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en el área Ciencias Matemáticas.
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Descomposiciones atómicas.

Algunos problemas de localidad en el espacio de fases.

Resumen: Considerar un espacio funcional como un espacio de coórbita significa refor-
mular las propiedades que lo definen como condiciones de tamaño impuestas sobre alguna
transformación adecuada. El espacio de fases es el conjunto de grados de libertad subya-
centes en esa descripción. En esta tesis se estudia la relación entre ciertas operaciones en un
espacio funcional y su descripción en el espacio de fases. Más precisamente, se prueba que
algunas construcciones sobre el espacio de fases en efecto hacen lo que se espera que hagan.
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Atomic decompositions.

Some locality problems in phase-space.

Abstract: Considering a functional space as a coorbit space amounts to formulating the
properties that define it as size conditions imposed on a certain transform. The phase-space
is the underlying set of degrees of freedom in such a description. In this thesis we study
the relation between certain operations on a functional spaces and their description in phase-
space. More precesily, we show that certain constructions on phase-space indeed yield what
they are expected to.
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Introducción

Una descomposición atómica de un espacio funcional X es una familia de átomos A ⊆ X
y una operación que descompone cada elemento de X como superposición de átomos. Por
ejemplo, si X es un espacio de Banach y el conjunto de los átomos consiste de una sucesión
de vectores A = {xk : k ∈ N}, la operación de descomposición podrı́a estar dada por una
familia de funcionales lineales { fk : k ∈ N} ⊆ X′. La descomposición de un elemento x ∈ X
como superposición de átomos se logra mediante una serie convergente,

x =
∑

k

fk(x)xk.

Más generalmente, el conjunto de los átomos podrı́a estar parametrizado por un espacio de
medida, A = { fw : w ∈ Ω}. La operación de descomposición es en este caso una transfor-
mación lineal x 7→ T (x) que envı́a un elemento x ∈ X a una función medible sobre Ω. Cada
elemento x ∈ X se representa en términos de átomos como,

x =

∫
Ω

T (x)(w) fwdw. (1)

Este modelo incluye al ejemplo previo como el caso donde X es un conjunto numerable pro-
visto de la medida de contar, pero también permite resoluciones de la identidad “continuas”.

La fórmula reproductiva de Calderón es un ejemplo de una resolución continua de la
identidad. Sea ψ : Rd → R una función suave, radial, con varios momentos nulos y cuya
transformada de Fourier satisface,∫ +∞

0
ψ̂(tw)

dt
t

= 1, (w , 0).

En estas condiciones, para cada f ∈ L2(Rd),

f (x) =

∫ +∞

0
( f ∗ ψt ∗ ψt)(x)

dt
t
, (2)

donde ψt(x) := t−dψ(x/t). (La integral debe ser interpretada en el sentido débil, no pun-
tualmente). Si tomamos como colección de átomos el conjunto de todas las traslaciones y
dilataciones de ψ,

A =
{
ψt,x = td/2ψt(· − x)

∣∣∣ x ∈ Rd, t ∈ (0,+∞)
}
,

9
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y definimos la transformación W como,

W( f )(x, t) := ( f ∗ ψt)(x) = t−d/2
∫
Rd

f (y)ψ
( x − y

t

)
dx, (3)

la fórmula de la Ecuación (2) resulta ser,

f =

∫ +∞

0

∫
Rd

W( f )(x, t)ψt,xdx
dt

td+1 . (4)

La transformación de la Ecuación (3) se conoce como la transformada wavelet continua (con
ventana ψ) y envı́a L2(Rd) isométricamente dentro de L2(Rd× (0,+∞), dxdt/td+1). La fórmula
de la Ecuación (4) recupera explı́citamente una función f ∈ L2(Rd) a partir de su transformada
wavelet, presentando a f como una superposición de versiones trasladadas y reescaladas de
ψ.

La expansión en términos de átomos en la Ecuación (4) es válida no sólo para f ∈ L2(Rd)
sino también para una amplia gama de espacios funcionales que incluye a los espacios de
Lebesgue Lp, (1 < p < +∞), los espacios de Sobolev y, más generalmente, a toda la clase
de espacios de Besov y Triebel-Lizorkin (véase la Sección 1.12). Más aún, la norma de una
función f en cada uno de esos espacios es equivalente a la norma de W( f ) en un espacio de
Lebesgue con pesos adecuado. Esto significa que las propiedades de suavidad que definen
aquellos espacios pueden ser reformuladas como condiciones de tamaño y suavidad mediante
la transformada wavelet.

El mismo tipo de análisis puede llevarse a cabo usando un rango discreto de traslaciones
y dilataciones. El conjunto de átomos,

A =
{
ψk, j = 2− j/2ψ(2− j · −k)

∣∣∣ k ∈ Zd, j ∈ Z
}
,

se llama un sistema wavelet. Para una función ψ cuidadosamente elegida,A resulta una base
ortonormal de L2(Rd), proporcionando entonces el desarrollo,

f =
∑
j∈Z

∑
k∈Zd

〈
f , ψk, j

〉
ψk, j,

para toda f ∈ L2(Rd). Más aún, ese desarrollo se extiende a la misma gama de espacios que
en el caso continuo.

El análisis de tiempo-frecuencia da más ejemplos de descomposiciones atómicas. Las
traslaciones de tiempo-frecuencia de una función ϕ : Rd → C están dadas por,

π(x,w)ϕ(y) := e2πi〈x,w〉ϕ(y − x). (5)

Como antes, podemos considerar el conjunto de átomos,

A =
{
π(x,w)ϕ

∣∣∣ (x,w) ∈ Rd × Rd }
.
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La transformada de Fourier de corto alcance (short-time Fourier transform) con ventana ϕ ∈
L2(Rd) está dada por,

V( f )(x,w) :=
∫
Rd

f (y)π(x,w)ϕ(y)dy.

Para una función “ventana“ ϕ adecuada, la transformada de Fourier de corto alcance envı́a
L2(Rd) isométricamente dentro de L2(R2d). Más aún, cada f ∈ L2(Rd) puede descomponerse
como,

f =

∫
Rd×Rd

V( f )(x,w)π(x,w)ϕdxdw. (6)

Ası́, cada f puede presentarse como una superposición de tralaciones en tiempo y frecuencia
del átomo ϕ. El coeficiente correspondiente al átomo π(x,w)ϕ es el número V( f )(x,w). Esta
cantidad es exactamente la transformada de Fourier de fϕ(· − x) evaluada en w. Luego, si
la función ventana ϕ es suave y está bien concentrada espacialmente, el número π(x,w)ϕ
representa la influencia de la frecuencia w en f , cerca de x.

La fórmula de la Ecuación (6) puede extenderse también a otros espacios funcionales
conocidos como espacios de modulación (véase la Sección 1.11). Estos espacios se definen
mediante condiciones de concentración en tiempo y frecuencia. El espacio de modulación
Mp(Rd), por ejemplo, es el conjunto de todas las distribuciones f tales que V( f ) ∈ Lp(Rd ×

Rd).
Al igual que en el caso de las descomposiciones tiempo-escala, hay una correspondiente

teorı́a discreta. Un sistema de Gabor es un conjunto de átomos de la forma,

A =
{
ϕk, j = π(αk, β j)ϕ

∣∣∣ k, j ∈ Zd }
, (7)

donde α, β > 0. Para una función ventana ϕ y parámetros α, β adecuados, cada f ∈ L2(Rd)
admite el desarrollo,

f =
∑

k, j∈Zd

〈
f , ϕk, j

〉
ϕk, j. (8)

Este desarrollo se extiende también a los espacios de modulación. Sin embargo, es sabido
que si ϕ está bien concentrada en tiempo y frecuencia, entonces el sistema de la Ecuación (7)
no puede ser una base. Luego, el desarrollo de la Ecuación (8) es necesariamente redundante.

Ambos ejemplos se encuadran en el marco de la llamada teorı́a de coórbitas. Los espacios
de coórbitas son espacios funcionales definidos imponiendo condiciones de tamaño a una
cierta transformación. Más precisamente, considerar un espacio funcional X como un espacio
de coórbita consiste en dar una transformación T : X → E que incluye a X como un sumando
directo de otro espacio funcional E que es sólido. Esto significa que la pertenencia a E está
determinada por condiciones de tamaño (para una definición precisa ver la Sección 1.4).
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El espacio E consiste en funciones sobre un conjunto G que frecuentemente es un grupo
localmente compacto.

Cuando un espacio funcional X se identifica como un espacio de coórbitas, las propiedades
de cada elemento f ∈ X quedan reformuladas como propiedades de decaimiento e integrabil-
idad de la función T ( f ) ∈ E, que se suele llamar la representación en el espacio de fases de
f . Los elementos de X pueden ser resintetizados a partir de su representación en el espacio
de fases por medio de un operador U : E → X que es una inversa a izquierda de T (i.e.
f = UT ( f )).

La teorı́a de coórbitas de Feichtinger y Gröchenig estudia el caso en el que T surge de
los coeficientes de representación asociados a la acción unitaria de un grupo localmente com-
pacto (véase la Sección 1.10). Más precisamente, si π es una representación unitaria de un
grupo localmente compacto G sobre un espacio de Hilbert H y h ∈ H es un vector adecuado,
la transformada wavelet abstracta de un vector f ∈ H se define como,

Vh f (x) := 〈 f , π(x)h〉 , (x ∈ G).

Los espacios de coórbitas se definen imponiendo condiciones de tamaño y decaimiento a
la transformada wavelet asociada a π. En este contexto, existe una versión de la fórmula
de la Ecuación (1), con X = H, Ω = G, T = Vh, y el conjunto de átomos dado por la
órbita de h,

{
π(x)h

∣∣∣ x ∈ G
}
. El ejemplo del análisis tiempo-escala se obtiene tomando π

como la representación del grupo afı́n sobre L2(Rd), dada por los operadores de traslación
y dilatación, mientras que el caso del análisis de tiempo-frecuencia se obtiene a partir de la
acción del grupo de Heisenberg sobre L2(Rd) mediante las traslaciones de tiempo-frecuencia.

Uno de los resultados centrales de Feichtinger y Gröchenig es el hecho de que los espacios
de coórbitas asociados a una representación de un grupo admiten una descomposición donde
el conjunto de átomos se obtiene haciendo actuar cualquier subconjunto ”suficientemente
denso“ de G sobre un vector admisible (véase la Sección 1.10 para más detalles). En los
ejemplos de las descomposiciones tiempo-escala y tiempo-frecuencia, esto da los sistemas
wavelet y de Gabor antes mencionados.

Aunque la mayorı́a de los ejemplos de lo que se entiende comúnmente por espacios de
coórbitas están incluidos en el caso de las representaciones de un grupo, es ciertamente posi-
ble considerar espacios de coórbitas sin una acción de grupo subyacente. Un marco para un
espacio de Hilbert H es un conjunto de vectores { fk : k ∈ I} que brinda un desarrollo

f =
∑

k

ck fk, (9)

donde los coeficientes c ≡ {ck : k ∈ I} dependen linealmente de f ∈ H y ‖ f ‖H ≈ ‖c‖`2 (véase la
Sección 1.8). Luego, los marcos son conjuntos de átomos para una descomposición atómica
de un espacios de Hilbert. Los espacios de coórbitas asociados a un marco se definen im-
poniendo condiciones de sumabilidad a los coeficientes de la Ecuación (9) (véase la Sección
1.13).
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Consideremos de nuevo el escenario abstracto de un espacio funcional X y una descom-
posición atómica instrumentada por un conjunto de átomos { fw : w ∈ Ω}, indexados por un
espacio de medida Ω, y una transformación T que envı́a elementos de X a funciones medibles
definidas sobre Ω, brindando la expansión,

x =

∫
Ω

T (x)(w) fwdw, (x ∈ X). (10)

El espı́ritu de la teorı́a de coórbitas es que el conjunto de átomos { fw : w ∈ Ω} y la trans-
formación T deben descomponer no sólo un espacio funcional X, sino que deben servir de
descripción simultánea para toda una gama de espacios. Los diferentes espacios queda car-
acterizados imponiendo diferentes normas sólidas a la transformación T . En el contexto
abstracto los espacios de coórbitas se construyen ası́, mientras que en ejemplos concretos,
espacios ya definidos tienen que ser identificados como espacios de coórbita de una cierta
transformación.

El poder de una tal descripción de una familia de espacios funcionales está en el hecho
de que las propiedades que definen cada espacio X quedan reformuladas como condiciones
de tamaño mediante la transformación T . En estas condiciones es tentador tratar de describir
diferentes operaciones sobre elementos x ∈ X como operaciones sobre T (x). Esto se conoce
como un enfoque de espacio de fases.

El término espacio de fases proviene de la fı́sica y se puede definir vagamente como un
espacio donde cada estado de un sistema está representado por un único punto. Las funciones
sobre el espacio de fases representan entonces una cantidad medible de un sistema. En el
contexto de las descomposiciones atómicas, el término ”espacio de fases“ se usa mayormente
en forma imprecisa, sin definir cuidadosamente su significado. En ese contexto, el rango de la
transformada wavelet T (X) juega el rol de la familia de funciones sobre el espacio de fases,
mientras que el espacio de fases en sı́ mismo se entiende como el conjunto de ”grados de
libertad“ subyacente para esa familia de funciones. Si por casualidad T (X) resulta ser un
álgebra C∗ conmutativa, entonces el espacio de fases podrı́a ser definido rigurosamente como
su espectro, pero este es raramente el caso. Una definición formal del espacio de fases yace
en el dominio de la geometrı́a no conmutativa. En el caso del análisis de tiempo-frecuencia,
la terminologı́a del espacio de fases corresponde de hecho a conceptos relacionados en la
mecánica cuántica. Más aún, sus relaciones con la geometrı́a no conmutativa están siendo
estudiadas rigurosamente (véase [85]).

En esta tesis se estudian dos problemas en el espacio de fases relacionados con descom-
pociones atómicas y espacios de coórbitas. El primer problema que estudiamos es el de
la cirugı́a de marcos. Dadas varias descomposiciones atómicas para un mismo espacio de
coórbitas, construimos una nueva descomposición atómica para el mismo espacio, pegando
porciones arbitrarias de las descomposiciones originales, siempre que la superposición entre
estas porciones sea suficientemente grande. Las nociones de ”porción“ y ”superposición“ se
consideran con respecto al espacio de fases. Esta técnica puede ser útil para producir de-
scomposiciones atómicas cuando la forma exacta de los átomos es importante. Por ejemplo,
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los átomos podrı́an ser autovectores de ciertos operadores o representar ciertos funcionales
lineales. Esperamos que la técnica de cirugı́a de marcos sea en una herramienta útil para con-
struir descomposiciones atómicas adaptadas a problemas concretos, aunque no explorameos
aquı́ su aplicación a otras ramas de la matemática, posponı́endola para una contribución fu-
tura.

Cuando se aplica a marcos de Gabor, el procedimiento de la cirugı́a da un resultado
general de existencia para el concepto recientemente introducido de ”quilted Gabor frames“
[32]. Dada una familia de marcos, Gi ≡

{
π(λ)gi : λ ∈ Λi

}
, (i ∈ I) (donde π(λ) denota la

traslación de tiempo-frecuencia definida en la Ecuación (5)), y un cubrimiento de Rd × Rd,
E ≡ {Ei}i∈I , construimos un nuevo marco de Gabor,{

π(λ)gi : i ∈ I, λ ∈ Λi, d(λ, Ei) ≤ r
}
,

seleccionando de cada marco Gi aquellos elementos asociados con nodos de tiempo frecuen-
cia cercanos a Ei. El concepto de ”quilted Gabor frame“ fue formalmente introducido en
[31, 32] con el objeto de construir diccionarios funcionales adaptados al procesamiento de
señales musicales. En efecto, existen muchas herramientas concretas para construir marcos
de Gabor usando una función como ventana y un reticulado como conjunto de nodos de
tiempo-frecuencia. La elección de la ventana determina el balance deseado entre resolución
en tiempo y en frecuencia. El objetivo de los ”quilted Gabor frames“ es potenciar estas con-
strucciones, permitiendo que el balance de resolución tiempo-frecuencia varı́e a través del
plano tiempo-frecuencia, como lo requiere, por ejemplo, la descripción de diferentes instru-
mentos musicales. Existen numerosos resultados numéricos para este tipo de sistemas (véase
por ejemplo [12, 77]). Los resultados de esta tesis dan condiciones suficientes para la validez
de esa construcción.

La cirugı́a de marcos puede aplicarse también al problema del muestreo irregular, con-
siderando como átomos los vectores que representan los funcionales de evaluación. Dada una
clase de funciones y familias de conjuntos de muestreo X para los que se tiene la estimación,

‖ f ‖Lp ≈ ‖( f (x))x∈X‖`p ,

construimos nuevos conjuntos para los que esta relación sigue siendo válida. Más aún, dadas
fórmulas explı́citas de reconstrucción para los conjuntos originales, obtenemos fórmulas de
reconstrucción aproximadas para los nuevos conjuntos.

Otras aplicaciones incluyen la identificación de ciertas clases de multiplicadores de tiempo-
frecuencia. Los multiplicadores de Gabor surgen de aplicar una máscara a los coeficientes de
un desarrollo de Gabor. Luego cada uno de estos operadores tiene la forma,

T =
∑
λ∈Λ

cλPλ,

donde cλ ∈ C y Pλ es un operador de rango uno (esecialmente un projector sobre el sube-
spacio generado por un átomo de tiempo-frecuencia). Cada operador en una clase de mul-
tiplicadores de Gabor, puede identificarse por medio de su sı́mbolo inferior, que consiste en
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la sucesión de productos internos Hilbert-Schmidt
{
〈T, Pλ〉

∣∣∣ λ ∈ Λ
}
. Usando la técnica de

cirugı́a obtenemos condiciones suficientes para identificar una clase de multiplicadores de
Gabor mediante un sı́mbolo inferior mixto, construido usando diferentes tipos de operadores
de rango uno Pλ para λ en distintas regiones del plano tiempo-frecuencia.

El segundo problema que estudiamos es el de caracterizar espacios de coórbitas mediante
multiplicadores del espacio de fase. Sea X un espacio funcional considerado como espacio
de coórbita mediante una transformación T : X → E que incluye a X como un subespacio
complementado de un espacio de funciones sólido E, sobre un grupo localmente compacto.
Como T (X) es complementado en E, existe una retracción U : E→ X que sirve de inversa a
izquiera de T (i.e., UT (x) = x).

Con el propósito de retocar la propiedades de una función f que están exhibidas por
su representación en el espacio de fases T ( f ), podemos considerar operadores de la forma
Mm( f ) = U(mT ( f )), que aplican una máscara m a T ( f ). Vamos a llamar a estos operadores
multiplicadores del espacio de fases. Por supuesto, la interpretación rigurosa de Mm( f ) es
problemática dado que, en general, T Mm( f ) , mT ( f ). Cuando T es la transformada wavelet
abstracta asociada a una representación unitaria de un grupo, estos operadores se conocen
como operadores de localización o multiplicadores wavelet [71, 113, 83]. En el caso del
análisis de tiempo-frecuencia, estos operadores se conocer como operadores de localización
en tiempo-frecuencia o multiplicadores de la transformada de Fourier de corto alcance [24,
21, 22, 13].

Estudiamos el problema de caracterizar la norma de un espacio de coórbitas en términos
de familias de multiplicadores del espacio de fases asociadas a una partición de la unidad en
G. Especı́ficamente, supongamos que X es un espacio de Banach considerado como espa-
cio de coórbita mediante una transformación T : X → E que tiene una inversa a izquierda
U : E → X. Sea

{
θγ

}
γ

una partición de la unidad sobre G y consideramos los respectivos
multiplicadores del espacio de fase Mγ( f ) = U(θγT ( f )). De la partición de la unidad sólo se
asume que satisface ciertas condiciones de localización espacial, pero fuera de eso es arbi-
traria. Probamos que ‖ f ‖X es equivante a la norma de la sucesión

{
‖Mγ( f )‖B

}
γ

en una versión
discreta del espacio E, donde el espacio B puede elegirse dentro de una amplia clase de es-
pacios funcionales. Más aún, probamos que la aplación f 7→

{
Mγ( f )

}
γ

incluye a X como
un sumando directo de un espacio de sucesiones B-valuadas, obtenido mediante una dis-
cretización de E. Esto cuantifica la relación entre un elemento f ∈ X y sus partes localizadas
en el espacio de fases

{
Mγ( f )

}
γ
.

En el caso del análisis de tiempo-frecuencia, Dörfler y Gröchenig obtuvieron reciente-
mente este tipo de caracterización de los espacios de modulación [34], usando ciertas técnicas
de álgebras de rotación (toro no conmutativo) desarrolladas en [66] y [64], y teorı́a espectral
de espacios de Hilbert (véase también [33]). En esta tesis se usa un enfoque diferente para
obtener resultados en contextos donde las técnicas de [34] no son aplicables como las de-
scomposiciones tiempo-escala y los espacios de Besov. Como resultado adicional de las
nuevas técnicas, obtenemos una versión más fuerte del resultado principal de [34], donde se
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limita las particiones de la unidad admisibles a traslaciones de una misma función por un
reticulado y el espacio B es L2. Estas restricciones parecen ser esenciales para las técnicas
usadas en [34].

Para ambos problemas usamos el mismo enfoque general. Consideramos un modelo para
el espacio de fases que consiste en un espacio funcional sólido, llamado ”medio ambiente”,
y un cierto subespacio complementado, llamado “espacio atómico”. Probamos todos los
resultados en este contexto y luego obtenemos las aplicaciones usando como espacio atómico
el rango de distintas transformaciones.

En cuanto a la organización de la tesis, el Capı́tulo 1 da una breve referencia sobre la
teorı́a de coórbitas, las descomposicones atómicas y temas relacionados, haciendo que este
trabajo sea mayormente autocontenido. En los capı́tulos 2 y 4 adaptamos algunas herramien-
tas conocidas para hacerlas aplicables a nuestro contexto. El Capı́tulo 3 introduce el modelo
para el espacio de fases y da algunos ejemplos. El Capı́tulo 5 desarrolla el método de la
cirugı́a de marcos, mientras que en los capı́tulos 6 y 7 se estudia el problema de la caracter-
ización de espacios de coórbitas mediante multiplicadores del espacio de fases. Luego, los
Capı́tulos 5, 6 y 7 contienen los resultados principales de esta tesis. Cada capı́tulo comienza
con una introducción a los temas y resultados en cuestión, seguida de una discusión sobre las
técnicas involucradas. Al final de cada capı́tulo se presentan aplicaciones de los resultados a
descomposiciones atómicas y espacios de coórbitas. El Capı́tulo 7 es ligeramente no autocon-
tenido. Ciertos resultados ahı́ requieren conceptos más refinados sobre grupos topológicos.
Estas sutilezas son, sin embargo, mayormente irrelevantes para las aplicaciones propuestas.

La mayorı́a de los resultados de esta tesis fueron presentados en artı́culos de investigación.
Las estimaciones de la Sección 4.2 fueron publicadas en [93]. Los resultados del Capı́tulo 5
están contenidos en [95], mientras que los de los Capı́tulos 6 y 7 fueron presentados en [94].



Introduction

Loosely speaking, an atomic decomposition of a functional space X is a family of atoms
A ⊆ X and a procedure to decompose every element of X as a superposition of atoms.
For example, if X is a Banach space and the set of atoms consist of a sequence of vectors
A = {xk : k ∈ N}, the decomposition procedure could be a sequence of linear functionals
{ fk : k ∈ N} ⊆ X′. The decomposition of an element x as superposition of atoms is achieved
by a norm convergent series,

x =
∑

k

fk(x)xk.

More generally, the set of atoms could be parametrized by a measure spaceA = { fw : w ∈ Ω}.
The decomposition procedure is in that case a linear transform x 7→ T (x) that maps an element
x ∈ X to a measurable function over Ω and every element x ∈ X is represented in terms of
atoms as

x =

∫
Ω

T (x)(w) fwdw. (11)

This model includes the previous example as the case where X is a countable set endowed
with the counting measure, and also allows for “continuous” resolutions of the identity.

Calderón’s reproducing formula is an example of a continuous resolution of the identity.
Let ψ : Rd → R be a radial smooth function with several vanishing moments and a Fourier
transform satisfying, ∫ +∞

0
ψ̂(tw)

dt
t

= 1, (w , 0).

Then for any f ∈ L2(Rd),

f (x) =

∫ +∞

0
( f ∗ ψt ∗ ψt)(x)

dt
t
, (12)

where ψt(x) := t−dψ(x/t). (The integral should not be interpreted in the pointwise sense, but
weakly). If we let the set of atoms be the collection of all translations and dilations of ψ,

A =
{
ψt,x = td/2ψt(· − x)

∣∣∣ x ∈ Rd, t ∈ (0,+∞)
}
,

17
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and let the transform W be given by,

W( f )(x, t) := ( f ∗ ψt)(x) = t−d/2
∫
Rd

f (y)ψ
( x − y

t

)
dx, (13)

then the formula in Equation (12) takes the form,

f =

∫ +∞

0

∫
Rd

W( f )(x, t)ψt,xdx
dt

td+1 . (14)

The transform in Equation (13) is known as the wavelet transform (with window ψ) and maps
L2(Rd) isometrically into L2(Rd×(0,+∞), dxdt/td+1). The formula in Equation (14) explicitly
recovers a function f ∈ L2(Rd) from its wavelet transform by presenting f as a superposition
of shifted and scaled versions of ψ.

The expansion in terms of affine atoms in Equation (14) is valid not only for f ∈ L2(Rd)
but also for a wide range of functional spaces that includes the Lebesgue spaces Lp, (1 <
p < +∞), Sobolev spaces and more generally the whole class of Besov and Triebel-Lizorkin
spaces (see Section 1.12). Moreover, the norm of a function f in each of those spaces is
equivalent to the norm of W( f ) in an adequate weighted Lebesgue space. This means that the
smoothness properties defining these spaces can be reformulated as size and decay conditions
by means of the wavelet transform.

It is also possible to carry out the same analysis using only a discrete set of shifts and
scales. The set of atoms,

A =
{
ψk, j = 2− j/2ψ(2− j · −k)

∣∣∣ k ∈ Zd, j ∈ Z
}
,

is called a wavelet system. For a very carefully chosen function ψ,A is an orthonormal basis
of L2(Rd), yielding the expansion,

f =
∑
j∈Z

∑
k∈Zd

〈
f , ψk, j

〉
ψk, j,

for f ∈ L2(Rd). Moreover that expansion extends to the same functional spaces that the
continuous one.

Time-frequency analysis provides more examples of atomic decompositions. The time-
frequency shifts of a function ϕ : Rd → C are given by,

π(x,w)ϕ(y) := e2πi〈x,w〉ϕ(y − x). (15)

As before, we can consider as set of atoms,

A =
{
π(x,w)ϕ

∣∣∣ (x,w) ∈ Rd × Rd }
.

The short-time Fourier transform with window ϕ ∈ L2(Rd) is given by,

V( f )(x,w) :=
∫
Rd

f (y)π(x,w)ϕ(y)dy.
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For an adequate window function ϕ, the short-time Fourier transform maps L2(Rd) isometri-
cally into L2(R2d). Moreover, every f ∈ L2(Rd) can be decomposed as,

f =

∫
Rd×Rd

V( f )(x,w)π(x,w)ϕdxdw. (16)

Thus, every f can be presented as a superposition of time-frequency shifts of ϕ. The coeffi-
cient corresponding to the atom π(x,w)ϕ is the number V( f )(x,w), which equals the Fourier
transform of fϕ(· − x) at w. Consequently, if the window ϕ is smooth and well-concentrated,
the number π(x,w)ϕ represents the influence of the frequency w near the point x.

The formula in Equation (16) can be extended to other functional spaces known as mod-
ulation spaces (see Section 1.11), defined by time-frequency concentration conditions. The
modulation space Mp(Rd), for example, is defined as the set of all distributions f such that
V( f ) ∈ Lp(Rd × Rd).

As in the case of time-scale decompositions, there is a corresponding discrete theory. A
Gabor system is a set of atoms of the form,

A =
{
ϕk, j = π(αk, β j)ϕ

∣∣∣ k, j ∈ Zd }
, (17)

where α, β > 0. For an adequate window function ϕ and lattice parameters α, β, every f ∈
L2(Rd) admits the expansion,

f =
∑

k, j∈Zd

〈
f , ϕk, j

〉
ϕk, j, (18)

and this expansion also extends to modulation spaces. However, it is known that if ϕ is well-
concentrated in time and frequency, the system in Equation (17) cannot be a basis. Hence,
the expansion in Equation (18) is necessarily redundant.

Both examples fit into the general framework of coorbit theory. Coorbit spaces are func-
tional spaces defined by imposing size conditions to a certain transform. More precisely,
considering a functional space X as a coorbit space consists of giving a transform T : X → E
that embeds X into another functional space E that is solid. This means that membership
in E is determined by size conditions (for a precise definition see Section 1.4). The space
E consists of functions defined on a set G that is commonly taken to be a locally compact
group.

When a functional space X is identified as a coorbit space, the properties of an element f ∈
X are reformulated in terms of decay and integrability conditions for the function T ( f ) ∈ E,
that is sometimes referred to as the phase-space representation of f . The elements of X can
be resynthesized from their phase-space representation by means of an operator U : E → X
that is a left-inverse for T (i.e. f = UT ( f )).

The coorbit theory of Feichtinger and Gröchenig studies the case when T arises as the
representation coefficients of a unitary action of a locally compact group (see Section 1.10).
More precisely, if π is a unitary representation of locally compact group G on a Hilbert space
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H and h ∈ H is an adequate vector, then the abstract wavelet transform of a vector f ∈ H is
defined as,

Vh f (x) := 〈 f , π(x)h〉 , (x ∈ G).

Coorbit spaces are defined by imposing size and decay conditions to the wavelet transform
associated with π. In this setting, a version of the formula in Equation (11) is valid, where X =

H, Ω = G, T = Vh and the atoms are given by the orbit of h,
{
π(x)h

∣∣∣ x ∈ G
}
. The example of

time-scale analysis is obtained by letting π be the representation of the affine group on L2(Rd)
given by the translation and dilation operators, whereas the one of time-frequency analysis is
obtained by letting the Heisenberg group act on L2(Rd) by time-frequency shifts.

One of the central results of Feichtinger and Gröchenig is the fact that coorbit spaces asso-
ciated with group representations admit an atomic decomposition whose atoms are produced
by letting any “sufficiently dense” subset of the group act on an admissible vector (see Sec-
tion 1.10 for details). In the examples of time-scale and time-frequency analysis this yields
wavelet and Gabor expansions.

Even though most of the examples of what is commonly understood as a coorbit space
are covered by the setting of group representations, it is certainly possible to consider coorbit
theory without an underlying group action. A frame for a Hilbert space H is a set of vectors
{ fk : k ∈ I} that provides an expansion,

f =
∑

k

ck fk, (19)

where the coefficients c ≡ {ck : k ∈ I} depend linearly on f ∈ H and ‖ f ‖H ≈ ‖c‖`2 (see Section
1.8). Thus, frames are sets of atoms for an atomic decomposition of a Hilbert space. Coorbit
spaces associated with frames are defined by imposing decay and summability conditions to
the coefficients in Equation (19) (see Section 1.13).

Let us consider again the abstract setting of a functional space X and an atomic decom-
position implemented by a set of atoms { fw : w ∈ Ω} indexed by a measure space Ω, and a
transform T that maps elements of X into measurable functions over Ω, providing an expan-
sion,

x =

∫
Ω

T (x)(w) fwdw, (x ∈ X). (20)

The spirit of coorbit theory is that the set of atoms { fw : w ∈ Ω} and the coefficient mapping T
should not only decompose one functional space X, but serve as a simultaneous description
of a whole family of spaces. Different spaces are characterized by imposing different solid
norms on the range of the transform T . In the abstract setting coorbit spaces are constructed
in this way, while in specific examples, already existing spaces have to be identified as coorbit
spaces of a certain transform.

The power of such a description of a family of functional spaces lies in the fact that
the properties defining each space X are reformulated as size conditions by means of the
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transform T . It is then tempting to describe operations on an elements x ∈ X as operations
on T (x). This is commonly called a phase-space approach.

The term phase-space comes from physics and is vaguely defined as a space where each
possible state of a system is represented by a unique point. Functions on phase-space then
represent measurable quantities of a system. In the context of atomic decompositions the term
“phase-space” is mostly used loosely, without giving it a precise meaning. In that context,
the range of the wavelet transform T (X) plays the role of the family of all functions on phase-
space, and phase-space itself is understood as the underlying set of “degrees of freedom” for
that family of functions. If T (X) happens to be a commutative C∗-algebra, then phase-space
could be precisely defined as its spectrum, but this is hardly ever the case. A formal definition
of phase-space lies then in the domain of non-commutative geometry. In the case of time-
frequency analysis, the phase-space terminology actually corresponds to related concepts in
quantum mechanics. Moreover its links with non-commutative geometry are currently being
rigorously studied (see [85]).

In this thesis we study two phase-space problems related to atomic decompositions and
coorbit spaces. The first problem that we study is the one of frame surgery. Given several
atomic decompositions for a coorbit space, we construct a new atomic decomposition for the
same space by piecing together arbitrary portions of the original atoms, provided that the
overlaps between these portions are large enough. The notions of “portion” and “overlap”
are considered with respect to phase-space. This technique could be useful to produce atomic
decompositions when the exact form of the atoms is important. For example, the atoms can be
eigenvectors of a certain family of operators or representatives of certain linear functionals.
We hope that frame surgery will became a useful tool to construct atomic decompositions
adapted to concrete problems, although we do not study here its applications to other areas
of mathematics, postponing it to a future contribution.

When applied to Gabor frames, the surgery scheme yields a general existence result for
the recently introduced concept of quilted Gabor frame [32]. Given a family of Gabor frames,
Gi ≡

{
π(λ)gi : λ ∈ Λi

}
, (i ∈ I) (where π(λ) denotes the time-frequency shift defined in Equa-

tion (15)), and a covering of Rd × Rd, E ≡ {Ei}i∈I , we construct a new Gabor frame,{
π(λ)gi : i ∈ I, λ ∈ Λi, d(λ, Ei) ≤ r

}
,

by selecting from each frame Gi those elements associated with time-frequency nodes lying
near Ei. The concept of quilted Gabor frame was formally introduced in [31, 32] with the
aim of constructing functional dictionaries that are well-suited for the processing of musi-
cal signals. Indeed, there are several tools available to construct Gabor frames using a single
window function and a lattice as set of time-frequency nodes. The choice of the window func-
tion determines the desired balance between time and frequency resolution. The objective of
quilted Gabor frames was to empower these constructions by allowing the time-frequency
resolution balance to vary over the time-frequency plane, as required, for example, for the
description of different kinds of musical instruments. There are several numerical results
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for these kinds of systems (see for example [12, 77]). The results in this thesis give general
sufficient conditions for the validity of these constructions.

Frame surgery can be also applied to the irregular sampling problem, by considering as
atoms the vectors representing the evaluation functionals. Given a class of functions and a
family of sampling sets X for which a sampling estimate,

‖ f ‖Lp ≈ ‖( f (x))x∈X‖`p

is known to hold, we can construct new sets for which the sampling inequality still holds.
Moreover, given explicit reconstruction formulas for the original sets, we get approximate
reconstruction formulas for the new sets.

Further applications include identifying certain classes of time-frequency multipliers. Ga-
bor multipliers are operators that arise from applying a mask to the coefficients associated
with a Gabor frame expansion; hence each of these operators has the form

T =
∑
λ∈Λ

cλPλ,

where cλ ∈ C and Pλ is a rank-one operator (essentially a projector onto the subspace gener-
ated by a time-frequency atom). Each operator in a given class of Gabor multipliers can be
identified by its associated lower symbol which consists of the Hilbert-Schmidt inner prod-
ucts

{
〈T, Pλ〉

∣∣∣ λ ∈ Λ
}
. Using the surgery scheme we get a sufficient condition to identify a

class of Gabor multipliers by a mixed lower symbol constructed by using different types of
rank-one operators Pλ for λ in different regions of the time-frequency plane.

The second problem we study is the one of characterizing coorbit spaces through phase-
space multipliers. Let X be a functional space that is regarded as a coorbit space by means
of a transform T : X → E that embeds X as a complemented subspace of a solid function
space E over a locally-compact group G. Since T (X) is complemented in E, there exists a
retraction U : E→ X serving as a left-inverse of T (i.e., UT (x) = x).

In an attempt to finely adjust the properties of a function f that are expressed by its phase-
space representation T ( f ), one can consider operators of the form Mm( f ) = U(mT ( f )), that
apply a mask m to T ( f ). We will call these operators phase-space multipliers. Of course,
the rigorous interpretation of Mm( f ) is problematic since, in general, T Mm( f ) , mT ( f ).
When T is the abstract wavelet transform (representation-coefficients function) associated
with a unitary representation of a group, these operators are know as localization operators
or wavelet multipliers [71, 113, 83]. In the case of time-frequency analysis these operators
are known as time-frequency localization operators or multipliers of the short-time Fourier
transform [24, 21, 22, 13].

We study the problem of characterizing the norm of a coorbit space in terms of families
of phase-space multipliers associated with a partition of unity in G. Specifically, suppose that
X is a Banach space that is regarded as a coorbit space by means of a transform T : X → E,
having a left-inverse U : E → X. Let

{
θγ

}
γ

be a partition of unity on G and consider the
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corresponding phase-space multipliers given by Mγ( f ) = U(θγT ( f )). The partition of unity is
only assumed to satisfy certain spatial localization conditions but it is otherwise arbitrary. We
prove that ‖ f ‖X is equivalent to the norm of the sequence

{
‖Mγ( f )‖B

}
γ

in a discrete version
of the space E, where the space B can be chosen among a large class of function spaces.
Moreover, we prove that the map f 7→

{
Mγ( f )

}
γ

embeds X as a complemented subspace of
a space of B-valued sequences, obtained as a discretization of E. This quantifies the relation
between an element f ∈ X and the phase-space localized pieces

{
Mγ( f )

}
γ
.

For the case of time-frequency analysis, Dörfler and Gröchenig have recently obtained
this kind of characterization of modulation spaces [34], using techniques from rotation alge-
bras (non-commutative tori) developed in [66] and [64] and spectral theory for Hilbert spaces
(see also [33]). We use a different approach to obtain consequences for settings where the
techniques in [34] are not applicable, such as time-scale decompositions and Besov spaces.
As a by-product we derive a stronger version of the main result in [34] where the admissible
partitions of unity are restricted to be lattice shifts of a non-negative function and the space
B is L2. These restrictions seem to be essential for the techniques used there.

For both problems we take the same general approach. We consider a model for the
phase-space consisting of a solid functional space - called the environment - and a certain
complemented subspace - called the atomic subspace. We prove all our results in this setting
and then obtain applications to coorbit spaces by letting the atomic subspace be the range of
the wavelet transform.

The thesis is organized as follows. Chapter 1 gives a brief background on the theory
of coorbit spaces, atomic decompositions and related topics, making this work mostly self-
contained. In Chapters 2 and 4 we adapt and extend some known tools and results in order
to make them applicable to our context. Chapter 3 introduces the model for phase-space and
gives several examples. Chapter 5 develops the frame surgery scheme, whereas Chapters 6
and 7 study the problem of characterizing coorbit spaces through phase-space multipliers.
Thus, Chapters 5, 6 and 7 contain the main results of the thesis. Each chapter begins with an
introduction to the main topic or results, followed by a discussion of the techniques involved.
At the end of each chapter the main results are illustrated by presenting applications to atomic
decompositions and coorbit spaces. Chapter 7 is slightly non self-contained. Certain results
there use more refined concepts of topological groups. However, those subtleties are not very
relevant for the proposed applications.

Most of the results in this thesis have been presented in research articles. The estimates
of Section 4.2 have been published in [93]. The results of Chapter 5 are contained in [95].
The content of Chapter 6 and 7 has been presented in [94].
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Chapter 1

Preliminaries

1.1 Notation
The cardinality of a set A will be denoted by #A. The characteristic function of the set A will
be denoted by χA.

If E is a Banach space, B(E) will denote the set of all the bounded operators on E. If
T : H→ H is a bounded operator on a Hilbert space, the set

spec(T ) =
{
λ ∈ C

∣∣∣ T − λI is not invertible
}
,

is called the spectrum of T .
If T : H → K is a bounded operator between Hilbert spaces and has closed range, we

will denote by T † its Moore-Penrose pseudo-inverse. We will only need pseudo-inverses
of self-adjoint operators. These can be easily described in the following way. An operator
with closed range T restricts to an isomorphism T | ker(T )⊥ : ker(T )⊥ → rng (T ), from the
orthogonal complement of its kernel onto its range. If T is self-adjoint, T † : K → H equals
the orthogonal projection onto rng (T ) followed by the inverse of T | ker(T )⊥.

A Radon measure on a topological space is a Borel measure that is finite on compact
sets, outer regular on all Borel sets and inner regular on open sets. Outer regularity for a set
means that it can be approximated in measure from the outside by an open set whereas inner
regularity means that it can be approximated from the inside by a compact set. All σ-finite
Borel measure are outer and inner regular on all Borel sets.

The Fourier transform of an integrable function f : Rd → C, is defined by,

F ( f )(w) := f̂ (w) :=
∫
Rd

f (x)e−2πixwdx.

The modulation and translation operators are defined by,

Tx f (y) := f (y − x), (x, y ∈ Rd), (1.1)

Mw f (y) := e2πiwy f (y), (w, y ∈ Rd).

27
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(In the last definition the product wy denotes the inner (dot) product).
The symbol S(Rd) denotes the Schwartz class of functions on the Euclidean space Rd,

while S′(Rd) denotes the class of tempered distributions.
A subset Λ ⊆ Rd is called a lattice if there exists an invertible matrix A ∈ Rd×d such that

Λ = AZd. This is sometimes referred to as a full-rank lattice.
Given two non-negative functions f , g : X → [0,+∞), the statement,

f . g,

means that there exists a constant C ≥ 0 such that f (x) ≤ Cg(x), for all x ∈ X. If f . g and
g . f , we write f ≈ g.

1.2 Locally compact groups
In this thesis we will often work with a locally compact group G. We will always further
assume that G is σ-compact, i.e., that G is a countable union of compact sets. This will
simplify all measure-theoretic considerations and will be sufficient for all the applications.
However this restriction is not essential. For more details on how to overcome the measure-
theoretic technicalities arising in the non-σ-compact case see Folland’s book [51].

A left Haar measure on a topological group G is a non-zero (non-negative) Radon mea-
sure µ such that µ(xA) = µ(A), for all x ∈ G and Borel sets A. Any locally-compact group
G has a left Haar measure and any two such measures are multiples of each other. We will
let |·| stand for a left Haar measure on G, and will moreover call it the left Haar measure,
the particular normalization being immaterial. Integration will be always considered with
respect to the left Haar measure. The symbol 〈·, ·〉 will stand for the L2 inner product,
〈 f , g〉 :=

∫
G

f (x)g(x)dx, whenever defined and the identity element of G will by denoted
by e.

The modular function of G is the unique function ∆ : G → (0,+∞) that satisfies,

|Ax| = ∆(x) |A| , (1.2)

for all Borel sets A. Its existence is granted by the essential uniqueness of the left Haar
measure. It is easy to see that ∆ : G → (0,+∞) is a continuous group morphism. A group is
called unimodular if ∆ ≡ 1, i.e., if the left Haar measure is also right-invariant.

For a function f : G → C and x ∈ G, the left and right translates of f by x are defined by,

Lx f (y) = f (x−1y),
Rx f (y) = f (yx).

We also define the involution ∨ by,

f ∨(x) = f (x−1).
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Using Equation (1.2) it is easy to see that,∫
G

Ry f (x)dx =

∫
G

f (xy)dx = ∆(y−1)
∫
G

f (x)dx = ∆(y)−1
∫
G

f (x)dx.

The modular function also comes up in the change of variables x 7→ x−1,∫
G

f ∨(x)dx =

∫
G

f (x−1)dx =

∫
G

f (x)∆(x−1)dx.

Given two functions f , g : G → C, the convolution f ∗ g is formally defined by,

f ∗ g(x) :=
∫
G

f (y)g(y−1x)dy.

We will sometimes regard this definition, not in the pointwise sense, but as a vector-valued
integral,

f ∗ g :=
∫
G

f (y)Lygdy.

We now mention an important class of groups. A locally compact group G is said to be an
IN group if there exists V , a relatively compact neighborhood of the identity that is invariant
under inner automorphisms; i.e., xV x−1 = V , for all x ∈ G. The abbreviation IN stands for
“invariant neighborhood”.

Some of the constructions below require choosing a relatively compact neighborhood V ,
but are largely independent of it in the sense that different choices of V will yield equivalent
objects. When working with an IN group G with a distinguished neighborhood V , we will
further assume that V is invariant.

1.2.1 Sets
A set V ⊆ G is called symmetric if V = V−1. A set Λ ⊆ G is called relatively separated if for
some (or any) V ⊆ G, relatively compact neighborhood of e, the quantity

ρV(Λ) := sup
x∈G

#(Λ ∩ xV)

is finite, i.e. if the amount of elements of Λ that lie in any left translate of V is uniformly
bounded. Equivalently, Λ is relatively separated if for any compact set K ⊆ G,

sup
λ∈Λ

#
{
λ′ ∈ Λ

∣∣∣ λK ∩ λ′K , ∅
}
< +∞.

For technical reasons, we will sometimes need to allow for repeated elements in sets. A
set with multiplicity is simply a map Λ 3 λ 7→ λ∗ ∈ G. Any subset of G can be considered
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as a set with multiplicity by letting the underlying map be the inclusion. By a slight abuse of
notation, it is usual to refer to a set with multiplicity by the domain of the underlying map.
For sets with multiplicity, the relative separation is defined by,

ρV(Λ) := sup
x∈G

#
{
λ ∈ Λ

∣∣∣ λ∗ ∈ xV
}
.

Every statement and proof that we give for “ordinary” sets also works for sets with multi-
plicity. To see this, it suffices to read λ∗ instead of λ whenever an element λ of a set with
multiplicity is used as an element of G instead of as an index set.

When G = Rd we will always use V = [−1/2, 1/2]d as the distinguished neighborhood.
The corresponding quantity,

ρ(Λ) := max
{
#(Λ ∩ ([−1/2, 1/2]d + x))

∣∣∣ x ∈ Rd }
(1.3)

will be called the relative separation of the set Λ. This is somehow an abuse of language
since for a very separated set, this quantity is small.

A subset Λ ⊆ G of a locally-compact group G is called V-dense (for V , a relatively
compact neighborhood of e) if G =

⋃
λ∈Λ λV . Λ is called well-spread if it is both relatively

separated and V-dense for some V . In the case of the Euclidean space Rd we say that Λ is
L-dense if it is [−L, L]d-dense.

1.3 Weights
LetG be a locally compact group. A locally bounded function w : G → (0,+∞) will be called
a weight on G. We will say that a weight w is admissible if it satisfies following conditions,

w(x) = ∆(x−1)w(x−1), (1.4)
w(xy) ≤ w(x)w(y). (1.5)

The second condition is called submultiplicativity. When G is unimodular, the first condition
simply says that w is symmetric (i.e., w(x) = w(x−1)).

A second weight v is called w-moderate if,

v(xyz) . w(x)v(y)w(z), for all x, y, z ∈ G.

In the case that G is the Euclidean space Rd, an admissible weight is thus a weight w :
Rd → (0,+∞) such that,

w(x + y) ≤ w(x)w(y), for all x, y ∈ Rd, (1.6)
w(x) = w(−x), for all x ∈ Rd.
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As an example, the polynomial weights

wt(x) := (1 + |x|)t, (1.7)

are admissible if t ≥ 0.
A second weight v is w-moderated if it satisfies,

v(x + y) ≤ Cv(x)w(y), (1.8)

for some constant C > 0 and every x, y ∈ Rd. If the constant in Equation (1.8) is 1, we say
that v is strictly moderated by w. The polynomial weight wt is strictly ws-moderated if s ≥ 0
and |t| ≤ s.

A weight w on the euclidean space Rd is called subexponential if it has the form w(x) :=
eρ(|x|), for some norm |·| on Rd and some continuous, concave function ρ : [0,∞] → [0,∞]
such that ρ(0) = 0 and limx→+∞

ρ(x)
x = 0. Under these conditions, the weight w satisfies:

w(0) = 1, w(x) = w(−x) and is submultiplicative. The condition limx→+∞
ρ(x)

x = 0 is equiva-
lent to the Gelfand-Raikov-Shilov condition for w,

lim
g→∞

w(nx)1/n = 1, for all x ∈ Rd.

An example of a subexponential a weight is,

w(x) = e|x|
β

(1 + |x|)s(log(e + |x|))t, (1.9)

for 0 ≤ β < 1, s ≥ 0 and t ≥ 0.
We now state for future reference some facts about polynomial weights. The first lemma

says that polynomial weights are subconvolutive (see [37].)

Lemma 1.3.1. If t > d, then,
w−t ∗ w−t ≤ Kw−t,

for some constant K . max {1, 1/(t − d)}.

There is a corresponding statement for relatively separated index sets. The important
point is that the bounds depend only on the relative separation of the sets involved (and this
quantity is translation invariant).

Lemma 1.3.2. Let Γ ⊆ Rd be a relatively separated set of points and let t > d. Then, the
following estimates hold for a constant K . max {1, 1/(t − d)}.

(a)
∑
γ∈Γ w−t(γ) ≤ Kρ(Γ),

(b)
∑
γ:|γ|>M w−t(γ) ≤ Kρ(Γ)M−(t−d),

(c)
∑
γ∈Γ w−t(γ)w−t(x − γ) ≤ Kρ(Γ)w−t(x), for all x ∈ Rd.



32 CHAPTER 1. PRELIMINARIES

1.4 Function spaces
Let G be a locally-compact group. A BF space is a Banach space E consisting of functions
on G that is continuously embedded into L1

loc(G), the space of locally integrable functions. A
BF space E is called solid if for every f ∈ E and every measurable function g : G → C such
that |g(x)| ≤ | f (x)| a.e., it is true that g ∈ E and ‖g‖E ≤ ‖ f ‖E. If E is a solid BF space and
w is a weight, we let Ew be the set of all functions f ∈ L1

loc(G) such that f w ∈ E and endow
it with the norm ‖ f ‖Ew := ‖ f w‖E. If w is an admissible weight, then L1

w(G) is a convolution
algebra, ‖ f ‖L1

w
= ‖ f ∨‖L1

w
, and ‖Lx‖L1

w→L1
w
≤ w(x).

We say that a BF space E is translation invariant if it satisfies the following.

(i) E is closed under left and right translations (i.e. LxE ⊆ E and RxE ⊆ E, for all x ∈ G).

(ii) The relations,

L1
u(G) ∗ E ⊆ E and E ∗ L1

v(G) ⊆ E, (1.10)

hold, with the corresponding norm estimates, where u(x) := ‖Lx‖E→E and v(x) :=
∆(x−1)‖Rx−1‖E→E.

Left (resp. right) translation invariant spaces are defined similarly, requiring only the condi-
tions for left (resp. right) translations and convolutions.

Remark 1.4.1. Observe that, for a BF space, if the translations leave E invariant, then they
are bounded by the closed graph theorem.

Remark 1.4.2. In the definition of translation invariant space, the technical assumption (ii)
follows from (i) if the set of continuous functions with compact support is dense on E, or
more generally if the maps x 7→ Lx and x 7→ Rx are strongly continuous.

We say that E is isometrically left (resp. right) translation invariant if it is translation
invariant and, in addition, left (resp. right) translations are isometries on E.

Given a BF space E, a set of functions
{

fλ
∣∣∣ λ ∈ Λ

}
⊆ L1

loc(G) - indexed by a relatively
separated set Λ - is called a set of E-molecules if there exists a function g ∈ E - called
envelope - such that

| fλ(x)| ≤ Lλg(x), (x ∈ G, λ ∈ Λ).

Given a solid, translation invariant, BF space E, we say that a weight w : G → (0,+∞) is
admissible for E if w is admissible and, in addition, it satisfies,

w(x) & max
{
u(x), u(x−1), v(x), ∆(x−1)v(x−1)

}
, (1.11)

where u(x) := ‖Lx‖E→E and v(x) := ∆(x−1)‖Rx−1‖E→E. Under these conditions, w(x) & 1,
L1

w ∗ E ⊆ E and E ∗ L1
w ⊆ E, with the corresponding norm estimates.



1.5. SOME EXAMPLES 33

If E is a solid BF space, we construct discrete versions of it as follows. Given a well-
spread set Λ ⊆ G and a symmetric, relatively compact neighborhood of the identity V , we
define the space,

Ed = Ed(Λ) :=
{
c ∈ CΛ

∣∣∣ ∑
λ

|cλ| χλV ∈ E
}

and endow it with the norm,

‖(cλ)λ∈λ‖Ed := ‖
∑
λ

|cλ| χλV‖E.

The definition, of course, depends on Λ and V , but a large class of neighborhoods V and sets
Λ produce equivalent spaces (see [44, Lemma 3.5] for a precise statement). In the sequel, we
will mainly use the space Ed keeping V fixed and making an explicit choice for Λ.

The space Ed is an example of a BK-space on the index set Λ, i.e., a Banach space
of sequences that is continuously embedded into the product CΛ. When E = Lp

w, for an
admissible weight w, the corresponding discrete space Ed(Λ) is `p

w(Λ), where the weight w
is restricted to the set Λ. This is so because the admissibility of w implies that for x ∈ λV ,
w(x) ≈ w(λ).

We will also need a vector-valued version of Ed. Given another BF space B we let,

Ed
B = Ed

B(Λ) :=
{
c ∈ BΛ

∣∣∣ ∑
λ

‖cλ‖BχλV ∈ E
}
,

and endow it with a norm in a similar fashion.

1.5 Some examples

1.5.1 The affine group
The affine group is the set G = Rd × (0,+∞) together with the operation (x, s) · (x′, s′) = (x +

sx′, ss′). The inverse of an element (x, s) is therefore (−x/s, 1/s). The measure with density
s−(d+1)dxds with respect to the Lebesgue measure is a left Haar measure. The corresponding
modular function is given by ∆(x, s) = s−d, so the affine group is not unimodular. The
translation operators are given by,

L(y,t) f (x, s) = f
( x − y

t
,

s
t

)
, R(y,t) f (x, s) = f (x + sy, st). (1.12)

The weighted Lebesgue spaces Lp,q
α , Lαp,q are given by the norms,

‖ f ‖Lp,q
α

=

∫ +∞

0

(∫
Rd
| f (x, s)|pdx

)q/p

s−αq ds
sd+1

1/q

, (1 ≤ p, q ≤ ∞, α ∈ R), (1.13)

‖ f ‖Lαp,q =

∫
Rd

(∫ +∞

0
| f (x, s)|qs−αq ds

s

)p/q

dx
1/p

, (1 ≤ p, q ≤ ∞, α ∈ R), (1.14)
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(with the usual modifications when p or q are +∞). These spaces are examples of solid BF
spaces. Using Equation (1.12), the spaces Lp,q

α are easily seen to be translation invariant.
Moreover,

‖L(y,t) f ‖Lp,q
α

= td(1/p−1/q)−α‖ f ‖Lp,q
α
, ‖R(y,t) f ‖Lp,q

α
= td/q+α‖ f ‖Lp,q

α
. (1.15)

In contrast, the spaces Lαp,q are only left-translation invariant.
The set V = [−1/2, 1/2]d × (1/2, 2) is a relatively compact neighborhood of the identity,

while the set

Λ :=
{ (

k2− j, 2− j
) ∣∣∣ k ∈ Zd, j ∈ Z

}
,

is an example of a relatively separated set. Identifying the point λ = (k2− j, 2− j) with the index
(k, j) it is easy to see that the norms of the discrete spaces corresponding to Lp,q

α and Lαp,q are
given by,

‖c‖(Lp,q
α )d ≈

∑
j

∑
k

∣∣∣ck, j

∣∣∣pq/p

2 j(α+d/q−d/p)q


1/q

, (1.16)

‖c‖(Lαp,q)d ≈

∥∥∥∥∑
k, j

∣∣∣ck, j

∣∣∣q χ[−1/2,1/2]d (2 j · −k)2 jαq


1/q∥∥∥∥

Lp(Rd)
, (1.17)

with the usual modifications when p or q is +∞.

1.5.2 The Heisenberg group

The polarized reduced Heisenberg group is the set H := Rd × Rd × S 1, together with the
operation (x,w, λ) · (x′,w′, λ′) := (x + x′, y + y, λλ′e−2πiwx′). Here, S 1 denotes the set of
unimodular complex numbers. The Haar measure on H is the (product) Lebesgue measure.
This measure is also right-invariant, so H is unimodular.

For (x,w) ∈ Rd × Rd, the time-frequency shift π(x,w) is defined as π(x,w) := MwTx (cf.
Section 1.1). Hence, for a function f : Rd → C the time-frequency shift acts on f by,

π(x,w) f (y) := e2πiwy f (y − x). (1.18)

The time-frequency shifts do not determine a representation of R2d on L2(Rd) because they
do not commute. However, π can be extended to an action of the Heisenberg group by setting
π(x,w, λ) = λπ(x,w).1

1Other conventions for the order of modulation and translation in the time-frequency shifts give rise to other
(equivalent) versions of the Heisenberg group.
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1.6 Wiener amalgam spaces
Amalgam spaces are defined by the global behavior of certain local properties of their ele-
ments. The norm of the amalgam space is built up out of two other spaces: the local and the
global component. In concrete examples, the local properties defining the amalgam space can
be integrability or smoothness conditions whereas the global properties are size conditions.
The best known example is the one of Lp-`q amalgams [54, 74] on the Euclidean space Rd,
given by the norm,

‖ f ‖W(Lp,`q) =

∑
k∈Zd

‖ f ‖q
Lp([0,1]d+k)


1/q

, (1.19)

with the usual modification for q = +∞. Convolution relations among Lp-`q amalgams play
an important role, for example, in the work of Wiener [112, 110, 111].

In [38], Feichtinger introduced a far-reaching generalization of these amalgam spaces by
allowing the inner (local) norm to be non-solid. Instead, the space used as local component
is required to have a sufficiently rich algebra of pointwise multipliers. (The solidity of a
space means that L∞ embeds into its algebra of pointwise multipliers; so the point of the term
“sufficiently rich” is that that algebra should be large, but not necessarily as large as L∞). This
allowed him to derive abstract convolution relations for amalgam spaces that express at the
same time the regularizing effect of convolution together with the preservation of integrability
given by Young-type inequalities.

We first introduce amalgam spaces in the context of the Euclidean space and then in the
general setting of locally compact groups. Of course, the first is an special case of the second,
but certain matters pertain only to setting of the Euclidean space.

1.6.1 Amalgams on the Euclidean space
We now describe amalgam spaces in the context of the Euclidean space Rd, following the
treatment in [41]. See that article for an exposition on the application of amalgam spaces to
sampling theory, signal processing, spline approximation and error analysis.

Let us denote byD(Rd) the set of all C∞, compactly supported, complex-valued functions
on Rd, by C0(Rd) the set of all continuous functions vanishing at infinity and by S(Rd) the
Schwartz class.

Let (B, ‖ · ‖B) be a uniformly localizable, isometrically translation invariant Banach space.
That is, B satisfies the following axioms.

• S(Rd) ↪→ B ↪→ S′(Rd) are continuous embeddings whose composition is the canonical
embedding S(Rd) ↪→ S′(Rd).

• If h ∈ D(Rd) and f ∈ B, then h f ∈ B and there is a constant C = C(h) > 0 such that
‖h(· − x) f ‖B ≤ C‖ f ‖B, for all x ∈ Rd and f ∈ B.
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• If f ∈ B and x ∈ Rd, then f (· − x) ∈ B and ‖ f (· − x)‖B = ‖ f ‖B.

• Complex conjugation defines an isometry on B. That is, if f ∈ B, then f ∈ B and
‖ f ‖B = ‖ f ‖B.

We consider the space of distributions that belong to B locally,

Bloc :=
{

f ∈ S′(Rd)
∣∣∣ h f ∈ B, for all h ∈ D(Rd)

}
.

Given f ∈ Bloc and a non-zero window η ∈ D(Rd), we consider the control function

K( f )(x) := ‖ fη(· − x)‖, (x ∈ Rd).

Let E be a solid, translation invariant function space (cf. Section 1.4) such that the polynomial
weight w(x) := (1 + |x|)α is admissible for it, for some α ≥ 0. The Wiener amalgam space
W(B, E) is defined by,

W(B, E) :=
{

f ∈ Bloc

∣∣∣ K( f ) ∈ E
}
,

and is given the norm ‖ f ‖W(B,E) := ‖K( f )‖E. This definition of course depends on the window
function η but the space W(B, E) is independent of this choice in the sense that different
windows yield equivalent norms. The amalgam W(B, E) is a Banach space.

When B = Lp and E = Lq
w, for a polynomially moderated weight w, and 1 ≤ p ≤ ∞, then

W(Lp, Lq
w) coincides with the classical amalgam space W(Lp, `

q
w) from Equation (1.19).

The most important result about amalgam spaces is the following abstract convolution
relation.

Theorem 1.6.1. Suppose that (B1, B2, B3) and (E1, E2, E3) are convolution triples2 , i.e.,

‖ f ∗ g‖B3 ≤ C1‖ f ‖B1‖g‖B2 , for all, f ∈ B1, g ∈ B2,

‖ f ∗ g‖E3 ≤ C2‖ f ‖E1‖g‖E2 , for all, f ∈ E1, g ∈ E2,

hold for some constants C1,C2 > 0. Then, (W(B1, E1),W(B2, E2),W(B3, E3)) is also a con-
volution triple, i.e.,

‖ f ∗ g‖W(B3,E3) ≤ C3‖ f ‖W(B1,E1)‖g‖W(B2,E2), for all, f ∈ W(B1, E1), g ∈ W(B2, E2),

holds for some constants C3 > 0.

A great number of operators in spline approximation, sampling and signal analysis can be
modeled as distributional convolutions. Theorem 1.6.1 allows then to quantify this formal-
ism. As an example we mention that the relation (cf. Equation (1.19)),∥∥∥∑

k∈Λ

ck f (· − k)
∥∥∥

W(L∞,`p)
. ρ(Λ)‖c‖`p‖ f ‖W(L∞,`1),

follows from Theorem 1.6.1 by letting E1 = E3 = Lp, E2 = L1, B2 = B3 = L∞ and taking B1

to be the space of all complex-valued measures with the norm of absolute variation.
2Here we also assume that the spaces Bi and Ei satisfy the hypothesis introduced above.
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1.6.2 Amalgams on general groups
We now present amalgam spaces in the general context, as introduced in [38]. The definition
is more technical than in the case of the Euclidean space since the reservoir of tempered
distributions is not available. Such technicalities will be mostly irrelevant for this thesis.

Let G be a locally compact group. As local component of an amalgam we will use a
Banach space B such that,

• There exist an isometrically left-translation invariant Banach space A that is also a
regular Banach algebra under pointwise multiplication (i.e. separating points from
closed sets) and isometrically closed under pointwise conjugation.

• B is embedded into (A ∩ K(G))′, where K(G) is the space of compactly supported
functions on G, with the inductive limit topology.

• B is a pointwise A-module, i.e., if f ∈ A and g ∈ B, then f g ∈ B and ‖ f g‖B .
‖ f ‖A‖g‖B.

Note that the third condition makes sense because of the second one. Indeed, since A is
a pointwise algebra, A′ has a natural pointwise module structure over A. The embedding
B ↪→ (A∩K(G))′ allows us to restrict that action to B. Note also that, since A is isometrically
translation invariant,

‖(Lx f )g‖B . ‖ f ‖A‖g‖B,

holds for all f ∈ A and g ∈ B and x ∈ G.
The space Bloc is defined as the set of all elements f ∈ A′ such that h f ∈ B, for all

h ∈ A ∩ K(G). This space can be shown to be independent of the particular choice of the
algebra A.

For the global component, we let E be a solid, translation invariant BF space (cf. Section
1.4). The left Wiener amalgam space (or space of Wiener-type) with local component B and
global component E is defined by,

W(B, E) :=
{

f ∈ Bloc

∣∣∣ KB( f ) ∈ E
}
,

where the control function KB( f ) is given by,

KB( f )(x) := ‖ f ‖B(xV) := inf
{
‖g‖B

∣∣∣ g = f on xV
}
.

We endow W(B, E) with the norm ‖ f ‖W(B,E) := ‖KB( f )‖E. This definition depends on the
choice of the neighborhood V , but a different choice produces the same space with an equiva-
lent norm. W(B, E) is a Banach spaces and it is also independent of the choice of the algebra
A. The right amalgam space WR(B, E) is defined similarly, this time using the control func-
tion,

KB( f ,R)(x) := ‖ f ‖B(V x−1) := inf
{
‖g‖B

∣∣∣ g = f on V x−1 }
.
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Theorem 1.6.1 can be generalized to the abstract setting when G is an IN group. We say that a
triple of Banach spaces (X1, X2, X3) is a convolution triple if (X1∩K)∗ (X2∩K) ⊆ (X3∩K),
and convolution extends to a bounded bilinear mapping X1×X2 → X3. This definition makes
sense when each space Xi is a Banach function space, but also when they consist of extremal
distributions as in the case of the local components above.

Theorem 1.6.2 ([38]). Let G be an IN group. Suppose that (B1, B2, B3) and (E1, E2, E3) are
convolution triples.3 Then, (W(B1, E1),W(B2, E2),W(B3, E3)) is also a convolution triple.

In this thesis we will use amalgam spaces with non-solid local components only for the
Euclidean space, where we are interested in smoothness matters. For abstract groups we will
mainly use solid BF spaces as local components. In this case, all the technicalities above
disappear since L1

loc can be used as a reservoir in all the definitions. Moreover, when B is a
solid BF space, the restriction norm ‖ f ‖B(xV), can be simply computed as ‖ f ‖B(xV) = ‖ fχxV‖.

Amalgam spaces with L1 and L∞ as local components will be a key technical tool in
this thesis. The spaces W(L∞, E) and WR(L∞, E) can be easily described in terms of certain
maximum functions. For a locally bounded function f : G → C we define the left and right
local maximum functions by,

f #(x) := supess
y∈V

| f (xy)| ,

f#(x) := supess
y∈V

| f (yx)| .

The neighborhood V can be always assumed to be symmetric. Then, the maximum functions
are related by ( f#)∨ = ( f ∨)#. Using these definitions we have,

‖ f ‖W(L∞,E) = ‖ f #‖E, (1.20)
‖ f ‖WR(L∞,E) = ‖( f#)∨‖E. (1.21)

In particular, ‖ f ‖WR(L∞,E) = ‖ f ∨‖W(L∞,E). Note also that, by the solidity of E, both W(L∞, E)
and WR(L∞, E) are continuously embedded into E. The space W(C0, E), constructed using
C0 as local component can be characterized as the subspace of W(L∞, E) formed by the
continuous functions. A similar statement holds for WR(C0, E).

When E = L1
w for an admissible weight w we can drop the involution in Equation (1.21)

yielding,

‖ f ‖WR(L∞,L1
w) := ‖ f#‖L1

w
. (1.22)

In addition, since Lx( f #) = (Lx f )#, the space W(L∞, L1
w) is invariant under left translations and

the norm of the left translations is dominated by w. A similar statement holds for WR(L∞, L1
w)

and right translations.

3Here we also assume that the spaces Bi and Ei satisfy the hypothesis introduced above.
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We finally note that if G is an IN group, the left and right local maximum functions
coincide and therefore W(L∞, E) = WR(L∞, E).

In [44], Feichtinger and Gröchenig used amalgam-space techniques to discretize contin-
uous reproducing formulas for functional spaces. The condition that the G be an IN group
in Theorem 1.6.2 is then too restrictive as it would exclude the important case of time-scale
decompositions from coorbit theory. They developed then variants of Theorem 1.6.2 where
left and right amalgam spaces are combined.

We now state some facts mainly taken from [44] and [45]. In the cases when we were
unable to find an exact reference we sketch a proof.

Lemma 1.6.1. Let E be a solid, translation invariant BF space and let w be an admissible
weight for it. The following embeddings hold, together with the corresponding norm esti-
mates.

(a) E ∗W(L∞, L1
w) ↪→ W(L∞, E) and E ∗W(C0, L1

w) ↪→ W(C0, E).

(b) E ↪→ W(L1, L∞1/w). In addition, if E is isometrically left-translation invariant, then
E ↪→ W(L1, L∞).

(c) W(L1, L∞).W(L∞, L1) ↪→ L1 and W(L1, L∞1/w).W(L∞, L1
w) ↪→ L1.

(d) W(L1, L∞) ∗WR(L∞, L1
w) ↪→ L∞ and W(L1, L∞1/w) ∗WR(L∞, L1

w) ↪→ L∞1/w.

Proof. Part (a) is proved in [45, Theorem 7.1]. By [44, Lemma 3.9], E ↪→ W(L1, L∞(u∨)−1),
where u(x) := ‖Lx‖E→E. The admissibility of w implies that u∨ . w, so part (b) follows.

To prove (c) first observe that for any f ∈ L1(G), since V = V−1,∫
G

∫
G

| f (x)| (LyχV(x))dxdy =

∫
G

| f (x)|
∫
G

χV(y−1x)dydx = |V |
∫
G

| f (x)| dx.

Using this observation, for f ∈ W(L1, L∞1/w) and g ∈ W(L∞, L1
w),∫

G

| f (x)| |g(x)| dx ≈
∫
G

∫
yV
| f (x)| |g(x)| dxdy

.

∫
G

‖ f ‖L1(yV)‖g‖L∞(yV)dy ≤ ‖ f ‖W(L1,L∞1/w)‖g‖W(L∞,L1
w).

The unweighted case follows similarly. To prove (d) let f ∈ W(L1, L∞1/w) and g ∈ W(L∞, L1
w).

For x ∈ G we can use (c) to get,

| f ∗ g(x)| ≤
∫
G

| f (y)|
∣∣∣Lxg∨(y)

∣∣∣ dy ≤ ‖ f ‖W(L1,L∞1/w)‖Lxg∨‖W(L∞,L1
w)

≤ ‖ f ‖W(L1,L∞1/w)‖g∨‖W(L∞,L1
w)w(x).

Since ‖g∨‖W(L∞,L1
w) = ‖g‖WR(L∞,L1

w) the weighted inequality in (d) is proved. The unweighted
one follows similarly, this time using the unweighted bound in (c) and the fact that w & 1. �
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Lemma 1.6.2. Let E be a solid, translation invariant BF space, let w be an admissible weight
for it and let Λ ⊆ G be a relatively separated set. Then the following holds.

(a) For every f ∈ W(C0, E), the sequence f (Λ) = ( f (λ))λ∈Λ belongs to Ed(Λ) and,

‖ f (Λ)‖Ed . ‖ f ‖W(C0,E).

(b) For every f ∈ E and g ∈ WR(C0, L1
w), the sequence (〈 f , Lλg〉)λ∈Λ belongs to Ed(Λ) and,

‖(〈 f , Lλg〉)λ‖Ed . ‖ f ‖E‖g‖WR(L∞,L1
w).

(c) If (cλ)λ ∈ Ed(Λ) and f ∈ WR(L∞, L1
w), then

∑
λ cλLλ f ∈ E and

‖
∑
λ

cλLλ f ‖E . ‖(cλ)λ‖Ed‖ f ‖WR(L∞,L1
w).

The series converges absolutely at every point and, if the set of bounded compactly
supported functions is dense in E, it also converges unconditionally in the norm of E.

(d) Ed(Λ) ↪→ `∞1/w(Λ).

All the implicit constants depend on the set Λ.

Proof. Part (a) follows easily from the definitions (see for example [44, Lemma 3.8]). For
(b) observe that 〈 f , Lλg〉 = ( f ∗ g∨)(λ). Hence Lemma 1.6.1 and part (a) imply that

‖(〈 f , Lλg〉)λ‖Ed . ‖ f ∗ g∨‖W(C0,E) . ‖ f ‖E‖g∨‖W(L∞,L1
w) = ‖ f ‖E‖g‖WR(L∞,L1

w).

Part (c) is Proposition 5.2 of [44]. Lemma 3.5 in [44] gives the embedding Ed(Λ) ↪→
`∞1/u(Λ), where u(x) := ‖Lx‖E→E. Since u . w, part (d) follows. �

Finally we state the following lemma that will be used to justify treating convolutions
pointwise.

Lemma 1.6.3. Let E be a solid, translation invariant BF space and let w be an admissible
weight for it. The following embeddings hold, together with the corresponding norm esti-
mates.

(a) W(L∞, E) ↪→ L∞1/w.

(b) W(L∞, E) ∗ L1
w ↪→ C1/w, where C1/w denotes the subspace of L∞1/w formed by the contin-

uous functions.

Proof. By Lemma 1.6.2, Ed ↪→ `∞1/w. This implies that W(L∞, E) ↪→ W(L∞, L∞1/w) = L∞1/w (see
for example [44, Proposition 3.7]). This proves part (a). The embedding W(L∞, E).L1

w ↪→
L∞1/w.L

1
w ↪→ L1, implies that, W(L∞, E) ∗ L1

w = W(L∞, E) ∗ L1
w
∨
↪→ L∞1/w. Now part (b) follows

from the fact that the class of continuous, compactly supported functions is dense in L1
w. �
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1.7 Spectral invariance of some matrix algebras
Let A ⊆ B be two Banach algebras. A is said to be spectral or inverse closed in B if for each
element a ∈ A, the spectrum of a as an element of A equals its spectrum as an element of B.
This means that if an element a ∈ A has an inverse a−1 ∈ B, then a−1 ∈ A. We will be mainly
interested in the case where B is the algebra of bounded operators on a certain Hilbert space.

Wiener’s 1/ f lemma states [112] that if a function f : [0, 1] → C has an absolutely
convergent Fourier series,

f (x) =
∑
k∈Z

ake2πikx,

and is never vanishing, then 1/ f has also an absolutely convergent Fourier series,

1/ f (x) =
∑
k∈Z

bke2πikx.

This says that the algebra F −1(`1(Z)) of functions having an absolutely convergent Fourier
series is spectral in C([0, 1]), the algebra of continuous functions on [0, 1]. Wiener’s lemma
can be reformulated without using the Fourier transform as follows. Consider the inclusion,

`1(Z) ↪→ B(`2(Z))
a 7→ a ∗ −,

which maps a sequence a into the convolution operator with kernel a. Wiener’s lemma states
that this inclusion is spectral.

This second formulation makes sense for every locally compact group. The problem of
determining what classes of groups G are such that the inclusion

L1(G) ↪→ B(L2(G))
f 7→ f ∗ −,

is spectral has been extensively studied [73, 75, 81, 82, 84, 50, 48].
A more general problem is the one of finding conditions for a subalgebra A ⊆ B(L2(G))

to be spectral. In the next sections we cite a number of results in this direction. Weighted
versions of Wiener’s lemma follow by applying these results to convolution operators.

Before doing that we make the following remark that will be important for the applica-
tions to function spaces.

Remark 1.7.1. Let B(H) be the algebra of bounded operators on some Hilbert space H and
let A be a spectral subalgebra. If T ∈ A is a self-adjoint operator with closed range, then
T † ∈ A.

Indeed, L† = f (L), where f (z) = z−1, for z , 0 and f (0) = 0. The function f is holomor-
phic on the spectrum of L because, since the range of L is closed, 0 is an isolated point of its
spectrum. Since the inclusion A ↪→ B(H) is closed under inversion, it is also closed under
holomorphic functional calculus.
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1.7.1 The Jaffard algebra
Let Λ ⊆ Rd be a relatively separated set of points and s > d. The algebra J∫ consists of all
matrices A ∈ CΛ×Λ such that, ∣∣∣Ak, j

∣∣∣ ≤ C(1 + |k − j|)−s,

for some constant C ≥ 0. The least value for that constant defines the norm of A. The Jaffard
algebra is embedded into B(`2(Λ)) by Schur’s test (interpolation). Jaffard proved in [76] that
this inclusion is spectral.

1.7.2 Weighted Schur algebras
Let Λ ⊆ Rd be a relatively separated set of points and let w be a subexponential weight (cf.
Section 1.3). Suppose in addition that w(x) & (1 + ‖x‖)δ, for some δ > 0. An example of such
a weight is given by,

w(x) = e|x|
β

(1 + |x|)s(log(e + |x|))t,

if 0 ≤ β < 1, s > 0 and t ≥ 0.
LetAw be the class of all matrices A ∈ CΛ×Λ such that,

‖A‖Aw := max

sup
k

∑
j

∣∣∣Ak, j

∣∣∣ w(k − j), sup
j

∑
k

∣∣∣Ak, j

∣∣∣ w(k − j)


is finite. Gröchenig and Leinert proved in [67] that Aw is a spectral subalgebra of B(`2(Λ))
(see also [104]). It is known that the algebraAw may not be spectral without the assumption
w(x) & (1 + ‖x‖)δ ([105]).

1.7.3 The Baskakov-Sjöstrand algebra
For s ≥ 0, let Cs be the class of all matrices A ∈ CZ

d×Zd
such that,

‖A‖Cs :=
∑

k

sup
j

∣∣∣A j, j+k

∣∣∣ (1 + |k − j|)s,

is finite. In [8, 9] Baskakov proved that Cs is a spectral subalgebra of B(`2(Zd)) (see also
[102]).

1.7.4 Controlled inversion
The results that we have just cited mean that certain off-diagonal decay conditions of a matrix
A are inherited by its inverse A−1. However they are only asymptotic because they do not
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specify what qualities of the matrix A determine the off-diagonal decay of the inverse matrix
A−1. Let us formulate this more precisely. All the above spectral invariance results take the
following form. There is a certain matrix algebra A that is embedded into B(`2). From the
knowledge that ‖A‖A < ∞ and that A has an inverse in B(`2) we conclude that ‖A−1‖A < ∞.
We would like to moreover have bounds on ‖A−1‖A depending on ‖A‖A and possibly some
additional quality of A. An obvious candidate for such extra quality is ‖A−1‖B(`2).

The problem of quantifying spectral invariance is very subtle. It has been extensively
studied by Nikolsky in [90] (see also [36]). Let us just mention that for the unweighted
Baskakov-Sjöstrand algebra C0, having bounds on ‖A‖C0 and ‖A−1‖B(`2) is not sufficient to
bound ‖A−1‖C0 .

In [104] Qiyu Sun proved a spectral invariance result for matrix algebras, using a very
general geometric model for the underlying set of indices. As a by-product of his technique he
not only established the inverse closedness of certain new matrix algebras but he also obtained
a qualitative control for some of the classical ones. In Chapter 4 we cite an application of his
result to the Jaffard algebra. For another result in that direction see [10].

1.8 Bases and frames for Hilbert spaces

We now introduce several concepts related to atomic decompositions in Hilbert spaces. For
a general reference on these topics and proofs of the corresponding facts we refer the reader
to [35, 114, 17].

1.8.1 Riesz bases

An orthonormal basis for a separable C-Hilbert space H is a (countable) set {ek}k∈I ⊆ H that
is orthonormal (i.e.,

〈
ek, e j

〉
= 1, if k = j, and 0 otherwise) and is complete, i.e., it generates

a dense linear subspace. In this case, every element f ∈ H has an expansion,

f =
∑

k

〈 f , ek〉 ek,

with unconditional convergence in the norm of H. The unconditionality of the convergence
means that the net of finite sums ∑

k∈F

〈 f , ek〉 ek


f⊆I finite

, (1.23)

converges to f , where the class of finite subsets of I is ordered by inclusion. More concretely,
given ε > 0, there exists a finite set F0 ⊆ I such that for every finite set F0 ⊆ F ⊆ I,
‖
∑

k∈F 〈 f , ek〉 ek − f ‖H < ε.
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A Riesz basis { fk}k∈I for H is the image of an orthonormal basis {ek}k∈I under an invertible
operator T : H → H, i.e., fk = T (ek). If we let gk := (T−1)∗(ek), it follows that every f ∈ H
admits the expansion,

f =
∑

k

〈 f , fk〉 gk, (1.24)

and also,

f =
∑

k

〈 f , gk〉 fk. (1.25)

Here, the convergence is also unconditional in the norm of H. The set {gk}k∈I is also a Riesz
basis and it is called the dual basis of { fk}k∈I . It is characterized by the bi-orthogonality
relation:

〈
fk, g j

〉
= 1, if k = j, and 0 otherwise. For any c ∈ `2, the series

∑
k ck fk converges

unconditionally in the norm of H and moreover ‖c‖`2 ≈ ‖
∑

k ck fk‖H. As a consequence, the
coefficients in Equation (1.25) provide the only way to write f as

∑
k ck fk with c ∈ `2.

The property that ‖c‖`2 ≈ ‖
∑

k ck fk‖H in fact characterizes Riesz bases.

Theorem 1.8.1. Let H be a Hilbert space and let { fk}k∈I ⊆ H. Then { fk}k is a Riesz basis if
and only if it generates a dense linear subspace of H and satisfies the inequalities,

A‖c‖`2 ≤ ‖
∑

k

ck fk‖H ≤ B‖c‖`2 , c a finitely supported sequence,

for some constants 0 < A ≤ B < +∞. The optimal constants satisfying these inequalities are
called the Riesz basis constants.

1.8.2 Frames
A frame { fk}k∈I for a Hilbert space H is the image of an orthonormal basis {ek}k∈I under a
surjective bounded operator T : K → H. Here, K is another Hilbert space, so the cardinality
of a frame may exceed the algebraic dimension of the space. This consideration, of course, is
only important when H is finitely dimensional. If U : H → K denotes the canonical section
(right inverse) of T , characterized by U(H) = ker(T )⊥, and we let gk := U∗(ek), it follows
that every f ∈ H admits the expansions in Equations (1.24) and (1.25), with the same kind
of convergence. The choice for the system {gk}k yielding those expansions is however non-
unique due to the fact that T admits many other sections. The system defined by gk := U∗(ek)
can be seen to also be a frame and is called the canonical dual frame of { fk}k. The sequence
{〈 f , gk〉}k is characterized by the property of having minimal `2-norm among all sequences
c ∈ `2 such that f =

∑
k ck fk.

Hence, frames provide possibly redundant basis-like expansions. In several cases where
it is impossible to obtain bases with a desired structure it is however possible to construct
frames. Similarly to Theorem 1.8.1, the property of being a frame can characterized in terms
of an inequality.
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Theorem 1.8.2. Let H be a Hilbert space and let { fk}k∈I ⊆ H. Then { fk}k is a frame for H if
and only if, there exists two constants 0 < A ≤ B < +∞ such that,

A2‖ f ‖2H ≤
∑

k

|〈 f , fk〉|
2
≤ B2‖ f ‖2H, for all f ∈ H. (1.26)

The optimal constants satisfying that condition are called the frame bounds.

According to Theorem 1.6.1, if { fk}k is a frame for H, then the operator S : H→ H given
by,

S ( f ) :=
∑

k

〈 f , fk〉 fk, (1.27)

is well-defined and satisfies AIH ≤ S ≤ BIH, for some 0 < A ≤ B < +∞. Therefore, S is
invertible. S is called the frame operator. The canonical dual frame of { fk}k is easily seen to
be given by gk = S −1( fk). If A = B = 1 we say that { fk}k is a Parseval frame. In this case
gk = fk and the frame { fk}k provides an orthonormal-basis-like expansion.

In general, however, reconstructing an element f from the coefficients {〈 f , fk〉}k requires
inverting the operator S . This can be done by using Neumann series, yielding the following
frame algorithm. Let 0 < α < 2/B and set δ := max {|1 − αA| , |1 − αB|}. For f ∈ H, define,{

f0 := 0,
fn+1 := fn + αS ( f − fn), (n ∈ N).

Then, fn →n f with a geometric rate of convergence,

‖ f − fn‖H ≤ δ
n‖ f ‖H.

The optimal value for the relaxation parameter α is 2
A+B . Since finding sharp estimates on

the frame bounds can be difficult, the numerical efficiency of the frame algorithm is seriously
limited. In practice, this limitation is addressed by combining the frame algorithm with an
acceleration method like the one of conjugate gradients.

Riesz bases can be characterized as non-redundant frames.

Theorem 1.8.3. Let H be a Hilbert space and let { fk}k∈I ⊆ H be a frame for H. Then the
following conditions are equivalent.

• { fk}k is a Riesz basis.

• Every element f ∈ H has a unique expansion f =
∑

k ck fk, with c ∈ `2.

• ‖
∑

k ck fk‖H ≈ ‖c‖`2 , (c ∈ `2).
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1.8.3 Bessel sequences and frame pairs
A family { fk}k∈I in a Hilbert space H is called Bessel if it satisfies the inequality,∑

k

|〈 f , fk〉|
2
≤ B2‖ f ‖2H, ( f ∈ H), (1.28)

for some constant B. This condition means that the analysis operator,

H→ `2(I) (1.29)
f 7→ C( f ) := (〈 f , fk〉)k,

is well-defined and bounded, with norm at most B. The formal adjoint of C is the synthesis
operator,

`2(I)→ H (1.30)

c 7→ R(c) :=
∑

k

ck fk. (1.31)

Consequently, the Bessel condition is equivalent to the estimate,

‖
∑

k

ck fk‖H ≤ B‖c‖`2 , c a finitely supported sequence. (1.32)

Riesz bases and frames can be easily characterized in terms of these operators.

Theorem 1.8.4. Let H be a Hilbert space and let { fk}k∈I ⊆ H be a Bessel sequence. Then the
following holds.

• { fk}k∈I is a frame if and only if the analysis map C bounded below. This happens if and
only if R is surjective.

• { fk}k∈I is a Riesz basis if and only if the analysis map C is invertible. This happens if
and only if R is invertible.

A pair of Bessel sequences ({ fk}k , {gk}k) is called a frame pair if they provide the expan-
sion,

f =
∑

k

〈 f , gk〉 fk,

for every f ∈ H. When { fk}k is a frame, the canonical dual frame {gk}k yields a frame pair
({ fk}k , {gk}k) but there may be many others choices for {gk}k. These are called non-canonical
duals frames.
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1.8.4 Bases and frames for subspaces
A Riesz sequence is a subset of a Hilbert space that is a Riesz basis of the closure of the linear
subspace that it generates. Similarly, a frame sequence is a subset that is a frame for that
subspace. Theorem 1.8.4 can be reformulated as follows.

Theorem 1.8.5. Let H be a Hilbert space and let { fk}k∈I ⊆ H be a Bessel sequence. Then the
following holds.

• { fk}k∈I is a frame sequence if and only if C has closed range. This happens if and only
if R has closed range.

• { fk}k∈I is a Riesz sequence if and only if R is bounded below.

Given a Hilbert space H and a closed subspace K, an outer frame (or exterior frame) for
K is a family { fk}k ⊆ H whose orthogonal projection onto K, {PK( fk)}k, forms a frame for K.
The family { fk}k ⊆ H needs not to be Bessel. Using Theorem 1.8.2 it follows that { fk}k ⊆ H
is an outer frame for K if and only if there exist two constants 0 < A ≤ B < +∞ such that the
frame inequality,

A2‖ f ‖2H ≤
∑

k

|〈 f , fk〉|
2
≤ B2‖ f ‖2H,

holds for all f ∈ K. This is so, because 〈 f , fk〉 = 〈 f , PK( fk)〉 in the inequality above.
In the context of a Hilbert space H and a distinguished subspace K, a frame pair for K is

a pair o Bessel sequences ({ fk}k , {gk}k) such that ({ fk}k , {PK(gk)}k) is a frame pair in the sense
of Section 1.8.3. This simply means that the expansion,

f =
∑

k

〈 f , gk〉 fk,

holds for every f ∈ K, although the analysing atoms {gk}k are not assumed to belong to K.

1.8.5 The Gramian matrix
Given a Hilbert space H, the Gramian matrix of a family { fk}k∈I ⊆ H is the matrix G ∈ CI×I

given by,

Gk, j :=
〈

fk, f j

〉
.

Note that the Gramian matrix is Hermitian (i.e., G∗ = G). If we let C and R denote the
analysis and synthesis operators given by Equations (1.29) and (1.30), then G is the transpose
of the matrix representing the operator CR : `2(I) → `2(I). This operator is well-defined
and bounded if { fk}k is a Bessel sequence. Conversely, it is easy to show that if G defines
a bounded operator on `2, then the sequence { fk}k is Bessel. The Gramian matrix is dual
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to the frame operator S defined by Equation (1.27) in the sense that Gt = CR = CC∗ and
S = RC = C∗C. As shown in Theorem 1.8.2, the invertibility of the frame operator is
equivalent to the frame property for { fk}k. In contrast, the Gramian matrix depends only
on the smallest closed subspace of H that contains the family { fk}k. Hence, it can only be
used to decide if the system { fk}k is a frame or Riesz sequence, but cannot decide about the
completeness of the family in the whole space H.

Theorem 1.8.6. Let H be a Hilbert space and let { fk}k∈I ⊆ H be a Bessel sequence. Then the
following holds.

• { fk}k is a Riesz sequence if and only if the Gramian matrix G in invertible. In this case,
A := inf

{
x : x ∈ spec(G)

}
and B := sup

{
x : x ∈ spec(G)

}
are the Riesz basis bounds

for { fk}k.

• { fk}k is a frame sequence if and only if G has closed range. This happens if and only if
0 is an isolated point of the spectrum of G (or does not belong to it at all). In this case,
A := inf

{
x : x ∈ spec(G) \ {0}

}
and B := sup

{
x : x ∈ spec(G)

}
are the frame bounds for

{ fk}k.

The canonical dual frame can be calculated using the Gramian matrix (instead of the
frame operator). If { fk}k is a frame (or frame sequence), Theorem 1.8.6 implies that its
Gramian matrix G has closed range and therefore admits a Moore-Penrose pseudo-inverse.
The canonical dual frame {gk}k is given by,

g j =
∑

k

G†j,k fk, ( j ∈ I). (1.33)

1.9 Atomic decompositions of Banach spaces
We now introduce atomic decompositions for abstract Banach spaces. The concept of frame
for a Hilbert space can be generalized in two directions. The elements of a Hilbert-space
frame { fk}k can be considered as atoms of the space yielding expansions

∑
k ck fk or as linear

functionals f 7→ 〈 f , fk〉 providing abstract “samples” of a vector that can then be used to
reconstruct it. It was shown in Section 1.8 that, as a consequence of the self-duality of Hilbert
spaces, these two notions are equivalent: any admissible system of “analyzing vectors” (cf.
Equation (1.26)) is also an adequate set of atoms and vice versa.

We have faced already in the context of Hilbert spaces the need to distinguish the two
usages. The elements of an outer frame { fk}k for a subspace K of a Hilbert space H can be
considered as non-canonical representations of the functionals K 3 f 7→ 〈 f , fk〉 but not as
atoms of K since they do not even belong to K.

For general Banach spaces the two notions must certainly be distinguished. Atomic de-
compositions will be defined as pairs of analyzing functionals and atoms. We now present
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a definition that fits all the examples that we are interested in. Let X be a separable Ba-
nach space over the complex field. A Fatou topology T on X is a locally-convex Hausdorff
topology that is coarser than the norm topology and such that, for every x ∈ X,

‖x‖X = sup
{
| f (x)|

∣∣∣ f ∈ (X,T )′, ‖ f ‖X′ ≤ 1
}
.

Here, (X,T )′ denotes the set of linear functionals on X that are continuous with respect to
T . Hence, a Fatou topology is a topology with enough continuous linear functionals so as
to approximate the norm of each element. The terminology comes from the fact that this
condition is equivalent to the validity of Fatou’s lemma: if xn → x in the T -topology, then
‖x‖X ≤ lim infn‖xn‖X (see [98]).

Recall (cf. Section 1.4) that a BK space is a Banach sequence space S over a countable
index set I that is continuously embedded into CI; i.e., each coordinate projection, a 7→ ak,
defines a continuous linear functional. Recall also that a BK space S is called solid if a ∈ S
and |b| ≤ |a|, imply that b ∈ S and ‖b‖S ≤ ‖a‖S.

An atomic decomposition of X consists of a solid BK space S of sequences over a count-
able index set I together with a Fatou topology T on X, a set of vectors {xk : k ∈ I} ⊆ X and
functionals { fk : k ∈ I} ⊆ X′ such that,

(i) For every c ∈ S, the series R(c) :=
∑

k ckxk converges unconditionally in the topology
T . Moreover, the synthesis operator, R : S→ X is bounded.

(ii) For every x ∈ X, the sequence C(x) := ( fk(x))k belongs to S. Moreover, the analysis
operator C : X → S is bounded.

(iii) RC = IX. That is, every x ∈ X admits the expansion, x =
∑

k fk(x)xk.

In concrete examples, when X is a space of functions, the topology T can be some weak
topology like the one of distributions. When the set of finitely supported sequences is dense
in S, due to the solidity of S, the family of “delta sequences” {δk}k - given by, δk( j) = 1,
if k = j and 0 otherwise - forms an unconditional basis of S. As a consequence, the series
defining the synthesis operator R converge unconditionally in the norm of X. Therefore, in
that case, the topology T can be taken to be the norm-topology of X. The definition of atomic
decomposition given above makes sense even if the sequence space S is not assumed to be
solid, but we shall only work in the context of solid sequence spaces.

A Banach frame for a (separable) Banach space X consist of a solid BK space S of
sequences over a countable index set I together with a set of vectors {xk : k ∈ I} ⊆ X - called
atoms and a bounded linear retraction R : S → X such that R(δk) = fk. The fact that R
is a retraction means that there exists another operator C : E → Ed, called the coefficient
operator, such that RC = IE. Since S ↪→ CI , this operator is implemented by some family of
linear functionals {gk}k ⊆ E′ by means of the formula C( f ) = (〈 f , gk〉)k. When the operator
R is implemented by a series converging in a Fatou topology, each choice of a coefficient
operator gives rise to an atomic decomposition in the sense of the definition above. As we
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remarked before, this is the case whenever the set of finitely-supported sequences is dense in
S.

It is common in the literature to define Banach frames in terms of the coefficient func-
tionals {gk}k rather than the atoms { fk}k. A family of linear functionals {gk}k∈Λ ⊆ X′, together
with a solid BK sequence space S is called a Banach frame for X if the coefficient operator
X 3 f 7→ (〈 f , gk〉)k ∈ S is a bounded section, i.e., there exists a bounded operator R : S → X
such that RC = IX. In the abstract setting there is no possible confusion between the two
usages since the atoms and the coefficient functionals belong to different spaces. However,
in concrete examples where X is a classical function space and X′ is identified with another
classical function space, these two usages can be ambiguous. To avoid confusions, every
reference to a Banach frame will be followed by a clarification about its precise meaning.

1.10 Coorbit theory
We now briefly introduce coorbit theory (see [44]). Let π be a (strongly continuous) unitary
representation of a locally compact group G on a Hilbert space H. For a fixed h ∈ H, the
abstract wavelet transform is defined as,

Vh f (x) := 〈 f , π(x)h〉 , ( f ∈ H, x ∈ G).

Let w be an admissible weight onG. A vector h ∈ H is called admissible if Vhh ∈ WR(L∞, L1
w)(G)

and the reproducing formula,

Vh f = Vh f ∗ Vhh,

holds for all f ∈ H. Here, WR(L∞, L1
w)(G) is the Wiener amalgam space from Section 1.6.

Moreover, h is assumend to be cyclic, i.e. the orbit of h,
{
π(x)h

∣∣∣ x ∈ G
}

is assumed to be
dense in H. Admissible vectors are the main ingredient of coorbit theory. They are known to
exist under several circumstances. For a study about the validity of the reproducing formula
see [58]. In concrete examples one can often produce explicit admissible vectors.

Let h be an admissible vector. Since Vhh(x−1) = Vhh(x), it follows that Vhh also belongs
to W(L∞, L1

w). As a consequence of the reproducing formula, Vh : H → L2(G) is an isometry
and therefore has an inverse on its (closed) range.

Under these conditions the space H1
w is defined by

H1
w :=

{
f ∈ H

∣∣∣ Vh f ∈ L1
w
}
,

and endowed with the norm ‖ f ‖H1
w

:= ‖Vh f ‖L1
w
. The anti-dual of H1

w (i.e. the space of continu-
ous conjugate-linear functionals) is denoted by (H1

w)q. The inner product H×H→ C extends
to a sesquilinear form on H1

w × (H1
w)q → C. Since h is assumed to belong to H1

w, the abstract
wavelet transform can be defined for f ∈ (H1

w)q.
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Coorbit spaces are defined by selecting from the reservoir (H1
w)q those elements that sat-

isfy a certain criteria. Let E be a solid, translation invariant BF space on G such that w is
admissible for it. The coorbit space is defined by

CoE :=
{

f ∈ (H1
w)q

∣∣∣ Vh f ∈ E
}
,

and endowed with the norm ‖ f ‖CoE := ‖Vh f ‖E.
The results in [44, 61] provide atomic decompositions for coorbit spaces, where the co-

herent states {π(λ)h : λ ∈ Λ} can play both the role of atoms and coefficient functionals.

Theorem 1.10.1. Let w be an admissible weight and h ∈ H an admissible vector. Then,
there exists U, a relatively compact neighborhood of the identity in G, such that for any U-
dense and relatively separated set Λ ⊆ G, the following atomic decomposition of CoE holds
simultaneously, for all BF spaces E for which the weight w is admissible.

(i) For every c ∈ Ed(Λ), the function,

f =
∑
λ

cλπ(λ)h,

belongs to CoE and ‖ f ‖CoE . ‖c‖Ed . The series converges unconditionally in the weak*
topology of (H1

w)q and, if the set of bounded, compactly supported functions is dense in
E, it also converges unconditionally in the norm of CoE.

(ii) There exists a bounded linear operator C : CoE→ Ed(Λ) such that

f =
∑
λ

C( f )λπ(λ)h.

The operator C is given by C( f )λ = 〈 f , gλ〉, for a certain family {gλ : λ ∈ Λ} ⊆ H1
w, that

is independent of E. In addition, the quantity ‖(〈 f , gλ〉)λ‖Ed is an equivalent norm on
CoE.

(iii) The quantity
∥∥∥(〈 f , π(λ)h〉)λ

∥∥∥
Ed is an equivalent norm on CoE. Moreover, there exists a

bounded operator R : Ed(Λ)→ CoE such that R((〈 f , π(λ)h〉)λ) = f , for all f ∈ CoE.

1.11 Modulation spaces
For f , h ∈ L2(Rd), the Short-Time Fourier Transform (STFT) (or windowed Fourier Trans-
form) is defined by,

Vh f (x, ς) =

∫
Rd

f (y)e−2πiςyh(y − x)dy.
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Recall that the translation and modulation operators are given by Tx f (y) := f (y − x) and
Mς f (y) := e2πiςy f (y), so that,

Vh f (x, ς) :=
〈

f ,MςTxh
〉
. (1.34)

If h is suitably normalized, Vh : L2(Rd) → L2(R2d) is an isometry. The adjoint (inverse)
STFT is given by,

V∗hF(x) =

∫
R2d

F(y, ς)MςTyh(x)dydς.

For a general h ∈ L2(Rd) the integral should be understood in the weak sense (not pointwise).
Let φ be any non-zero Schwartz class function. For example, φ can be the Gaussian func-

tion φ(x) := e−|x|
2
. The definition in Equation (1.34) then extends to tempered distributions.

Modulation spaces are defined by imposing integrability conditions of the STFT. Let v be a
polynomially moderated weight on R2d. For 1 ≤ p, q ≤ +∞, the modulation space Mp,q

v is
defined as,

Mp,q
v = Mp,q

v (Rd) :=
{

f ∈ S′(Rd)
∣∣∣Vφ f ∈ Lp,q

v (R2d)
}

where,

‖F‖Lp,q
v

=

∫
Rd

(∫
Rd
|F(x, ς)|pv(x, ς)pdx

)q/p

dς
1/q

,

with the usual modifications when p or q are +∞. Mp,q
v is of course given the norm ‖ f ‖Mp,q

v
=

‖Vh f ‖Lp,q
v

. When p = q we write Mp
v = Mp,p

v .
Thus, modulation-space norms measure the time-frequency concentration of a distribu-

tion. The decay properties of a distribution f are roughly evidenced by the decay ofVφ f (x,w)
in the variable x, where the smoothness of f near point x = x0 is related to the decay of
Vφ f (x0,w) in the variable w. Here are some precise statements [62, Proposition 11.3.1].

Proposition 1.11.1. Let vt(x) := (1 + |x|)t, t ∈ R, denote the polynomial weights on R2d. Then
the following holds.

(a) If | f (x)| . v−t(x), for some t > d, then
∣∣∣Vφ f (x,w)

∣∣∣ . v−t(x). If
∣∣∣ f̂ (w)

∣∣∣ . v−t(w), for some
t > d, then

∣∣∣Vφ f (x,w)
∣∣∣ . v−t(w).

(b) If v(x,w) = v(x), then M2
v = L2

v .

(c) If v(x,w) = v(w), then M2
v = F (L2

v). In particular if v(x,w) = vt(w), then M2
v is a Bessel

potential space.

(d) S(Rd) = ∩t≥0M∞
vt

and S′(Rd) = ∪t≤0M∞
vt

.
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Modulation spaces are coorbit spaces of the Heisenberg group (cf. Section 1.5.2). The
abstract wavelet transform Vφ associated with the representation π from Section 1.5.2 is
related to the short-time Fourier transform by,

Vφ f (x,w, λ) = λVφ f (x,w).

Since the mapping f 7→ f given by f (x,w, λ) = λ f (x,w) preserves weighted Lp norms, it
follows that the abstract construction from Section 1.10 coincides with the more concrete
presentation given above.

1.11.1 Gabor frames
A Gabor system generated by a function g ∈ L2(Rd) is a set of functions of the form,

G(g, λ) :=
{
π(λ)g

∣∣∣ λ ∈ Λ
}
,

where π(x,w) = MwTx and the set Λ ⊆ R2d is called the set of phases.
As an example, if we let g = χ[0,1] and Λ = Z × Z, the corresponding Gabor system is an

orthonormal basis of L2(R). Several classic results show that this is only possible when the
generating atom g has poor time-frequency localization. Hence, redundancy is essential in
good time-frequency representations.

Theorem 1.11.1 ([72, 11]). If G(g, aZ × bZ) is a Riesz basis for L2(Rd), then both g <
W(C0, L1) and ĝ < W(C0, L1).

Theorem 1.11.2 (Balian-Low, Daubechies, [25, 11]). If G(g, aZ × bZ) is a Riesz basis for
L2(Rd) then x f < L2(R) or f ′ < L2(R).4

Gabor systems provide atomic decompositions for modulation spaces. This was first
noted in [40]. Using the realization of modulation spaces as coorbit spaces we can deduce
this from Theorem 1.10.1.

Theorem 1.11.3. Let v be a polynomially moderated weight on R2d and let h ∈ M1
v be a

non-zero function. Then, for every sufficiently dense, relatively separated set Λ, the Gabor
system G(g, λ) is a Banach frame for Mp,q

m , for all 1 ≤ p, q ≤ ∞ and all v-moderated weights
m.

Here, the terms Banach frame can be understood in both of the senses discussed in Section
1.9, so the elements of the Gabor system G(g, λ) play simultaneously the roles of atoms and
analyzing functionals.

Constructing Gabor frames in L2(Rd) is significantly easier than constructing atomic de-
compositions for the whole family of modulation spaces. As an example, we quote the fol-
lowing construction known as “the painless method” [26] (see also [62, Prop. 6.4.1]).

4Here, x f denotes the function taking the value x f (x) at a point x ∈ R. The assertion f ′ < L2(R) means that
f does not have a weak-derivative in L2.
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Theorem 1.11.4. Let g ∈ L∞(Rd) be supported on the cube [0, L]d. Let 0 < α ≤ L and
0 < β ≤ 1/L. Then, the Gabor system G(g, αZd × βZd) is a frame for L2(Rd) with bounds
β−da, β−db if and only if,

0 < a ≤
∑
k∈Zd

|g(x − αk)|2 ≤ b, for almost every x ∈ Rd.

In particular, G(g, αZd × βZd) is a tight frame if and only if,∑
k∈Zd

|g(x − αk)|2 ≡ βd, for almost every x ∈ Rd.

In the “painless” case it is even possible to get an explicit formula for the dual frame
of the Gabor system. This is almost the only case where this is possible. Most existence
results for Gabor frames rely on establishing the frame inequality but do not provide explicit
constructions of the dual system.

The other important case where the frame condition for a Gabor system has been com-
pletely characterized is the case of the time-frequency translates of the one-dimensional
Gaussian function over a lattice [86, 99, 100].

Theorem 1.11.5. Let φ(x) := e−πx2
, (x ∈ R). Then, the Gabor system G(φ, αZ×βZ) is a frame

for L2(R) if and only if αβ < 1.

The proof of this theorem resorts to sampling estimates for entire functions and does not
provide an explicit formula for the canonical dual system.

Theorems 1.11.4 and 1.11.5 provide sharp conditions for a Gabor system to be a frame
of L2(Rd). In contrast, the result in Theorem 1.11.3 is only qualitative, it does not give such
sharp sufficient conditions. As a trade-off, Theorem 1.11.3 yields a much stronger conclu-
sion: it gives a the simultaneous atomic decomposition of the whole class of modulations
spaces. In order to bridge this gap, it is desirable to known when a Gabor frame for L2(Rd)
extends to a Banach frame for all modulation spaces. The key technical obstacle is the lack
of information on the dual system, whose existence is granted by the frame inequality. This
difficulty has been addressed in the last years by resorting to spectral invariance results (or
non-commutative variants of Wiener’s lemma) like the ones in Section 1.7 [46, 66, 63, 6].
We cite the following result as an illustration.

Theorem 1.11.6 ([66]). Let v be a subexponential weight, g ∈ M1
v (Rd), and Λ ⊆ R2d a lattice.

Suppose that the Gabor system G(g,Λ) is a frame for L2(Rd). Then, its canonical dual frame
has the form G(h,Λ), for some function h ∈ M1

v (Rd).
As a consequence, each of the pairs (G(g,Λ),G(h,Λ)), (G(h,Λ),G(g,Λ)) provides, simul-

taneously, an atomic decomposition for every modulation space Mp,q
m , with 1 ≤ p, q ≤ +∞

and m a v-moderated weight. 5

5In order to define modulation spaces as subsets of the class of tempered distributions, we must further
assume that the weight v is polynomially moderated. If this is not the case, modulation spaces can still be
constructed by the abstract method of Section 1.10.
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More generally, the set of phases Λ need not be assumed to be a lattice [6], but in this
case the dual frame is not a Gabor system. Instead it is a set of time-frequency molecules{
hλ

∣∣∣ λ ∈ Λ
}
, i.e., it satisfies, ∣∣∣Vφhλ((x,w)

∣∣∣ ≤ H((x,w) − λ)),

for some function H ∈ W(L∞, L1
v). This is enough to deduce the Banach frame condition in

Theorem 1.11.6 above.

1.12 Besov and Triebel-Lizorkin spaces

1.12.1 Besov spaces
Let ϕ ∈ S(Rd) be such that supp ϕ̂ ⊆

{
w ∈ Rd

∣∣∣ 1/2 ≤ |w| ≤ 1
}

and that |ϕ̂(w)| & 1, for
3/5 ≤ |w| ≤ 5/3. If we let ϕ j(x) := 2− jdϕ(2− jx), for j ∈ Z, it follows that

∑
j

∣∣∣ϕ̂ j

∣∣∣ ≈ 1.
For 1 ≤ p, q ≤ +∞, α ∈ R and a distribution f ∈ S′, we define the (semi)norm,

‖ f ‖Ḃαp,q :=


(∑

j∈Z 2−αq j‖ f ∗ ϕ j‖
q
Lp

)1/q
, if q < +∞,

sup j∈Z 2−α j‖ f ∗ ϕ j‖Lp , if q = +∞.
(1.35)

Note that in the definition above, f ∗ ϕ j is a smooth function because it is a distribution with
compactly-supported Fourier transform. Observe also, that ‖ f ‖Ḃαp,q = 0 if and only if f̂ is
supported at {0}. This happens if and only if f is a polynomial. Thus, in order to have a
Banach space, elements in Ḃα

p,q have to be considered modulo polynomials. Let P denote the
class of all polynomials on Rd. The space homogeneous Besov space Ḃα

p,q is defined as the
set of all f ∈ S′/P such that ‖ f ‖Ḃαp,q < +∞.

The inhomogeneous Besov spaces are defined by distinguishing the positive and negatives
scales. Let φ(x) :=

∑
j<0 ϕ j(x). For 1 ≤ p, q ≤ +∞, α ∈ R and a distribution f ∈ S′, we

define,

‖ f ‖Bαp,q := ‖ f ∗ φ‖Lp +


(∑

j≥0 2−αq j‖ f ∗ ϕ j‖
q
Lp

)1/q
, if q < +∞,

sup j≥0 2−α j‖ f ∗ ϕ j‖Lp , if q = +∞.
(1.36)

The inhomogeneous Besov space Bα
p,q is defined as the set of all distributions f ∈ S′ such that

‖ f ‖Bαp,q < +∞. In this case there is no need to cancel out the class of polynomials.
For α > 0, inhomogeneous Besov spaces consists of “ordinary” functions and can be

characterized in terms of moduli of continuity (see [107, Section 2.6]). (For simplicity we
only mention the inhomogeneous case; a similar statement holds for the homogeneous case).
For a function f : Rd → C and h ∈ Rd, the differences ∆n

h f are defined recursively by,

∆1
h f (x) := f (x) − f (x − h),

∆n
h f (x) := ∆1

h(∆n−1
h f )(x).
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For 1 ≤ p ≤ ∞, the n-th order Lp modulus of continuity of f is defined as,

wn( f , t)p := sup
|h|≤t
‖∆n

h f ‖Lp .

For 1 ≤ p, q ≤ +∞ and α > 0 the Besov space Bα
p,q consists of all the locally-integrable

functions such that the quantity,

‖ f ‖Lp +


(∑

j∈Z 2−αq jwdαe+1( f , 2 j)q
p

)1/q
, if q < +∞,

sup j∈Z 2−α jwdαe+1( f , 2 j)p, if q = +∞,
(1.37)

is finite. Moreover, the expression in Equation (1.37) is an equivalent norm on Bα
p,q.

1.12.2 Triebel-Lizorkin spaces
Triebel-Lizorkin spaces are defined similarly to Besov spaces. We keep using the notation
from Section 1.12.1. For 1 ≤ q ≤ +∞, 1 ≤ p < +∞, α ∈ R and a distribution f ∈ S′, we
define the norm,

‖ f ‖Ḟα
p,q

:=


∥∥∥(∑ j∈Z 2−αq j

∣∣∣ f ∗ ϕ j

∣∣∣q)1/q∥∥∥
Lp , if q < +∞,∥∥∥sup j∈Z 2−α j

∣∣∣ f ∗ ϕ j

∣∣∣∥∥∥
Lp , if q = +∞.

(1.38)

The definition for p = +∞ is more complicated: the L∞ norm should be replaced by a Car-
leson measure condition. We refrain from discussing the details. As noted before, pointwise
evaluation of f ∗ ϕ j makes sense since this is a smooth function. As in the case of Besov
spaces, the homogeneous Triebel-Lizorkin space is defined as the set of all f ∈ S′/P such
that ‖ f ‖Ḟα

p,q
< +∞.

The inhomogeneous version is defined using the norm,

‖ f ‖Fα
p,q := ‖ f ∗ φ‖Lp +


∥∥∥(∑ j≥0 2−αq j

∣∣∣ f ∗ ϕ j

∣∣∣q)1/q∥∥∥
Lp , if q < +∞,∥∥∥sup j≥0 2−α j

∣∣∣ f ∗ ϕ j

∣∣∣∥∥∥
Lp , if q = +∞.

(1.39)

Many classical function spaces lay in the range of Triebel-Lizorkin spaces (see [57] and
[60, Chapter 6]). For example, for 1 < p < ∞, F0

p,2 = Ḟ0
p,2 = Lp(Rd). More generally, for

1 < p < ∞ and α ∈ R,

Fα
p,2 = Lp

α(Rd), Ḟα
p,2 = L̇p

α(Rd),

where Lp
α(Rd) and L̇p

α(Rd) are the homogeneous and inhomogeneous Sobolev spaces given by
the norms,

‖ f ‖L̇p
α(Rd) =

∥∥∥F −1(|·|s F ( f ))
∥∥∥

Lp ,

‖ f ‖L̇p
α(Rd) =

∥∥∥F −1((1 + |·|2)s/2F ( f ))
∥∥∥

Lp .
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More precisely, the homogeneous and inhomogeneous Sobolev spaces are defined as the class
of all tempered distributions having finite norm. In the homogeneous case, the space should
be considered modulo polynomials. When α is a nonnegative integer, the inhomogeneous
Sobolev space consist of all the functions in Lp having weak derivatives of order up to α in
Lp.

1.12.3 Identification as coorbit spaces
Besov and Triebel-Lizorkin spaces are coorbit spaces of the affine group acting by translations
and dilations. Let G = Rd × (0,+∞) be the affine group (cf. Section 1.5.1). For (x, s) ∈ G let
π(x, s) be the operator on L2(Rd) given by,

π(x, s) f (y) := TxDs f (y) = s−d/2 f
(y − x

s

)
.

The associated Wavelet transform is,

Wh f (x, s) = s−d/2
∫
Rd

f (t)h
( t − x

s

)
dt,

for f , h ∈ L2(Rd), whereas the inverse wavelet transform is given by,

W∗
h F(x) =

∫ +∞

0

∫
Rd

F(y, s)h
( x − y

s

)
dx

ds

s
3
2 d+1

,

for F ∈ L2(G).6

In [68, Section 4.2] it is shown that a function h ∈ L2(Rd) is an admissible window in the
sense of Section 1.10 if it satisfies the classical “smooth molecule” conditions [55, 56, 57],∣∣∣Dβh(x)

∣∣∣ . (1 + |x|)−M , for all |β| ≤ M,∫
Rd

xβh(x)dx = 0, for all |β| ≤ N,

for sufficiently large N,M > 0. In particular, any Schwartz h with all moments vanishing is
adequate.

Triebel’s work [106] (see also [61, 108]) yields a characterization of Besov and Triebel-
Lizorkin spaces in terms of the wavelet transform, giving:

Ḃα
pq(Rd) = Co

(
Lp,q
α+d/2−d/q(G)

)
, for all 1 ≤ p, q ≤ +∞, α ∈ R, (1.40)

Ḟα
pq(Rd) = Co

(
Lα+d/2

p,q (G)
)
, for all 1 ≤ q ≤ +∞, 1 ≤ p < +∞, α ∈ R, (1.41)

6The integral converges in the weak-sense. The possibility of evaluating it pointwise requires further hy-
pothesis.
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where the space Lp,q
α and Lαp,q are defined in Equations (1.13) and (1.14). There is however

a serious caveat in the case of Tribel-Lizorkin spaces. The spaces Lαp,q do not statisfy the
general assumptions of Section 1.10 since they are not right-invariant. The spaces Ḟα

pq can
however be regarded as coorbit spaces of the so-called Tent spaces (cf. [20]) which are left
and right translation invariant. Recently, it has been shown that Tribel-Lizorkin spaces can
also be regarded as coorbits of the so-called Peetre spaces (see [108]).

A characterization of the corresponding inhomogeneous spaces as coorbit spaces of π is
also possible, although it requires a more geneneral setting (see [109]), where the domain of
the wavelet transform is not the group G anymore.

1.12.4 Wavelets

Given a function h ∈ L2(Rd) and a relatively separated set of the affine group Λ ⊆ G, the set

{
TxDsh

∣∣∣ (x, s) ∈ Λ
}

=
{

s−d/2h
(
· − x

s

) ∣∣∣ (x, s) ∈ Λ
}

is called the wavelet system generated by the window h and the set of phases Λ. Theorem
1.10.1 implies that given a function h with adequate decay and smoothness and sufficiently
many vanishing moments, the exist β > 1 and α > 0 such that the wavelet system{

β− jd/2h
(
β− jd · −αk

) ∣∣∣ j ∈ Z, k ∈ Zd }
,

provides a simultaneous atomic decomposition for the spaces Ḃα
pq, (1 ≤ p, q ≤ +∞, α ∈ R)

and Ḟα
pq, (1 ≤ q ≤ +∞, 1 ≤ p < +∞, α ∈ R). The corresponding sequence spaces are given by

Equations (1.16) and (1.17). In fact, Theorem 1.10.1 allows for much more irregular sets of
phases and gives a more robust statement (where, for example, any sufficiently small choice
for β and α is granted to be adequate).

In contrast to the case of time-frequency decompositions, non-redundant well-behaved
time-scale decompositions do exist. In [80], Lemarié and Meyer constructed a wavelet sys-
tem, {

2− j/2h
(
2− j · −k

) ∣∣∣ j, k ∈ Z
}
,

that is an orthonormal basis for L2(R). The method was refined and generalized by Mallat
[87, 88], introducing the method known as multi-resolution analysis. In [23], Daubechies
obtained a compactly supported orthonormal wavelet basis with integer translates and dyadic
scales. All these systems extend to atomic decompositions of the Besov and Triebel-Lizorkin
spaces by a density argument.7

7The historical references are taken from [57].
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1.13 Coorbit spaces of localized frames

Let H be a separable Hilbert space and let ({ fk}k∈I , {gk}k∈I) a frame pair for it (cf. Section
1.8.3). This means that { fk}k,{gk}k are Bessel sequences and that every f ∈ H admits the
expansion

f =
∑

k

〈 f , gk〉 fk. (1.42)

There are two abstract ways to extend this expansion to other Banach spaces. The orbit
method consist of “pushing forward” a certain sequence space through the synthesis map
c 7→

∑
k ck fk, while the coorbit method consists of “pulling back” a sequence space by the

analysis map f 7→ (〈 f , gk〉)k. The second method is similar to the one used in Section 1.10 to
define coorbit spaces. In that context, the orbit method is also possible and the equivalence
of both methods was shown in [44, Corollary 4.5].

In abstract setting of Hilbert space frames the same constructions were considered in
[63, 53] (see also [5]). The frame pair ({ fk}k∈I , {gk}k∈I) is called localized with respect to a
subalgebra A of B(`2(I)) if the Gramian matrices of { fk}k and {gk}k belong to A (cf. Section
1.8.5). In this case, the cross-gramian matrix K given by,

Kk, j := 〈 fk, gk〉 , (k, j ∈ I),

also belongs to A. Localized frame pairs with respect to adequate matrix algebras (like for
example the ones considered in Section 1.7) are appropriate for the construction of orbit and
coorbit spaces.

We illustrate this construction for some concrete decay conditions. Let Aw be the weighted
Schur from Section 1.7.2. Here, the index set I = Λ ⊆ Rd is a relatively separated set and
the weight w is subexponential (cf. Equation (1.9)) and satisfies w(x) & (1 + |x|)δ, for some
δ > 0. Note that Aw is an algebra of matrices with entries in Λ that acts boundedly on `1

w(Λ)
and `∞1/w(Λ).

Suppose that ({ fk}k∈Λ , {gk}k∈Λ) is a frame pair for a Hilbert space H that is Aw-localized.
Let v be a w-moderated weight on Rd (cf. Equation (1.8)). Let H00 be the linear space
(algebraically) generated by the atoms { fk}k within H. For f ∈ H00 and 1 ≤ p < +∞ we
define,

‖ f ‖Hp
v

:= ‖(〈 f , gk〉)k‖`p
v
,

and let the space Hp
v be the completion of H00 with respect to that norm. Since `p

w ↪→ `∞1/w,
the space Hp

v can be described as,

Hp
v =

{
f ∈ H∞1/w

∣∣∣ (〈 f , gk〉)k ∈ `
p
v
}
.
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The pair ({ fk}k∈I , {gk}k∈I) yields a Banach frame for Hp
v with corresponding sequence space `p

v

(cf. Section 1.9). In particular, each f ∈ Hp
v admits the expansion,

f =
∑

k

〈 f , gk〉 fk, (1.43)

with unconditional convergence in the Hp
v -norm. Moreover, the norm of Hp

v is equivalent to
the quantity,

inf
{
‖c‖`p

v

∣∣∣ f =
∑

k

ck fk
}
.

This shows that the space Hp
v , originally constructed as a coorbit space of the map f 7→

(〈 f , gk〉)k, is also an orbit space of the map c 7→
∑

k ck fk.
When p = ∞ the construction above yields a space that will denoted by H∞v . All the

statements above apply to this space, but the sequence space `p
v should be replaced by c0

v , the
closure of the set of finitely supported sequences within `∞v . It is also possible to consider
a space associated with the full sequence space `∞v ; in this case the expansion in Equation
(1.43) converges only in the (H∞1/w,H

1
w) topology.

Two localized frame pairs ({ fk}k∈I , {gk}k∈I), (
{
f ′k
}

k∈I
,
{
g′k

}
k∈I

) yield the same spaces with
equivalent norms if they are localized with respect to each other in the sense that the cross-
gramian matrices L,M given by,

Lk, j :=
〈

fk, g′k
〉
,Mk, j :=

〈
f ′k , gk

〉
, (k, j ∈ I),

belong to A.
A frame { fk}k for a Hilbert space H is called intrinsically localized with respect to A if its

Gramian matrix belongs to A (see [53]). If the algebra A is one of the algebras from Section
1.7, it follows that the Gramian matrix of the canonical dual frame {gk}k also belongs to A
and consequently ({ fk}k∈I , {gk}k∈I) is a localized frame pair. Indeed, the Gramian matrix of
{gk}k is the pseudo-inverse of the Gramian matrix of { fk}k so Remark 1.7.1 applies.

For Gabor frames generated by windows that are well-localized in space and frequency
the corresponding coorbit spaces are modulation spaces. Theorem 1.11.6, for example, can
be seen as an instance of the abstract theory presented in this section. This setting does
not apply however to the case of time-scale decompositions because the assumptions on the
geometry of the index sets in Section 1.7 are not well suited to that scenario.

1.14 Shift-invariant spaces
Let Λ ⊆ Rd be a lattice. A closed subspace S ⊆ L2(Rd) is called Λ-shift-invariant if whenever
f ∈ S and λ ∈ Λ, then Tλ f = f (· − λ) ∈ S. The structure of shift-invariant spaces has been
extensively studied in [96, 28, 14] through the so-called fiberization theory.



1.14. SHIFT-INVARIANT SPACES 61

Let Λ⊥ be the orthogonal lattice of Λ given by,

Λ⊥ :=
{
λ⊥ ∈ Rd

∣∣∣ 〈λ, λ⊥〉 ∈ Z, for all λ ∈ Λ
}
. (1.44)

For a function f ∈ L2(Rd), the fiber of f at a point w ∈ Rd is the sequence f w ∈ `2(Λ⊥) given
by,

f w :=
(

f̂ (w + λ⊥)
)
λ⊥∈Λ⊥

. (1.45)

Of course the family of sequences
{

f w
∣∣∣ w ∈ Rd }

is only well-defined up to null measure sets.
For any countable family X ⊆ L2(Rd) we further define,

Xw :=
{

f w
∣∣∣ f ∈ X

}
.

The fibers of shift-invariant spaces are defined as follows. Given a shift-invariant space S, it
is always possible to obtain a countable family X ⊆ S that generates S in the sense that S is
the closed linear span of the set,

E(X,Λ) :=
{
Tλ f

∣∣∣ f ∈ X, λ ∈ Λ
}
.

For example we may take X to be a countable dense subset of S. For w ∈ Rd, we let Sw be
the subspace of `2(Λ⊥) generated by the set Xw. The family

{
S w

∣∣∣ w ∈ Rd }
is called the set of

fibers of S. A different choice for X produces the same set of fibers up to null measure. As
the following theorem shows, they completely characterize the space S.

Theorem 1.14.1. Let S ⊆ L2(Rd) be a shift-invariant space and let
{
S w

∣∣∣ w ∈ Rd }
be its set of

fibers. Then the following holds.

(a) A function f ∈ L2(Rd) belongs to S if and only if for almost every w ∈ Rd, f w ∈ S w.

(b) E(X,Λ) is complete in S (i.e., it generates a dense subspace) if and only if for almost
every w ∈ Rd the set Xw is complete in Sw.

(c) E(X,Λ) is a Riesz basis (resp. frame) of S with bounds A, B if and only if for almost
every w ∈ Rd, the set Xw is Riesz basis of Sw (resp. frame) with bounds A, B.

The conditions in Theorem 1.14.1 can be further reformulated by computing the Gramian
matrix of the fibers. For f , g ∈ L2(Rd), the bracket product is defined by,

[ f , g]Λ(w) :=
∑
λ⊥∈Λ⊥

f̂ (w + λ⊥)ĝ(w + λ⊥), (w ∈ Rd).

The Gramian matrix of the system Xw is,

Ĝw =
(
[ fx, fy]Λ(w)

)
x,y∈X

.

Theorem 1.8.6 then yields the following.
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Theorem 1.14.2. Let X ⊆ L2(Rd) and consider the family,

E(X,Λ) =
{
Tλ f

∣∣∣ f ∈ X, λ ∈ Λ
}
,

and the family of matrices,

Ĝw =
(
[ fx, fy]Λ(w)

)
x,y∈X

, (w ∈ Rd).

Let 0 < A ≤ B < +∞. Then the following holds.

• E(X,Λ) is a Riesz sequence with bounds A, B if and only if for almost every w ∈ Rd,
inf(spec(Ĝw)) = A and sup(spec(Ĝw)) = B.

• E(X,Λ) is a frame sequence with bounds A, B if and only if for almost every w ∈ Rd,
inf(spec(Ĝw) \ {0}) = A and sup(spec(Ĝw)) = B.

Theorems 1.14.2 and 1.14.1 answer the fundamental questions concerning shift-invariant
spaces. Using these tools a complete characterization of the structure of shift invariant spaces
in terms of fibers is possible (see [14]).

Finally, we illustrate the theory of Section 1.13 in the case of shift-invariant spaces. For
a complete proof in a more general context see Section 3.3. Suppose that X is a finite set
X = { f1, . . . , fn} and that E(X,Λ) is a frame sequence. Let us denote by S the closed linear
span of E(X,Λ). Assume further that each fi belongs to W(L∞, L1) (cf. Section 1.6). Then the
frame E(X,Λ) is easily seen to be self-localized with respect to the unweighted Baskakov-
Sjöstrand algebra C from Section 1.7.3. The coorbit space corresponding to the sequence
space `p is just the Lp-closure E(X,Λ) within Lp (as before, for p = ∞ the right sequence
space is co, not `∞). The canonical dual frame of E(X,Λ) has the form E(Y,Λ) where
Y = {g1, . . . , gn}. The self-localization of the dual frame and Equation 1.33 imply that each
gi also belongs to W(L∞, L1). Consequently we have the following.

Theorem 1.14.3. Let { f1, . . . , fn} ⊆ W(L∞, L1). Assume that E =
{
Tλ f1, . . . ,Tλ fn

∣∣∣ λ ∈ Λ
}

forms a frame of S, its closed linear space within L2(Rd). Then the canonical dual frame is
given by E′ =

{
Tλg1, . . . ,Tλgn

∣∣∣ λ ∈ Λ
}
, for some family {g1, . . . , gn} ⊆ W(L∞, L1).

As a consequence, if for 1 ≤ p < +∞ we let Sp be the closure of E within Lp, then both
(E, E′) and (E′, E) are Banach frames for Sp with associated sequence space `p(Λ). For
p = ∞ the same is true, replacing `∞ with c0. In particular, for 1 ≤ p ≤ +∞, every f ∈ Sp

admits the expansions,

f =

n∑
k=1

∑
λ∈Λ

〈 f , gk(· − λ)〉 fk(· − λ) =

n∑
k=1

∑
λ∈Λ

〈 f , fk(· − λ)〉 gk(· − λ),

with unconditional convergence in Lp-norm.



Chapter 2

Amalgam spaces

In this chapter we introduce two variants of the amalgam space norms with the aim of ob-
taining stronger statements in several applications. The first one concerns general locally-
compact groups and is irrelevant in the case of IN groups. We introduce a weak amalgam
space and prove that certain convolution relations for amalgam spaces can be improved by
introducing this space. The second one, in contrast, concerns only the Euclidean space. It is
designed to model the concept of smooth spatial molecule.

2.1 Weak and strong amalgam norms

Let G be a locally-compact group. We now introduce some variations of the amalgam spaces
W(L∞, L1

w), WR(L∞, L1
w). We do so in order to handle certain technicalities involving right

convolution actions on the spaces W(L∞, E). For an IN group, the spaces W(L∞, E) are right
L1

w modules, but for a general group G, they are only right W(L∞, L1
w) modules. We will now

introduce a space between L1
w and W(L∞, L1

w) that acts on the spaces W(L∞, E) from the right
and collapses to L1

w in the case that G is an IN group. Similarly, we will introduce a certain
subspace of W(L∞, L1

w) ∩WR(L∞, L1
w) that reduces to W(L∞, L1

w) when G is an IN group.
For an admissible weight w, let the left and right weak amalgam spaces be defined by

Wweak(L∞, L1
w) :=

{
f ∈ L1

loc

∣∣∣ χV ∗ | f | ∈ W(L∞, L1
w)

}
,

Wweak
R (L∞, L1

w) :=
{

f ∈ L1
loc

∣∣∣ | f | ∗ χV ∈ WR(L∞, L1
w)

}
,

and endow them with the norms,

‖ f ‖Wweak(L∞,L1
w) := ‖χV ∗ | f |‖W(L∞,L1

w) = ‖(χV ∗ | f |)#‖L1
w
,

‖ f ‖Wweak
R (L∞,L1

w) := ‖| f | ∗ χV‖WR(L∞,L1
w) = ‖(| f | ∗ χV)#‖L1

w
.

These spaces are related by ‖ f ‖Wweak(L∞,L1
w) = ‖ f ∨‖Wweak

R (L∞,L1
w).

63
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Consider also the strong amalgam space defined as,

Wst(L∞, L1
w) := WR(L∞,W(L∞, L1

w)).

Hence, the norm of a function f ∈ Wst(L∞, L1
w) is given by,

‖ f ‖Wst(L∞,L1
w) = ‖( f#)#‖L1

w
.

We now observe how these new spaces are related to the classical ones.

Proposition 2.1.1. Let w be an admissible weight. Then the following holds.

(a)
W(L∞, L1

w) ↪→ Wweak(L∞, L1
w) ↪→ L1

w,

and
WR(L∞, L1

w) ↪→ Wweak
R (L∞, L1

w) ↪→ L1
w.

(b) If G is an IN group then,

Wweak
R (L∞, L1

w) = Wweak(L∞, L1
w) = L1

w.

(c) Wst(L∞, L1
w) ↪→ W(L∞, L1

w) ∩WR(L∞, L1
w).

(d) If G is an IN group then,

W(L∞, L1
w) = WR(L∞, L1

w) = Wst(L∞, L1
w).

Proof. For (a) and (b) we only prove the statements concerning the “right” spaces; the corre-
sponding statements for “left” spaces follow by using the involution ∨.

Let f ∈ WR(L∞, L1
w). Since (| f | ∗ χV)# ≤ ( f# ∗ χV), we have that,

‖ f ‖Wweak
R (L∞,L1

w) = ‖(| f | ∗ χV)#‖L1
w
≤ ‖ f# ∗ χV‖L1

w

≤ ‖ f#‖L1
w
‖χV‖L1

w
. ‖ f ‖WR(L∞,L1

w).

This proves the first embedding of (a). For the second one, let f ∈ Wweak
R (L∞, L1

w) and esti-
mate, ∫

G

| f (x)|w(x)dx .
∫
G

| f (x)|w(x)
∫
G

χV(x−1y)dydx

≤

∫
G

∫
G

| f (x)|w(y−1x)χV(x−1y)dxw(y)dy.

Since w is locally bounded, in the last integral w(y−1x) . 1 and we conclude that ‖ f ‖L1
w
.

‖| f | ∗ χV‖L1
w
. Now the conclusion follows from the fact that | f | ∗ χV ≤ (| f | ∗ χV)#.
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Part (b) follows from the convolution relation,

W(L∞, L1
w) ∗ L1

w ↪→ W(L∞, L1
w),

which holds when G is an IN group. This follows easily from the fact that, for an IN group,
f # = f#. It also follows from Theorem 1.6.2. Indeed, Theorem 1.6.2 imples that W(L∞, L1

w) ∗
W(L1, L1

w) ↪→ W(L∞, L1
w). It is straightforward to see that W(L1, L1

w) = L1
w.

Part (c) follows from the observation that f# ≤ ( f#)# and f # ≤ ( f #)#. Finally if G is an IN
group, for x ∈ G, V xV = VV x, and therefore,

( f#)#(x) = sup
v∈V

f#(xv) = sup
v∈V

sup
w∈V
| f (wxv)| = sup

y∈VV
| f (yx)| .

Hence the conclusion follows from the fact that a different choice for the neighborhood V
induces an equivalent norm in W(L∞, L1

w). �

For the weak norm, we now derive the following convolution relation (cf. Lemma 1.6.1).

Proposition 2.1.2. Let E be a solid, translation invariant BF space and let w be an admissible
weight for it. Then,

W(L∞, E) ∗Wweak(L∞, L1
w) ↪→ W(C0, E),

together with the corresponding norm estimate.

Proof. Let f ∈ W(L∞, E) and g ∈ Wweak(L∞, L1
w). For almost every y ∈ G and t ∈ V ,

| f (y)| ≤ f #(yt). Hence for x ∈ G,

| f | ∗ |g| (x) ≤
∫
G

∫
G

f #(yt)χV(t−1)dt
∣∣∣g(y−1x)

∣∣∣ dy

=

∫
G

f #(t)
∫
G

χV(t−1y)
∣∣∣g(y−1x)

∣∣∣ dydt

=

∫
G

f #(t)(χV ∗ |g|)(t−1x)dt = f # ∗ (χV ∗ |g|)(x).

Therefore Lemma 1.6.1 implies that,

‖ f ∗ g‖W(L∞,E) ≤ ‖ f # ∗ (χV ∗ |g|)‖W(L∞,E)

≤ ‖ f #‖E‖χV ∗ |g|‖W(L∞,L1
w) = ‖ f ‖W(L∞,E)‖g‖Wweak(L∞,L1

w).

It only remains to note that f ∗ g is a continuous function. This follows from the embedding
Wweak(L∞, L1

w) ↪→ L1
w in Proposition 2.1.1 and Lemma 1.6.3. �

Using Proposition 2.1.2, we can derive a variant of Lemma 1.6.2 (b) that only requires g
to be in Wweak

R (L∞, L1
w).
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Lemma 2.1.1. Let E be a solid, translation invariant BF space and let w be an admissible
weight for it. Let Λ ⊆ G be a relatively separated set. Then, for f ∈ W(L∞, E) and g ∈
Wweak

R (L∞, L1
w), the sequence (〈 f , Lλg〉)λ∈Λ belongs to Ed(Λ) and satisfies

‖(〈 f , Lλg〉)λ‖Ed . ‖ f ‖W(L∞,E)‖g‖Wweak
R (L∞,L1

w),

where the implicit constant depends on the set Λ.

Proof. As in the proof on Lemma 1.6.2 (b), ‖(〈 f , Lλg〉)λ‖Ed . ‖ f ∗ g∨‖W(C0,E). Now we
can invoke Proposition 2.1.2 and the fact that the involution ∨ maps Wweak

R (L∞, L1
w) into

Wweak(L∞, L1
w) to obtain the desired conclusion. �

2.2 Schur-type amalgam norms
When moving from shift-invariant spaces (cf. Section 1.14) to the setting of spaces gen-
erated by general atoms, the standard tools for amalgam spaces are not directly applicable
and require an extension. In the study of shift-invariant spaces (or more generally, spaces
generated by translates) the relevant operators can be expressed as products and convolutions
with possibly distributional kernels. Wiener amalgam spaces, have proved to be a powerful
tool to quantify this formalism. The abstract convolution multiplier theorems allow to deal
with smoothness and approximation problems in the context of atoms generated by irregular
shifts. In the context of general spline-type spaces, the relevant operations are not convolu-
tions but, nonetheless, they are convolution-like. For example, in the intended applications
to time-frequency analysis we will consider the image of a modulation space (cf. Section
1.11) through the short-time Fourier transform (with a fixed window). In this case, the rele-
vant operations are not convolutions on the Euclidean space but twisted convolutions (which
nevertheless are closely related to convolutions on the Heisenberg group).

Convolution dominated operators and enveloping conditions for irregular atoms are widely
used concepts. Here, we will consider an enveloping condition for atoms, not in a pointwise
sense, but in the sense of a local - possibly non solid - quantity. We will extend the amalgam
norm of a function f to families of functions F in such a way that the condition ‖F‖W(B,E) < ∞
grants to F the same properties shared by a set of translates of f , when ‖ f ‖W(B,E) < ∞. When
the local norm measures size, the condition ‖F‖W(B,E) < ∞ will amount to certain spatial
localization for the family F; when the local norm measures smoothness, it will amount to
certain equismoothness property for the family F. Using this extension of the amalgam norm
and a simple interpolation argument, we obtain replacements for some of the convolution in-
equalities in amalgam spaces. These will be used, for example, in Section 3.3 to extend to the
general setting the principle that in a finitely-generated shift-invariant space the smoothness
of the generating windows is inherited by the whole space.

We will consider a relatively separated set of points Λ ⊆ Rd, which will be called nodes
and a symmetric, submultiplicative, continuous weight w : Rd → (0,+∞). We will also
consider a family of measurable functions fk : Rd → C indexed by the set of nodes Λ.
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Let (B, ‖ · ‖B) be a uniformly localizable, isometrically translation invariant Banach space
on Rd (cf. Section 1.6.1). For a family F ≡ { fk}k∈Λ ⊆ Bloc we define its W(B, L1

w) norm by

‖F‖W(B,L1
w) := max

sup
k
‖gk‖1, supess

x

∑
k

|gk(x)|

 ,
where gk(x) := ‖ fkη(· − x)‖Bw(x − k), (x ∈ Rd, k ∈ Λ).

Here, η ∈ D(Rd) is any nonzero window function (see Proposition 2.2.1 below).
Observe that if ‖F‖W(B,L1

w) < +∞, then each fk belongs to W(B, L1
w). The estimate

‖F‖W(B,L1
w) < +∞ implies, in addition, certain uniformity for the set { fk}k, similar to that

shared by the translates of an individual atom. Some results to come will give evidence of
that. The following proposition shows that, at least, the hypothesis ‖F‖W(B,L1

w) < +∞ indeed
extends to more general families F, the condition ‖ f ‖W(B,L1

w) < ∞ normally imposed on fami-
lies produced by translation of a single generator f . Before showing that, we must prove the
independence of the window function in the definition above.

Proposition 2.2.1. Let a family F ≡ { fk}k∈Λ ⊆ Bloc be given.

(a) Let ‖F‖Wi(B,L1
w) be the norm defined using a nonzero window function ηi ∈ D(Rd),

(i=1,2). Then ‖F‖W1(B,L1
w) ≈ ‖F‖W2(B,L1

w).

(b) For any bounded set Q ⊂ Rd with non-empty interior, the norm ‖F‖W(B,L1
w) is also

equivalent to the norm ‖F‖W̃(B,L1
w) defined by

‖F‖W̃(B,L1
w) := max

sup
k
‖gk‖1, supess

x

∑
k

|gk(x)|

 ,
where gk(x) := ‖ fk‖B(Q+x)w(x − k), x ∈ Rd, k ∈ Λ,

and ‖ f ‖B(Q) := inf {‖g‖B : g ≡ f on Q} .

(c) If the family F is given by fk = f (· − k), k ∈ Λ and Λ is relatively separated, then
‖F‖W(B,L1

w) ≈ ‖ f ‖W(B,L1
w).

Remark 2.2.1. The implicit constant on (c) depends on the relative separation of Λ.

Proof. For (a), since η2 is compactly supported and not identically 0, it is possible to choose
α > 0 such that

∑
j∈Zd |η2|

2 (· − α j) ≈ 1. This series is locally finite, so the function m :=

η1

(∑
j∈Zd |η2|

2 (· − α j)
)−1

is smooth. Choose θ ∈ D(Rd) such that θ ≡ 1 on the support of η1.
Now,

η1 = θη1 =
∑
j∈Zd

θm |η2|
2 (· − α j).
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Since both θ and η2 are compactly supported, only finitely many terms are not zero and we
may write

η1 =

n∑
j=1

m jη2(· − x j),

where x j ∈ αZ
d and m j := θmη2(· − x j) ∈ D(Rd).

Now, for x ∈ Rd, and k ∈ Λ,

‖ fkη1(· − x)‖Bw(x − k) .
n∑

j=1

‖ fkη2(· − x − x j)‖Bw(x − k)

.
n∑

j=1

‖ fkη2(· − (x + x j))‖Bw((x + x j) − k)w(x j).

Consequently,

‖F‖W1(B,L1
w) . ‖F‖W2(B,L1

w).

The other inequality follows by symmetry.

To prove (b), consider first a window η ∈ D(Rd) such that η ≡ 1 on Q. Then for any k ∈ Λ

and x ∈ Rd, ‖ fk‖B(Q+x) ≤ ‖ fkη(· − x)‖B and it follows that ‖F‖W̃(B,L1
w) . ‖F‖W(B,L1

w).
For the other inequality, since Q has non-empty interior, there exists a non-zero window

function η ∈ D(Rd) supported on Q. For any k ∈ Λ, x ∈ Rd and any h ∈ B such that h ≡ fk

on Q + x, we have

‖ fkη(· − x)‖B = ‖hη(· − x)‖B . ‖h‖B.

Therefore, ‖ fkη(· − x)‖B . ‖ fk‖B(Q+x), and the desired inequality follows.
Let us now prove (c). For x ∈ Rd and k ∈ Λ, since B is isometrically translation invariant,

gk(x) = ‖ f (· − k)η(· − x)‖Bw(x − k) = ‖ fη(· − (x − k))‖Bw(x − k).

Integrating over x we get that for any k ∈ Λ,

‖ f ‖W(B,L1
w) = ‖gk‖1. (2.1)

This shows that ‖ f ‖W(B,L1
w) ≤ ‖F‖W(B,L1

w).
Since by (2.1) we know that supk‖gk‖1 ≤ ‖ f ‖W(B,L1

w), it suffices to show that supessx
∑

k gk(x) .
‖ f ‖W(B,L1

w).
To this end, let us call Q the unitary cube centered at 0 and let θ ∈ D(Rd) be such that
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θ ≡ 1 on supp(η) + Q. For x ∈ Rd, and k ∈ Λ,

gk(x) = ‖ fη(· − (x − k))‖Bw(x − k) =

∫
Q
‖ fη(· − (x − k))‖Bw(x − k)dy

=

∫
Q
‖ fη(· − (x − k))θ(· − (x + y − k))‖Bw(x − k)dy

.

∫
Q
‖ f θ(· − (x + y − k))‖Bw(x − k)dy

=

∫
Q+x−k

‖ f θ(· − y)‖Bw(x − k)dy.

Since w is bounded on Q, for y ∈ Q + x − k, w(x − k) ≤ w(y) supQ w. Therefore, for any
x ∈ Rd, ∑

k

gk(x) .
∑

k

∫
Q+x−k

‖ f θ(· − y)‖Bw(y)dy

=

∫
Rd
‖ f θ(· − y)‖Bw(y)

∑
k

χQ+x−k(y)dy.

Finally, observe that
∑

k χQ+x−k(y) is bounded by the relative separation of the set of nodes Λ.
This completes the proof. �

Example 2.2.1. As an easy example of amalgam norm of families, consider a relatively sep-
arated set of nodes Λ ⊆ Rd, and a family of measurable functions fk : Rd → C, k ∈ Λ

satisfying the concentration condition,

| fk(x)| ≤ Cw−(s+α)(x − k), x ∈ Rd, k ∈ Λ, (2.2)

for some s > d and α ≥ 0.
Let Q := [0, 1]d be the unit cube. From equation (2.2) we get that for any x ∈ Rd,

‖ fk‖L∞(Q+x) ≤ C‖w−(s+α)‖L∞(Q+(x−k)) . Cw−(s+α)(x − k),

where the implicit constant depends on s + α. Therefore,

‖ fk‖L∞(Q+x)wα(x − k) . Cw−s(x − k).

Hence by Proposition 2.2.1 and Lemma 1.3.2, ‖F‖W(L∞,L1
wα ) . Cρ(Λ).

The concentration condition in Equation (2.2) is however much more precise than the last
statement.
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2.3 Estimates for Schur-type norms
We now introduce a number of multiplier estimates that will replace in certain applications
the convolution relations for amalgam spaces. These are easily established for some endpoint
spaces and then generalized by interpolation. Throughout this section we will assume the
following.

• A relatively separated set of nodes Λ ⊆ Rd is given.

• B is a uniformly localizable, isometrically translation invariant, Banach space (cf. Sec-
tion 1.6.1).

• w : Rd → (0,+∞) is a symmetric, submultiplicative, continuous weight.

• v : Rd → (0,+∞) is a symmetric weight moderated by w.

We first show that the synthesis of well-localized atoms is bounded with respect to amalgam
space norms.

Proposition 2.3.1. Let a family F ≡ { fk}k∈Λ ⊆ Bloc such that ‖F‖W(B,L1
w) < +∞ be given. Let

c ∈ `p
v , for some 1 ≤ p < ∞, or c ∈ c0, for p = +∞. Then, the series

c · F :=
∑

k

ck fk,

converges in W(B, Lp
v ) and satisfies the following estimate,

‖c · F‖W(B,Lp
v ) . ‖c‖`p

v
‖F‖W(B,L1

w).

Remark 2.3.1. The implicit constant is the constant in Equation (1.8).

Remark 2.3.2. If c ∈ `∞v , then the same conclusion holds but the series is only weak* con-
vergent.

Remark 2.3.3. In contrast to Lemma 1.6.2, the space B is not assumed to be solid.

Proof. We will assume that the sequence c is finitely supported. The general case follows
from this one by approximation and the completeness of W(B, L1

v).
Let us set f := c · F =

∑
k ck fk. For a window function η ∈ D(Rd) and x ∈ Rd, we have

fη(· − x) =
∑

k ck fkη(· − x). Therefore

‖ fη(· − x)‖Bv(x) ≤ C
∑

k

|ck| v(k)‖ fkη(· − x)‖Bw(x − k),

where the constant C is the constant in (1.8).
Now Schur’s lemma (see below) yields the desired inequality. �
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In the proof we used part (a) of the following interpolation lemma which we quote for
completeness. For a proof see [60, Theorem 1.3.4].

Lemma 2.3.1. Let F ≡ { fk}k be a family of measurable functions on Rd and let 1 ≤ p ≤ ∞.

(a) Let {ck}k ⊆ C be a sequence. Then,

‖c · F‖Lp ≤ ‖c‖`p

(
sup

k
‖ fk‖L1

)1/p supess
x∈Rd

∑
k

| fk(x)|

1/p′

,

where,
c · F :=

∑
k

ck fk.

(b) Let g : Rd → [0,∞] be a measurable function. Then,

‖g · F‖`p ≤ ‖g‖Lp

(
sup

k
‖ fk‖L1

)1/p′ supess
x∈Rd

∑
k

| fk(x)|

1/p

,

where,

(g · F)k :=
∫
Rd

g(x) fk(x)dx.

For both statements, if p = 1, we interpret 1/p′ = 0.

We now give estimates for transformations operating on families of well-localized atoms.
For a matrix of complex numbers C ≡ (ck, j)k, j∈Λ, we consider the following weighted Schur-
type norm,

‖C‖Sw := max

sup
k

∑
j

∣∣∣ck, j

∣∣∣ w(k − j), sup
j

∑
k

∣∣∣ck, j

∣∣∣ w(k − j)

 .
Furthermore, we denote by Sw the set of all such matrices having finite norm.

Let us show that these matrices act boundedly on well-concentrated families of atoms.

Proposition 2.3.2. Let a family F ≡ { fk}k∈Λ ⊆ Bloc such that ‖F‖W(B,L1
w) < +∞ and a matrix

C ∈ Sw be given.
Let C · F ≡ {gk}k be the family defined by,

gk :=
∑

j

ck, j f j.

Then, each of the series defining gk converges in W(B, L1
w) and we have the following esti-

mate,
‖C · F‖W(B,L1

w) ≤ ‖C‖Sw‖F‖W(B,L1
w).
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Proof. Again, by an approximation argument we may assume that C is finitely supported.
First observe that for fixed k ∈ Λ, the sequence

{
ck, j

}
j
belongs to `1

m, where m is the weight
given by m( j) := w(k − j). Since w( j) ≤ m( j)w(k), it follows from Proposition 2.3.1 that the
series defining gk converges in W(B, L1

w).
Fix a window function η ∈ D(Rd) and x ∈ Rd. For each k ∈ Λ, gkη(·−x) =

∑
j ck, j f jη(·−x).

Consequently, if we set hk(x) := ‖gkη(· − x)‖Bw(x − k), we get,

hk(x) ≤
∑

j

∣∣∣ck, j

∣∣∣ w(k − j)‖ f jη(· − x)‖Bw(x − j). (2.3)

Integrating this equation yields,

‖hk‖1 ≤
∑

j

∣∣∣ck, j

∣∣∣ w(k − j)‖F‖W(B,L1
w).

Hence, supk‖hk‖1 ≤ ‖C‖Sw‖F‖W(B,L1
w). From Equation (2.3) we also get,∑

k

hk(x) ≤
∑

j

∑
k

∣∣∣ck, j

∣∣∣ w(k − j)‖ f jη(· − x)‖Bw(x − j)

≤ ‖C‖Sw

∑
j

‖ f jη(· − x)‖Bw(x − j).

Therefore, supessx
∑

k hk(x) . ‖C‖Sw‖F‖W(B,L1
w). This completes the proof. �

We now give a dual estimate.

Proposition 2.3.3. Let two families F ≡ { fk}k∈Λ ,G ≡ {gk}k∈Λ ⊆ Bloc such that ‖F‖W(B,L1
w), ‖G‖W(B,L1

w) <
+∞ be given. Suppose that B is continuously embedded in L∞loc. Then the cross-correlation
matrix C, defined by

Ck, j :=
〈

fk, g j

〉
,

satisfies ‖C‖Sw . ‖F‖W(B,L1
w)‖G‖W(B,L1

w).

Remark 2.3.4. The implicit constant depends on the embedding B ↪→ L∞loc.

Proof. Fix η ∈ D(Rd) supported on an open ball B around 0 and such that η ≡ 1 on a smaller
concentric ball B′. Let f : Rd → C be a locally integrable function. Given x ∈ Rd, for almost
every y ∈ B′ + x,

| f (y)| = | f (y)η(y − x)| ≤ ‖ fη(· − x)‖L∞(B) . ‖ fη(· − x)‖B.

Hence

|Br(x)|−1
∫

Br(x)
| f (y)| dy . ‖ fη(· − x)‖B,
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for all sufficiently small r > 0. This shows that

| f (x)| . ‖ fη(· − x)‖B,

at every x ∈ Rd that is a Lebesgue point of f . Consequently,∣∣∣ck j

∣∣∣ w(k − j) .
∫
Rd
‖ fkη(· − x)‖Bw(x − k)‖g jη(· − x)‖Bw(x − j)dx.

Taking supk
∑

j and sup j
∑

k, it follows that ‖C‖Sw . ‖F‖W(B,L1
w)‖G‖W(B,L1

w). �

Finally we show that well-localized atoms induce bounded analysis operators.

Proposition 2.3.4. Let a family F ≡ { fk}k∈Λ ⊆ Bloc such that ‖F‖W(B,L1
w) < +∞ be given.

Suppose that B is continuously embedded in L∞loc. For f ∈ Lp
v (1 ≤ p ≤ ∞) define the analysis

sequence,
ck := 〈 f , fk〉 , (k ∈ Λ).

Then c is well-defined, belongs to `p
v and satisfies

‖c‖`p
v
. ‖ f ‖Lp

v
‖F‖W(B,L1

w).

Remark 2.3.5. The implicit constant depends on the embedding B ↪→ L∞loc and the constant
in Equation (1.8).

Proof. Fix η ∈ D(Rd) supported on an open ball B around 0 and such that η ≡ 1 on a smaller
concentric ball B′. As in the proof of Proposition 2.3.3, the sequence c satisfies

|ck| .

∫
Rd
| f (x)| ‖ fkη(x − k)‖Bdx,

so
|ck| v(k) .

∫
Rd
| f (x)| v(x)‖ fkη(x − k)‖Bw(x − k)dx.

The conclusion now follows from part (b) of Lemma 2.3.1. �



Chapter 3

Atomic spaces: the model for phase-space

Considered in full generality, coorbit spaces are functional spaces defined by imposing size
conditions to a certain transform. More precisely, considering a functional space X as a coor-
bit space consists of giving a transform T : X → E that embeds X into another functional
space E that is solid. This means that the membership in E is determined by size condi-
tions. The space E consists of functions defined on a measure space with some underlying
geometrical structure.

The coorbit theory presented in Section 1.10 studies the case when T arises as the rep-
resentation coefficients of a unitary action of a locally compact group. The examples of this
theory include a wide range of classical function spaces. In the case of the affine group acting
on L2(Rd) by translations and dilations, T is the continuous wavelet transform and the cor-
responding class of coorbit spaces includes the Lebesgue spaces Lp (1 < p < ∞), Sobolev
spaces and, more generally, the whole class of Besov and Triebel-Lizorkin spaces (see Sec-
tion 1.12). In the case of the Heisenberg group acting on L2(Rd) by time-frequency shifts, the
transform T is - up to a phase-factor - the short-time Fourier transform and the corresponding
coorbit spaces are the modulation spaces from Section 1.11. Another example is the coorbit
theory from Section 1.13. In this case, the map T consists of the coefficient mapping of an
abstract frame.

When a functional space X is identified as a coorbit space, the properties of an element
f ∈ X are reformulated in terms of decay or integrability conditions of the function T ( f ) ∈ E,
that is sometimes referred to as the phase-space representation of f . The elements of X can
be resynthesized from their phase-space representation by means of an operator U : E → X
that is a left-inverse for T (i.e. f = UT ( f )).

We now introduce a general setting that will model phase-space in several situations. The
model consists of a solid BF space E over a locally-compact groupG (called the environment)
and a certain distinguished subspace S that is the range of an idempotent integral operator
P : E → S. The kernel of the operator P is assumed to be concentrated around its diagonal.
Hence its range S enjoys certain regularity properties (see Proposition 3.1.1 below). This
setting models phase space in the following way. If a functional space X is presented as

74
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X = T−1(E), we let S := T (X) and P := TU.
After introducing the general setting we introduce a number of more particular scenarios.

We will study the case where the atomic space has a distinguished atomic decomposition. We
do so because some applications will require a “fine-tuning” of the general results based on
this extra structure. Secondly, we consider the case when the group G is the Euclidean space,
where smoothness matters are relevant.

3.1 The general model
Let G be a locally-compact group. We list a number of ingredients in the form of two as-
sumptions: (A1) and (A2).

(A1) – E is a solid, translation invariant BF space, called the environment.
– w is an admissible weight for E.
– S is a closed complemented subspace of E, called the atomic subspace.

The second assumption is that the retraction E→ S is given by an operator that is dominated
by right convolution with a kernel in W(L∞, L1

w) ∩WR(L∞, L1
w).

(A2) We have an operator P and a function H satisfying the following.

– P : W(L1, L∞1/w)→ L∞1/w is a (bounded) linear operator,
– P(E) = S,
– P( f ) = f , for all f ∈ S,
– H ∈ W(L∞, L1

w) ∩WR(L∞, L1
w),

– For f ∈ W(L1, L∞1/w),

|P( f )(x)| ≤
∫
G

| f (y)|H(y−1x)dy, (x ∈ G). (3.1)

We now observe some consequences of these assumptions.

Proposition 3.1.1. Under Assumptions (A1) and (A2) the following holds.

(a) P maps E boundedly into W(L∞, E).

(b) S ↪→ W(L∞, E).

(c) If f ∈ W(L1, L∞1/w), then ‖P( f )‖L∞1/w . ‖ f ‖W(L1,L∞1/w)‖H‖WR(L∞,L1
w).

(d) If f ∈ W(L1, L∞), then ‖P( f )‖L∞ . ‖ f ‖W(L1,L∞)‖H‖WR(L∞,L1
w).

Remark 3.1.1. Since w & 1, L∞ ↪→ L∞1/w.

Proof. Part (a), (c) and (d) follow from Equation (3.1) and Lemma 1.6.1. For (b), observe
that by part (a), P maps E into W(L∞, E) and coincides with the identity operator on S. �
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3.1.1 Example
We now show preciseley how the coorbit theory of Section 1.10 fits into this model. Let π
be a (strongly continuous) unitary representation of a locally compact group G on a Hilbert
space H and let h be an admissible vector and let E be a solid BF space.

With the notation of Section 1.10 let S = Vh(CoE). It is proved in [44, Proposition 4.3]
that S is a closed subspace of E and that, moreover, P(F) := F ∗ Vhh defines a projector onto
S.

By the admissibility of h (cf. Section 1.10), Vhh ∈ WR(L∞, L1
w). Since Vhh(x−1) = Vhh(x),

it follows that Vhh also belongs to W(L∞, L1
w). Hence, if we let H := Vhh, Assumptions (A1)

and (A2) are verified. When E is L2(G), the operator P is in fact the orthogonal projector
onto S.

3.2 The case of atomic decompositions
We now consider a setting where the atomic space from Section 3.1 has a distinguished
atomic decomposition. We prove a number of technical results that will allow us to finely
adjust the results obtained in the general setting in order to get sharper statements for certain
applications.

It is known that under certain conditions any instance of the model introduced in Section
3.1 has an associated atomic decomposition (see [89]). However, the point here is not the fact
that S has an atomic decomposition, but they way in which this extra structure relates to the
general model.

Let us assume that Assumption (A1) from Section 3.1 holds. We now state Assumption
(A2’) introducing new ingredients to the model.

(A2’) – Λ ⊆ G is a relatively separated set. Its points will be called nodes.

–
{
ϕλ

∣∣∣ λ ∈ Λ
}

and
{
ψλ

∣∣∣ λ ∈ Λ
}

are sets of Wst(L∞, L1
w) molecules, enveloped by a

function h. That is,

∗ |ϕλ(x)| , |ψλ(x)| ≤ h(λ−1x), (x ∈ G, λ ∈ Λ),

∗ h ∈ Wst(L∞, L1
w).

The sets {ϕλ}λ and {ψλ}λ will be called atoms and dual atoms respectively.

– S ⊆ E has the following atomic decomposition.

(a) For every c ∈ Ed(Λ), the series
∑
λ cλϕλ belong to S. 1

(b) For all f ∈ S, the following expansion holds,

f =
∑
λ∈Λ

〈 f , ψλ〉ϕλ. (3.2)

1The convergence of the series is clarified in Lemma 1.6.2.
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Associated with the atoms we consider the analysis and synthesis operators given by,

C : E→ Ed, C( f ) := (〈 f , ψλ〉)λ,

S : Ed → E, S (c) :=
∑
λ

cλϕλ.

Under Assumptions (A1) and (A2’), these operators are well-defined and bounded by Lemma
1.6.2 and the fact that h ∈ Wst(L∞, L1

w) ⊆ WR(L∞, L1
w).

We also consider the operator P : E→ S defined by P := S ◦C. Hence,

P( f ) =
∑
λ∈Λ

〈 f , ψλ〉ϕλ. (3.3)

According to (A2’), P is a projector from E onto S.
We will now see that the setting introduced by (A1) and (A2’) can be regarded as an

instance of the one set by (A1) and (A2). We first introduce the function H required by (A2).
Let H : G → [0,+∞) be defined by

H(x) := sup
y∈G

∑
λ∈Λ

h(λ−1y)h(λ−1yx). (3.4)

The following lemma shows that P and H satisfy the conditions in (A2).

Lemma 3.2.1. Under Assumptions (A1) and (A2’) the following statements hold.

• The function H (cf. Equation (3.4)) belongs both to W(L∞, L1
w) and WR(L∞, L1

w).

• For every f ∈ W(L1, L∞1/w), the function P( f ) =
∑
λ 〈 f , ψλ〉ϕλ is well-defined (with

absolute convergence at every point) and satisfies the following pointwise estimate,

|P( f )(x)| ≤
∫
G

| f (y)|H(y−1x)dy, (x ∈ G).

Moreover, ‖P( f )‖L∞1/w . ‖ f ‖W(L1,L∞1/w)‖H‖WR(L∞,L1
w).

Proof. Let us prove (a). Let x, y ∈ G be given. We estimate,∑
λ

h(λ−1y)h(λ−1yx) .
∑
λ

∫
G

h#(t−1λ−1y)h#(t−1λ−1yx)χV(t)dt.

Making the change of variables t 7→ λ−1yt we get,∑
λ

h(λ−1y)h(λ−1yx) .
∫
G

h#(t−1)h#(t−1x)
∑
λ

χV(λ−1yt)dt.
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Since Λ is relatively separated and V = V−1,∑
λ

χV(λ−1yt) =
∑
λ

χ(ytV)(λ) . 1.

Hence, taking supremum on y we get that

H(x) .
∫
G

h#(t−1)h#(t−1x)dt.

Using this inequality we can estimate the local maximum functions of H. For v ∈ V , we have

H(xv) .
∫
G

h#(t−1)h#(t−1xv)dt ≤
∫
G

h#(t−1)(h#)#(t−1x)dt.

Hence,

H#(x) .
∫
G

h#(t−1)(h#)#(t−1x)dt. (3.5)

Likewise, for v ∈ V ,

H(vx) .
∫
G

h#(t−1)h#(t−1vx)dt =

∫
G

h#(t−1v−1)h#(t−1x)dt

≤

∫
G

(h#)#(t−1)(h#)(t−1x)dt.

So,

H#(x) .
∫
G

(h#)#(t−1)(h#)(t−1x)dt. (3.6)

Using Equation (3.5) and the submultiplicativity of w we get,

H#(x)w(x) .
∫
G

h#(t−1)w(t)(h#)#(t−1x)w(t−1x)dt.

Hence,

‖H#‖L1
w
. ‖(h#)#‖L1

w

∫
G

h#(t−1)w(t)dt

= ‖(h#)#‖L1
w

∫
G

h#(t)w(t−1)∆(t−1)dt

= ‖(h#)#‖L1
w
‖h#‖L1

w
.

Therefore, ‖H‖W(L∞,E) . ‖h‖Wst(L∞,L1
w)‖h‖W(L∞,L1

w), and the desired conclusion follows from the
embedding Wst(L∞, L1

w) ↪→ W(L∞, L1
w) in Proposition 2.1.1. The bound for ‖H‖WR(L∞,E) fol-

lows similarly, this time using Equation (3.6).
For part (b), we use the enveloping condition in (A2’) we get the desired pointwise esti-

mate for P. The rest of the claim the follows from part (a) and Lemma 1.6.1. �
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3.2.1 Weak continuity of the atomic decomposition
Suppose that Assumptions (A1) and (A2’) hold. Lemmas 1.6.1 and 1.6.2 give the embeddings
E ↪→ W(L1, L∞1/w) and Ed ↪→ `∞1/w. We denote by (Ed, `1

w) the space Ed considered with the
restriction of the weak* star topology of `∞1/w. Likewise, since by Lemma 1.6.1, W(L1, L∞1/w)
embeds into the dual space of W(L∞, L1

w), we let (E,W(L∞, L1
w)) stand for space E considered

with the topology induced by the linear functionals obtained by integration against W(L∞, L1
w)

functions. Observe that, since this family of functionals separates points, the corresponding
topology is Hausdorff.

We will now establish the continuity of the maps that implement the atomic decomposi-
tion of S with respect to these coarser topologies. This will allow us to use density arguments
for S. This is irrelevant when the atomic decomposition in Equation (3.2) converges in the
norm of E, but is important to make the abstract results fully applicable.

Proposition 3.2.1. Under Assumptions (A1) and (A2’) the following statements hold.

(a) The map C : (E,W(L∞, L1
w))→ (Ed, `1

w) is continuous.

(b) For c ∈ Ed, the series defining S (c) converge unconditionally in the (E,W(L∞, L1
w))

topology. Moreover, the map S : (Ed, `1
w)→ (E,W(L∞, L1

w)) is continuous.

Proof. For λ ∈ Λ, ‖ψλ‖W(L∞,L1
w) ≤ ‖Lλh‖W(L∞,L1

w) ≤ w(λ)‖h‖W(L∞,L1
w). Hence, for any b ∈ `1

w(Λ),
the series

∑
λ bλψλ are absolutely convergent in W(L∞, L1

w). Moreover, by Lemma 1.6.1 (c),
for f ∈ E ⊆ W(L1, L∞1/w) we can interchange summation and integration to obtain: 〈C( f ), b〉 =〈

f ,
∑
λ bλψλ

〉
. Part (a) now follows from this formula.

For (b), let c ∈ Ed and let us show that the series S (c) =
∑
λ cλϕλ converge unconditionally

in the (E,W(L∞, L1
w)) topology. For f ∈ W(L∞, L1

w), we need to show that,〈∑
λ∈Λ′

cλϕλ, f
〉
→

〈∑
λ∈Λ

cλϕλ, f
〉
,

as Λ′ → Λ in the directed order of finite subsets of Λ. Since c ∈ Ed, Lemma 1.6.2 implies
that

∑
λ∈Λ |cλ| Lλh ∈ E ⊆ W(L1, L∞1/w). Hence by Lemma 1.6.1,∑

λ∈Λ

|cλ| 〈| f | , Lλh〉 =

〈
| f | ,

∑
λ∈Λ

|cλ| Lλh
〉
< +∞,

where the interchange of summation and integration is justified by the Fubini-Tonelli Theo-
rem. Consequently, ∣∣∣∣∣∣∣

〈∑
λ∈Λ

cλϕλ, f
〉
−

〈∑
λ∈Λ′

cλϕλ, f
〉∣∣∣∣∣∣∣

≤
∑

λ∈Λ\Λ′

|cλ| 〈| f | , Lλh〉 → 0,
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as Λ′ → Λ.
To establish the continuity of S , let c ∈ Ed and f ∈ W(L∞, L1

w) and observe that, since the
series defining S (c) converge in the (E,W(L∞, L1

w)) topology, we can interchange summation
and integration against f to obtain,

〈S (c), f 〉 = 〈c, (〈 f , ϕλ〉)λ〉 .

We will now see that the sequence (〈 f , ϕλ〉)λ belongs to `1
w and this will yield the desired

continuity of S . Using the bound |ϕλ| ≤ Lλh and Lemma 1.6.3 with E = L1
w we see that

(〈 f , ϕλ〉)λ ∈ W(L∞, L1
w)d. Since W(L∞, L1

w) ↪→ L1
w, we have that W(L∞, L1

w)d ↪→ `1
w and the

conclusion follows. �

3.3 Spline-type spaces in the Euclidean space
We now consider the setting of the Euclidean space. We make concrete choices for the func-
tion and sequence spaces and emphasise the matters that pertain the Euclidean space. In this
context it will be better to use Schur-type conditions instead of domination by convolution.

As function spaces we use weighted Lp spaces and as sequence spaces the corresponding
`p spaces. To avoid having to distinguish the case p = +∞ in every statement we let zp

v stand
for the closure of the set of finitely-supported sequences within `p

v . For p < +∞ this is just
`

p
v , and for p = +∞ it is c0

v .
We consider a relatively separated set of points Λ ⊆ Rd which will be called nodes and a

family of functions F ≡ { fk}k∈Λ ⊆ L∞loc that will be called atoms.
Let V00 be the set of finite linear combination of elements of F. For a weight function v,

and 1 ≤ p ≤ ∞, we denote by Vp
v the Lp

v -closure of V00. If the weight v is the trivial weight 1
we drop it in the notation.

Following the spirit of coorbit theory, we do not want to consider each of the spaces Vp
v

individually, but to treat all the range of spaces Vp
v as a whole. We think of each Vp

v as variant
of a single spline-type space V = V(F,Λ).

It will be assumed that the family F is a Banach frame for each Vp
v . The general theory

of localized frames (see Section 1.13) ensures that this is indeed the case provided that F is
a Hilbert space frame for V2 and that F satisfies a localization property. In our context this
property amounts to spatial localization.

We now formulate precisely the assumptions that we will make on the set of atoms F and
show that under those assumptions, F is a Banach frame for the whole range of spaces Vp

v .

• We assume that we have chosen a uniformly localizable and isometrically translation
invariant Banach space B, that is continuously embedded into L∞loc (see Section 1.6.1).
An example to keep in mind is the one of fractional Sobolev spaces Lq

s . These spaces
are embedded in L∞loc if either q = +∞ or if s > d/q (see [1]).
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• We also assume that F satisfies the uniform concentration and smoothness condition
‖F‖W(B,L1

w) < +∞, for some subexponential weight w : Rd → (0,∞) that verifies w(x) &
(1 + ‖x‖)δ, for some δ > 0 (cf. Section 2.2)

• Finally, we assume that F forms a frame sequence in L2(Rd).

If all the above assumptions are met we say that V = V(F,Λ) is a spline type space.

Remark 3.3.1. Remember that, under the above assumptions, the weight w satisfies: w(0) =

1, w(x) = w(−x) and is submultiplicative. The polynomial weights wα with α > 0 and the
subexponential weights w(x) := eα|x|

β

with α > 0 and 0 < β < 1 satisfy the assumptions above
(cf. Section 1.3).

The first items of the next proposition are just an application of the theory in Section 1.13.

Theorem 3.3.1. Let V = V(F,Λ) be a spline type space, then the following holds.

(a) G ≡ {gk}k, the canonical dual family of F satisfies ‖G‖W(B,L1
w) < +∞.

(b) For any 1 ≤ p ≤ ∞ and any symmetric, w-moderated weight v, the pair (F,G) is a
Banach frame for Vp

v with associated sequence space zp
v .

(c) For any 1 ≤ p ≤ ∞ and any symmetric, w-moderated weight v, we have the inclusion
Vp

v ⊆ W(B, Lp
v ). Moreover, on Vp

v , the Lp
v and W(B, Lp

v ) norms are equivalent.

Remark 3.3.2. If the norm of B measures smoothness (eg. B is a Sobolev space), item (c)
implies that all the elements of Vp

v are as smooth as the set of atoms. Moreover, size estimates
for a function f ∈ Vp

v can be turned into smoothness estimates.

Remark 3.3.3. In the situation of the theorem, the frame expansion arising from the pair
(F,G) can be extended to the weak* closure of V00 within L∞v using coefficents in `∞, but the
series converge only in the weak* topology.

Proof. Consider the self-correlation (Gramian) matrix C, given by ck j :=
〈

fk, f j

〉
. By propo-

sition 2.3.3 we have that ‖C‖Sw < +∞, where Sw is the weighted Schur class. Since F is
a frame sequence in L2(Rd), the matrix C has a pseudo-inverse C† ∈ B(`2). By the result
in Section 1.7.2 and Remark 1.7.1 it follows that ‖C†‖Sw < +∞. The formula for the dual
frame in Equation 1.33 yields G = C† · F. Hence, it follows from Proposition 2.3.2 that
‖G‖W(B,L1

w) < +∞. This proves (a).
For part (b) let v be a symmetric, w-moderated weight and let 1 ≤ p ≤ ∞. The recon-

struction operator R : zp
v → Vp

v , c 7→ c · F, is well defined and bounded by Proposition
2.3.1. Moreover ‖R‖ . ‖F‖W(B,L1

w). Proposition 2.3.4 implies that the coefficients mapping
C : Lp

v → `
p
v , given by f 7→ {〈 f , gk〉}k is well defined and satisfies ‖C‖ . ‖G‖W(B,L1

w). More-
over, if f is a finite linear combination of functions of F, we have that RC( f ) = f . It follows
that (F,G) determines a Banach frame pair.
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Now (c) follows easily from Proposition 2.3.1. Since B ↪→ L∞,loc ↪→ Lp,loc, we have the
inclusion W(B, Lp

v ) ↪→ W(Lp, Lp
v ) = Lp

v . Therefore, for f ∈ Vp
v , f = RC( f ) and,

‖ f ‖Lp
v
. ‖ f ‖W(B,Lp

v ) . ‖F‖W(B,L1
w)‖C( f )‖`p

v

. ‖F‖W(B,L1
w)‖G‖W(B,L1

w)‖ f ‖Lp
v
.

�

We now observe that, in order to bound an operator on a spline-type space, we just need
to control its behavior on the atoms.

Proposition 3.3.1. Let V = V(F,Λ) be a spline-type space. Let v be a symmetric, w-
moderated weight, 1 ≤ p ≤ ∞ and let T : Vp

v → Lp
v be a linear operator. Then,

‖T‖Vp
v→Lp

v
. ‖T (F)‖W(B,L1

w).

Proof. If f = c ·F for a finitely supported sequence c ∈ `p(Λ), then T ( f ) = c ·T (F). Theorem
3.3.1 implies that,

‖T ( f )‖Lp
v
. ‖T ( f )‖W(L∞,Lp

v ) . ‖T ( f )‖W(B,Lp
v )

. ‖c‖`p
v
‖T (F)‖W(B,L1

w) . ‖ f ‖Lp
v
‖T (F)‖W(B,L1

w).

The conclusion extends to general f by an approximation argument. �

Finally we observe that, as a consequence of Theorem 3.3.1, there is a universal projector
P : Lp

v → Vp
v , for all 1 ≤ p ≤ ∞ and w-moderated weights v. More precisely, we have the

following statement.

Theorem 3.3.2. Let V = V(F,Λ) be a spline-type space and let P : L2 → V2 be the orthog-
onal projector onto V2. Then, for all 1 ≤ p < ∞ and w-moderated weights v, the restriction
of P to S(Rd) extends by density to a bounded projector P : Lp

v → Vp
v . For p = ∞ the same

statement is true replacing L∞v with C0
v .

Moreover, the norm of P is uniformly bounded for 1 ≤ p ≤ +∞ and any class of w-
moderated weights for which the constant in Equation (1.8) is bounded.

Proof. We only need to check that the restriction of P to S(Rd) is bounded in the norm of Lp
v .

The projector P is given by,
P( f ) =

∑
k∈Λ

〈 f , gk〉 fk,

where G is the family of dual atoms given by Theorem 3.3.1 (a). Using Propositions 2.3.1
and 2.3.4 we get,

‖P( f )‖Lp
v
. ‖P( f )‖W(B,Lp

v ) . ‖F‖W(B,L1
w)‖G‖W(B,L1

w)‖ f ‖Lp
v
.

�



Chapter 4

Localization of dual atoms

One of the fundamental parts of the theory of localized frames (cf. Section 1.13) is the fact
that self-localized frames have localized dual frames. This is particularly important because
it is rarely the case that dual system are explicitely exhibited. The construction in Chapter 5
will require however more refined information. In addition to the existence of localized dual
frames we will need to know what qualities of the original atoms influence the concentration
of their respective dual atoms. This problem is closely related to the one of quantifying
spectral invariance for matrix algebras, as discussed in Section 1.7.4.

More concretely, the general problem to address is the one of determining what qualities
of a matrix influence the off-diagonal decay of its inverse, or more generally, its pseudo-
inverse. Among the vast literature on preservation of off-diagonal decay under inversion
[27, 29, 30, 7, 59, 76, 8, 102, 9, 10, 66, 103, 4, 67, 104, 3] only a small portion uses completely
constructive methods. For the kind of application we will need in Chapter 5 the most suitable
result is the one of Qiyu Sun in [104]. There, the author establishes the inverse-closedness of
certain algebras of matrices concentrated around their diagonal, under very general geometric
conditions on the corresponding index set. His methods are mainly constructive and, as a by-
product, he obtains a quantitative conclusion. Below we quote an application of his result to
polynomial off-diagonal decay conditions that yields a quantitative version of Jaffard’s result
(cf. Section 1.7.1). We then give a slight adaptation of this result to cover pseudo-inversion.

Before noticing that the quantification of Jaffard’s Theorem was contained in Qiyu Sun’s
result, I studied that same problem [93]. In Section 4.2 we give certain estimates on the
preservation of polynomial off-diagonal decay from a matrix to its inverse. The techniques
and precise form of the estimates might be of independet interest, although the result in [104]
yields a much better qualitative conclusion.

83
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4.1 Controlled inversion
The following is a particular case of Theorem 4.1 in [104]. It also follows from a careful
reading of the proof in [103].

Theorem 4.1.1. Let Γ ⊆ Rd be a relatively separated set and let M ∈ B(`2(Γ)) be an invertible
operator. Assume the following.

• M satisfies, ∣∣∣Mk, j

∣∣∣ ≤ C(1 + |k − j|)−s (k, j ∈ Γ),

for some constants C > 0 and s > d.

• ‖M−1‖`2→`2 ≤ A, for some constant A > 0.

• ρ(Γ) ≤ R, for some 0 ≤ R < ∞.

Then M−1 satisfies, ∣∣∣M−1
k, j

∣∣∣ ≤ C′(1 + |k − j|)−s (k, j ∈ Γ),

for some constant C′ that only depends on C, s, d, A and R.

We now generalize this to cover pseudo-inversion. The case of the pseudo-inverse is
treated in [104], but no explicit reference to the qualities involved in the off-diagonal decay
of the pseudo-inverse is made. However, the proof given in [104, Theorem 5.1] (see also [53])
can be slightly adapted to obtain a quantitative conclusion. We only sketch the modifications.

Theorem 4.1.2. Let Γ ⊆ Rd be a relatively separated set and let M ∈ B(`2(Γ)) be a positive
operator. Assume the following.

• M satisfies, ∣∣∣Mk, j

∣∣∣ ≤ C(1 + |k − j|)−s (k, j ∈ Γ),

for some constants C > 0 and s > d.

• The spectrum of M, satisfies,

(σ(M) \ {0}) ∩ BA(0) = ∅,

for some A > 0. (Here BA(0) ⊆ C is the ball of radius A centered at 0).

• ρ(Γ) ≤ R, for some 0 ≤ R < ∞.
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Then M†, the Moorse-Penrose pseudo-inverse of M, satisfies,∣∣∣∣M†

k, j

∣∣∣∣ ≤ C′(1 + |k − j|)−s (k, j ∈ Γ),

for some constant C′ that only depends on C, s, d, A and R.

Proof. Under the assumptions of the theorem,

M† =
1

2πi

∫
γ

1
z

(zI − M)−1 dz, (4.1)

where the curve γ is the rectangle with vertices A/2± i, ‖M‖+A/2± i oriented anti-clockwise;
here ‖M‖ denotes the norm of M in B(`2(Γ)). Consequently, for k, j ∈ Γ,

M†

k j =
1

2πi

∫
γ

1
z

(zI − M)−1
k j dz. (4.2)

Observe that ‖M‖ can be bounded in terms of d, s,C and R (by interpolating its `1 → `1 and
`∞ → `∞ norm) and that the length of γ is 2‖M‖ + 2. For z in the curve γ, |z| . ‖M‖ + 1 and
|1/z| ≤ 2/A. Hence, it suffices to bound the off-diagonal decay of the resolvent (zI − M)−1 in
terms of the allowed parameters.

Let z lie in the curve γ. The distance from z to σ(M) is at least m := min {1, A/2}, so
(σ(zI − M) \ {0}) ∩ Bm(0) = ∅. Moreover, for k, j ∈ Γ,∣∣∣(zI − M)k j

∣∣∣ ≤ |z| δk j + C(1 + |k − j|)−s

. (C + ‖M‖ + 1)(1 + |k − j|)−s.

By Theorem 4.1.1, the off-diagonal decay of (zI − M)−1 is bounded by a constant depending
only on allowed parameters. �

4.2 Explicit polynomial off-diagonal decay bounds
We now prove some exlicit estimates for the off-diagonal decay of inverse matrices, from
where a quantitative conclusion like the one in Theorem 4.3.1 can be derived.

The intuiton of the techinique is the following one. If M ∈ B(`2(Zd)) is an invertible
convolution operator then,

Mk, j = ak− j, (k, j ∈ Zd),

for some sequence a. The inverse matrix M−1 is similarly given by,

M−1
k, j = bk− j, (k, j ∈ Zd),
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where the sequence b satisfies a ∗ b = δ. The off-diagonal decay of M and M−1 is therefore
equivalent to the decay of their kernels a and b. Since the decay of a sequence x can be
characterized by the smoothness of its Fourier transform x̂, the problem can be reformulated
as the preservation of the smoothness of the function â under pointwise inversion.

We can measure the smoothness of â by considering weak-derivatives and use repeatedly
a chain-rule argument for Sobolev spaces to obtain similar smoothness conditions for b̂.

In the general case, where M need not be a convolution operator, we try to imitate this
reasoning, but we avoid using the Fourier transform. Given a matrix M and 1 ≤ h ≤ d,
consider the matrix Dh(M) defined as,

Dh(M)k, j := (kh − jh)Mk, j.

Observe that, up to some multiplicative constant, the map Dh acts on a convolution operator
by taking a partial derivative of its symbol (that is, the Fourier transform of its kernel). The
domain of Dh consists of those matrices M such that Dh(M) defines a bounded operator on
`2. We call Dh(M) the partial derivative of M (with respect to xh).

Dh is a derivation in the sense that it satisfies Leibniz’s rule: Dh(AB) = Dh(A)B+ ADh(B),
provided that Dh(A) and Dh(B) are both defined. We can then try to imitate the computations
related to derivatives of functions in this setting. A reasoning of this kind seems to be implicit
in Jaffard’s proof [76]. For more on the use of derivations in the field of operator algebras
(see [15], [78] and [79]).

The use of the derivation Dh to measure off-diagonal decay in matrix algebras was also re-
cently introduced by Gröchenig and Klotz in [65], with the aim of relating off-diagonal decay
to rates of approximation by banded matrices. We refer the reader to that article for a discus-
sion about the connection between this technique and Jaffard’s and Baskakov’s approaches
[76, 8].

We now formally state and prove the result.

Theorem 4.2.1. Let Γ ⊆ Rd be a relatively separated set and let M ∈ B(`2(Γ)) be an invertible
operator. Assume the following.

• M satisfies,

∣∣∣Mk, j

∣∣∣ ≤ C(1 + |k − j|)−s
d∏

h=1

(1 + |kh − jh|)−th (k, j ∈ Γ), (4.3)

for some constants C > 0 and s > d, and integers ti ≥ 0.

• ‖M−1‖`2→`2 ≤ A, for some constant A > 0.

• ρ(Γ) ≤ R, for some 0 ≤ R < ∞.
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Then M−1 satisfies,

∣∣∣M−1
k, j

∣∣∣ ≤ C′
d∏

h=1

(1 + |kh − jh|)−th (k, j ∈ Γ),

where
C′ = Et2 At+1CtRt(1 + (s − t)−1)t, t = t1 + . . . + td,

and E > 0 is a constant that only depends on the dimension d.

Remark 4.2.1. The constant E can be explicitly determined from the proof.

Remark 4.2.2. Observe that although the theorem does not assert the full preservation of the
rate of decay from M to M−1, it shows that if M has a priviledged off-diagonal decay in a
certain direction, then this is also the case for M−1.

Before proving the theorem, we introduce the following notation. For a multi-index β ∈
Nd

0, let the operator Dβ act on a matrix T ∈ CΓ×Γ by,

Dβ(T )k, j := (k − j)βTk, j, (k, j ∈ Γ),

where, for an index k ∈ Rd,

kβ :=
d∏

h=1

kβh
h .

Also, denote by |β| := β1 + . . . + βd, the length of a multi-index. If α and β are multi-indexes,
α ≤ β means that αk ≤ βk, for all k.

Proof of Theorem 4.2.1. Let K := 1 + (s − t)−1 and α := (t1, . . . , td). Throughout the proof
we denote by ‖M‖ the norm of a matrix T ∈ CΓ×Γ as an operator T : `2 → `2. We make and
prove a number of claims that will lead to the desired conclusion.

Claim 4.2.1. For β ≤ α, ‖Dβ(M)‖ . CRK.

Proof of Claim 4.2.1. For β ≤ α, using the estimate in Equation (4.3) we see that,∣∣∣Dβ(Mk, j)
∣∣∣ ≤ C(1 + |k − j|)−s (k, j ∈ Γ).

The conclusion follows from Schur’s lemma (interpolation) and Lemma 1.3.2. �

Claim 4.2.2. For all β ≤ α, ‖Dβ(M−1)‖ is a bounded operator on `2(Γ).
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Proof of Claim 4.2.2. By Jaffard’s Theorem (cf. Section 1.7.1), M−1 satisfies the off-diagonal
decay,

∣∣∣M−1
k, j

∣∣∣ ≤ C′′(1 + |k − j|)−s
d∏

h=1

(1 + |kh − jh|)−th (k, j ∈ Γ),

for some (unknown) constant C′′. Proceeding as in Claim 4.2.1 we see that the derivatives of
M−1 are bounded (and obtain a bound depending on the unknown constant C′′). �

Claim 4.2.3. For all 0 , β ≤ α,

‖Dβ(M−1)‖ . ACRK2|β|max
β′<β
‖Dβ′(M−1)‖.

Proof of Claim 4.2.3. Using Leibniz’s rule for Dβ we get,

0 = Dβ(M−1M) =
∑
β′≤β

(
β

β′

)
Dβ′(M−1)Dβ−β′(M). (4.4)

Since by Claim 4.2.2 all the operators involed in the last formula are bounded, we can asso-
ciate factors to obtain,

Dβ(M−1) = −
∑
β′<β

(
β

β′

)
Dβ′(M−1)Dβ−β′(M)M−1. (4.5)

Using Claim 4.2.1 we the get,

‖Dβ(M−1)‖ ≤ A
∑
β′<β

(
β

β′

)
‖Dβ′(M−1)‖‖Dβ−β′(M)‖

. ACRK
∑
β′<β

(
β

β′

)
‖Dβ′(M−1)‖

The claim now follows using that
∑
β′≤β

(
β
β′

)
= 2|β|. �

Claim 4.2.4.

max
β≤α
‖Dβ(M−1)‖ ≤ Et2 At+1(CRK)t,

for some constant E that only depend on the dimension d.

Proof of Claim 4.2.4. Consider now the numbers

vk := max
β≤α,|β|≤k

‖Dβ(M−1)‖ (k ≥ 0).
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Since by Claim 4.2.1, ‖M‖ . CRK, we have that 1 ≤ ‖M−1‖‖M‖ . ACRK. Using this and
Claim 4.2.3 we see that the numbers vt satisfy,

vk . ACRK2kvk−1, (k ≥ 1)
v0 ≤ A.

Iterating these relations t = |α| times we get,

vt ≤ (E′)t2t(t+1)/2At+1(CRK)t ≤ Et2 At+1(CRK)t,

where E and E′ are constants that only depend on the dimension d. �

Having proved the claims we now finish the proof of Theorem 4.2.1. Observe that Claim
4.2.4 implies that for each k, j ∈ Γ,

max
β≤α

d∏
h=1

|kh − jh|
βh

∣∣∣M−1
k, j

∣∣∣ ≤ max
β≤α
‖Dβ(M−1)‖ ≤ Et2 At+1(CRK)t.

Hence, it suffices to observe that,

d∏
h=1

(1 + |kh − jh|)th . Et max
β≤α

d∏
h=1

|kh − jh|
βh ,

for some constant E, that only dependes on the dimension. Given an index (k, j), if |kh − jh| <
1 we let βh := 0, so that,

(1 + |kh − jh|)th ≤ 2th = 2th |kh − jh|
βh .

If |kh − jh| ≥ 1, we let βh = th = αh, so that

(1 + |kh − jh|)th ≤ 2th |kh − jh|
βh .

Then β ≤ α and
∏d

h=1(1 + |kh − jh|)th ≤ 2t ∏d
h=1 |kh − jh|

βh . �

4.2.1 Some remarks on the proof
The most delicate part of the proof is the justification of the formal computations in Claim
4.2.3, that allowed us to solve ‖Dβ

h(M−1)‖ recursively from the binomial formula. In order to
associate factors, we needed to know that M−1 belongs to the domain of Dβ

h.
To see why this is important, let us consider the case when M is a convolution operator,

having some sequence a as kernel. The matrix M−1 is also a convolution operator and has a
kernel b that satisfies,

a ∗ b = δ. (4.6)
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The decay of a and b can be reformulated in terms of smoothness estimates for their Fourier
transforms â and b̂. As we pointed out before, in this case, the argument in the proof of
Theorem 4.2.1 amounts to transferring smoothness estimates from â to its pointwise inverse
b̂ by an iterated application of the Leibniz product rule (cf. Equation (4.4)).

The obstacle to derive Equation (4.5) formally from Equation (4.4) is that the latter equa-
tion does not determine, by itself, the derivatives of M−1. For example, when a is a finitely
supported sequence, Equation (4.6) is a recurrence equation in b, that has many solutions
even if â has no zeros. The sequence b that we are looking for (that is, the kernel of M−1) can
be singled out as the only solution of Equation (4.6) that belongs to `2.

In the case that M is a convolution operator, the justification we need follows from some
careful regularization argument for Sobolev spaces. In our case, this justification was done
in Claim 4.2.2, by resorting to Jaffard’s result [76], where derivations are implicitly used.
Another possible approach would be to use the general theory of unbounded derivations, in
particular the results in [15] and [78]. However, this would require adapting those results to
non-densely defined derivations.

As observed before, in Theorem 4.2.1, the decay condition on the original matrix M is
not shown to be fully shared by the inverse matrix M−1 (although the result in [76] shows
that the full decay condition is actually preserved). This is due to the kind of objects used to
bound the decay of the entries of M and M−1. According to the previous remark, in the case
of a convolution operator with symbol τ, the estimates given amount to smoothness estimates
for τ. In Claims 4.2.1 and 4.2.3 we bounded the size of the entries of a matrix by means of
its `2 → `2 operator norm and controlled that norm by interpolating its `1 → `1 and `∞ → `∞

norms (by Schur’s lemma). This would correspond in the case of a convolution operator to
bounding the L∞ norm of its symbol τ, from above by its F (`1) norm and from below by its
L2 norm. This accounts, in that case, for the loss of some precision in the estimates.

4.3 Applications to spline-type spaces

Theorem 4.3.1. Let V ≡ V2(F,Λ) be a spline-type space, where the atoms F satisfy,

| fk(x)| ≤ C (1 + |x − k|)−s (x ∈ Rd, k ∈ Λ),

for some constant C > 0 and s > 0. Assume the following.

• For each i ∈ I, we have a family of measurable functions
{
ϕi

k

}
k∈Λi

that satisfy the fol-
lowing uniform concentration condition around their nodes Λi:∣∣∣ϕi

k(x)
∣∣∣ ≤ C′ (1 + |x − k|)−s (x ∈ Rd, k ∈ Λi), (4.7)

for some constant C′ > 0 (independent of i).
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• The set of nodes Λi are uniformly relatively separated. That is,

sup
i∈I

ρ(Λi) < ∞, (cf. Equation (1.3)).

• Each family
{
ϕi

k

}
k

satisfies the (exterior) frame inequality1,

A‖ f ‖22 ≤
∑

k

∣∣∣∣〈 f , ϕi
k

〉∣∣∣∣2 ≤ B‖ f ‖22, (4.8)

for f ∈ V2 and constants 0 < A ≤ B < ∞ that are independent of i.

Then, the respective families of canonical dual frame sequences
{
ψi

k

}
k
⊆ V2 satisfy,∣∣∣ψi

k(x)
∣∣∣ ≤ D (1 + |x − k|)−s (x ∈ Rd, k ∈ Λi), (4.9)

for some constant D, independent of i.

Proof. Let G ≡ {gk}k be the canonical dual frame of F. By the theory of localized frames (cf.
Sections 1.13 and 1.7.1), there exists a constant C′′ > 0 such that

|gk(x)| ≤ C′′ (1 + |x − k|)−s (x ∈ Rd, k ∈ Λ).

For each i ∈ I and k ∈ Λi, let ϕi
k be the orthogonal projection of ϕi

k on V2. Each of the
functions has the expansion,

ϕi
k =

∑
j∈Λ

〈
ϕi

k, g j

〉
f j.

Consequently using Lemmas 1.3.1 and 1.3.2,∣∣∣ϕi
k(x)

∣∣∣ . CC′C′′
∑
j∈Λ

w−s(k − j)w−s(x − j)

. CC′C′′ρ(Λ)w−s(x − k).

Since the exterior frame condition in the hypothesis is also satisfied by the functions
{
ϕi

k

}
k
,

we can replace each ϕi
k by ϕi

k and assume without loss of generality that ϕi
k ∈ V2.

For each i ∈ I, consider the Gram matrix Mi given by,

Mi
k j :=

〈
ϕi

k, ϕ
i
j

〉
(k, j ∈ Λi).

By Lemma 1.3.2, it follows that∣∣∣Mi
k, j

∣∣∣ ≤ K(1 + |k − j|)−s (k, j ∈ Λi),

1Note that the functions ϕi
k need not to belong to V2.
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for some constant K that depends on s and C′. Moreover, since each
{
ϕi

k

}
k

is a frame with
bounds A and B, the spectrum of Mi satisfies,

σ(Mi) ⊆ {0} ∪ [A, B].

By Lemma 4.1.2, the pseudo-inverse of Mi satisfies∣∣∣∣(Mi)†k, j
∣∣∣∣ ≤ K′(1 + |k − j|)−s (k, j ∈ Λi),

for some constant K′ independent of i.
Each of the dual elements ψi

k is given by,

ψi
k =

∑
j∈Λi

(Mi)†k, jϕ
i
j, (cf. Equation (1.33)).

Therefore, ∣∣∣ψi
k(x)

∣∣∣ ≤ CK′
∑
j∈Λi

w−s(k − j)w−s( j − x).

Using Lemma 1.3.2 (c) with Γ := Λi − {x} and k′ := k − x, it follows that∣∣∣ψi
k(x)

∣∣∣ ≤ K′′ρ(Γ)w−s(x − k) = K′′ρ(Λi)w−s(x − k).

For some constant that K′′ independent of i. Since the sets of nodes are uniformly relatively
separated, the conclusion follows. �

Similarly, the estimates in Section 4.2 yield the following result. For simplicity, we only
illustrate the case of isotropic decay.

Theorem 4.3.2. Let V ≡ V2(F,Zd) be a spline-type space, where the atoms F form a Riesz
sequence within L2(Rd) with lower bound A and satisfy,

| fk(x)| ≤ C (1 + |x − k|)−s , (x ∈ Rd),

for some constants C > 0 and s > 2d + 1. Let t be an integer such that d < t < s − d. Then,
the dual system G ≡ {gk}k ⊆ V2 satisfies

|gk(x)| ≤ C′ (1 + |x − k|)−t , (x ∈ Rd).

where,

C′ =
Et2C2t+1

At+1

(
1 +

1
s − t − d

)t

,

for some constant E > 0 that only depends on the dimension d.

Proof. The proof is similar to that of Theorem 4.3.1, this time using Theorem 4.2.1 instead
of Theorem 4.1.1. �



Chapter 5

Frame surgery

In this chapter prove a locality principle for spline-type spaces in the form of a surgery scheme
for well-localized frames. Then, using spline-type spaces as models for the range of certain
wavelet transforms we obtain consequences for various kinds of atomic decompositions. Our
main result asserts that, given a family of frames for a spline-type space, it is possible to
construct a new frame for the same space by piecing together arbitrary portions of the original
frames, provided that the overlaps between these portions are large enough. Although the
result we prove is qualitative, special emphasis is made on how the qualities of the ingredients
affect the surgery procedure and what kind of uniformity is to be expected. This is one reason
why we work on the Euclidean space and not on a general locally-compact group (although
much of the elements involved in the construction have a counterpart in the abstract setting).
The other - more important - reason is that we make use of localization theory (cf. Section
1.13) and the results for matrix algebras on which that theory relies (cf. Section 1.7) are not
available for arbitrary groups.

For the applications we consider mainly two transforms. The first is the Short Time
Fourier Transform (STFT) with a fixed (good) window. This transform maps modulation
spaces into spline-type spaces - considered in the general sense - and then yields an applica-
tion of the surgery scheme to Gabor frames. These results imply a general existence condition
for the recently introduced concept of quilted Gabor frame (see [31, 32]). Since the STFT
does not exactly map time-frequency shifts into translations - there is an extra phase factor
or twist on the STFT side - we see that shift-invariant spaces are not a sufficient model for
the range of the transform: we must us general spline-type spaces. As a by-product of this
general treatment, the result we obtain holds not only for pure time-frequency shifts but also
for Gabor molecules concentrated around a general set of nodes.

The second transform we consider is the Kohn-Nirenberg map, which - as shown in [42]
- establishes a correspondence between the class of Gabor multipliers (related to different
Gabor frames) and the class of (shift-invariant) spline-type spaces (see also [47, Chapter 5]).
Gabor multipliers are operators that arise from applying a mask to the coefficients associated

93
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with a Gabor frame expansion; hence each of these operators has the form

T =
∑
λ∈Λ

cλPλ,

where cλ ∈ C and Pλ is a rank-one operator (essentially a projector onto the subspace gener-
ated by a time-frequency atom). Each operator in a given class of Gabor multipliers can be
identified by its associated lower symbol which consists of the Hilbert-Schmidt inner prod-
ucts

{
〈T, Pλ〉

∣∣∣ λ ∈ Λ
}
. Combining the surgery scheme with the KN map and known tools

for shift-invariant spaces we get a sufficient condition to identify a class of Gabor multipliers
by a mixed lower symbol constructed by using different types of rank-one operators Pλ for λ
in different regions of the time-frequency plane.

Finally, we give an application to irregular sampling. Given a family of sampling sets
for which a sampling inequality is known, we can construct new sets for which the sampling
inequality still holds. Moreover, given explicit reconstruction formulas for the original sets,
we get an approximate reconstruction formula for the new sets.

The construction in this Chapter motivated a great part of the previous study of spline-
type spaces and amalgam norms. For example, to identify modulation spaces with certain
spline-type spaces we needed a sufficiently general treatment of spline-type spaces, allow-
ing for general spatial molecules. Moreover, in the proposed applications to Gabor frames,
instead of the usual convolution inequalities for Wiener amalgams we would need twisted
convolution inequalities. These are covered by the “multiplier” estimates for Schur-type
amalgam families in Section 2.2. Secondly, the surgery scheme requires specific information
on the dual atoms of the frames being glued. In practice, this would greatly compromise the
applicability of the result. This problem motivated the study carried out in Chapter 4.

5.1 Frame surgery for spline-type spaces
In this section we consider the following locality problem. We are given a spline type space
V and several exterior frames

{
ϕi

k

}
k∈Λi

, i ∈ I, for it. For each of these frames, we arbitrarily
select a region of the Euclidean space Ei where we want to use it. The family {Ei}i must form a
covering of Rd. We argue that, if for each i ∈ I we pick from the frame

{
ϕi

k

}
k∈Λi

those elements

that are concentrated near Ei, then the resulting family
{
ϕi

k

}
k∈∆i,i∈I

forms an exterior frame for
V. Moreover, given (possibly non-canonical) dual frames for each of the original exterior
frames, we provide an approximate reconstruction operator for the new exterior frame.

Since we are not dealing with frames for the whole space L2(Rd), we cannot take a func-
tion f , break it into pieces fi supported on Ei, expand each fi using the exterior frame

{
ϕi

k

}
k
,

and then add all those expansions. This approach does not work in our context because for
f ∈ V, the localized pieces fi do not belong to V and consequently cannot be expanded using
the frame

{
ϕi

k

}
k
.



5.1. FRAME SURGERY FOR SPLINE-TYPE SPACES 95

Instead, we argue that for each member of the covering Ei, the norm of a function f ∈
V restricted to Ei should depend mainly on the atoms concentrated around Ei. Then we
glue these local estimates together by means of an almost-orthogonality principle, which is
implicit in the computations below.

To be able to quantify the approximation scheme we will work with frames that are poly-
nomially localized in space.

5.1.1 The approximation scheme
We now give the precise assumptions for this section.

• We assume that V = V(F,Λ) is a spline-type space where the atoms F ≡ { fk}k∈Λ and a
given system of dual atoms G ≡ {gk}k∈Λ satisfy,

| fk(x)| , |gk(x)| ≤ C (1 + |x − k|)−(s+α) (x ∈ Rd, k ∈ Λ), (5.1)

for some constants C > 0, s > d and α ≥ 0. It is well-known [63] that if this condition
holds for the atoms F, then it is automatically satisfied by some system of dual atoms
G (see Sections 1.7.1 and 1.13).

• We are given a family of frame pairs for V2. 1({
ψi

k

}
k∈Λi

,
{
ϕi

k

}
k∈Λi

)
(i ∈ I),

that satisfy the following uniform concentration condition around their nodes Λi,∣∣∣ϕi
k(x)

∣∣∣ , ∣∣∣ψi
k(x)

∣∣∣ ≤ C (1 + |x − k|)−(s+α) (x ∈ Rd, k ∈ Λi, i ∈ I), (5.2)

for some constant C > 0, that, for simplicity, is assumed to be equal to the constant in
(5.1).

Observe that we are requiring all the frames and the dual frames to be uniformly lo-
calized. Given a concrete family of uniformly localized (exterior) frames, it can be
difficult to decide if they possess a corresponding family of dual frames sharing a com-
mon spatial localization. This was the motivation for Chapter 4.

• We have a (measurable) covering of Rd, E ≡ {Ei}i∈I that is uniformly locally finite. This
means that for some (or any) cube Q,

#E,Q := max
x∈Rd

# {i ∈ I/(Q + x) ∩ Ei , ∅} < ∞. (5.3)

Observe that this assumption in particular implies that number of overlaps of E is finite.
That is,

#E := max
x∈Rd

# {i ∈ I/x ∈ Ei} < ∞. (5.4)

1Remember that the analyzing atoms
{
ϕi

k

}
k

need not belong to V2.
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• We suppose that the set of nodes Λi are uniformly relatively separated. That is,

sup
i∈I

ρ(Λi) = sup
i∈I

max
x∈Rd

#(Λi ∩ ([−1/2, 1/2]d + x)) < +∞. (5.5)

Observe that this assumption, together with the uniform localization of the dual frames,
implies that the original frames have a uniform common lower bound.

We now prove the central approximation result. In Section 5.1.2 we apply this result to the
construction of new frames.

Theorem 5.1.1. Let {ηi}i∈I be a (measurable) partition of unity subordinated to E. That is,
each ηi is nonnegative,

∑
i ηi ≡ 1 and supp(ηi) ⊆ Ei.

For each r > 0 consider the sets

Λr
i := {k ∈ Λi/d(k, Ei) ≤ r}

and choose any set ∆r
i such that Λr

i ⊆ ∆r
i ⊆ Λi. Consider also, the following approximate

reconstruction operator,
Ar( f ) :=

∑
i∈I

∑
k∈∆r

i

〈
f , ϕi

k

〉
ψi

kηi.

Then, for any 1 ≤ p ≤ ∞, any wα-moderated weight v and any f ∈ Vp
v ,

‖Ar( f ) − f ‖Lp
v
≤ K#E‖ f ‖Lp

v
r−(s−d),

where K > 0 is a constant that only depends on d,C, s, α, the set of nodes Λ, the common
relative separation of all the sets of nodes Λi and the constant in Equation (1.8) using the
weight wα as moderator.

Remark 5.1.1. The fact that the covering is uniformly locally finite is not used in the proof
of the theorem; only the weaker condition in Equation (5.4) is needed. However, the stronger
assumption of Equation (5.3) is required for the applications.

Proof. Observe first that we can always add more nodes to the set Λ and extend the set of
atoms F and dual atoms G by associating 0 to the new nodes. All the assumptions on the
atoms are preserved by this extension, but the relative separation of the set of nodes changes.
By adding to Λ any fixed relatively separated and relatively dense set Γ, we can assume that
Λ is L-dense, for some L > 0 (cf. Section 1.2.1). The relative separation of the resulting set
can be bounded by ρ(Λ) + ρ(Γ).

For all i ∈ I, every f ∈ V00 admits the expansion,

f =
∑
j∈Λi

〈
f , ϕi

j

〉
ψi

j.
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Averaging all these expansions yields,

f =
∑
i∈I

∑
j∈Λi

〈
f , ϕi

j

〉
ψi

jηi.

Since f also admits the expansion f =
∑

k 〈 f , gk〉 fk, it follows that

f =
∑
k∈Λ

〈 f , gk〉
∑
i∈I

∑
j∈Λi

〈
fk, ϕ

i
j

〉
ψi

jηi.

Similarly,

Ar( f ) =
∑
i∈I

∑
j∈∆r

i

〈
f , ϕi

j

〉
ψi

jηi

=
∑
k∈Λ

〈 f , gk〉
∑
i∈I

∑
j∈∆r

i

〈
fk, ϕ

i
j

〉
ψi

jηi.

Therefore, for f ∈ V00,

f − Ar( f ) =
∑
k∈Λ

〈 f , gk〉
∑
i∈I

∑
j<∆r

i

〈
fk, ϕ

i
j

〉
ψi

jηi.

Consequently, if we set ck := 〈 f , gk〉, by Lemma 1.3.1,

| f − Ar( f )| .
∑
k∈Λ

|ck|
∑
i∈I

∑
j<∆i

〈
w−(s+α)(· − k),w−(s+α)(· − j)

〉
w−(s+α)(· − j)χEi

.
∑
k∈Λ

|ck|
∑
i∈I

∑
j<Λr

i

w−(s+α)(k − j)w−(s+α)(· − j)χEi .

If we define,
Er

k :=
∑
i∈I

∑
j<Λr

i

w−(s+α)(k − j)w−(s+α)(· − j)χEi ,

Lemma 2.3.1 implies that,

‖ f − Ar( f )‖Lp
v
. ‖c‖`p

v

(
sup

k
‖Er

kwα(· − k)‖1

)1/p supess
x∈Rd

∑
k

∣∣∣Er
k(x)wα(x − k)

∣∣∣1/p′

.

Since (F,G) is a frame pair for Vp
v , ‖c‖`p

v
≤ K‖ f ‖Lp

v
, for some constant K that only depends

on d, C, s, α, the constant in Equation (1.8) (taking w = wα) and Λ. Consequently,

‖ f − Ar( f )‖Lp
v
≤ K‖ f ‖Lp

v

(
sup

k
‖Er

kwα(· − k)‖1

)1/p supess
x∈Rd

∑
k

∣∣∣Er
k(x)wα(x − k)

∣∣∣1/p′

. (5.6)
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Now observe that, since wα(x − k) ≤ wα(x − j)wα(k − j),∣∣∣Er
k(x)wα(x − k)

∣∣∣ ≤∑
i∈I

∑
j<Λr

i

w−s(k − j)w−s(x − j)χEi(x).

For every i ∈ I, since Λ is now assumed to be L-dense, there exists a map µi : Λi → Λ such
that |k − µi(k)| ≤ L, for all k ∈ Λi. This map will be used to reduce the proof to the case
where all the index sets are equal. This same argument was used in [5], where irregularly
distributed phase-space points are assigned a near point in a regular reference system by
means of a ‘round-up’ map.

Since the sets Λi are assumed to be uniformly relatively separated, there exists a number
N ∈ N, that depends only on L and the relative separation of all the sets of nodes, such that

#µ−1
i ({ j}) ≤ N, for every j ∈ Λ.

Suppose initially that r > 2L, define R := r − L and estimate,∣∣∣Er
k(x)wα(x − k)

∣∣∣ ≤∑
i∈I

∑
j∈Λ

∑
l∈µ−1

i ( j),
l<Λr

i

w−s(k − l)w−s(x − l)χEi(x).

If l ∈ µ−1
i ( j), then | j − l| ≤ L, so w−s(k − l) . w−s(k − j) and w−s(x− l) . w−s(x− j). (Here the

implicit constants depend on L and s). If in addition l < Λr
i , then j < ΩR

i , where

ΩR
i :=

{
k ∈ Λ

∣∣∣ d(k, Ei) ≤ R
}
.

Consequently, ∣∣∣Er
k(x)wα(x − k)

∣∣∣ . N
∑
i∈I

∑
j<ΩR

i

w−s(k − j)w−s(x − j)χEi(x). (5.7)

Using this estimate, we bound the weighted Schur norm of the kernel Er.
For every k ∈ Λ,

‖Er
kwα(· − k)‖1 .

∑
i∈I

∑
j<ΩR

i

w−s( j − k)
∫

Ei

w−s(x − j)dx

=
∑
j∈Λ

∑
i∈I

d( j,Ei)>R

w−s( j − k)
∫

Ei

w−s(x − j)dx

≤ #E
∑
j∈Λ

w−s( j − k)
∫

⋃
Ei

w−s(x − j)dx,
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where the union in the last integral ranges over all i ∈ I such that d( j, Ei) > R. Since the
complement of the cube QR( j) contains that union, we get,

‖Er
kwα(· − k)‖1 ≤ #E

∑
j∈Λ

w−s( j − k)
∫
Rd\QR( j)

w−s(x − j)dx

= #E
∑
j∈Λ

w−s( j − k)
∫
Rd\QR(0)

w−s(x)dx.

The set Λ − k has the same relative separation that Λ, so Lemma 1.3.2 implies that

‖Er
kwα(· − k)‖1 . #E

∫
Rd\QR(0)

w−s(x)dx

. #ER−(s−d).

Since r > 2L, it follows that R > r/2 and

sup
k
‖Er

kwα(· − k)‖1 . #Er−(s−d). (5.8)

Using again the estimate in Equation (5.7), we now bound supessx
∑

k

∣∣∣Er
k(x)wα(x − k)

∣∣∣.
Fix x ∈ Rd and let

Ix :=
{
i ∈ I

∣∣∣ x ∈ Ei
}
.

From Equation (5.4) we know that #Ix ≤ #E. We now estimate,∑
k∈Λ

∣∣∣Er
k(x)wα(x − k)

∣∣∣ .∑
i∈Ix

∑
j<ΩR

i

∑
k∈Λ

w−s(k − j)w−s(x − j).

Since Λ and Λ − { j} have the same relative separation, Lemma 1.3.2 implies that,∑
k∈Λ

w−s(k − j) . 1,

so, ∑
k∈Λ

∣∣∣Er
k(x)wα(x − k)

∣∣∣ .∑
i∈Ix

∑
j<ΩR

i

w−s(x − j).

For i ∈ Ix and j < ΩR
i , we have that |x − j| ≥ d( j, Ei) > R. It follows that,∑

k∈Λ

∣∣∣Er
k(x)wα(x − k)

∣∣∣ ≤∑
i∈Ix

∑
j:|x− j|>R

w−s(x − j).
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Since the sets Γ and x − Γ have the same relative separation, Lemma 1.3.2 implies that,∑
k∈Λ

∣∣∣Er
k(x)wα(x − k)

∣∣∣ . #ER−(s−d).

Using again the fact that r > 2L, it follows that,

supess
x∈Rd

∑
k∈Λ

∣∣∣Er
k(x)wα(x − k)

∣∣∣ . #Er−(s−d). (5.9)

Combining the estimates in Equations (5.8), (5.9) and (5.6), it follows that

‖Ar( f ) − f ‖Lp
v
. ‖ f ‖Lp

v
#Er−(s−d),

for r > 2L.
It remains to show that a similar estimate holds for 0 < r ≤ 2L. In this case, r−(s−d) & 1.

So, it suffices to observe that ‖Ar‖Vp
v→Lp

v
. #E, uniformly on r. Reexamining the estimates

given for the error kernel Er, the desired conclusion follows. �

Remark 5.1.2. The technique in the proof of the theorem of using the frame expansion twice
is somehow analogous to the use of reproducing formulas in the classical decomposition
results for function spaces (see for example [57] and [44]).

The formula defining the operator Ar makes sense in Lp
v , but the bound given in the the-

orem is only valid in the smaller subspace Vp
v , where the “reproducing formula” (the frame

expansion) is valid. By means of it, the task of bounding the operator is reduced in the proof
to the one of controlling its behavior on atoms, much in the spirit of the classical atomic
decompositions (see [57] and also [68]).

5.1.2 Constructing new frames
We now interpret the approximation result of Section 5.1.1 as a method to produce new
frames. Observe that, however, for some applications, the estimate provided by Theorem
5.1.1 is all that is needed. If concrete atoms and dual atoms are known, then the estimate in
the theorem provides an approximate reconstruction operator for the new system of atoms.

Consider again the ingredients of Section 5.1.1 and let {ηi}i∈I be a (measurable) partition
of unity subordinated to E (e.g. ηi = (

∑
j χE j)

−1χEi). Let v be a wα-moderated weight and let
P : Lp

v → Vp
v be the universal projector onto Vp

v (cf. Theorem 3.3.2).
Fix a value of r > 0 and consider the operator Br : Vp

v → Vp
v given by Br := P◦Ar, where

Ar( f ) :=
∑
i∈I

∑
k∈Λr

i

〈
f , ϕi

k

〉
ψi

kηi,

and, as before, Λr
i := {k ∈ Λi/d(k, Ei) ≤ r}.
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For each i ∈ I, let
(
Vp

v
)

i be the Lp
v -closed linear space generated by the atoms

{
ψi

kηi

}
k∈Λr

i
.

These spaces, of course, depend on r.
Consider the direct sum ⊕i

(
Vp

v
)

i as a subspace of `p
Lp

v
, the space of Lp

v -valued `p families;
more precisely, ⊕i

(
Vp

v
)

i is the closure of the algebraic direct sum within `p
Lp

v
. Let ι : ⊕i

(
Vp

v
)

i →

Lp
v be the operator given by

ι(( f i)i) :=
∑

i

f i.

Since E is locally finite, ι is well-defined and bounded uniformly on p and v. Indeed, for
1 ≤ p < ∞,

‖
∑

i

f i‖
p
Lp

v
=

∫
Rd

∣∣∣∣∣∣∣∑i

fi(x)

∣∣∣∣∣∣∣
p

v(x)pdx

≤

∫
Rd

(
∑
i∈Ix

| fi(x)|)pv(x)pdx,

where Ix :=
{
i ∈ I

∣∣∣ x ∈ Ei
}
. Since #Ix ≤ #E,

‖ι(( f i)i)‖
p
Lp

v
≤ #p

E

∫
Rd

∑
i

| fi(x)|p v(x)pdx

= #p
E

∑
i

‖ fi‖
p
Lp

v

= #p
E
‖( f i)i)‖

p
`

p

Lp
v

.

So, ‖
∑

i f i‖Lp
v
≤ #E‖( f i)i)‖`p

Lp
v

. For p = ∞, a similar computation establishes the same estimate.

Composing ι with the projector P, we obtain a synthesis operator S y : ⊕i
(
Vp

v
)

i → Vp
v .

For each i ∈ I, let Qi : Vp
v →

(
Vp

v
)

i be given by

Qi( f ) :=
∑
k∈Λr

i

〈
f , ϕi

k

〉
ψi

kηi.

The concentration conditions on Equation (5.2) imply that all these operators are uniformly
bounded. Moreover, they determine a map Q : Vp

v → ⊕i
(
Vp

v
)

i, given by Q( f ) := (Qi( f ))i.
We will prove below that Q is well defined and bounded. Assuming this for the moment, we
have a commutative diagram,

Vp
v

Br
##HHHHHHHHHH

Q //
⊕

i

(
Vp

v
)

i

S y
��

Vp
v

(5.10)
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It follows from Theorem 5.1.1 that for a sufficiently large value of r > 0, Br is invertible and
consequently Q is left-invertible and Sy is right-invertible. This provides two ways of viewing
Vp

v as a retract of ⊕i
(
Vp

v
)

i. One is Q (with retraction (Br)−1S y) and the other is Q(Br)−1 (with
retraction Sy). In the spirit of [91] and [16], this can be called an exterior Banach fusion
frame or an exterior stable splitting (see also [43] and [39]).

Now observe that each of the maps Qi can be factored through zp
v

2,

Vp
v

Ci ""EEEEEEEE
Qi //

(
Vp

v
)

i

zp
v (Λr

i )

Ri

OO

where Ci( f ) :=
(〈

f , ϕi
k

〉)
k

and Ri(c) :=
∑

k ckψ
i
kηi.

This induces a commutative diagram,

Vp
v

C $$HHHHHHHHHH
Q //

⊕
i

(
Vp

v
)

i

⊕
i zp

v (Λr
i )

R

OO

where in
⊕

i zp
v (Λr

i ) we use the p-norm; that is ‖(ci)i‖ := ‖(‖ci‖`p
v
)i‖`p . This is just a weighted

`p norm; this way of presenting it is due to the structure of the index sets. The boundedness of
the operators C and R is proved in Theorem 5.1.2 below. Assuming this fact for the moment,
observe that if Br is invertible, then Q is left-invertible and so is C. We formalize this in the
following theorem.

Theorem 5.1.2. Suppose that the assumptions of Section 5.1.1 are satisfied. Let v be a wα-
moderated weight. Then for all sufficiently large values of r > 0,{

ϕi
k : i ∈ I, k ∈ Λr

i

}
is a Banach frame for Vp

v .
More precisely, if we define the index set Γ :=

⋃
i∈I Λr

i × {i} and the weight V(k, i) := v(k),
then the analysis map

Vp
v → zp

V(Γ)

f 7→
(〈

f , ϕi
k

〉)
(k,i)

is bounded and left-invertible, for all sufficiently large values of r > 0.
Moreover, the value of r may be chosen uniformly for all 1 ≤ p ≤ ∞ and every class

of wα-moderated weights for which the respective constant (cf. Equation (1.8)) is uniformly
bounded.

2Recall that the space zp
v is `p

v when p < +∞ and c0
v for p = +∞.
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Remark 5.1.3. Observe that although we are constructing a new frame
{
ϕi

k

}
i∈I,k∈Λr

i
out of

the pieces
{
ϕi

k

}
k∈Λr

i
, we do not claim that each of these pieces forms a frame sequence. This

construction should be compared to the methods in [2], [52] and [16] where a global frame
is built from local (possibly exterior) frames for certain subspaces.

Remark 5.1.4. As a related result, we mention Lemma 4.7 in [97] where it is shown that
if

{
2k/2ψ(2k · − j)

∣∣∣ k, j ∈ Z
}

is a wavelet frame for L2(R) and the wavelet ψ satisfies a mild
smoothness condition, then for all sufficiently large values of r > 0, the system of fine scales{
2kψ(2k · + j)

∣∣∣ k ∈ Z, j ≥ 0
}

forms an exterior frame for the subspace Hr :=
{

f ∈ L2(R)
∣∣∣ f̂ ≡

0 on [−r, r]
}
.

Proof. Using Theorem 5.1.1, choose a value of r > 0 such that the operator Br is invertible.
By the discussion above, it only remains to bound the operators C and R. Consider the index
set Γ as a set with multiplicity, where we map each of the sets Λr

i × {i} into Rd by discarding
the second coordinate.

The fact that the sets Λi are uniformly relatively separated (cf. Equation (5.5)) and that
the covering E is uniformly locally finite (cf. Equation (5.3)) implies that Γ is relatively
separated. Indeed, let Q be the unit cube and Q′ := Q + [−r, r]d. For any x ∈ Rd,{

(k, i) ∈ Γ
∣∣∣ k ∈ Q + {x}

}
=

⋃
i∈I

{
k ∈ Λi ∩ (Q + {x})

∣∣∣ d(k, Ei) ≤ r
}
× {i}

⊆
⋃
i∈Ix

(Λi ∩ (Q + {x})) × {i} ,

where Ix :=
{
i ∈ I

∣∣∣ Ei ∩ (Q′ + {x}) , ∅
}
. Hence ρ(Γ) ≤ #E,Q′ supi ρ(Λi) < ∞ (cf. Equation

(5.3)).
The family of atoms

{
ϕi

k

}
(k,i)∈Γ

satisfies a polynomial concentration condition. By Example

2.2.1, the family has finite W(L∞, L1
wα

) norm. The boundedness of the operator C now follows
from Propositions 2.3.4.

For the boundedness of R, observe that the families
{
ψi

kηi

}
k∈Λr

i
satisfy a uniform polyno-

mial concentration condition and their nodes are uniformly relatively separated. Hence, by
Example 2.2.1,

M := sup
i
‖
{
ψi

kηi

}
k
‖W(L∞,L1

wα ) < ∞.

Consequently, by Proposition 2.3.1, for 1 ≤ p < ∞,

‖R(c)‖p
`

p

Lp
v

≤
∑

i

‖
∑
k∈Λr

i

ci
kψ

i
kηi‖

p
Lp

v

. Mp
∑

i

‖ci‖
p
`

p
v

= Mp‖c‖p
`

p
V
.



104 CHAPTER 5. FRAME SURGERY

So, ‖R(c)‖`p

Lp
v

. ‖c‖`p
V
. A similar computation shows that the same estimate is valid for p =

∞. �

5.1.3 Application to spline-type spaces
We now combine the results of Section 5.1.2 and Chapter 4 in a concrete statement.

Theorem 5.1.3. Let V = V(F,Λ) be a spline-type space. Assume the following.

• The atoms F satisfy the polynomial concentration condition around their nodes,

| fk(x)| ≤ C (1 + |x − k|)−(s+α) (x ∈ Rd, k ∈ Λ), (5.11)

for some constants C > 0, s > d and α ≥ 0.

• We are given a family of exterior frames for V2,
{
ϕi

k

}
k∈Λi

, i ∈ I, that satisfy the following
uniform polynomial concentration condition around their nodes Λi,∣∣∣ϕi

k(x)
∣∣∣ ≤ C′ (1 + |x − k|)−(s+α) (x ∈ Rd, k ∈ Λi, i ∈ I), (5.12)

for some constant C′ > 0.

• The exterior frames
({
ϕi

k

}
k

)
i∈I

share a uniform lower (and upper) bound. That is,

A‖ f ‖22 ≤
∑

k

∣∣∣∣〈 f , ϕi
k

〉∣∣∣∣2 ≤ B‖ f ‖22 ( f ∈ V2), (5.13)

holds for some constants 0 < A ≤ B < ∞. 3

• The sets of nodes Λi are uniformly relatively separated (cf. Equation (5.5)).

• We have a measurable covering of Rd, E ≡ {Ei}i∈I that is uniformly locally finite (cf.
Equation (5.3)).

Then, for all sufficiently large values of r > 0,{
ϕi

k : i ∈ I, d(k, Ei) ≤ r
}

is an exterior Banach frame for Vp
v .

More precisely, if we define the index set Γr :=
⋃

i∈I Λr
i × {i} and the weight V(k, i) := v(k),

then the analysis map

Vp
v → zp

V(Γr)

f 7→
(〈

f , ϕi
k

〉)
(k,i)

3Observe that Equation (5.12) already implies the existence of a uniform upper bound B.
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is bounded and left-invertible.
Moreover, the value of r may be chosen uniformly for all 1 ≤ p ≤ ∞ and every class of

wα-moderated weights for which the respective constants (cf. Equation (1.8)) are uniformly
bounded.

Proof. Combine Theorems 5.1.2 and 4.3.1. �

5.2 Applications

5.2.1 Shift invariant spaces
As a corollary of Theorem 5.1.3 we describe a method to piece together bases of lattice
translates. First we recall some notation and facts for shift-invariant spaces (see Section
1.14). Given a lattice Λ ⊆ Rd and f , g ∈ L2(Rd), the bracket product is defined by,

[ f , g]Λ(x) :=
∑
λ⊥∈Λ⊥

f̂ (x + λ⊥)ĝ(x + λ⊥) (x ∈ Rd).

The Λ translates of a finite set of functions { f1, . . . , fN} form a Riesz sequence in L2(Rd)
if an only if the matrix of functions Ĝ ≡

(
Ĝn,m

)
1≤k, j≤N

given by

Ĝ(x)n,m := [ fn, fm]Λ(x) (x ∈ Rd),

is uniformly invertible in the sense that all its eigenvalues are bounded away from 0 and ∞,
uniformly on x (up to sets of null measure).

Combining the theory of shift-invariant spaces with Theorem 5.1.3 we get the following.

Theorem 5.2.1. Let Λ ⊆ Rd be a lattice and let V2 = V2(F,Λ × {1, . . . ,N}) be a finitely-
generated shift invariant space where the atoms are given by,

F ≡ { fn(· − λ) : 1 ≤ n ≤ N, λ ∈ Λ} .

Assume the following.

• The atoms form a Riesz basis of V2 and satisfy the following decay condition,

| fn(x)| ≤ C(1 + |x|)−(s+α) (1 ≤ n ≤ N), (5.14)

for some constants C > 0, α ≥ 0 and s > d.

• We have a measurable covering of Rd, E ≡ {Ei}i∈I that is uniformly locally finite (cf.
Equation (5.3)).
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• We are given a family of measurable functions{
gi

n : Rd → C
∣∣∣ i ∈ i, 1 ≤ n ≤ N

}
satisfying the decay condition,∣∣∣gi

n(x)
∣∣∣ ≤ C′(1 + |x|)−(s+α) (1 ≤ n ≤ N), (5.15)

for some constant C′ > 0 (independent of i and n).

• The matrices of functions
(
Ĝi

n,m

)
1≤n,m≤N

given by

Ĝi(x)n,m := [ fn, gi
m]Λ(x) (x ∈ Rd/Λ⊥),

are uniformly bounded and invertible in the sense that each Ĝi(x) is invertible and

sup
x,i
‖Ĝi(x)‖, sup

x,i
‖Ĝi(x)−1‖ < ∞.

Then, for all sufficiently large values of r > 0, the set{
gi

n(· − λ)
∣∣∣ i ∈ I, 1 ≤ n ≤ N, λ ∈ Λ, d(λ, Ei) ≤ r

}
,

is a Banach frame for Vp
v , for all 1 ≤ p ≤ ∞ and all strictly wα-moderated weights v. More

precisely, if we define the index set

Γr :=
{
(i, n, λ) ∈ I × {1, . . . ,N} × Λ

∣∣∣ d(λ, Ei) ≤ r
}

and the weight V(i, n, λ) := v(λ) on it, then the analysis map

Vp
v → zp

V(Γr)

f 7→
(〈

f , gi
n,λ

〉)
(i,n,λ)

is bounded and left-invertible.

Remark 5.2.1. The theorem is stated for bases just for simplicity. Using the tools from [96],
[28] and [14] it can be reformulated for frames.

Proof. Let A and B be the Riesz basis bounds of F. Also let A′ := supx,i‖Ĝi(x)−1‖ and
B′ := supx,i‖Ĝi(x)‖. Using the fiberization theory from Section 1.14, for each x ∈ Rd/Λ⊥, the
system

{
( f̂1(x + k))k, . . . , ( f̂N(x + l))k

}
is a Riesz basis with bounds A and B for some subspace

V2
x ⊆ `

2(Λ⊥). Since its cross-gramian matrix with the system
{
(ĝi

1(x + k))k, . . . , (ĝi
N(x + k))k

}
is invertible, it follows that this latter system is an exterior Riesz basis for the subspace V2

x
with bounds B−1A′−2 and (B′)2A−1. Invoking again the fiberization theory, it follows that the
Λ translates of

{
gi

1, . . . , g
i
N

}
are an exterior basis for V2 with bounds ≈ B−1A′−2 and (B′)2A−1

(the implicit constant depends on the volume of the lattice Λ). We can now apply Theorem
5.1.3. �
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Remark 5.2.2. In [14] no results for exterior bases or frames are explicitly given. However,
it is proved there (and also in [28]) that the orthogonal projector onto a shift-invariant space
operates fiberwise, so the desired extension follows. For further results on exterior frames for
shift-invariant spaces see [18] and [19].

5.2.2 Sampling
Applying Theorem 5.1.3 to the reproducing kernels of a (smooth) spline-type space we get
the following.

Theorem 5.2.2. Let V = V(F,Λ) be a spline-type space generated by a family of continuous
atoms F ⊆ C0(Rd) that satisfy,

| fk(x)| ≤ C (1 + |x − k|)−(s+α) , (x ∈ Rd, k ∈ Λ),

for some s > d, C > 0 and α ≥ 0.
Assume the following.

• E ≡ {Ei}i∈I is a uniformly locally finite measurable covering of Rd (cf. Equation (5.3)).

• For each i ∈ I, we have a set Xi ⊆ R
d and this collection of sets is uniformly relatively

separated (i.e supi ρ(Xi) < ∞).

• For each of the sets Xi, the following sampling inequality

A‖ f ‖22 ≤
∑
x∈Xi

| f (x)|2 ≤ B‖ f ‖22, (5.16)

holds for all f ∈ V2 and some constants 0 < A ≤ B < ∞ independent of i.

For each r > 0, let
Xr := {(i, x) : i ∈ I, x ∈ Xi, d(x, Ei) ≤ r} .

Then, for all sufficiently large r > 0, there exists constants 0 < Ar ≤ Br < ∞ such that the
sampling inequality,

Ar‖ f ‖Lp
v
≤

 ∑
(i,x)∈Xr

| f (x)|p v(x)p


1/p

≤ Br‖ f ‖Lp
v
, (5.17)

holds for all 1 ≤ p ≤ ∞ (with the usual adjustment for p = ∞), all strictly wα-moderated
weights v, and all f ∈ Vp

v .

Remark 5.2.3. For any class of wα-moderated weights for which the respective constants (cf.
Equation (1.8)) are uniformly bounded, the conclusion of the theorem still holds.
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Proof. First observe that since F ⊆ C0(Rd), Theorem 3.3.1 applies with B = C0 and con-
sequently Vp

v ⊆ C0. The norm equivalence of Theorem 3.3.1 also implies that V2 is a
reproducing-kernel Hilbert space. We already know that F has a dual frame G ≡ {gk}k satis-
fying a polynomial decay condition,

|gk(x)| ≤ C′ (1 + |x − k|)−(s+α) ,

for some constant C′ > 0. The functional f 7→ f (x0) is represented by the function Kx0 ∈ V2

given by
Kx0 =

∑
k∈Λ

gk(x0) fk. (5.18)

We will apply Theorem 5.1.3 to the family of frames,

{Kx}x∈Xi
(i ∈ I).

To this end, observe that Equation (5.16) implies that this family satisfies the condition on
Equation (5.13) of Theorem 5.1.3. We only need to check the condition on Equation (5.12)
for the family of reproducing kernels.

For x ∈ Xi, using Equation (5.18), we estimate,

|Kx| ≤ CC′
∑
k∈Λ

w−(s+α)(x − k)w−(s+α)(· − k).

Using Lemma 1.3.2 (c) with Γ := Λ − {x}, it follows that

|Kx| ≤ CC′ρ(Γ)w−(s+α)(· − x) = K′′ρ(Λ)w−(s+α)(· − x).

Now we can apply Theorem 5.1.3 to obtain the desired conclusion. �

5.2.3 Gabor molecules
Let us recall some notation and facts about time-frequency analysis and Gabor frames (cf.
Section 1.11). Let φ : Rd → R, φ(x) := π−d/4e−

|x|2
2 be the Gaussian normalized in L2. The

Short-Time Fourier Transform with respect to φ of a test function f ∈ S(Rd) is defined by

Vφ f (x,w) := 〈 f ,MwTxφ〉 . (5.19)

Here, Tx is the translation operator given by

Tx( f )(y) := f (y − x),

and Mw is the modulation operator given by

Mw( f )(y) := e2πiwy f (y).
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For 1 ≤ p ≤ ∞ and a weight v, the modulation space Mp
v is defined as

Mp
v :=

{
f ∈ S′(Rd)

∣∣∣Vφ f ∈ Lp
v (R2d)

}
,

and given the norm ‖ f ‖Mp
v

:= ‖Vφ f ‖Lp
v
. M0

v is similarly defined, this time using C0
v instead of

L∞v .
For an adequate lattice, Λ ⊆ Rd × Rd, the Gabor system {MwTxφ : (x,w) ∈ Λ} is a frame

for L2(Rd). Consider the family of functions F ≡ { fk}k∈Λ ⊆ L2(Rd × Rd) defined by fk :=
Vφ(MwTxφ), where k = (x,w). Since Vϕ : L2(Rd) → L2(Rd × Rd) is an isometry, it follows
that F forms a frame sequence in L2(Rd × Rd).

Since Vφφ ∈ S(Rd) (cf. Prop. 1.11.1), for any s > 0 there exists a constant Cs > 0 such
that ∣∣∣Vφφ(z)

∣∣∣ ≤ Cs (1 + |z|)−s .

Since | fk| =
∣∣∣Vφφ(· − k)

∣∣∣ it follows that,

| fk(z)| ≤ Cs (1 + |z − k|)−s (z ∈ R2d, k ∈ Λ). (5.20)

Consequently, by Example 2.2.1, we know that V = V(F,Λ) is a spline-type space.
Observe that for polynomially moderated weights v and 1 ≤ p < ∞,Vφ maps, by defini-

tion, the modulation space Mp
v isometrically onto Vp

v . For p = ∞, the same statement is true
replacing M∞

v for M0
v .

In view of this, Theorem 5.1.2 can be reformulated for Gabor molecules.

Theorem 5.2.3.

• Let E ≡ {Ei}i∈I be a uniformly locally finite measurable covering of Rd × Rd (cf. Equa-
tion (5.3)).

• For each i ∈ I, let Gi ≡
{
gi

k

}
k∈Λi

be a frame for L2(Rd) with lower bound Ai and suppose
that A := infi Ai > 0.

• Suppose that the sets of time-frequency nodes Λi ⊆ R
d × Rd are uniformly relatively

separated (i.e supi∈I ρ(Λi) < ∞).

• Assume that the molecules Gi satisfy the following uniform time-frequency concentra-
tion condition,∣∣∣Vφgi

k(z)
∣∣∣ ≤ C (1 + |z − k|)−(s+α) (z ∈ Rd × Rd, k ∈ Λi), (5.21)

for some constants C > 0, s > 2d and α ≥ 0 (independent of i).



110 CHAPTER 5. FRAME SURGERY

Then, for all sufficiently large r > 0, the system{
gi

k : i ∈ I, k ∈ Λi, d(k, Ei) ≤ r
}

is a Banach frame simultaneously for all the modulation spaces Mp
v , for all strictly wα-

moderated weights v and 1 ≤ p < ∞. The same is true for p = ∞, replacing M∞
v for

M0
v .

More precisely, if we set,

Γr := {(i, k) : i ∈ I, k ∈ Λi, d(k, Ei) ≤ r} ,

and define a weight V on Γr by
V(k, i) := v(k),

then, the coefficients map given by

Mp
v → zp

V(Γr)

f 7→
(〈

f , gi
k

〉)
(i,k)

is bounded and left-invertible, for all sufficiently large values of r.

Remark 5.2.4. For any class of wα-moderated weights for which the respective constants
(cf. Equation (1.8)) are uniformly bounded, it is also possible to choose a value of r > 0 for
which the conclusion of the theorem holds.

Proof. Consider the spline-type space V2 = Vφ(L2(Rd)) from the discussion above. Define
the functions,

ϕi
k := Vφ(gi

k) (i ∈ I, k ∈ Λi).

SinceVϕ : L2(Rd)→ L2(Rd × Rd) is an isometry, each of the families
{
ϕi

k

}
k

is a frame for V2

with lower bound A. Moreover, Equation (5.21) implies that these families share a uniform
polynomial concentration condition. This condition is also shared by the atoms { fk}k because
Equation (5.20) holds for any value of s > 0. The theorem now follows from Theorem 5.1.3
and the fact that : Vφ : Mp

v → Vp
v is a surjective isometry (with the discussed modification

for p = ∞). �

Remark 5.2.5. Observe that since we have identified the range of the STFT (with a fixed
window) with a spline-type space, it follows from Theorem 3.3.1 that, on the range of the
STFT, the Lp

v and W(L∞, Lp
v ) norms are equivalent (the class of weights v for which this is

true depends on the time-frequency localization of the window function; in the case of the
Gaussian window, any polynomial weight wα with α ≥ 0 will work). Results of this kind can
be found in Chapter 12 of [62], see for example Proposition 12.1.11 there.
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Remark 5.2.6. Finally observe that the argument given can be used to combine not only time-
frequency concentrated frames for L2(Rd) but also frames for proper subspaces S ⊆ L2(Rd).
Simply let V2 = Vφ(S ) and apply the same argument as above.

For completeness, we give a version of Theorem 5.2.3 for pure time-frequency atoms.
This gives general sufficient conditions for the existence of the so called quilted Gabor
frames, recently introduced in [32].

Corollary 5.2.1.

• Let E ≡ {Ei}i∈I be a uniformly locally finite measurable covering of Rd × Rd (cf. Equa-
tion (5.3)).

• For each i ∈ I, let Gi ≡
{
M jTkgi : (k, j) ∈ Λi

}
be a Gabor frame for L2(Rd) with lower

bound Ai and suppose that A := infi Ai > 0.

• Suppose that the sets of time-frequency nodes Λi ⊆ R
d × Rd are uniformly relatively

separated.

• Assume that the windows
{
gi
}

i
satisfy the following uniform time-frequency concentra-

tion condition,

C := sup
i
‖gi‖M∞ws+α

< +∞,

for some constants s > 2d and α ≥ 0 (independent of i).

Then, for all sufficiently large r > 0, the system{
M jTkgi : i ∈ I, (k, j) ∈ Λi, d((k, j), Ei) ≤ r

}
is a Banach frame simultaneously for all the modulation spaces Mp

v , for all strictly wα-
moderated weights v and 1 ≤ p < ∞. The same is true for p = ∞, replacing M∞

v for
M0

v .

Proof. Observe that, ∣∣∣Vφ(M jTkgi)
∣∣∣ =

∣∣∣Vφ(gi)(· − λ)
∣∣∣ ≤ Cw−(s+α)(z − λ), (5.22)

where λ := (k, j) ∈ Λi. Therefore, we can apply Theorem 5.2.3. �
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5.2.4 Gabor multipliers
Now we give an application of the frame surgery scheme to Gabor multipliers. We follow
largely the approach in [42]. For a general background on Gabor multipliers see [47, Chapter
5].

Given a lattice in the time-frequency plane Λ ⊆ R2d and two families of functions F ≡
{ f1, . . . , fN} ,G ≡ {g1, . . . , gN} ⊆ L2(Rd) we consider the class of operators,

GF,G :=
{ N∑

n=1

∑
λ∈Λ

mn(λ) 〈–, π(λ)gn〉 π(λ) fn

∣∣∣ mn ∈ `
2(Λ)

}
,

where π(λ) is the time-frequency shift π(λ) := MwTx, if λ = (x,w). The convergence of the
series defining the class G requires additional assumptions (see below). The operators in this
class are called the Gabor multipliers associated with the time-frequency atoms (F,G) and
the lattice Λ.

For f , g ∈ L2(Rd) we use the notation P f ,g := 〈–, g〉 f for the corresponding rank-one
operator. Furthermore, for a point (x,w) ∈ Rd × Rd we let the time-frequency shifts act on an
operator T by

ρ(x,w)(T ) := MwTxTT−xM−w = π(x,w)Tπ(x,w)∗.

Every linear operator T mapping continuously S(Rd) into S′(Rd) admits a distributional
kernel K(T ) ∈ S′(R2d). The Kohn-Nirenberg symbol of T is defined in terms of K by

σ(T )(x,w) :=
∫
Rd

K(T )(x, x − s)e−2πiswds.

From this definition it follows that the Kohn-Nirenberg map defines an isometry between the
class of Hilbert-Schmidt operators and L2(R2d). The important property for us is that the
Kohn-Nirenberg map interwines the action ρ with the regular action of Rd × Rd (by transla-
tions). That is,

σ(ρ(z)T ) = σ(T )(· − z) (z ∈ Rd × Rd).

We see then that the Kohn Nirenberg map KN : T 7→ σ(T ) relates the class G to a shift-
invariant space V2(F,G) := KN(GF,G) given by,

V2 =
{ N∑

n=1

∑
λ∈Λ

mn(λ)σ(P fn,gn)(· − λ)
∣∣∣ (mn) ∈ `2(Λ)

}
.

The Kohn-Nirenberg symbol of the projector P f ,g is explicitly given by,

σ(P f ,g)(x,w) = f (x)ĝ(w)e−2πixw, (5.23)
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so its 2d Fourier transform is

σ̂(P f ,g)(x,w) = Vg f (−w, x).

Consequently, the inner product between the building blocks of V2 is given by,〈
σ(P fn,gn), σ(P fm,gm)

〉
=

〈
Vgn fn,Vgm fm

〉
,

whereas, with the notation z∗ = (−w, x) for z = (x,w), their bracket product (see Section 1.14
and 5.2.1) is given by

[σ(P fn,gn), σ(P fm,gm)]Λ(z) =
∑
λ⊥∈Λ⊥

Vgn fn(z∗ − λ⊥)Vgm fm(z∗ − λ⊥). (5.24)

Hence, the theory of shift-invariant spaces (cf. Section 1.14) implies the following.

Proposition 5.2.1. The set
{
〈–, π(λ)gn〉 π(λ) fn

∣∣∣ λ ∈ Λ
}

is a Riesz sequence in the space of
Hilbert-Schmidt operators if and only if the matrix of functions Ĝ = Ĝ(F,G) ≡ (Ĝn,m)1≤n,m≤N ,
given by,

Ĝn,m(z) =
∑
λ⊥∈Λ⊥

Vgn fn(z − λ⊥)Vgm fm(z − λ⊥), (5.25)

is uniformly bounded and invertible (that is, its eigenvalues are bounded away from 0 and∞,
uniformly on z).

Remark 5.2.7. Observe that, for time-frequency concentrated windows, since by Remark
5.2.5 the STFT of an L2 function belongs to the amalgam space W(C0, L2), it follows that the
entries of the matrix in Equation (5.25) are continuous periodic functions. Therefore, that
matrix will be uniformly invertible if it is invertible at every point.

Proof. The only observation to complete the proof is that, since the condition in Equation
(5.25) is required for every z ∈ R2d, we can drop the change of coordinates z 7→ z∗ in the
bracket product. �

Consequently, in the situation of Proposition 5.2.1, any operator T ∈ G(F,G) can be
stably recovered from its lower symbol(〈

T, Pπ(λ) fn,π(λ)gn

〉
HS

: λ ∈ Λ
)
,

where 〈·, ·〉HS denotes the Hilbert-Schmidt inner product. We can now reformulate Theorem
5.2.1 in this context.
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Theorem 5.2.4. Let a lattice Λ ⊆ R2d and a uniformly locally finite measurable covering of
R2d, E ≡ {Ei}i∈I , be given.

Let f1, . . . , fN , g1, . . . gN ∈ L2(Rd) be such that the matrix Ĝ(F,G) on Equation (5.25) is
uniformly invertible and suppose that these atoms satisfy,

| fn(x)| ≤ C(1 + |x|)−s, (5.26)
|ĝn(w)| ≤ C(1 + |w|)−s, (5.27)

for some constants C > 0 and s > 2d.
Let families

{
f i
1, . . . , f i

N

}
,
{
gi

1, . . . g
i
N

}
⊆ L2(Rd), i ∈ I be given. Assume the following.

• The given families satisfy, ∣∣∣ f i
n(x)

∣∣∣ ≤ C′(1 + |x|)−s, (5.28)∣∣∣ĝi
n(w)

∣∣∣ ≤ C′(1 + |w|)−s, (5.29)

for some constant C′ > 0 (independent of i and n).

• The matrices of functions
(
Ĝi

n,m

)
1≤n,m≤N

given by

Ĝi(z)n,m :=
∑
λ⊥∈Λ⊥

Vgn fn(z − λ⊥)Vgi
m

f i
m(z − λ⊥) (z ∈ Rd × Rd),

are uniformly bounded and invertible in the sense that each Ĝi(z) is invertible and

sup
z,i
‖Ĝi(z)‖, sup

z,i
‖Ĝi(z)−1‖ < ∞.

Then, for all sufficiently large values of r > 0, any Gabor multiplier T ∈ G(F,G) can be
stably recovered in Hilbert-Schmidt norm from its mixed lower symbol(〈

T, Pπ(λ) f i
n,π(λ)gi

n

〉
HS

: i ∈ I, 1 ≤ n ≤ N, λ ∈ Λ, d(λ, Ei) ≤ r
)
. (5.30)

Remark 5.2.8. As we have seen, the theorem also establishes an uniform equivalence be-
tween the `

p
v norm of the coefficients in Equation (5.30) and the Lp

v norm of the Kohn-
Nirenberg symbol of T , for 1 ≤ p ≤ ∞ and a certain class of weights.

Proof. By the discussion above, in order to apply Theorem 5.2.1 we need to observe that
the Kohn-Nirenberg symbols of all the atoms are adequately localized. This follows from
Equation (5.23) and the fact that w−s(x)w−s(w) ≤ w−s(x,w), for x,w ∈ Rd. �



Chapter 6

Phase-space coverings

In this chapter we study a second locality problem in phase-space. We now go back to the
most abstract setting of locally-compact groups rather than the Euclidean space. This is
required by certain applications. Recall that a coorbit space, in the most general sense of
the term, is a functional space X that is defined by imposing size conditions to a certain
transform. More precisely, considering a functional space X as a coorbit space consists of
giving a transform T : X → E that embeds X as a complemented subspace of a solid BF
space E.

When a functional space X is identified as a coorbit space, the properties of an element
f ∈ X are reformulated in terms of decay or integrability conditions of the function T ( f ) ∈ E
- called the phase-space representation of f . The elements of X can be resynthesized from
their phase-space representations by means of an operator U : E → X that is a left-inverse
for T (i.e. f = UT ( f )).

In an attempt to finely adjust the properties of a function f that are shown by T ( f ) one
can consider operators of the form Mm( f ) = U(mT ( f )) that apply a mask m to the phase-
space representation T ( f ). We will call these operators phase-space multipliers. Of course,
the rigorous interpretation of Mm( f ) is problematic since, in general, T Mm( f ) , mT ( f ).
When T is the abstract wavelet transform (representation-coefficients function) associated
with an unitary representation of a group, these operators are know as localization operators
or wavelet multipliers [71, 113, 83]. In the case of time-frequency analysis these operators
are known as time-frequency localization operators or multipliers of the short-time Fourier
transform [24, 21, 22, 13].

The main result of the chapter is a characterization of the norm of a coorbit space in terms
of families of phase-space multipliers associated with a partition of unity in G. Specifically,
suppose that X is a Banach space that is regarded as a coorbit space by means of a transform
T : X → E, having a left-inverse U : E→ X. Let

{
θγ

}
γ

be a partition of unity on G and con-
sider the corresponding phase-space multipliers given by Mγ( f ) = U(θγT ( f )). The partition
of unity is only assumed to satisfy certain spatial localization conditions but it is otherwise
arbitrary. We prove that ‖ f ‖X is equivalent to the norm of the sequence

{
‖Mγ( f )‖B

}
γ

in a dis-

115
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crete version of the space E, where the space B can be chosen among a large class of function
spaces. Moreover, we prove that the map f 7→

{
Mγ( f )

}
γ

embeds X as a complemented sub-
space of a space of B-valued sequences, obtained as a discretization of E. This quantifies the
relation between an element f ∈ X and the phase-space localized pieces

{
Mγ( f )

}
γ
.

For the case of time-frequency analysis, Dörfler and Gröchenig have recently obtained
this kind of characterization of modulation spaces [34], using techniques from rotation al-
gebras (non-commutative tori) developed in [66] and [64] and spectral theory for Hilbert
spaces.1 Here, we use a different approach to obtain consequences for settings where the
techniques in [34] are not applicable, such as time-scale decompositions and Besov spaces.
As a by-product we derive a stronger version of the main result in [34] where the admissible
partitions of unity are restricted to be lattice shifts of a non-negative function and the space
B is L2. These restrictions seem to be essential for the applicability of the techniques in [34].

However, to fully recover and generalize the results in [34], we will need to refine the
results of this chapter using tools that are only available on certain groups. We carry out that
task in Chapter 7. There, instead of the tools from rotation algebras used in [34], we will
resort to related results for matrix algebras.

6.1 Approximation of phase-space projections
In this section we prove the main technical estimate of the chapter. Given the setting from
Section 3.1 and a partition of unity

∑
γ ηγ ≡ 1, we will show that the phase-space projection

P( f ) from Section 3.1 can be resynthesized from the phase-space localized pieces
{
P( fηγ)

}
γ
.

Note that P( f ) can be trivially recovered from
{
P( fηγ)

}
γ

by simply summing all these func-
tions. We will prove that this reconstruction can also be achieved by placing the localized
pieces on top of the (morally) corresponding regions of the phase-space. This controlled syn-
thesis will then allow us to quantify the relation between P( f ) and

{
P( fηγ)

}
γ

and yield the
main result on the characterization of the norm of S.

6.1.1 Setting
Let us recall the model from Section 3.1. Let G be a locally-compact group. We assume the
following.

(A1) – E is a solid, translation invariant BF space, called the environment.

– w is an admissible weight for E.

– S is a closed complemented subspace of E, called the atomic subspace.

(A2) We have an operator P and a function H satisfying the following.
1For more about the relation between time-frequency analysis and non-commutative tori see [85].
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– P : W(L1, L∞1/w)→ L∞1/w is a (bounded) linear operator,

– P(E) = S,

– P( f ) = f , for all f ∈ S,

– H ∈ W(L∞, L1
w) ∩WR(L∞, L1

w),

– For f ∈ W(L1, L∞1/w),

|P( f )(x)| ≤
∫
G

| f (y)|H(y−1x)dy, (x ∈ G). (6.1)

We now state Assumption (B1) introducing the partition of unity covering phase-space and
the norm used to measure it.

(B1) – Γ ⊆ G is a relatively separated set.

–
{
ηγ

∣∣∣ γ ∈ Γ
}

is a set of Wweak
R (L∞, L1

w)-molecules enveloped by a function g. More
precisely,

∗
∣∣∣ηγ(x)

∣∣∣ ≤ g(γ−1x), (x ∈ G, γ ∈ Γ),

∗ g ∈ Wweak
R (L∞, L1

w).

–
{
ηγ

}
γ

is a bounded partition of unity. That is,∑
γ

ηγ ≡ 1, and
∑
γ

∣∣∣ηγ∣∣∣ ∈ L∞(G).

– B is a solid, isometrically left-translation invariant Banach space such that,

W(L∞, L1
w) ↪→ B.

Remark 6.1.1. By Lemma 1.6.1, B ↪→ W(L1, L∞). In addition, by the definition of translation
invariant space L1 ∗ B ↪→ B.

6.1.2 Vector-valued analysis and synthesis
Let us now describe the operators mapping a function f into the phase-space localized pieces,
by means of the partition of unity

{
ηγ

}
γ
. Let the operator CB be formally defined by,

CB( f ) :=
(
P( fηγ)

)
γ∈Γ

.

For each U, a relatively compact neighborhood of the identity in G, we also formally define
the operator S B

U , acting on a sequence of functions by,

S B
U(

(
fγ
)
γ∈Γ

) :=
∑
γ

P( fγ)χγU .
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The operator S B
U will be used as an approximate left-inverse of the vector valued analysis op-

erator CB. Let us now establish the well-definition and mapping properties of these operators.

Proposition 6.1.1. Under Assumptions (A1), (A2) and (B1) the following statements holds.

(a) The analysis operator CB maps W(L∞, E) boundedly into Ed
B(Γ). In particular (cf.

Proposition 3.1.1) it maps S boundedly into Ed
B(Γ).

(b) For every relatively compact neighborhood of the identity U, and every sequence F ∈
Ed

B, the series defining S B
U(F) converges absolutely in the norm of B at every point.

Moreover, the synthesis operator S B
U maps Ed

B(Γ) boundedly into E (with a bound that
depends on U).

Proof. To prove (a) let f ∈ W(L∞, E). Since ηγ is bounded, fηγ ∈ W(L∞, E) ⊆ E. By the
pointwise bound for P (cf. Equation (6.1)),∣∣∣P( fηγ)(x)

∣∣∣ ≤ ∫
G

| f (y)| g(γ−1y)H(y−1x)dy.

Since B is solid and L1 ∗ B ↪→ B, we have,

‖P( fηγ)‖B ≤ ‖H‖B

∫
G

| f (y)| g(γ−1y)dy . ‖H‖W(L∞,L1
w)

∫
G

| f (y)| g(γ−1y)dy.

Now the solidity of E and Lemma 2.1.1 yield,

‖CB( f )‖Ed
B
. ‖ f ‖W(L∞,E)‖g‖Wweak

R (L∞,L1
w).

To prove (b) consider a family F ≡ ( fγ)γ ∈ Ed
B. For each γ ∈ Γ, fγ ∈ B ⊆ W(L1, L∞), so by

Proposition 3.1.1, P( fγ) is well-defined and satisfies,∣∣∣P( fγ)(x)
∣∣∣ . ‖ fγ‖W(L1,L∞)‖H‖WR(L∞,L1

w) . ‖ fγ‖B‖H‖WR(L∞,L1
w).

Hence, for every x ∈ G,
∣∣∣S B(F)(x)

∣∣∣ . ∑
γ‖ fγ‖BχU(γ−1x). Since U is relatively compact,

χU ∈ WR(L∞, L1
w) and consequently Lemma 1.6.2 together with the solidity of E imply that

‖RU(F)‖E . ‖χU‖WR(L∞,L1
w)‖F‖Ed

B
. �

6.1.3 Approximation of the projector
Now we can state the main result on the approximation of P. For every U, relatively compact
neighborhood of the identity in G, consider the approximate projector PU : W(L∞, E) → E
given by,

PU( f ) :=
∑
γ∈Γ

P( fηγ)χγU . (6.2)

Since PU = S B
U ◦ CB, PU is well-defined. We will prove that PU approximates P in the

following way.
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Theorem 6.1.1. Given ε > 0, there exists U0, a relatively compact neighborhood of e such
that for all U ⊇ U0,

‖P( f ) − PU( f )‖E ≤ ε‖ f ‖W(L∞,E), ( f ∈ W(L∞, E)).

In order to prove Theorem 6.1.1 we introduce the following auxiliary function. For each
U, let GU : G → [0,+∞) be defined by,

GU(x) := sup
y∈G

∑
γ∈Γ

(g ∗ χV)(γ−1y)χγ(G\U)(yx). (6.3)

Observe that GU is defined as a supremum of a family of sums. The estimates for P that we
will derive in terms of GU are sharper than the usual convolution estimates involving Wiener
amalgam norms of g. This extra precision is crucial for the proof of Theorem 6.1.1. Before
proving that theorem we establish some necessary estimates for the auxiliary function.

Lemma 6.1.1. The function GU satisfies ‖GU‖L∞(G) . 1 (with a bound independent of U).
Moreover, for every compact set K ⊆ G,

‖GUK‖L∞(K) .

∫
V(G\U)

(g ∗ χV)#(x)w(x)dx.

Proof. Let a compact set K and an element x ∈ K be given. For y ∈ G, if yx ∈ γ(G \ (UK)),
then γ−1yx < UK, so γ−1y < U.

Therefore, ∑
γ

(g ∗ χV)(γ−1y)χγ(G\(UK))(yx) ≤
∑

γ:γ−1y<U

(g ∗ χV)(γ−1y)

.
∑

γ:γ−1y<U

∫
G

(g ∗ χV)#(t−1γ−1y)χV(t)dt

=

∫
G

(g ∗ χV)#(t−1)
∑

γ:γ−1y<U

χV(γ−1yt)dt.

Since Γ is relatively separated,
∑
γ χV(γ−1yt) =

∑
γ χV(t−1y−1γ) . 1. In addition, if γ−1yt ∈ V

and γ−1y < U then t = (γ−1y)−1γ−1yt ∈ (G \ U)−1V .
Hence,

GUK(x) .
∫

(G\U)−1V
(g ∗ χV)#(t−1)dt =

∫
V(G\U)

(g ∗ χV)#(t)∆(t−1)dt.

Since ∆(t−1) . ∆(t−1)w(t−1) = w(t) the desired bound follows. Reexamining the computations
above we see that, ‖GU‖L∞(G) .

∫
G

(g∗χV)#(t)w(t)dt. Since g ∈ Wweak
R (L∞, L1

w), the last integral
is finite and we obtain the desired uniform bound. �
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Now we can prove Theorem 6.1.1.

Proof of Theorem 6.1.1. Let f ∈ W(L∞, E) and let U be a relatively compact neighborhood
of e. Since

∑
γ ηγ ≡ 1,

P( f ) − PU( f ) =
∑
γ

P( fηγ) −
∑
γ

P( fηγ)χγU =
∑
γ

P( fηγ)χγ(G\U).

Consequently, by the pointwise bound for P (cf. Equation (6.1)), for x ∈ G,

|P( f )(x) − PU( f )(x)| ≤
∑
γ

∫
G

| f (y)| g(γ−1y)H(y−1x)χγ(G\U)(x)dy.

Since | f (y)| .
∫

f #(z)χV(y−1z)dz, we have,

|P( f )(x) − PU( f )(x)| .
∫
G

f #(z)
∑
γ

∫
G

χV(y−1z)g(γ−1y)H(y−1x)χγ(G\U)(x)dydz.

Note that if y−1z ∈ V , then y−1x = y−1zz−1x ∈ V(z−1x), and therefore H(y−1x) ≤ H#(z−1x).
Hence,

|P( f )(x) − PU( f )(x)| .
∫
G

f #(z)H#(z−1x)
∑
γ

∫
G

g(γ−1y)χV(y−1z)χγ(G\U)(x)dydz.

=

∫
G

f #(z)H#(z−1x)
∑
γ

(g ∗ χV)(γ−1z)χγ(G\U)(x)dz.

≤

∫
G

f #(z)H#(z−1x)GU(z−1x)dz.

Consequently,

‖P( f ) − PU( f )‖E . ‖ f #‖E‖H#GU‖L1
w

= ‖ f ‖W(L∞,E)‖H#GU‖L1
w
.

Therefore, it suffices to show that ‖H#GU‖L1
w
−→ 0, as U grows to G. For every compact set

K ⊆ G, Lemma 6.1.1 implies that∫
G

H#(z)GU(z)w(z)dz

≤ ‖GU‖L∞(K)‖H#‖L1
w

+ ‖GU‖L∞(G)

∫
G\K

H#(z)w(z)dz

. ‖GU‖L∞(K) +

∫
G\K

H#(z)w(z)dz.
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Given ε > 0, we choose a compact set K such that the second term in the last inequality is
less that ε. Since g ∈ Wweak

R (L∞, L1
w), we can also choose a compact set Q ⊆ G such that∫

G\Q
(g∗χV)#(x)w(x)dx < ε. Set U0 := VQK. If U ⊇ U0 is a relatively compact neighborhood

of e, then, using Lemma 6.1.1,

‖GU(z)‖L∞(K) ≤ ‖GVQK‖L∞(K) .

∫
V(G\(VQ))

(g ∗ χV)#(x)w(x)dx.

Since V = V−1, we have that V(G \ (VQ)) ⊆ (G \ Q) and consequently ‖GU(z)‖L∞(K) . ε.
Hence, we have shown that for U ⊇ U0, ‖H#GU‖L1

w
. ε. This completes the proof. �

6.2 Approximation of phase-space multipliers
We will now interpret Theorem 6.1.1 as a result about approximation of phase-space multi-
pliers. Let us suppose that Assumptions (A1), (A2) and (B1) hold.

For m ∈ L∞(G), the multiplier Mm : S→ S with symbol m is defined by,

Mm( f ) := P(m f ), ( f ∈ S). (6.4)

The operator Mm is clearly bounded by Proposition 3.1.1 and the solidity of E. When the
space S is taken to be the range of the abstract wavelet transform associated with an unitary
representation of G, these operators are called localization operators or wavelet multipliers
(see for example [71, 113, 83]). (To be precise, the operators Mm are unitary equivalent
to localization operators, see Section 6.4.1 for further details). When S is the range of the
Short-time Fourier transform the corresponding operators are known as STFT multipliers or
Time-Frequency localization operators ([24, 21, 22]).

Using the approximation of the projector from the previous section, we construct an ap-
proximation of the multiplier Mm. For a relatively compact neighborhood of the identity U,
let Mm

U : S→ S be defined by,

Mm
U( f ) := PPU(m f ), ( f ∈ S).

Now Theorem 6.1.1 implies the following.

Theorem 6.2.1. For each m ∈ L∞(G), Mm
U −→ Mm in operator norm, as U ranges over the

class of relatively compact neighborhoods of the identity, ordered by inclusion. Moreover,
convergence is uniform on any bounded class of symbols.

Proof. By Proposition 3.1.1, for f ∈ S,

‖Mm
U( f ) − Mm( f )‖E = ‖PPU(m f ) − PP(m f )‖E . ‖PU(m f ) − P(m f )‖E.

By Theorem 6.1.1, ‖PU(m f ) − P(m f )‖E . δ(U)‖m f ‖W(L∞,E), for some function δ such that
δ(U) −→ 0, as U grows to G. Finally, since m ∈ L∞(G) and f ∈ S, the embedding
S ↪→ W(L∞, E) in Proposition 3.1.1 implies that ‖m f ‖W(L∞,E) . ‖ f ‖W(L∞,E) . ‖ f ‖E, and
the conclusion follows. Observe that if m belongs to a certain bounded subset of L∞, then the
last estimate holds uniformly on that set. �
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6.3 Characterization of the atomic space

We can finally prove the main abstract result on the characterization of the atomic space with
phase-space multipliers.

Theorem 6.3.1. Under Assumptions (A1), (A2) and (B1), the map

CB : S→ Ed
B

f 7→ (P( fηγ))γ

is left-invertible. Consequently, the following norm equivalence holds for f ∈ S,

‖ f ‖E ≈ ‖(‖P( fηγ)‖B)γ‖Ed .

Remark 6.3.1. The fact that there is such a liberty to choose the BF space B is analogous
to the fact that for coorbit spaces only the “global behavior” of the norm imposed on the
wavelet transform matters. See [45, Theorem 8.3].

Proof. With the notation of Section 6.2, using Theorem 6.2.1 with symbol m ≡ 1, we choose
a relatively compact neighborhood of the identity U such that M1

U is invertible. Since the
operator PU (cf. Equation (6.2)) can be factored as PU = S B

UCB, we have that, M1
U = PS B

UCB.
Since M1

U is invertible, CB is left-invertible, as claimed. This implies that ‖ f ‖E . ‖CB( f )‖Ed
B
,

for f ∈ S. The converse inequality is just the boundedness of CB and was proved in Proposi-
tion 6.1.1. �

6.4 Applications

6.4.1 Coorbit spaces

We now give some applications to the theory of coorbit spaces of group representations (cf.
Section 1.10). Let π be a (strongly continuous) unitary representation of a locally compact
group G on a Hilbert space H. Let E be a solid BF space, w an admissible weight for it, and
let h ∈ H be an admissible vector (in the sense of Section 1.10).

Let S = Vh(CoE). It is proved in [44, Proposition 4.3] that S is a closed subspace of E
and moreover P(F) := F ∗ Vhh defines a projector onto S. When E is L2(G), the operator P
is in fact the orthogonal projector onto S.

In order to apply Theorem 6.3.1 to this setting, let a partition of unity
{
ηγ

}
γ

and a BF space
B satisfying (B1) be given. Let the operators Mγ : CoE→ CoE be defined as,

Mγ( f ) := V∗h(ηγVh( f )).
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Observe that, since Vh : H → L2 is an isometry, V∗h is the projection onto the range of Vh

followed by the inverse of Vh on its range. Hence,

Mγ( f ) := V−1
h (MηγVh( f )),

where Mηγ : S → S is the multiplier form Section 6.2. Now Theorem 6.3.1 yields the
following.

Theorem 6.4.1 (Characterization of coorbit spaces). Let a partition of unity
{
ηγ

}
γ

and a BF
space B satisfying (B1) be given. Then, for f ∈ CoE, the following norm equivalence holds,

‖ f ‖CoE ≈ ‖
{
‖Mγ( f )‖CoB

}
γ
‖Ed .

In particular, f ∈ (H1
w)q belongs to CoE if and only if

{
‖Mγ( f )‖CoB

}
γ
∈ Ed(Γ).

Remark 6.4.1. One possible choice for B is L2(G) yielding CoB = H (cf. [44, Corollary
4.4]).

Proof. The norm equivalence follows directly from Theorem 6.3.1 and the fact that Vh :
CoE → S is an isometry. The “in particular” part follows from a standard approximation
argument. �

6.4.2 Time-Scale analysis
We now consider the affine group G = Rd × (0,+∞), where multiplication is given by (x, s) ·
(x′, s′) = (x + sx′, ss′) (cf. Section 1.5.1). We recall some facts. The measure with density
dx ds

sd+1 with respect to the Lebesgue measure is a left Haar measure. The modular function is
given by ∆(x, s) = s−d. The affine group acts on L2(Rd) by translations and dilations,

π(x, s) f (y) = s−d/2 f
(y − x

s

)
.

The Wavelet transform associated with π is,

Wh f (x, s) = s−d/2
∫
Rd

f (t)h
( t − x

s

)
dt,

for f , h ∈ L2(Rd), whereas the inverse wavelet transform is given by,

W∗
h F(x) =

∫ +∞

0

∫
Rd

F(y, s)h
( x − y

s

)
dx

ds

s
3
2 d+1

,

for F ∈ L2(G).2

2The integral converges in the weak-sense. The possibility of evaluating it pointwise requires further hy-
pothesis.
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The wavelet multiplier with symbol m ∈ L∞(G) is given by,

WMm f (x) = W∗
h(mWhF), (6.5)

for f ∈ L2(Rd).
We illustrate Theorem 6.4.1 for homogeneous Besov spaces (cf. Section 1.12.1). Recall

that for 1 ≤ p, q ≤ +∞ and σ ∈ R, the homogeneous Besov space Ḃσ
pq(Rd) is the set of all

tempered distributions (modulo polynomials) f ∈ S′/P(Rd) such that

‖ f ‖q
Ḃσpq

=
∑
j∈Z

2 jσq‖F −1(ϕ jF ( f ))‖Lp

∥∥∥q

is finite (with the usual modification for q = ∞), where F is the Fourier transform and
{
ϕ j

}
j

is an adequate Schwartz class partition of unity subordinated to dyadic crowns.
As mentioned in Section 1.12.1, Ḃσ

pq(Rd) = Co(Lp,q
σ+d/2−d/q(G)), where,

‖F‖Lp,q
σ

=

∫ +∞

0

(∫
Rd
|F(x, s)|pdx

)q/p

s−σq ds
sd+1

1/q

.

In addition, the admissibility of the window h is implied by the classical “smooth molecule”
conditions involving decay of derivatives and vanishing moments (see [55, 56, 57]). For
example, any Schwartz function h with all moments vanishing is adequate.3

In order to illustrate Theorem 6.4.1, we can consider a covering of Rd × (0,+∞) of the
form,

Uk, j := 2 j((−1, 1)d + k) × (2 j−1, 2 j+1), (k ∈ Zd, j ∈ Z),

and let
{
ηk, j

}
k, j

be a (measurable) partition of unity subordinated to it. The discrete norms

corresponding to the spaces Lp,q
σ are given in Equation (1.16). We now obtain the following

result.

Theorem 6.4.2. The quantity,∑
j∈Z

2− jσ′q

∑
k∈Zd

‖WMηk, j f ‖p
L2


q/p

1/q

,

where σ′ := σ+ d/2− d/p, is an equivalent norm on Ḃσ
pq (with the usual modifications when

p or q are∞).

Remark 6.4.2. Observe that Theorem 6.4.1 also allows for non-compactly supported parti-
tions of unity, as long as its members are enveloped by a well-concentrated function. Also
observe that in the norm equivalence above we can measure the norms of WMηk, j f in other
Besov spaces besides L2.

3To satisfy the general assumptions of Section 3.1 we can use the weight w(x, s) := max
{
s−σ,∆(x, s)−1sσ

}
=

max
{
s−σ, sd+σ

}
.



Chapter 7

More general phase-space coverings

Under additional assumptions we can extend Theorem 6.3.1 to the case where the condition
on the partition of unity,

∑
γ ηγ ≡ 1 is relaxed to 0 < A ≤

∑
γ ηγ ≤ B < ∞.

To be able to use the result from the previous chapter we keep the assumption that∑
γ ηγ ≡ 1 and introduce a new (generalized) partition of unity

{
θγ : γ ∈ Γ

}
related to the

one in Assumption (B1) of Section 6.1.1 by θγ = mηγ, where 0 < A ≤ m ≤ B < ∞. This
is the general form of a family of functions

{
θγ : γ ∈ Γ

}
enveloped by g and whose sum is

nonnegative and bounded away from zero and infinity.
Consider the setting of Section 3.2. The problem of extending Theorem 6.3.1 to this new

partition of unity can be reduced to the one of establishing the invertibility of the multiplier
Mm (cf. Equation (6.4)). To this end, we will extend the atomic decomposition on Equation
(3.2) to an adequate Hilbert space H, then prove the invertibility of Mm on H and finally use
the spectral invariance of a certain subalgebra of the algebra of bounded operators on `2 to
deduce the invertibility of Mm on S. This is where certain restrictions on the geometry of G
need to be imposed. For the case of time-frequency decompositions and modulation spaces,
this line of reasoning is hinted on the final remark of [22] and developed for a very general
class of symbols and weighted modulation spaces in [69].

7.1 Setting
We now assume that we are in the situation of Section 3.2. Specifically we assume the
following.

(A1) – E is a solid, translation invariant BF space, called the environment.

– w is an admissible weight for E.

– S is a closed complemented subspace of E, called the atomic subspace.

(A2’) – Λ ⊆ G is a relatively separated set. Its points will be called nodes.

125
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–
{
ϕλ

∣∣∣ λ ∈ Λ
}

and
{
ψλ

∣∣∣ λ ∈ Λ
}

are sets of Wst(L∞, L1
w) molecules, enveloped by a

function h. That is,

∗ |ϕλ(x)| , |ψλ(x)| ≤ h(λ−1x), (x ∈ G, λ ∈ Λ),

∗ h ∈ Wst(L∞, L1
w).

Let us also assume that we have a partition of unity like the one considered in Section 6.1.1.

(B1) – Γ ⊆ G is a relatively separated set.

–
{
ηγ

∣∣∣ γ ∈ Γ
}

is a set of Wweak
R (L∞, L1

w)-molecules enveloped by a function g. More
precisely,

∗
∣∣∣ηγ(x)

∣∣∣ ≤ g(γ−1x), (x ∈ G, γ ∈ Γ),

∗ g ∈ Wweak
R (L∞, L1

w).

–
{
ηγ

}
γ

is a bounded partition of the unity. That is,∑
γ

ηγ ≡ 1, and
∑
γ

∣∣∣ηγ∣∣∣ ∈ L∞(G).

– B is a solid, isometrically left-translation invariant Banach space such that,

W(L∞, L1
w) ↪→ B.

We will now introduce Assumptions (C1) and (C2) and present the extension of Theorem
6.3.1.

7.2 Assumption (C1)
We will use a key result from from [49]. To this end we introduce the following conditions
for a discrete group Ω and a weight u on it.

Definition 7.2.1. We say that the pair (Ω, u) satisfies the FGL-conditions if the following
holds.

• Ω is a discrete, amenable, rigidly symmetric group.

• u : Ω→ [1,∞) is a submultiplicative, symmetric weight that satisfies,

lim
n→+∞

sup
x∈Un

u(x)1/n = 1, and,

inf
x∈Un\Un−1

u(x) ≈ sup
x∈Un\Un−1

u(x), (n ∈ N),

for some generating subset U of Ω, containing the identity element.
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For an explanation of the FGL-conditions and their relation to other concepts for groups
(such as polynomial growth) see [49, 48] and the references therein. In Proposition 7.2.2 we
give more concrete sufficient conditions for the applicability of the FGL conditions to our
setting.

We introduce the following assumption on the geometry of G and the set of nodes Λ

that provides the atomic decomposition of S. This will be satisfied in the applications to
time-frequency analysis but not in the case of time-scale decompositions.

(C1) We assume the following.

– G is an IN group.1

– The set Λ is a closed, discrete subgroup of G that, considered as a topological
group in itself, satisfies the FGL-conditions with respect to the restriction of the
weight w.

Remark 7.2.1. The fact that G is an IN group implies that it is unimodular (i.e. ∆ ≡ 1) (see
[92]). As a consequence, the weight w is symmetric (i.e. w(x) = w(x−1)).

The submultiplicativity of w now implies that (1/w)(xy) ≤ w(x)(1/w)(y). This equation in
turn implies that the weight w is admissible for all the spaces Lp

w and Lp
1/w, (1 ≤ p ≤ +∞).

Remark 7.2.2. In (C1), G is assumed to be an IN group. Then, according to Theorem 2.1.1,
the space Wst(L∞, L1

w) in (A2’) is just W(L∞, L1
w) = WR(L∞, L1

w) while the space Wweak
R (L∞, L1

w)
in (B1) is L1

w.

Since under Assumption (C1) Λ is a subgroup, it is possible to consider convolution
operators on Ed. The space Ed is always left-invariant, but for a general group G it may not
be right-invariant (even if E is). Using the fact that in (C1) G is assumed to be an IN group,
we have the following proposition.

Proposition 7.2.1. Under Assumption (C1), Ed ∗ `1
w(Λ) ⊆ Ed, with the corresponding norm

estimate.

Proof. For a ∈ Ed, b ∈ `1
w(Λ) and x ∈ G, we estimate,∑

λ

|(a ∗ b)λ| χλV(x) ≤
∑
λ

∑
λ′

|aλ′ | |bλ′−1λ| χλV(x)

=
∑
λ

∑
λ′

|aλ′ | |bλ| χλ′λV(x)

=
∑
λ

|bλ|
∑
λ′

|aλ′ | χλ′V(xλ−1),

1Remember that, by convention, we also assume that the distinguished neighborhood V is invariant under
inner automorphisms.
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where we used that λ′λV = λ′Vλ. Since a ∈ Ed, the function C(a) :=
∑
λ′ |aλ′ | χλ′V belongs to

E. Moreover, ‖Rλ−1C‖E ≤ w(λ)‖C‖E = w(λ)‖a‖Ed . Hence, then sum∑
λ

|bλ|Rλ−1C,

converges absolutely in E and by the solidity of E,

‖a ∗ b‖Ed ≤
∑
λ

|bλ|w(λ)‖a‖Ed .

Hence the conclusion follows. �

Before introducing the second assumption we give some sufficient conditions for As-
sumption (C1) to hold. Recall that a group is called almost connected if the quotient by the
connected component of the identity element is compact.

Proposition 7.2.2. Suppose that Assumptions (A1), (A2’) and (B1) hold and that, in addition,
G is an almost connected IN group. Suppose that Λ is a discrete, closed, finitely-generated
subgroup of G and that the weight w satisfies the Gelfand-Raikov-Shilov condition,

lim
n→+∞

w(λn)1/n = 1, for all λ ∈ Λ, (7.1)

and the condition,

inf
x∈Un\Un−1

w(x) ≈ sup
x∈Un\Un−1

w(x), for all n ∈ N,

for some generating subset U of Λ, containing the identity.
Then, the conditions in (C1) are satisfied.

Proof. The group G is an almost connected IN group and therefore has polynomial growth
(see [92]). Since Λ is discrete and closed in G it also has polynomial growth (with respect to
the counting measure). Indeed, let F ⊆ Λ be a finite set containing the identity. Since Λ is
discrete and closed in G there exists W ′, a relatively compact neighborhood of the identity in
G such that W ′ ∩ (Λ \ {e}) = ∅. Let W be a relatively compact neighborhood of the identity in
G such that W = W−1 and WW ⊆ U′. We then have that λW ∩ λ′W = ∅ for any two distinct
elements λ, λ′ ∈ Λ.

Since e ∈ W, we have that for any n ≥ 0, FnW ⊆ (FW)n. So, using the polynomial growth
condition for the neighborhood FW we have that,

|FnW | ≤ |(FW)n| . nk,

for some positive integer k. Since F ⊆ Λ, FnW = ∪λ∈FnλW and the union is disjoint. Hence
|FnW | = #(Fn) |W | and we deduce that Λ also has polynomial growth.
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Hence, Λ is a finitely-generated discrete group of polynomial growth. Therefore Λ is
amenable (see [92]). In addition, by Gromov’s structure theorem [70], Λ has a nilpotent
subgroup of finite index. Corollary 3 from [82] implies that Λ is rigidly symmetric (see also
[49]). Finally, since Λ is a finitely-generated discrete group of polynomial growth, Theorem
1.3 from [48] implies that the GRS condition in Equation (7.1) implies the condition required
in (C1). �

7.3 Assumption (C2)

In order to introduce the second assumption, suppose that Assumptions (A1), (A2’) and (C1)
hold and let H be the closed linear subspace of L2(G) generated by the atoms {ϕλ : λ ∈ Λ}.

Since G is now assumed to be unimodular, left and right translations are isometries on
L2(G). Hence, the weight w is also admissible for L2(G) (cf. Equation 1.11) and conse-
quently the operators C and S from Section 3.2 map L2(G) into `2(Λ) and `2(Λ) into L2(G),
respectively. For clarity, when considered with this domain and codomain we will denote
these operators by CH and S H. We also consider the operator PH := S HCH, which coincides
with P on L2 ∩ E.

Recall that a frame for a Hilbert space L is a collection of vectors {ek}k such that ‖v‖L ≈
‖(〈v, ek〉)k‖`2 , for v ∈ L (see Section 1.8). We now observe that the atoms of S form a frame
for H.

Claim 7.3.1. The set {ϕλ : λ ∈ Λ} is a frame for H.

Proof. Since f = P( f ) = PH( f ) = S HCH( f ) for finite linear combinations of the atoms
{ϕλ}λ, and CH and S H are bounded, it follows that f = S HCH( f ), for all f ∈ H. This implies
that f = QC∗HS ∗H( f ), for all f ∈ H, where Q is the orthogonal projection onto H. Hence,
‖ f ‖L2(G) ≈ ‖S ∗H( f )‖`2(Λ) = ‖(〈 f , ϕλ〉)λ‖`2(Λ), for all f ∈ H. �

Since {ϕλ : λ ∈ Λ} is a frame forH, it has an associated canonical dual frame, that provides
an expansion with coefficients having minimal `2-norm (cf. Section 1.8). This dual frame
need not coincide with our distinguished set of dual atoms {ψλ : λ ∈ Λ}. We will now assume
that they do coincide. This assumption will be justified in a large number of examples.

(C2) We assume that the set {ψλ : λ ∈ Λ} is the canonical dual frame of {ϕλ : λ ∈ Λ}, consid-
ered as a frame for H.

Under Assumption (C2), the operator PH is the orthogonal projector L2(G) → H. Also
CH and S H are related by C†H = S H and S †H = CH. (Here L† denotes the Moore-Penrose
pseudo-inverse of an operator L).
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7.4 Convolution-dominated operators
For the remainder of this chapter we assume that conditions (A1), (A2’), (B1), (C1) and (C2)
hold. Using the fact that Λ is a subgroup, it is possible to dominate operators on Ed by
convolutions. We consider the class of operators dominated by left convolution,

CD(Λ,w) :=
{
T ∈ CΛ×Λ

∣∣∣ ∣∣∣Tλ,λ′

∣∣∣ ≤ aλλ′−1 , for some a ∈ `1
w(Λ)

}
,

and we endow it with the norm,

‖T‖CD(Λ,w) := inf
{
‖a‖l1w

∣∣∣ ∣∣∣Tλ,λ′

∣∣∣ ≤ aλλ′−1 , for all λ, λ′ ∈ Λ
}
.

CD(Λ,w) is a Banach *-algebra (see [49]). We also consider the Banach *-algebra of opera-
tors dominated by right convolution,

CDR(Λ,w) :=
{
T ∈ CΛ×Λ

∣∣∣ ∣∣∣Tλ,λ′

∣∣∣ ≤ aλ′−1λ, for some a ∈ `1
w(Λ)

}
,

and we endow it with a norm in a similar manner. We will use a slightly adapted version of
the main result from [49].

Proposition 7.4.1. The inclusion CDR(Λ,w) ↪→ B(`2(Λ)) is spectral (i.e. it preserves the
spectrum of each element).2 Moreover, if L ∈ CDR(Λ,w) is a self-adjoint operator with
closed range, then its pseudo-inverse L† also belongs to CDR(Λ,w).

Proof. Let Λop denote the set Λ considered with the opposite group operation, given by
λ.opλ

′ = λ′λ. Since x 7→ x−1 is an algebraic and topological isomorphism between Λ and
Λop and the weight w is symmetric, if follows that Λop also satisfies the FGL-conditions with
respect to the restriction of the weight w. Hence, [49, Corollary 6] implies CD(Λop,w) is
a spectral subalgebra of B(`2(Λop)). Finally note that CDR(Λ,w) = CD(Λop,w) and that
B(`2(Λop)) = B(`2(Λ)).

The second part of the theorem is a consequence of the first one (cf. Remark 1.7.1). Since
the inclusion CDR(Λ,w) ↪→ B(`2(Λ)) is closed under inversion, it is also closed under holo-
morphic functional calculus. For a self-adjoint operator with closed range L ∈ CDR(Λ,w),
its pseudo-inverse is given by L† = f (L), where f (z) = z−1, for z , 0 and f (0) = 0. f is
holomorphic on the spectrum of L because, since the range of L is closed, 0 is an isolated
point of its spectrum. �

Remark 7.4.1. The result in [49] seems to be the most appropriate one for this context but in
some cases it is also possible to apply the results in [104, 101] to the same end. If the group
Λ is Zd, then the desired result also follows from [8], [67] and [102] with the advantage of
slightly improving the assumptions on the weight.

We now observe that CDR(Λ,w) acts on Ed.
2Here, B(`2(Λ)) denotes the algebra of bounded operators on `2(Λ).
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Proposition 7.4.2. Let T ∈ CDR(Λ,w). Then the following holds.

(a) T maps Ed into Ed and ‖T‖Ed→Ed ≤ ‖T‖CDR(Λ,w).

(b) T : (Ed, `1
w)→ (Ed, `1

w) is continuous.

Proof. Part (a) follows from Proposition 7.2.1 and the solidity of Ed. For part (b), observe
that the spaces L1

w and L∞1/w satisfy the same assumptions that E (cf. Remark 7.2.1) and
consequently, by part (a), every operator in CDR(Λ,w) maps `1

w into `1
w and `∞1/w into `∞1/w.

Since the class CDR(Λ,w) is closed under taking adjoints it follows that T : `∞1/w → `∞1/w is
weak* continuous, so part (b) follows. �

7.5 Invertibility of multipliers
We will now prove the invertibility of Mm on S. We assume that m ∈ L∞(G) is real-valued
and satisfies,

0 < A ≤ m ≤ B < ∞,

for some constants A, B, and we will establish a number of claims that will lead to the desired
conclusion.

Claim 7.5.1. The operator Mm : H→ H is invertible.

Proof. Observe that, since PH : L2(G)→ H is the orthogonal projector, and m is real-valued,
the operator Mm : H→ H is self-adjoint. Moreover, for f ∈ H,

‖Mm( f )‖H‖ f ‖H ≥ 〈P(m f ), f 〉 = 〈m f , f 〉

=

∫
G

m(x) | f (x)|2 dx ≥ A‖ f ‖2H.

Hence, Mm : H→ H is self-adjoint and bounded below and therefore invertible. �

Remark 7.5.1. Claim 7.5.1 may not be true without the assumption that m is nonnegative.
Indeed, if G = R, Λ = Z, ϕλ = ψλ = χ[λ,λ+1] and m = χ(−∞,1/2) − χ[1/2,+∞), then Mm(ϕ0) = 0.

Let L ∈ CΛ×Λ be the matrix representing the operator S ∗H MmS H : `2(Λ)→ `2(Λ). Hence,
L is given by,

Lλ,λ′ := 〈mϕλ′ , ϕλ〉 .

Claim 7.5.2. The matrix L belongs to CDR(Λ,w) and has a Moore-Penrose pseudo-inverse
L† that also belongs to CDR(Λ,w). In addition, (Mm)−1 : H → H can be decomposed as
(Mm)−1 = S HL†S ∗H.
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Proof. To see that L ∈ CDR(Λ,w) let us estimate,∣∣∣Lλ,λ′ ∣∣∣ . ∫
G

h(λ−1x)h(λ′−1x)dx = aλ′−1λ,

where aλ := h ∗ h∨(λ). Using Lemmas 1.6.1 and 1.6.2 we see that a ∈ `1
w.

The operator S H has range H because {ϕλ}λ is a frame for H (cf. Claim 7.3.1). Since
Mm : H → H is invertible by Claim 7.5.1, the range of L = S ∗H MmS H equals S ∗H(H). This
subspace is closed because S ∗H is bounded below on H (that is the frame condition). Hence,
L has closed range and consequently has a pseudo-inverse L†. Since Mm is self-adjoint, so is
L. In addition, L† is given by,

L† = CH(Mm)−1C∗H.

Hence, (Mm)−1 = S HL†S ∗H, (where the operator S ∗H is restricted to H). Finally, by Proposition
7.4.1, L† ∈ CDR(Λ,w). �

Now we can prove the invertibility of Mm on S.

Proposition 7.5.1. Let m ∈ L∞(G) be real-valued and satisfy 0 < A ≤ m ≤ B < ∞, for some
constants A, B. Then, the multiplier Mm : S→ S is invertible.

Proof. Let Nm : S→ S be the operator defined by Nm := S L†S ′. It follows from Proposition
7.4.2 and Claim 7.5.2 that Nm is bounded. Moreover, by Claim 7.5.2, for f ∈ S ∩ H,

MmNm( f ) = NmMm( f ) = f . (7.2)

By Propositions 3.2.1 and 7.4.2, the operators Mm and Nm are continuous in the (E,W(L∞, L1
w))

topology. Since by Proposition 3.2.1, any f ∈ S can be approximated by a net of elements
of S ∩H in the (E,W(L∞, L1

w)) topology (by considering the partial sums of the expansion in
Equation (3.2)) it follows that Equation (7.2) holds for arbitrary f ∈ S. Hence Mm : S→ S is
invertible. �

7.6 Characterization of the atomic space
Finally we can derive the extension of Theorem 6.3.1 to more general partitions of unity.

Theorem 7.6.1. Suppose that Assumptions (A1), (A2’), (B1), (C1) and (C2) are satisfied. Let{
θγ : γ ∈ Γ

}
be given by θγ = mηγ, where 0 < A ≤ m ≤ B < ∞.

Then the operator,

C̃B : S→ Ed
B(Γ)

f 7→ (P( f θγ))γ

is left-invertible. Consequently, the following norm equivalence holds for f ∈ S,

‖ f ‖E ≈ ‖(‖P( f θγ)‖B)γ‖Ed .
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Remark 7.6.1. Any family
{
θγ

}
γ

that is enveloped by g and whose sum is a real-valued func-
tion that is bounded away from 0 and ∞, has the prescribed form for some adequate choice
of the partition of unity

{
ηγ

}
γ

and the function m.

Proof. First observe that C̃B( f ) = CB(m f ), so C̃B is bounded on S by Propositions 3.1.1 and
6.1.1. By Proposition 7.5.1, Mm is invertible, so by Theorem 6.2.1 we can choose a relatively
compact neighborhood of the identity U such that Mm

U is also invertible. Since the operator PU

(cf. Equation (6.2)) can be factored as PU = S B
UCB, we have that, Mm

U( f ) = PS B
UCB(m f ) =

PS B
UC̃B( f ). Since Mm

U is invertible, C̃B is is left-invertible, as claimed. This also implies the
desired norm equivalence. �

7.7 Applications

7.7.1 Time-Frequency analysis
Let us recall some notation and facts from time-frequency analysis (cf. Section 1.11). For
f , h ∈ L2(Rd), the Short-Time Fourier Transform (STFT) (or windowed Fourier Transform) is
defined by,

Vh f (x, ς) =

∫
Rd

f (y)e−2πiςyh(y − x)dy.

The translation and modulation operators are given by Tx f (y) := f (y − x) and Mς f (y) :=
e2πiςy f (y), so that,

Vh f (x, ς) :=
〈

f ,MςTxh
〉
. (7.3)

If h is suitably normalized, Vh : L2(Rd) → L2(R2d) is an isometry. The adjoint (inverse)
STFT is given by,

V∗hF(x) =

∫
R2d

F(y, ς)MςTyh(x)dydς,

so the localization operator with symbol m ∈ L∞(R2d) is given by,

Hm f (x) = V∗h(mVh f )(x) =

∫
R2d

m(y, ς)Vh f (y, ς)MςTyh(x)dydς.

If h belongs to the Schwartz class, the definition in Equation (7.3) extends to tempered dis-
tributions. Modulation spaces are then defined by imposing integrability conditions of the
STFT. Let w : R2d → (0,+∞) be a submultiplicative, even weight that satisfies the GRS
condition: limn→∞ w(nx)1/n = 1, for all x ∈ R2d. Let v : R2d → (0,+∞) be a w-moderated
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weight; that is: v(x + y) . w(x)v(y), for all x, y ∈ R2d. Assume further that w is moderated by
a polynomial weight3 . For 1 ≤ p, q ≤ +∞, the modulation space Mp,q

v is defined as,

Mp,q
v :=

{
f ∈ S′(Rd)

∣∣∣Vh f ∈ Lp,q
v (R2d)

}
where,

‖F‖Lp,q
v

=

∫
Rd

(∫
Rd
|F(x, ς)|pv(x, ς)pdx

)q/p

dς
1/q

,

with the usual modifications when p or q are +∞. Mp,q
v is of course given the norm ‖ f ‖Mp,q

v
=

‖Vh f ‖Lp,q
v

.
After some normalizations and identifications, modulation spaces can be regarded as

coorbit spaces of the Schrödinger representation of the Heisenberg group. We chose how-
ever to consider them in the context of Section 3.2. For h ∈ M1,1

w , 1 ≤ p, q ≤ ∞, and w, v as
above, we let G be Rd × Rd, E := Lp,q

v (G) and S := Vh(Mp,q
v ).

For an adequate lattice Λ ⊆ R2d the system
{

MςTxh
∣∣∣ (x, ς) ∈ Λ

}
gives rise to an atomic

decomposition of Mp,q
v . Moreover, on M2,2

v the dual atoms consist of the Hilbert-space dual
frame of

{
MςTxh

∣∣∣ (x, ς) ∈ Λ
}

and are of the form
{

MςTxh̃
∣∣∣ (x, ς) ∈ Λ

}
for some function h̃ ∈

M1,1
v (see Section 1.11). Hence, if we define ϕ(x,ς) := Vh(MςTxh) and ψ(x,ς) := Vh(MςTxh̃),

the atoms
{
ϕλ

∣∣∣ λ ∈ Λ
}

and dual atoms
{
ψλ

∣∣∣ λ ∈ Λ
}

provide an atomic decomposition for S.
Since G is abelian, left and right amalgam spaces coincide. The envelopes for the atoms

and dual atoms are the functionsVhh andVhh̃.4 These functions indeed envelope the atoms
because of the straightforward relation:

∣∣∣VhMςTx f
∣∣∣ = |Vh f (· − (x, ς))|. The fact that h and h̃

belong to M1,1
w means that Vhh and Vhh̃ belong to L1

w, but it is well-know that in this case they
also belong to W(L∞, L1

w) (see Remark 5.2.5). This fact can also be derived from the norm
equivalence in Proposition 3.1.1.

Let us now consider a family of functions
{
θγ

∣∣∣ γ ∈ Γ
}

that satisfy

0 < A ≤
∑
γ

θγ ≤ B < ∞.

Let us also assume that Γ is a relatively separated subset of R2d and that there exists a function
g ∈ L1

w(R2d) such that
∣∣∣θγ(x)

∣∣∣ ≤ g(x − γ), for all x ∈ R2d and γ ∈ Γ. We will let the space
B that measures the localized pieces be an unweighted Lebesgue space Lr,s. We are then in
the situation of Theorem 7.6.1 (remember that, since G is abelian, L1

w = Wweak
R (L∞, L1

w) - cf.
Proposition 2.1.1).

To illustrate Theorem 7.6.1 more clearly we further assume that Γ = Γ1 × Γ2 for two
relatively separated sets Γ1,Γ2 ⊆ R

d. Then we get the following.
3This assumption is only made in order to define modulation spaces as subsets of distributions. For a general

weight, the same results hold, but the space Mp,q has to be constructed as an abstract coorbit space.
4 For simplicity Assumption (A2’) requires the same envelope for both the atoms and the dual atoms, but

clearly if they have different envelopes then their sum serves as a common envelope.
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Theorem 7.7.1. For all 1 ≤ s, t ≤ ∞, the quantity,∑
γ2∈Γ2

∑
γ1∈Γ1

‖Hθ(γ1 ,γ2) f ‖p
Ms,tv(γ1, γ2)p


q/p

1/q

,

is an equivalent norm on Mp,q
v (with the usual modifications when p or q are∞).

This generalizes the main result in [34] in two directions. The results in [34] apply only
to partitions of unity produced by lattice translations of a single function, whereas Theorem
7.7.1 allows for irregular partitions. Secondly, in [34] the space measuring the localized
pieces is restricted to be L2. In contrast, in Theorem 7.7.1 it is possible to measure the
localized pieces using the whole range of unweighted modulations spaces.

The proof in [34] resorts to techniques from rotation algebras and spectral theory to con-
struct an atomic decomposition that is simultaneously adapted to all the localization operators
{Hθ}θ. Part of our motivation came from the observation that such an atomic decomposition
could be obtained in a more constructive manner by using the technique of frame surgery
from Chapter 5.

7.7.2 Localized frames
Theorem 7.6.1 also applies to coorbit spaces of localized frames (cf. Section 1.13). Let H be
a Hilbert space and let F = { fk}k∈Zd be a frame for it. Assume that F satisfies the following
localization property, ∣∣∣∣〈 fk, f j

〉∣∣∣∣ ≤ ak− j, (k, j ∈ Zd),

where a ∈ `1
w(Λ) and w is a subexponential weight that satisfies w(x) & (1 + |x|)δ, for some

δ > 0.
Let G = {gk}k∈Zd be the canonical dual frame of F . Every element f ∈ H then admits the

expansion f =
∑

k 〈 f , fk〉 gk. The coorbit spaces Hp
v are defined by imposing `p

v sumability
conditions to that expansion (see Section 1.13 for the details).

Frame multipliers are defined by applying a mask to the canonical frame expansion. For
m ∈ `∞(Zd), let

Mm( f ) :=
∑

k

mk 〈 f , fk〉 gk,

where m ∈ l∞(Zd). Theorem 7.6.1 can be applied using G = Λ = Zd and yields a characteri-
zation of the spaces Hp

v in terms of frame multipliers.
When H = L2(Rd) and F is a Gabor frame, then the corresponding coorbit spaces are

modulation spaces (see Section 1.11) and the corresponding multipliers are the Gabor mul-
tipliers from Section 5.2.4. The fact that the index set is Zd is no limitation. The case of a
general relatively separated set as index set can be reduced to this one by a well-known trick
(see [5]).
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[102] J. Sjöstrand. Wiener type algebras of pseudodifferential operators. Séminaire sur les
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