c(:,1);

y = p_c(:,2);

z = p_c(:,3);

local_l = find(nodl==sh_nod);

nsh_l = find(nodl~=sh_nod);

nsh_m = find(nodm~=sh_nod);

p_c = [xl(local_l), yl(local_l)];

Bl = [xl(nsh_l(1))-p_c(1) xl(nsh_l(2))-xl(nsh_l(1));

yl(nsh_l(1))-p_c(2) yl(nsh_l(2))-yl(nsh_l(1))];

Bm = [xm(nsh_m(1))-p_c(1) xm(nsh_m(2))-xm(nsh_m(1));

ym(nsh_m(1))-p_c(2) ym(nsh_m(2))-ym(nsh_m(1))];

ML = (4*areal*aream/(4-2*s)).*reshape(...

psi1*(sum(([ones(length(x),1) x]*(Bl’)...

- [y , y.*z]*(Bm’)).^2, 2).^(-1-s)) +...

psi2*(sum(([ones(length(x),1) x]*(Bm’)...

- [y , y.*z]*(Bl’)).^2, 2).^(-1-s))...

, 5 , 5);

end

In the code above, nodl and nodm are the vertex indices of T` and Tm respectively, sh_nod
is the index of the shared node, p is an array that contains all the vertex coordinates, areal
and aream denote |T`| and |Tm| respectively, s is s, and p_c contains the coordinates of
the quadrature points on [0, 1]3. This last variable is gathered form data.mat, where it is
stored as p_cube (see Appendix A.3.1). In addition, Bl and Bm play the role of B` and Bm,
and psi1 and psi2 are Ψ1 and Ψ2 respectively. As we mentioned, psi1 and psi2 have been
pre-computed and stored on data.mat as vpsi1 and vpsi2 respectively (see Appendix A.3.3).

The output of vertex_quad is a 6× 6 matrix ML that satisfies ML(i,j) ≈ Ii,j`,m.

A.1.3 Edge-touching elements

In this case, the parametrization of the elements we are considering is such that both χ`
and χm map [0, 1] × {0} to the common edge between T` and Tm. Therefore, if we consider
ẑ = (ŷ1 − x̂1, ŷ2, x̂2), the singularity of the integrand is localized at ẑ = 0:

Ii,j`,m = 4|T`||Tm|
ˆ 1

0

ˆ 1−x̂1

−x̂1

ˆ ẑ1+x̂1

0

ˆ x̂1

0
Fij(x̂1, ẑ3, x̂1 + ẑ1, ẑ2) dẑ dx̂1.

We decompose the domain of integration as ∪5
k=1Dk, where

D1 = {(x̂1, ẑ) : − 1 ≤ ẑ1 ≤ 0, 0 ≤ ẑ2 ≤ 1 + ẑ1,

121

0 ≤ ẑ3 ≤ ẑ2 − ẑ1, ẑ2 − ẑ1 ≤ x̂1 ≤ 1},
D2 = {(x̂1, ẑ) : − 1 ≤ ẑ1 ≤ 0, 0 ≤ ẑ2 ≤ 1 + ẑ1,

ẑ2 − ẑ1 ≤ ẑ3 ≤ 1, ẑ3 ≤ x̂1 ≤ 1},
D3 = {(x̂1, ẑ) : 0 ≤ ẑ1 ≤ 1, 0 ≤ ẑ2 ≤ ẑ1,

0 ≤ ẑ3 ≤ 1− ẑ1, ẑ3 ≤ x̂1 ≤ 1− ẑ1},
D4 = {(x̂1, ẑ) : 0 ≤ ẑ1 ≤ 1, ẑ1 ≤ ẑ2 ≤ 1,

0 ≤ ẑ3 ≤ ẑ2 − ẑ1, ẑ2 − ẑ1 ≤ x̂1 ≤ 1− ẑ1},
D5 = {(x̂1, ẑ) : 0 ≤ ẑ1 ≤ 1, ẑ1 ≤ ẑ2 ≤ 1,

ẑ2 − ẑ1 ≤ ẑ3 ≤ 1− ẑ1, ẑ3 ≤ x̂1 ≤ 1− ẑ1}.

Consider the mappings Tk : [0, 1]× [0, 1]3 → Dk (k ∈ {1, . . . , 5}),

T1

(
ξ
η

)
=

ξ

−ξη1η2

ξη1(1− η2)
ξη1η3

 , T2

(
ξ
η

)
=

ξ

−ξη1η2η3

ξη1η2(1− η3)
ξη1

 ,

T3

(
ξ
η

)
=

ξ(1− η1η2)
ξη1η2

ξη1η2η3

ξη1(1− η2)

 , T4

(
ξ
η

)
=

ξ(1− η1η2η3)
ξη1η2η3

ξη1

ξη1η2(1− η3)

 ,

T5

(
ξ
η

)
=

ξ(1− η1η2η3)
ξη1η2η3

ξη1η2

ξη1(1− η2η3)

 ,

with Jacobian determinants given by

|JT1| = ξ3η2
1, |JTh| = ξ3η2

1η2, h ∈ {2, . . . , 5}.

Then, over Dh it holds that

ˆ
Dh

Fij =
1

4− 2s

ˆ
[0,1]3

ψ
(h)
i (η)ψ

(h)
j (η)

|d(h)(η)|2+2s
J (h)(η) dη,

where

ψ
(1)
1 (η) = −η1η2, ψ

(1)
2 (η) = η1(1− η3),

ψ
(1)
3 (η) = η1η3, ψ

(1)
4 (η) = −η1(1− η2),

ψ
(2)
1 (η) = −η1η2η3, ψ

(2)
2 (η) = −η1(1− η2),

ψ
(2)
3 (η) = η1, ψ

(2)
4 (η) = −η1η2(1− η3),

ψ
(3)
1 (η) = η1η2, ψ

(3)
2 (η) = −η1(1− η2η3),

122

ψ
(3)
3 (η) = η1(1− η2), ψ

(3)
4 (η) = −η1η2η3,

ψ
(4)
1 (η) = η1η2η3, ψ

(4)
2 (η) = η1(1− η2),

ψ
(4)
3 (η) = η1η2(1− η3), ψ

(4)
4 (η) = −η1,

ψ
(5)
1 (η) = η1η2η3, ψ

(5)
2 (η) = −η1(1− η2),

ψ
(5)
3 (η) = η1(1− η2η3), ψ

(5)
4 (η) = −η1η2.

Moreover, the functions d(h) are given by

d(1)(η) = B`

(
1

η1η3

)
−Bm

(
1− η1η2

η1(1− η2)

)
,

d(2)(η) = B`

(
1
η1

)
−Bm

(
1− η1η2η3

η1η2(1− η3)

)
,

d(3)(η) = B`

(
1− η1η2

η1(1− η2)

)
−Bm

(
1

η1η2η3

)
,

d(4)(η) = B`

(
1− η1η2η3

η1η2(1− η3)

)
−Bm

(
1
η1

)
,

d(5)(η) = B`

(
1− η1η2η3

η1(1− η2η3)

)
−Bm

(
1

η1η2

)
,

and the Jacobians are

J (1)(η) = η2
1, J (h)(η) = η2

1η2, h ∈ {2, . . . , 5}.

As in the case of vertex-touching elements, the problem is reduced to computing integrals
on the unit cube. Let p1, ..., p27 ∈ [0, 1]3 the quadrature points, and w1, ..., w27 their respective
weights. For h = 1, . . . , 5 we have

ˆ
[0,1]3

ψ
(h)
i (η)ψ

(h)
j (η)∣∣d(h)(η)
∣∣2+2s J (h)(η) dη ≈

∑
k

wk
ψ

(h)
i (pk)ψ

(h)
j (pk)∣∣d(h)(pk)
∣∣2+2s J (h)(pk).

Once more, the right hand side only depends on ` and m through d(h). So, with the purpose
of computing I`,m efficiently, we define:

• A matrix Ψh ∈ R16×27, given by

Ψh
ij = wj ψ[i−1]4+1(pj)ψd i

4
e(pj)J

(h)(pj).

• A vector dh ∈ R27, such that

dhk =
∣∣∣d(h)(pk)

∣∣∣−(2+2s)
.

123

Therefore, considering Î`,m = Ψ1 · d1 + · · ·+ Ψ5 · d5, we reach the following relation:

I
[i−1]4+1,d i

4
e

`,m ≈ 4|T`||Tm|
4− 2s

Îi`,m

=
∑
h

∑
k

wk

ψ
(h)
[i−1]4+1(pk)ψ

(h)

d i
4
e(pk)∣∣d(h)(pk)

∣∣2+2s , i ∈ {1, ..., 16}.

Using MATLAB R© notation,

I`,m ≈
4|T`||Tm|

4− 2s
reshape(Î`,m, 4 , 4).

As before, the matrices Ψ1, . . . , Ψ5 do not depend on the elements under consideration, so
they are precomputed and provided in data.mat, where they are stored as epsi1, . . . , epsi5,
respectively. Details about their calculation are given in Appendix A.3.4.

The function edge_quad performs the calculations we have explained in this section.

function ML = edge_quad(nodl,nodm,nod_diff,p,s,psi1,psi2,psi3,...

psi4,psi5,areal,aream,p_c)

xm = p(1, nodm);

ym = p(2, nodm);

xl = p(1, nodl);

yl = p(2, nodl);

x = p_c(:,1);

y = p_c(:,2);

z = p_c(:,3);

local_l = find(nodl~=nod_diff(1));

nsh_l = find(nodl==nod_diff(1));

nsh_m = find(nodm==nod_diff(2));

P1 = [xl(local_l(1)), yl(local_l(1))];

P2 = [xl(local_l(2)), yl(local_l(2))];

Bl = [P2(1)-P1(1) -P2(1)+xl(nsh_l);

P2(2)-P1(2) -P2(2)+yl(nsh_l)];

Bm = [P2(1)-P1(1) -P2(1)+xm(nsh_m);

P2(2)-P1(2) -P2(2)+ym(nsh_m)];

ML = (4*areal*aream/(4-2*s)).*reshape(...

psi1*(sum(([ones(length(x),1) x.*z]*(Bl’)...

- [1-x.*y x.*(1-y)]*(Bm’)).^2, 2).^(-1-s)) +...

psi2*(sum(([ones(length(x),1) x]*(Bl’)...

- [1-x.*y.*z x.*y.*(1-z)]*(Bm’)).^2, 2).^(-1-s)) +...

psi3*(sum(([(1-x.*y) x.*(1-y)]*(Bl’)...

- [ones(length(x),1) x.*y.*z]*(Bm’)).^2, 2).^(-1-s)) +...

psi4*(sum(([1-x.*y.*z x.*y.*(1-z)]*(Bl’)...

- [ones(length(x),1) x]*(Bm’)).^2, 2).^(-1-s)) +...

124

psi5*(sum(([1-x.*y.*z x.*(1-y.*z)]*(Bl’)...

- [ones(length(x),1) x.*y]*(Bm’)).^2, 2).^(-1-s))...

, 4 , 4);

end

Here, nodl and nodm are the indices of the vertices of T` and Tm respectively, nod_diff

contains the not-shared-vertex index, p is an array that contains all the vertex coordinates,
areal and aream are |T`| and |Tm| respectively, s is s, p_c contains the coordinates of the
quadrature points on [0, 1]3 (stored in data.mat, see Appendix A.3.1), Bl and Bm are B` and
Bm, and psi1, ..., psi5 are Ψ1, . . . ,Ψ5 respectively.

The output of this function is a 4× 4 matrix ML ≈ I`,m.

A.1.4 Identical elements

In the same spirit as before, let us consider ẑ = ŷ − x̂, so that

I`,` = 4|T`|2
ˆ 1

0

ˆ x̂1

0

ˆ 1−x̂1

−x̂1

ˆ ẑ1+x̂1−x̂2

−x̂2
Fij(x̂1, x̂2, x̂1 + ẑ1, x̂2 + ẑ2) dẑ2 dẑ1 dx̂2 dx̂1.

Let us decompose the integration region into

D1 = {(x̂, ẑ) : − 1 ≤ ẑ1 ≤ 0, −1 ≤ ẑ2 ≤ ẑ1,

− ẑ2 ≤ x̂1 ≤ 1, −ẑ2 ≤ x̂2 ≤ x̂1},
D2 = {(x̂, ẑ) : 0 ≤ ẑ1 ≤ 1, ẑ1 ≤ ẑ2 ≤ 1,

ẑ2 − ẑ1 ≤ x̂1 ≤ 1− ẑ1, 0 ≤ x̂2 ≤ ẑ1 − ẑ2 + x̂1},
D3 = {(x̂, ẑ) : − 1 ≤ ẑ1 ≤ 0, ẑ1 ≤ ẑ2 ≤ 0,

− ẑ1 ≤ x̂1 ≤ 1, −ẑ2 ≤ x̂2 ≤ x̂1 + ẑ1 − ẑ2},
D4 = {(x̂, ẑ) : 0 ≤ ẑ1 ≤ 1, 0 ≤ ẑ2 ≤ ẑ1,

0 ≤ x̂1 ≤ 1− ẑ1, 0 ≤ x̂2 ≤ x̂1},
D5 = {(x̂, ẑ) : − 1 ≤ ẑ1 ≤ 0, 0 ≤ ẑ2 ≤ 1 + ẑ1,

ẑ2 − ẑ1 ≤ x̂1 ≤ 1, 0 ≤ x̂2 ≤ x̂1 + ẑ1 − ẑ2},
D6 = {(x̂, ẑ) : 0 ≤ ẑ1 ≤ 1, −1 + ẑ1 ≤ ẑ2 ≤ 0,

− ẑ2 ≤ x̂1 ≤ 1− ẑ1, −ẑ2 ≤ x̂2 ≤ x̂1}.

(A.1.6)

We begin by considering the first two sets. Making the change of variables (x̂′, ẑ′) = (x̂,−ẑ)
on D1 and (x̂′, ẑ′) = (x̂+ ẑ, ẑ) on D2, both regions are transformed into

D′1 = {(x̂′, ẑ′) : 0 ≤ ẑ′1 ≤ 1, ẑ′1 ≤ ẑ′2 ≤ 1, ẑ′2 ≤ x̂′1 ≤ 1, ẑ′2 ≤ x̂′2 ≤ x̂′1},

so that

4|T`|2
ˆ
D1∪D2

Fij(x̂, x̂+ ẑ) = 4|T`|2
ˆ
D′1

Fij(x̂
′, x̂′ − ẑ′) + Fij(x̂

′ − ẑ′, x̂′) dx̂′ dẑ′

125

= 8|T`|2
ˆ
D′1

Fij(x̂
′, x̂′ − ẑ′) dx̂′ dẑ′,

because

Fij(x̂
′, x̂′ − ẑ′) =

(ϕ̂i(x̂
′)− ϕ̂i(x̂′ − ẑ′))(ϕ̂j(x̂′)− ϕ̂j(x̂′ − ẑ′))

|B`(ẑ′)|2+2s
= Fij(x̂

′ − ẑ′, x̂′).

Next, consider the four-dimensional simplex

D = {w : 0 ≤ w1 ≤ 1, 0 ≤ w2 ≤ w1, 0 ≤ w3 ≤ w2, 0 ≤ w4 ≤ w3},

the map T1 : D → D′1,

(
x̂′

ẑ′

)
= T1

w1

w2

w3

w4

 =

w1,

w1 − w2 + w3,
w4,
w3

 , |JT1| = 1,

and the Duffy-type transform T : [0, 1]4 → D,

w = T

(
ξ
η

)
=

ξ,
ξη1,
ξη1η2,
ξη1η2η3

 , |JT | = ξ3η2
1η2. (A.1.7)

The composition of these two changes of variables allows to write the variables in Fij in
terms of (ξ, η) in the following way:

x̂′ =

(
ξ

ξ(1− η1 + η1η2)

)
, ẑ′ =

(
ξη1η2η3

ξη1η2

)
, x̂− ẑ′ =

(
ξ(1− η1η2η3)
ξ(1− η1)

)
.

Observe that

Λ
(1)
k (ξ, η) := ϕ̂k(x̂

′)− ϕ̂k(x̂′ − ẑ′) =

−ξη1η2η3 if k = 1,

−ξη1η2(1− η3) if k = 2,

ξη1η2 if k = 3.

Thus,

4|T`|2
ˆ
D1∪D2

Fij(x̂, x̂+ ẑ) = 8|T`|2
ˆ
D
Fij(w1, w1 − w2 + w3, w4, w3) dw =

= 8|T`|2
ˆ

[0,1]4

Λ
(1)
i (ξ, η) Λ

(1)
j (ξ, η)∣∣∣∣B`(ξη1η2η3

ξη1η2

)∣∣∣∣2+2s ξ
3η2

1η2 dξ dη.

126

Finally, as the functions Λ
(1)
k may be rewritten as Λ

(1)
k (ξ, η) = ξη1η2ψ

(1)
k (η3), where

ψ
(1)
1 (η3) = −η3, ψ

(1)
2 (η3) = −(1− η3), ψ

(1)
3 (η3) = 1,

we obtain

4|T`|2
ˆ
D1∪D2

Fij(x̂, x̂+ ẑ) =

= 8|T`|2
ˆ 1

0
ξ3−2sdξ

ˆ 1

0
η2−2s

1 dη1

ˆ 1

0
η1−2s

2 dη2

ˆ 1

0

ψ
(1)
i (η3)ψ

(1)
j (η3)∣∣∣∣B`(η3

1

)∣∣∣∣2+2sdη3.

Obviously, the first three integrals above are straightforwardly calculated by hand, and
the last one involves a regular integrand, so that it is easily estimated by means of a Gaussian
quadrature rule.

It still remains to perform similar calculations on the rest of the sets in (A.1.6). Consider
the new variables (x̂′, ẑ′) = (x̂,−ẑ) on D3, (x̂′, ẑ′) = (x̂ + ẑ, ẑ) on D4, (x̂′, ẑ′) = (x̂ + ẑ, ẑ) on
D5 and (x̂′, ẑ′) = (x̂,−ẑ) on D6, so that

4|T`|2
ˆ
D3∪D4

Fij(x̂, x̂+ ẑ) = 8|T`|2
ˆ
D′2

Fij(x̂
′, x̂′ − ẑ′) dx̂′ dẑ′,

4|T`|2
ˆ
D5∪D6

Fij(x̂, x̂+ ẑ) = 8|T`|2
ˆ
D′3

Fij(x̂
′, x̂′ − ẑ′) dx̂′ dẑ′,

where

D′2 = {(x̂′, ẑ′) : 0 ≤ ẑ′1 ≤ 1, 0 ≤ ẑ′2 ≤ ẑ′1, ẑ′1 ≤ x̂′1 ≤ 1, ẑ′2 ≤ x̂′2 ≤ x̂′1 − ẑ′1 + ẑ′2},
D′3 = {(x̂′, ẑ′) : − 1 ≤ ẑ′1 ≤ 0, 0 ≤ ẑ′2 ≤ 1 + ẑ′1, ẑ

′
2 ≤ x̂′1 ≤ 1 + ẑ′1, ẑ

′
2 ≤ x̂′2 ≤ x̂′1}.

These domains are transformed into [0, 1]4 by the respective composition of the transforma-
tions Th : D → D′h (h = 1, 2)

T2

w1

w2

w3

w4

 =

w1

w2 − w3 + w4

w3

w4

 , T3

w1

w2

w3

w4

 =

w1 − w4

w2 − w4

−w4

w3 − w4

 ,

and the Duffy transformation (A.1.7). Simple calculations lead finally to

4|T`|2
ˆ
D3∪D4

Fij(x̂, x̂+ ẑ) =
8|T`|2

(4− 2s)(3− 2s)(2− 2s)

ˆ 1

0

ψ
(2)
i (η3)ψ

(2)
j (η3)∣∣∣∣B`(1

η3

)∣∣∣∣2+2sdη3,

4|T`|2
ˆ
D5∪D6

Fij(x̂, x̂+ ẑ) =
8|T`|2

(4− 2s)(3− 2s)(2− 2s)

ˆ 1

0

ψ
(3)
i (η3)ψ

(3)
j (η3)∣∣∣∣B`(η3

1− η3

)∣∣∣∣2+2sdη3,

127

where

ψ
(2)
1 (η3) = −1, ψ

(2)
2 (η3) = 1− η3, ψ

(2)
3 (η3) = η3,

ψ
(3)
1 (η3) = η3, ψ

(3)
2 (η3) = −1, ψ

(3)
3 (η3) = 1− η3.

For the sake of simplicity of notation, we write

d(1)(x) :=

∣∣∣∣B`(x
1

)∣∣∣∣2+2s

, d(2)(x) :=

∣∣∣∣B`(1
x

)∣∣∣∣2+2s

,

d(3)(x) :=

∣∣∣∣B`(x
1− x

)∣∣∣∣2+2s

.

In order to estimate the integrals in the unit interval, we use a 9 point Gaussian quadrature
rule. Let p1, . . . , p9 ∈ [0, 1] the quadrature points, and w1, ..., w9 their respective weights.
Considering the integrals over the domains D′h (h ∈ {1, 2, 3}), we may write

ˆ 1

0

ψ
(h)
i (η)ψ

(h)
j (η)

d(h)(η)
dη ≈

9∑
k=1

wk
ψ

(h)
i (pk)ψ

(h)
j (pk)

d(h)(pk)
.

As before, we take advantage of the fact that the integrand only depends on ` through its
denominator. We define:

• A 9× 9 matrix Ψh, such that

Ψh
ij = wj ψ[i−1]3+1(pj)ψd i

3
e(pj) J

(h)(pj).

• A vector dh ∈ R9, given by

dhk =
1

d(h)(pk)
.

Setting Î`,m := Ψ1 · d1 + Ψ2 · d2 + Ψ3 · d3, we obtain, for i ∈ {1, ..., 9},

I
[i−1]3+1,d i

3
e

`,m ≈ 8|T`|2

(4− 2s)(3− 2s)(2− 2s)
Îi`,m

=
8|T`|2

(4− 2s)(3− 2s)(2− 2s)

3∑
h=1

9∑
k=1

wk

ψ
(h)
[i−1]3+1(pk)ψ

(h)

d i
3
e(pk)

d(h)(pk)
,

or in MATLAB R© notation,

I`,m ≈
8|T`|2

(4− 2s)(3− 2s)(2− 2s)
reshape(Î`,m, 3 , 3).

The matrices Ψ1, Ψ2 and Ψ3 are supplied by data.mat, where they are respectively saved as
tpsi1, tpsi2 and tpsi3.

The code of the function triangle_quad is as follows.

128

function ML = triangle_quad(Bl,s,psi1,psi2,psi3,areal,p_I)

ML = (8*areal*areal/((4-2*s)*(3-2*s)*(2-2*s))).*reshape(...

psi1*((sum((Bl*[p_I’; ones(1,length(p_I))]).^2).^(-1-s))’) +...

psi2*((sum((Bl*[ones(1,length(p_I)) ; p_I’]).^2).^(-1-s))’) + ...

psi3*((sum((Bl*[p_I’ ; p_I’ - ones(1,length(p_I))]).^2).^(-1-s))’) ...

, 3 , 3);

end

The matrix Bl plays the role of B`, s is s, areal is |T`|, and p_I contains the values of
the quadrature points in [0, 1]. The latter are stored in data.mat under the same name, see
Appendix A.3.1. The matrices Ψ1, Ψ2 and Ψ3 are respectively saved as psi1, psi2 and psi3.

The output ML of this function is a 3× 3 matrix, such that: ML ≈ I`,`.

A.1.5 Complement

Recall that we are assuming that the domain Ω is contained in a ball B = B(0, R). Here we are
considering the interaction of two basis functions ϕi, ϕj such that supp(ϕi) ∩ supp(ϕj) = T`,
over the region T` ×Bc. Namely, we aim to compute

J` =

ˆ
T`

ˆ
Bc

ϕi(x)ϕj(x)

|x− y|2+2s
dydx =

ˆ
T`

ϕi(x)ϕj(x)ψ(x) dx

= 2|T`|
ˆ
T̂
ϕ̂i(x̂)ϕ̂j(x̂)ψ(χ`(x̂)) dx̂,

where

ψ(x) =

ˆ
Bc

1

|x− y|2+2s
dy.

The integral above may be calculated by a Gauss quadrature rule in the reference element
T̂ , provided that the values of ψ at the quadrature points are computed.

Observe that the function ψ is radial (see Figure A.2) and therefore it suffices to estimate
it on points of the form x = (x1, 0), where x1 > 0. For a fixed point x and given θ ∈ [0, 2π],
let ρ0(θ) be the distance between x and the intersection of the ray starting from x with angle
θ with respect to the horizontal axis. Then, it is simple to verify that

ρ0(θ, x) = −x1 cos θ +
√
R2 − x2

1 sin2 θ,

and therefore, integrating in polar coordinates,

ψ(x) =
1

2s

ˆ 2π

0

1

ρ0(θ, x)2s
dθ.

In order to compute J` we perform two nested quadrature rules: one over T̂ and, for each
quadrature point pk in T̂ , another one to estimate ψ(pk) over [0, 2π]. We apply a 12 point
quadrature formula over T̂ and a 9 point one on [0, 2π]. Let p1, . . . , p12 ∈ T̂ , θ1, . . . , θ9 ∈ [0, 2π]

129

x = (x1, 0)

ρ0(θ, x)

θ

Figure A.2: Computing ψ(x) in a point of B = B(0, R). Due to the symmetry, the
value of ψ is the same along the dashed circle, hence we may assume that x = (x1, 0)
and 0 ≤ x1 < R. For any 0 ≤ θ ≤ π , the function ρ0 is given by ρ0(θ, x) = −x1 cos θ+√
R2 − x2

1 sin2 θ.

be these quadrature nodes, and w1, . . . , w12, W1, . . . ,W9 their respective weights. Applying
the rules we obtain

J` ≈
|T`|
s

12∑
k=1

wkϕ̂i(pk)ϕ̂j(pk)

9∑
q=1

Wq

ρ0(θq, χ`(pk))2s
.

In the same fashion as for the other computations, we write the previous expression as the
product of a pre-computed matrix (that only depends on the choice of the quadrature rules)
times a vector that depends on the elements under consideration. Indeed, we define:

• A matrix Φ ∈ R9×12, such that

Φij = wj ϕ̂[i−1]3+1(pj)ϕ̂d i
3
e(pj).

• A vector ρ ∈ R12, such that

ρk =
∑
q

Wq

ρ0(θq, χ`(pk))2s
.

Upon defining Ĵ` := Φ · ρ, we obtain

J
[i−1]3+1,d i

3
e

` ≈ |T`|
s
Ĵ i` , i ∈ {1, ..., 9}.

Using MATLAB R© notation, the above identity may be written as

J` ≈
|T`|
s

reshape(Ĵ`, 3 , 3).

The function comp_quad perform the previous computations.

130

function ML = comp_quad(Bl, x0, y0, s , phi , R, areal , p_I , w_I , p_T)

x = (Bl*p_T’)’ + [x0.*ones(length(p_T),1) , y0.*ones(length(p_T),1)];

aux = x(:,1)*cos(2*pi*p_I’) + x(:,2)*sin(2*pi*p_I’);

weight = ((-aux + sqrt(aux.^2 + R^2 - (x(:,1).^2 +...

x(:,2).^2)*ones(1,length(p_I)))).^(-2*s))*w_I;

ML = (areal*2*pi/s).*reshape(phi*weight , 3 , 3);

end

Recall the parametrization χ`(x̂) = B`x̂ + x
(1)
` , so that Bl, x0 and y0 satisfy Bl = B` and(

x0

y0

)
= x

(1)
` . Moreover, s is s, areal is |T`|, p_I contains the quadrature points in the

interval [0, 1], so that 2πp_I(q) = θq, w_I(q) = Wq, p_T contains 12 quadrature points over
T̂ , stored in data.mat as p_T_12 (see Appendix A.3.1) and phi is the matrix Φ, that is
pre-computed and stored in data.mat as cphi (see Appendix A.3.6).

The output ML satisfies ML ≈ 2J`.

A.2 Two auxiliary functions

The main code uses two functions that have not been outlined yet. Here we show them in
detail.

The function setdiff_ takes as input two vectors A and B, such that A contains con-
secutive positive integers, ordered low to high, B contains positive integers and is such that
length(B) ≤ length(A) and max(B) ≤ max(A). The function computes the set difference
A \ B, taking advantage of the pre-condition.

function e = setdiff_(A , B)

e = A;

b = B - A(1) + 1;

b(b<1)=[];

e(b) = [];

end

On the other hand, the function fquad calculates the entries of the right hand side vector
in (3.2.2). Taking as input areal := |T`|, the vectors xl and yl, that contain the x and y
coordinates of the vertices respectively, and a function f , fquad returns a vector in R3 array
such that

fquadk ≈
ˆ
T`

f ϕik .

Here, for k ∈ {1, 2, 3}, ik denotes the index of the k-th vertex of T` and ϕik the basis function
corresponding to it.

function VL = fquad(areal, xl , yl , f)

VL = zeros(3,1);

131

xmid = [(xl(2)+xl(3))/2, (xl(1)+xl(3))/2, (xl(1)+xl(2))/2];

ymid = [(yl(2)+yl(3))/2, (yl(1)+yl(3))/2, (yl(1)+yl(2))/2];

for i=1:3

for j=1:3

if j~=i

VL(i) = VL(i) + areal/6 * f(xmid(j), ymid(j));

end

end

end

end

A.3 Auxiliary data

In order to perform the necessary calculations efficiently, along the execution the code makes
use of pre-computed data, stored in data.mat. Here we describe the variables provided by
this file. It is convenient to clarify that all the MATLAB R© code showed in this section does
not belong to the program itself. It is included with an illustrative purpose.

A.3.1 Quadrature points and weights: p cube, p T, p T comp, p I

and w I

We list the quadrature points used in all the quadrature rules and their respective weights.

The matrix p_cube is used as input on functions vertex_quad and edge_quad, and con-
tains 27 quadrature points over [0, 1]3.

p_cube =

0.1127 0.1127 0.1127

0.1127 0.1127 0.5000

0.1127 0.1127 0.8873

0.1127 0.5000 0.1127

0.1127 0.5000 0.5000

0.1127 0.5000 0.8873

0.1127 0.8873 0.1127

0.1127 0.8873 0.5000

0.1127 0.8873 0.8873

0.5000 0.1127 0.1127

0.5000 0.1127 0.5000

0.5000 0.1127 0.8873

0.5000 0.5000 0.1127

0.5000 0.5000 0.5000

0.5000 0.5000 0.8873

132

0.5000 0.8873 0.1127

0.5000 0.8873 0.5000

0.5000 0.8873 0.8873

0.8873 0.1127 0.1127

0.8873 0.1127 0.5000

0.8873 0.1127 0.8873

0.8873 0.5000 0.1127

0.8873 0.5000 0.5000

0.8873 0.5000 0.8873

0.8873 0.8873 0.1127

0.8873 0.8873 0.5000

0.8873 0.8873 0.8873

Over T̂ , we use two different quadrature rules, with 6 and 12 points. The set of nodes p_T_6
is used to compute the non-touching element case and p_T_12 as an input on comp_quad.

p_T_6 =

0.5541 0.4459

0.5541 0.1081

0.8919 0.4459

0.9084 0.0916

0.9084 0.8168

0.1832 0.0916

p_T_12 =

0.7507 0.2493

0.7507 0.5014

0.4986 0.2493

0.9369 0.0631

0.9369 0.8738

0.1262 0.0631

0.6896 0.6365

0.3635 0.0531

0.9469 0.3104

0.3635 0.3104

0.6896 0.0531

0.9469 0.6365

The 9 × 1 array p_I contains the quadrature points over [0, 1], and w_I is a 9 × 1 array
that contains their respective weights. These variables are used as input on comp_quad. The
set of nodes p_I is also employed in triangle_quad.

p_I = w_I =

133

0.5000 0.1651

0.0820 0.0903

0.9180 0.0903

0.0159 0.0406

0.9841 0.0406

0.3379 0.1562

0.6621 0.1562

0.8067 0.1303

0.1933 0.1303

A.3.2 Auxiliary variables to compute non-touching elements
case: phiA, phiB and phiD

The variables phiA, phiB and phiD play the role of ΦA , ΦB and ΦD (defined in Appendix
A.1.1), respectively. We expose below the code used to set up these variables. We use the
lists p_T_6 and w_T_6 of quadrature points and weights in T̂ defined in Appendix A.3.1:

w_T_6 = zeros(6,1);

w_T_6(1) = 0.1117;

w_T_6(2) = w_T_6(1);

w_T_6(3) = w_T_6(1);

w_T_6(4) = 0.0550;

w_T_6(5) = w_T_6(4);

w_T_6(6) = w_T_6(4);

local = cell(1,6);

local{1} = @(x,y) 1-x;

local{2} = @(x,y) x-y;

local{3} = @(x,y) y;

local{4} = @(x,y) -(1-x);

local{5} = @(x,y) -(x-y);

local{6} = @(x,y) -y;

mat_loc = zeros(6);

for i = 1:6

for j = 1:6

mat_loc(i,j) = local{i}(p_T_6(j,1),p_T_6(j,2));

end

end

W = w_T_6*(w_T_6’);

M_aux = zeros(18);

N_aux = zeros(18);

134

L_aux = zeros(18);

phiB = zeros(9,36);

phiA = zeros(9,36);

phiD = zeros(9,36);

for i=1:3

for j=1:3

for k = 1:6

for q=1:6

M_aux(q + 6*(i-1) , k + 6*(j-1)) =...

W(q,k)*mat_loc(i,q)*mat_loc(j+3,k);

N_aux(q + 6*(i-1) , k + 6*(j-1)) =...

W(q,k)*mat_loc(i,q)*mat_loc(j,q);

L_aux(q + 6*(i-1) , k + 6*(j-1)) =...

W(q,k)*mat_loc(i+3,k)*mat_loc(j+3,k);

end

end

end

end

for i=1:9

[im jm] = ind2sub([3 3] , i);

im = 6*(im - 1) + 1;

jm = 6*(jm - 1) + 1;

phiB(i,:) = reshape(M_aux(im:im+5 , jm:jm+5) , 1 , []);

phiA(i,:) = reshape(N_aux(im:im+5 , jm:jm+5) , 1 , []);

phiD(i,:) = reshape(L_aux(im:im+5 , jm:jm+5) , 1 , []);

end

A.3.3 Auxiliary variables to compute vertex-touching elements
case: vpsi1 and vpsi2

The variables vpsi1 and vpsi2 are used as arguments of the function vertex_quad and play
the role of the matrices Ψ1 and Ψ2 defined in Appendix A.1.2. Below we show the code used
to initialize these variables.

First we define a variable w_cube that lists the weights associated with each quadrature
point stored in p_cube:

w_cube =

0.0214

0.0343

135

0.0214

0.0343

0.0549

0.0343

0.0214

0.0343

0.0214

0.0343

0.0549

0.0343

0.0549

0.0878

0.0549

0.0343

0.0549

0.0343

0.0214

0.0343

0.0214

0.0343

0.0549

0.0343

0.0214

0.0343

0.0214

The following lines generate vpsi1 and vpsi2:

psi_D1 = cell(5,1);

psi_D1{1} = @(x,y,z) y-1;

psi_D1{2} = @(x,y,z) 1-x;

psi_D1{3} = @(x,y,z) x;

psi_D1{4} = @(x,y,z) -y.*(1-z);

psi_D1{5} = @(x,y,z) -y.*z;

psi_D2 = cell(5,1);

psi_D2{1} = @(x,y,z) -(y-1);

psi_D2{2} = @(x,y,z) y.*(1-z);

psi_D2{3} = @(x,y,z) y.*z;

psi_D2{4} = @(x,y,z) -(1-x);

psi_D2{5} = @(x,y,z) -x;

vpsi1 = zeros(25,27);

vpsi2 = zeros(25,27);

136

for i = 1:5

for j = 1:5

f1 = @(x,y,z) psi_D1{i}(x,y,z).*psi_D1{j}(x,y,z).*y;

f2 = @(x,y,z) psi_D2{i}(x,y,z).*psi_D2{j}(x,y,z).*y;

vpsi1(sub2ind([5 5], i , j) , :) =...

(f1(p_cube(:,1) ,p_cube(:,2) , p_cube(:,3))).*w_cube;

vpsi2(sub2ind([5 5], i , j) , :) =...

(f2(p_cube(:,1) , p_cube(:,2) , p_cube(:,3))).*w_cube;

end

end

A.3.4 Auxiliary variables to compute edge-touching elements
case: epsi1, ..., epsi5

The variables epsi1, ..., epsi5 are used as input on the function edge_quad and play the
role of Ψ1, ..., Ψ5 defined in Appendix A.1.3, respectively. The code employed to set up these
variables is exhibited below. We used the variable w_cube defined in the previous sub-section
(containing weights associated to quadrature points stored in p_cube):

psi_D1 = cell(3,1);

psi_D1{1} = @(x,y,z) -x.*y;

psi_D1{2} = @(x,y,z) x.*(1-z);

psi_D1{3} = @(x,y,z) x.*z;

psi_D1{4} = @(x,y,z) -x.*(1-y);

psi_D2 = cell(3,1);

psi_D2{1} = @(x,y,z) -x.*y.*z;

psi_D2{2} = @(x,y,z) -x.*(1-y);

psi_D2{3} = @(x,y,z) x;

psi_D2{4} = @(x,y,z) -x.*y.*(1-z);

psi_D3 = cell(3,1);

psi_D3{1} = @(x,y,z) x.*y;

psi_D3{2} = @(x,y,z) -x.*(1-y.*z);

psi_D3{3} = @(x,y,z) x.*(1-y);

psi_D3{4} = @(x,y,z) -x.*y.*z;

psi_D4 = cell(3,1);

psi_D4{1} = @(x,y,z) x.*y.*z;

137

psi_D4{2} = @(x,y,z) x.*(1-y);

psi_D4{3} = @(x,y,z) x.*y.*(1-z);

psi_D4{4} = @(x,y,z) -x;

psi_D5 = cell(3,1);

psi_D5{1} = @(x,y,z) x.*y.*z;

psi_D5{2} = @(x,y,z) -x.*(1-y);

psi_D5{3} = @(x,y,z) x.*(1-y.*z);

psi_D5{4} = @(x,y,z) -x.*y;

epsi1 = zeros(16,27);

epsi2 = zeros(16,27);

epsi3 = zeros(16,27);

epsi4 = zeros(16,27);

epsi5 = zeros(16,27);

for i = 1:4

for j = 1:4

f1 = @(x,y,z) psi_D1{i}(x,y,z).*psi_D1{j}(x,y,z) .* (x.^2);

f2 = @(x,y,z) psi_D2{i}(x,y,z).*psi_D2{j}(x,y,z) .* (x.^2).*y;

f3 = @(x,y,z) psi_D3{i}(x,y,z).*psi_D3{j}(x,y,z) .* (x.^2).*y;

f4 = @(x,y,z) psi_D4{i}(x,y,z).*psi_D4{j}(x,y,z) .* (x.^2).*y;

f5 = @(x,y,z) psi_D5{i}(x,y,z).*psi_D5{j}(x,y,z) .* (x.^2).*y;

epsi1(sub2ind([4 4], i , j) , :) =...

(f1(p_cube(:,1) , p_cube(:,2) , p_cube(:,3))).*w_cube;

epsi2(sub2ind([4 4], i , j) , :) =...

(f2(p_cube(:,1) , p_cube(:,2) , p_cube(:,3))).*w_cube;

epsi3(sub2ind([4 4], i , j) , :) =...

(f3(p_cube(:,1) , p_cube(:,2) , p_cube(:,3))).*w_cube;

epsi4(sub2ind([4 4], i , j) , :) =...

(f4(p_cube(:,1) , p_cube(:,2) , p_cube(:,3))).*w_cube;

epsi5(sub2ind([4 4], i , j) , :) =...

(f5(p_cube(:,1) , p_cube(:,2) , p_cube(:,3))).*w_cube;

end

end

138

A.3.5 Auxiliary variables to compute identical elements case:
tpsi1, tpsi2 and tpsi3

Here, the variables tpsi1, tpsi2 and tpsi3 are used as inputs on the function triangle_quad

and play the role of the matrices Ψ1, Ψ2 and Ψ3, defined in Appendix A.1.4, respectively. We
describe the code used to set up these variables, where we use the quadrature data p_I and
w_I introduced in Appendix A.3.1:

lambda_D1 = cell(3,1);

lambda_D1{1} = @(z) -z;

lambda_D1{2} = @(z) -(1-z);

lambda_D1{3} = @(z) 1;

lambda_D2 = cell(3,1);

lambda_D2{1} = @(z) -1;

lambda_D2{2} = @(z) (1-z);

lambda_D2{3} = @(z) z;

lambda_D3 = cell(3,1);

lambda_D3{1} = @(z) z;

lambda_D3{2} = @(z) -1;

lambda_D3{3} = @(z) 1-z;

tpsi1 = zeros(9,9);

tpsi2 = zeros(9,9);

tpsi3 = zeros(9,9);

for i = 1:3

for j = 1:3

f1 = @(z) lambda_D1{i}(z).*lambda_D1{j}(z);

f2 = @(z) lambda_D2{i}(z).*lambda_D2{j}(z);

f3 = @(z) lambda_D3{i}(z).*lambda_D3{j}(z);

tpsi1(sub2ind([3 3], i , j) , :) = f1(p_I).*w_I;

tpsi2(sub2ind([3 3], i , j) , :) = f2(p_I).*w_I;

tpsi3(sub2ind([3 3], i , j) , :) = f3(p_I).*w_I;

end

end

139

A.3.6 Auxiliary variable to compute quadrature over comple-
ment: cphi

The matrix Φ, defined in Appendix A.1.5, is stored as the variable cphi and used as input on
the function comp_quad. Before explaining the code we employed to build it, we define the 12
by 1 array w_T_12 as the set of weights associated to the quadrature points stored in p_T_12:

w_T_12 =

0.1168

0.1168

0.1168

0.0508

0.0508

0.0508

0.0829

0.0829

0.0829

0.0829

0.0829

0.0829

Then, the following lines generate cphi:

local = cell(1,3);

local{1} = @(x,y) 1-x;

local{2} = @(x,y) x-y;

local{3} = @(x,y) y;

cphi = zeros(9,12);

for i = 1:3

for j = 1:3

f1 = @(z,y) local{i}(z,y).*local{j}(z,y);

cphi(sub2ind([3 3], i , j) , :) =...

f1(p_T_12(:,1) , p_T_12(:,2)).*w_T_12;

end

end

140

A.4 Main Code

For the sake of the reader’s convenience, we include here the main code described in sections
3.3 and 3.4.

1 clc

2 s = 0.5;

3 f = @(x,y) 1;

4 cns = s*2^(-1+2*s)*gamma(1+s)/(pi*gamma(1-s));

5 load(’data.mat’);

6 nn = size(p,2);

7 nt = size(t,1)

8 uh = zeros(nn,1);

9 K = zeros(nn,nn);

10 b = zeros(nn,1);

11 % Compute areas

12 area = zeros(nt,1);

13 for i=1:nt

14 aux = p(: , t(i,:));

15 area(i) = 0.5.*abs(det([aux(:,1) - aux(:,3)...

aux(:,2) - aux(:,3)]));

16 end

17 % Build patches data structure

18 deg = zeros(nn,1);

19 for i=1:nt

20 deg(t(i,:)) = deg(t(i,:)) + 1;

21 end

22 patches = cell(nn , 1);

23 for i=1:nn

24 patches{i} = zeros(1 , deg(i));

25 end

26 for i=1:nt

27 patches{ t(i,1) }(end - deg(t(i,1)) + 1) = i;

28 patches{ t(i,2) }(end - deg(t(i,2)) + 1) = i;

29 patches{ t(i,3) }(end - deg(t(i,3)) + 1) = i;

30 deg(t(i,:)) = deg(t(i,:)) - 1;

31 end

32 % Preallocate auxiliary memory

33 vl = zeros(6,2);

34 vm = zeros(6*nt,2);

35 norms = zeros(36,nt);

36 ML = zeros(6,6,nt);

37 empty = zeros(nt,1);

38 aux_ind = reshape(repmat(1:3:3*nt , 6 , 1) , [] , 1);

141

39 empty_vtx = zeros(2,3*nt);

40 BBm = zeros(2,2*nt);

41 for l=1:nt-nt_aux % Main Loop

42 edge = [patches{t(l,1)} patches{t(l,2)} patches{t(l,3)}];

43 [nonempty M N] = unique(edge , ’first’);

44 edge(M) = [];

45 vertex = setdiff(nonempty , edge);

46 ll = nt - l + 1 - sum(nonempty>=l);

47 edge(edge<=l) = [];

48 vertex(vertex<=l) = [];

49 empty(1:ll) = setdiff_(l:nt , nonempty);

50 empty_vtx(: , 1:3*ll) = p(: , t(empty(1:ll) , :)’);

51 nodl = t(l,:);

52 xl = p(1 , nodl); yl = p(2 , nodl);

53 Bl = [xl(2)-xl(1) yl(2)-yl(1); xl(3)-xl(2) yl(3)-yl(2)]’;

54 b(nodl) = b(nodl) + fquad(area(l),xl,yl,f);

55 K(nodl, nodl) = K(nodl, nodl)...

+ triangle_quad(Bl,s,tpsi1,tpsi2,tpsi3,area(l),p_I)...

+ comp_quad(Bl,xl(1),yl(1),s,cphi,R,area(l),p_I,w_I,p_T_12);

56 BBm(:,1:2*ll) = reshape([empty_vtx(: , 2:3:3*ll)...

- empty_vtx(: , 1:3:3*ll) , empty_vtx(: , 3:3:3*ll)...

- empty_vtx(: , 2:3:3*ll)] , [] , 2)’ ;

57 vl = p_T_6*(Bl’) + [ones(6,1).*xl(1) ones(6,1).*yl(1)];

58 vm(1:6*ll,:) = reshape(...

permute(...

reshape(p_T_6*BBm(:,1:2*ll) , [6 1 2 ll]) , [1 4 3 2]) , [6*ll 2])...

+ empty_vtx(: , aux_ind(1:6*ll))’;

59 norms(:,1:ll) = reshape(pdist2(vl,vm(1:6*ll,:)), 36 , []).^(-2-2*s);

60 ML(1:3,1:3,1:ll) = reshape(phiA*norms(:,1:ll) , 3 , 3 , []);

61 ML(1:3,4:6,1:ll) = reshape(phiB*norms(:,1:ll) , 3 , 3 , []);

62 ML(4:6,4:6,1:ll) = reshape(phiD*norms(:,1:ll) , 3 , 3 , []);

63 ML(4:6,1:3,1:ll) = permute(ML(1:3,4:6,1:ll) , [2 1 3]);

64 % Assembling stiffness matrix

65 for m=1:ll

66 order = [nodl t(empty(m) , :)];

67 K(order,order) = K(order,order)...

+ (8*area(empty(m))*area(l)).*ML(1:6,1:6,m);

68 end

69 for m=vertex

70 nodm = t(m,:);

71 nod_com = intersect(nodl, nodm);

72 order = [nod_com nodl(nodl~=nod_com) nodm(nodm~=nod_com)];

73 K(order,order) = K(order,order)...

142

+ 2.*vertex_quad(nodl,nodm,nod_com,p,s,vpsi1,vpsi2,area(l),area(m),p_cube);

74 end

75 for m=edge

76 nodm = t(m,:);

77 nod_diff = [setdiff(nodl, nodm) setdiff(nodm, nodl)];

78 order = [nodl(nodl~=nod_diff(1)) nod_diff];

79 K(order,order) = K(order,order)...

+ 2.*edge_quad(...

nodl,nodm,nod_diff,p,s,epsi1,epsi2,epsi3,epsi4,epsi5,area(l),area(m),p_cube);

80 end

81 end

82 uh(nf) = (K(nf,nf)\b(nf))./cns;

83 trimesh(t(1:nt - nt_aux , :), p(1,:),p(2,:),uh);

143

144

Bibliography

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover Publications,
1965.

[2] P. J. Acklam. MATLAB array manipulation tips and tricks. Notes, 2003.

[3] G. Acosta and J. P. Borthagaray. A fractional Laplace equation: Regularity of solutions
and finite element approximations. SIAM J. Numer. Anal., 55(2):472–495, 2017.

[4] Gabriel Acosta and Francisco M Bersetche. Numerical approximations for a fully frac-
tional allen-cahn equation. arXiv preprint arXiv:1903.08964, 2019.

[5] Gabriel Acosta, Francisco M Bersetche, and Juan Pablo Borthagaray. Finite element
approximations for fractional evolution problems. arXiv preprint arXiv:1705.09815, 2017.

[6] Gabriel Acosta, Francisco M Bersetche, and Juan Pablo Borthagaray. A short fe imple-
mentation for a 2d homogeneous dirichlet problem of a fractional Laplacian. Computers
& Mathematics with Applications, 74(4):784–816, 2017.

[7] Gabriel Acosta, Juan Pablo Borthagaray, Oscar Bruno, and Mart́ın Maas. Regularity
theory and high order numerical methods for the (1d)-fractional Laplacian. Mathematics
of Computation, 87(312):1821–1857, 2018.

[8] Mark Ainsworth and Christian Glusa. Aspects of an adaptive finite element method for
the fractional laplacian: a priori and a posteriori error estimates, efficient implementation
and multigrid solver. Computer Methods in Applied Mechanics and Engineering, 327:4–
35, 2017.

[9] Mark Ainsworth and Zhiping Mao. Analysis and approximation of a fractional Cahn–
Hilliard equation. SIAM Journal on Numerical Analysis, 55(4):1689–1718, 2017.

[10] Mark Ainsworth and Zhiping Mao. Well-posedness of the Cahn–Hilliard equation with
fractional free energy and its fourier galerkin approximation. Chaos, Solitons & Fractals,
102:264–273, 2017.

[11] Goro Akagi, Giulio Schimperna, and Antonio Segatti. Fractional Cahn–Hilliard, Allen–
Cahn and porous medium equations. Journal of Differential Equations, 261(6):2935–
2985, 2016.

145

[12] J. Alberty, C. Carstensen, and S. A. Funken. Remarks around 50 lines of Matlab: short
finite element implementation. Numer. Algorithms, 20(2-3):117–137, 1999.

[13] Samuel M Allen and John W Cahn. A microscopic theory for antiphase boundary motion
and its application to antiphase domain coarsening. Acta Metallurgica, 27(6):1085–1095,
1979.

[14] E. Bazhlekova, B. Jin, R. Lazarov, and Z. Zhou. An analysis of the Rayleigh–Stokes
problem for a generalized second-grade fluid. Numer. Math., 131(1):1–31, 2015.

[15] D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert. Application of a fractional
advection-dispersion equation. Water Resources Research, 36(6):1403–1412, 2000.

[16] B. Berkowitz, A. Cortis, M. Dentz, and H. Scher. Modeling non-Fickian transport in geo-
logical formations as a continuous time random walk. Reviews of Geophysics, 44(2):n/a–
n/a, 2006. RG2003.

[17] J. Bertoin. Lévy processes, volume 121 of Cambridge Tracts in Math. Cambridge Uni-
versity Press, Cambridge, 1996.

[18] Andrea Bonito, Wenyu Lei, and Joseph E Pasciak. Numerical approximation of space-
time fractional parabolic equations. Computational Methods in Applied Mathematics,
17(4):679–705, 2017.

[19] Juan Pablo Borthagaray. Laplaciano fraccionario: regularidad de soluciones y aproxima-
ciones por elementos finitos. PhD thesis, Uninversidad de Buenos Aires, 2017.

[20] Juan Pablo Borthagaray, Leandro M Del Pezzo, and Sandra Mart́ınez. Finite element
approximation for the fractional eigenvalue problem. Journal of Scientific Computing,
77(1):308–329, 2018.

[21] Andrea Braides. Gamma-convergence for Beginners, volume 22. Clarendon Press, 2002.

[22] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Uni-
versitext. Springer, New York, 2011.

[23] D. Brockmann, L. Hufnagel, and T. Geisel. The scaling laws of human travel. Nature,
439(7075):462–465, 2006.

[24] John W Cahn and John E Hilliard. Free energy of a nonuniform system. i. interfacial
free energy. The Journal of chemical physics, 28(2):258–267, 1958.

[25] S. Chaturapruek, J. Breslau, D. Yazdi, T. Kolokolnikov, and S. G. McCalla. Crime
modeling with Lévy flights. SIAM J. Appl. Math., 73(4):1703–1720, 2013.

[26] Paulo Mendes de Carvalho Neto. Fractional differential equations: a novel study of local
and global solutions in Banach spaces. PhD thesis, ICMC-USP, 2013.

146

[27] D. del Castillo-Negrete, B. A. Carreras, and V. E. Lynch. Fractional diffusion in plasma
turbulence. Phys. Plasmas, 11(8):3854–3864, 2004.

[28] D. del Castillo-Negrete, B. A. Carreras, and V. E. Lynch. Nondiffusive transport in
plasma turbulence: A fractional diffusion approach. Phys. Rev. Lett., 94:065003, 2005.

[29] M. D’Elia and M. Gunzburger. The fractional Laplacian operator on bounded domains
as a special case of the nonlocal diffusion operator. Comp. Math. Appl., 66(7):1245 –
1260, 2013.

[30] Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci. Hitchhiker’s guide to
the fractional Sobolev spaces. Bull. Sci. Math., 136(5):521–573, 2012.

[31] K. Diethelm. The analysis of fractional differential equations, volume 2004 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 2010. An application-oriented exposition
using differential operators of Caputo type.

[32] B. Dyda, A. Kuznetsov, and M. Kwaśnicki. Fractional Laplace operator and Meijer
G-function. Constr. Approx., 45(3):427–448, 2017.

[33] Xavier Fernández-Real and Xavier Ros-Oton. Boundary regularity for the fractional heat
equation. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie
A. Matematicas, 110(1):49–64, 2016.

[34] A. Freed, K. Diethelm, and Y. Luchko. Fractional-order viscoelasticity (FOV): Consti-
tutive development using the fractional calculus: First annual report. Technical report,
NASA’s Glenn Research Center, 2002.

[35] Ciprian Gal and Mahamadi Warma. Fractional in time semilinear parabolic equations
and applications. HAL Id: hal-01578788, 2017.

[36] Roberto Garrappa. Numerical evaluation of two and three parameter mittag-leffler func-
tions. SIAM Journal on Numerical Analysis, 53(3):1350–1369, 2015.

[37] Rudolf Gorenflo, Yuri Luchko, and Masahiro Yamamoto. Time-fractional diffusion equa-
tion in the fractional sobolev spaces. Fractional Calculus and Applied Analysis, 18(3):799–
820, 2015.

[38] G. Grubb. Fractional Laplacians on domains, a development of Hörmander’s theory of
µ-transmission pseudodifferential operators. Adv. Math., 268:478 – 528, 2015.

[39] G. Grubb. Spectral results for mixed problems and fractional elliptic operators. J. Math.
Anal. Appl., 421(2):1616–1634, 2015.

[40] E. Hanert. On the numerical solution of space–time fractional diffusion models. Comput.
& Fluids, 46(1):33 – 39, 2011. 10th {ICFD} Conference Series on Numerical Methods
for Fluid Dynamics (ICFD 2010).

147

[41] Dongdong He, Kejia Pan, and Hongling Hu. A fourth-order maximum principle pre-
serving operator splitting scheme for three-dimensional fractional Allen-Cahn equations.
arXiv preprint arXiv:1804.07246, 2018.

[42] Tianliang Hou, Tao Tang, and Jiang Yang. Numerical analysis of fully discretized crank–
nicolson scheme for fractional-in-space Allen–Cahn equations. Journal of Scientific Com-
puting, 72(3):1214–1231, 2017.

[43] Y. Huang and A. M. Oberman. Numerical methods for the fractional Laplacian: A finite
difference-quadrature approach. SIAM J. Numer. Anal., 52(6):3056–3084, 2014.

[44] B. Jin, R. Lazarov, and Z. Zhou. Error estimates for a semidiscrete finite element method
for fractional order parabolic equations. SIAM J. Numer. Anal., 51(1):445–466, 2013.

[45] B. Jin, R. Lazarov, and Z. Zhou. Two fully discrete schemes for fractional diffusion and
diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput., 38(1):A146–A170,
2016.

[46] Bangti Jin, Raytcho Lazarov, Joseph Pasciak, and Zhi Zhou. Galerkin fem for fractional
order parabolic equations with initial data in Hs, 0 ≤ s ≤ 1. In International Conference
on Numerical Analysis and Its Applications, pages 24–37. Springer, 2012.

[47] Bangti Jin, Raytcho Lazarov, Joseph Pasciak, and Zhi Zhou. Error analysis of semidis-
crete finite element methods for inhomogeneous time-fractional diffusion. IMA Journal
of Numerical Analysis, 35(2):561–582, 2014.

[48] Bangti Jin, Raytcho Lazarov, and Zhi Zhou. Error estimates for a semidiscrete finite
element method for fractional order parabolic equations. SIAM Journal on Numerical
Analysis, 51(1):445–466, 2013.

[49] M Karkulik. Variational formulation of time-fractional parabolic equations. Computers
& Mathematics with Applications, 75(11):3929–3938, 2018.

[50] M. Karkulik and J.M. Melenk. H -matrix approximability of inverses of discretizations
of the fractional Laplacian. arXiv preprint arXiv:1808.04274, 2018.

[51] A Anatolii Aleksandrovich Kilbas, Hari Mohan Srivastava, and Juan J Trujillo. Theory
and applications of fractional differential equations, volume 204. Elsevier Science Limited,
2006.

[52] T. A. M. Langlands, B. I. Henry, and S. L. Wearne. Fractional cable equation models for
anomalous electrodiffusion in nerve cells: finite domain solutions. SIAM J. Appl. Math.,
71(4):1168–1203, 2011.

[53] Stig Larsson. Semilinear parabolic partial differential equations: theory, approximation,
and application. New trends in the mathematical and computer sciences, 3:153–194, 2006.

148

[54] Zheng Li, Hong Wang, and Danping Yang. A space–time fractional phase-field model
with tunable sharpness and decay behavior and its efficient numerical simulation. Journal
of Computational Physics, 347:20–38, 2017.

[55] Huan Liu, Aijie Cheng, Hong Wang, and Jia Zhao. Time-fractional Allen–Cahn and
Cahn–Hilliard phase-field models and their numerical investigation. Computers & Math-
ematics with Applications, 76(8):1876–1892, 2018.

[56] C. Lubich. Convolution quadrature and discretized operational calculus. I. Numer.
Math., 52(2):129–145, 1988.

[57] C. Lubich. Convolution quadrature revisited. BIT, 44(3):503–514, 2004.

[58] Yuri Luchko. Fractional wave equation and damped waves. J. Math. Phys., 54(3):031505,
16, 2013.

[59] Alessandra Lunardi. Interpolation theory, volume 16. Springer, 2018.

[60] F. Mainardi, Y. Luchko, G. Pagnini, and Dedicated To Rudolf Gorenflo. The fundamental
solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal, 4(2):153–
192, 2001.

[61] F. Mainardi and P. Paradisi. Fractional diffusive waves. J. Comput. Acoust., 09(04):1417–
1436, 2001.

[62] F. Mainardi, M. Raberto, R. Gorenflo, and E. Scalas. Fractional calculus and continuous-
time finance II: the waiting-time distribution. Phys. A, 287(3–4):468 – 481, 2000.

[63] Arakaparampil M Mathai and Hans J Haubold. Special functions for applied scientists,
volume 4. Springer, 2008.

[64] W. McLean. Regularity of solutions to a time-fractional diffusion equation. ANZIAM
J., 52(2):123–138, 2010.

[65] W. McLean and V. Thomée. Numerical solution via Laplace transforms of a fractional
order evolution equation. J. Integral Equations Appl., 22(1):57–94, 2010.

[66] Kalle Mikkola. Infinite-Dimensional Linear Systems, Optimal Control and Algebraic Ric-
cati Equations. PhD thesis, Helsinki University of Technology Institute of Mathematics,
2002.

[67] E. W. Montroll and G. H. Weiss. Random walks on lattices. II. J. Mathematical Phys.,
6:167–181, 1965.

[68] K. Mustapha and W. McLean. Superconvergence of a discontinuous Galerkin method for
fractional diffusion and wave equations. SIAM J. Numer. Anal., 51(1):491–515, 2013.

[69] R. H. Nochetto, E. Otárola, and A. J. Salgado. A PDE approach to space-time fractional
parabolic problems. SIAM J. Numer. Anal., 54(2):848–873, 2016.

149

[70] Y. Pachepsky, D. Timlin, and W. Rawls. Generalized Richards’ equation to simulate
water transport in unsaturated soils. Journal of Hydrology, 272(1–4):3 – 13, 2003. Soil
Hydrological Properties and Processes and their Variability in Space and Time.

[71] I. Podlubny. Fractional differential equations, volume 198 of Mathematics in Science and
Engineering. Academic Press, Inc., San Diego, CA, 1999. An introduction to fractional
derivatives, fractional differential equations, to methods of their solution and some of
their applications.

[72] X. Ros-Oton and J. Serra. Local integration by parts and Pohozaev identities for higher
order fractional Laplacians. Discrete Contin. Dyn. Syst., 35(5):2131–2150, 2015.

[73] L. Rosasco, M. Belkin, and E. De Vito. On learning with integral operators. J. Mach.
Learn. Res., 11:905–934, 2010.

[74] K. Sakamoto and M. Yamamoto. Initial value/boundary value problems for fractional
diffusion-wave equations and applications to some inverse problems. J. Math. Anal.
Appl., 382(1):426 – 447, 2011.

[75] S. A. Sauter and C. Schwab. Boundary element methods, volume 39 of Springer Ser.
Comput. Math. Springer-Verlag, Berlin, 2011. Translated and expanded from the 2004
German original.

[76] Ovidiu Savin and Enrico Valdinoci. γ-convergence for nonlocal phase transitions. In
Annales de l’Institut Henri Poincare (C) Non Linear Analysis, volume 29, pages 479–
500. Elsevier Masson, 2012.

[77] D. Sims, E. Southall, N. Humphries, G. Hays, C. Bradshaw, J. Pitchford, A. James,
M. Ahmed, A. Brierley, M. Hindell, D. Morritt, M. Musyl, D. Righton, E. Shepard,
V. Wearmouth, R. Wilson, M. Witt, and J. Metcalfe. Scaling laws of marine predator
search behaviour. Nature, 451(7182):1098–1102, 2008.

[78] Fangying Song, Chuanju Xu, and George Em Karniadakis. A fractional phase-field model
for two-phase flows with tunable sharpness: Algorithms and simulations. Computer
Methods in Applied Mechanics and Engineering, 305:376–404, 2016.

[79] Q. Yang, I. Turner, F. Liu, and M. Ilić. Novel numerical methods for solving the time-
space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput., 33(3):1159–
1180, 2011.

150

	Preliminaries
	Fractional Sobolev spaces
	Elliptic regularity
	Mittag-Leffler function

	Fractional evolution problems
	Fractional diffusion equation
	A semilinear fractional evolution problem
	Fractional diffusion-wave equation

	Implementation details for the elliptic problem
	Weak formulation
	FE setting
	Data structure and auxiliary variables
	Main loop
	Numerical Experiments

	Numerical approximations for linear evolution problems
	Numerical scheme
	Error bounds
	Numerical experiments

	Numerical approximation for the fractional Allen-Cahn Equation
	FEM discretization
	Error estimation
	Asymptotic behavior with s 0
	Numerical experiments

	Implementation details
	Quadrature rules
	Two auxiliary functions
	Auxiliary data
	Main Code

