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Métodos algebraicos para el estudio de redes bioquı́micas

Resumen

El principal objetivo de este trabajo es aplicar y desarrollar herramientas de álgebra (com-
putacional) para estudiar redes bioquı́micas. Empezamos encontrando invariantes que se satis-
facen en los estados de equilibrio. Luego estudiamos sistemas cuyos estados de equilibrio se
describen por binomios y los llamamos “sistemas con estados de equilibrio tóricos”. Mostramos
que el importante mecanismo enzimático de fosforilaciones secuenciales distributivas tiene esta
caracterı́stica. Después establecemos la relación, en el espacio de las constantes de reacción,
entre sistemas con “complejos balanceados” y sistemas con microrreversibilidad, cuyos estados
de equilibrio positivos satisfacen relaciones binomiales particulares. Finalizamos este enfoque
continuo incorporando resultados computacionales para estados de equilibrio positivos desde
la persectiva de la geometrı́a algebraica real.

Finalmente, presentamos un modelo discreto del módulo de regulación del factor nuclear
NF-κB, por medio de un sistema polinomial dinámico discreto. Este enfoque permite estu-
diar redes cuya información disponible es poco detallada, con la idea de proveer una primera
descripción de las interacciones de la red a través de métodos de álgebra computacional.

Palabras clave: redes de reacciones quı́micas, cinética de acción de masas, sistemas polino-
miales, modelado discreto, álgebra computacional.
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Algebraic methods for the study of biochemical networks

Abstract

The main goal of this work is to apply and develop (computational) algebraic tools for the
study of biochemical networks. We start by finding invariants that are satisfied at steady state.
We then study systems whose steady states are described by binomials, and call them “systems
with toric steady states”. We show that the important enzymatic mechanism of sequential and
distributive phosphorylations has this feature. Afterwards, we state the relationship, in rate
constant space, between “complex balanced” and “detailed balanced” systems, whose positive
steady states satisfy special binomial relations. We end this continuous approach by expanding
on computational results for positive steady states from a real algebraic geometry perspective.

Finally, we present a discrete model for the NF-κB regulatory module, by means of a dis-
crete polynomial dynamical system. This approach allows to study networks with poorly de-
tailed data available, with the idea of providing a first description of the interactions of the
network through computational algebra methods.

Key words: chemical reaction networks, mass–action kinetics, polynomial systems, discrete
modeling, computational algebra.
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Introducción

La matemática es una herramienta importante para abordar muchos de los problemas que sur-
gen hoy en dı́a en la biologı́a, a la vez que la biologı́a es una nueva puerta para el desarrollo de
futuras teorı́as matemáticas. El objetivo principal de este trabajo es aplicar y desarrollar herra-
mientas algebraicas (computacionales) para el estudio de redes de reacciones bioquı́micas.

Mayormente abordamos estas redes bioquı́micas con un modelado dinámico continuo. En
general, las no linealidades encontradas en las redes moleculares impiden el análisis matemático
del comportamiento de la red, el cual ha sido ampliamente estudiado por medio de simula-
ciones numéricas, para las cuales los detalles bioquı́micos y los valores numéricos de todos
los parámetros se deben especificar de antemano. Esto ha hecho difı́cil, si no imposible, “ver
el bosque en lugar del árbol” y discernir principios generales entre la apabullante complejidad
molecular de los procesos celulares. Sin embargo, las redes moleculares dan lugar, a través de
la cinética de acción de masas, a sistemas polinomiales dinámicos, cuyos estados de equilibrio
son ceros de un conjunto de ecuaciones polinomiales. Estas ecuaciones se pueden analizar por
medio de métodos algebraicos, en los cuales los parámetros son tratados como expresiones
simbólicas cuyos valores numéricos no tienen que ser sabidos de antemano.

Karin Gatermann introdujo la conexión entre cinética de acción de masas y el álgebra com-
putacional a comienzos de la última década [54–56]. Gunawardena también empezó a abordar
estos resultados de la Teorı́a de Redes de Reacciones Quı́micas (CRNT, por sus iniciales en
inglés) con herramientas algebraicas [63, 64, 112, 164]. En [30], Craciun et ál. estudiaron los
sistemas dinámicos tóricos (o sistemas de acción de masas con “complejos balanceados”), cuya
caracterı́stica principal es que el locus de sus estados de equilibrio es una variedad tórica, con
una perspectiva álgebro-geométrica. Ellos coinciden con Gatermann en que “las ventajas de
las variedades tóricas son bien conocidas”, y desarrollan la teorı́a básica de sistemas dinámicos
tóricos en el contexto de la geometrı́a algebraica computacional.

Desde ese entonces, se han introducido más herramientas algebraicas, aunque la mayorı́a
de ellas todavı́a son básicas. Trabajamos a lo largo de esta tesis sobre la dirección algebraica,
con la intención de incorporar más herramientas del álgebra, la matemática discreta, la com-
binatoria, el álgebra computacional, la geometrı́a algebraica y la geometrı́a algebraica real.
Aplicamos algunos de nuestros resultados a redes biológicas bien conocidas.

En los primeros capı́tulos de este trabajo tratamos con resultados sobre sistemas de reac-
ciones quı́micas. Nuestro foco está mayormente sobre los estados de equilibrio de sistemas
de reacciones quı́micas. Primero encontramos invariantes (lineales en los complejos) que se
satisfacen en los estados de equilibrio. Estos invariantes son útiles para verificar la idonei-
dad del sistema. Luego nos movemos a sistemas cuyos estados de equilibrio se describen
por binomios. Decimos que estos sistemas tienen estados de equilibrio tóricos. Mostramos
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que el importante mecanismo de fosforilaciones y defosforilaciones secuenciales por un par
de enzimas quinasa/fosfatasa tiene esta propiedad. Después establecemos la relación, en el
espacio de las constantes de reacción, entre sistemas con “complejos balanceados” y sistemas
con microrreversibilidad, cuyos estados de equilibrio positivos satisfacen relaciones binomiales
particulares. Finalizamos este enfoque continuo incorporando resultados computacionales para
estados de equilibrio positivos desde la perspectiva de la geometrı́a algebraica real.

En el último capı́tulo incorporamos un nuevo tipo de modelado, concretamente un mo-
delo algebraico discreto y determinı́stico para describir un sistema biológico especı́fico: pro-
ponemos y estudiamos un modelo discreto para el módulo de regulación del factor nuclear NF-
κB. Este último enfoque fue introducido por primera vez en la década de 1960 con modelos de
redes Booleanas. Los modelos cualitativos de las redes moleculares, como los modelos lógicos,
no requieren parámetros cinéticos pero igual pueden proveer información sobre la dinámica de
la red y sirven como herramientas para generar hipótesis. El análisis estructural y cualitativo
está emergiendo como una alternativa viable y útil [124,134,171]. Además, los modelos discre-
tos tienen la ventaja de ser más intuitivos que los modelos basados en ecuaciones diferenciales,
ası́ que le han añadido cierto atractivo para los investigadores sin una formación matemática
sólida. En Hinkelmann et ál. [75], los autores proponen un marco de trabajo matemático de
sistemas polinomiales dinámicos sobre un cuerpo finito, el cual provee acceso a herramientas
teóricas y computacionales de álgebra y matemática discreta, que nosotros perseguimos.

Invitamos al lector a inspeccionar la introducción de cada capı́tulo de esta tesis para una
visión más profunda de nuestro trabajo y la bibliografı́a relacionada. En la página 139, se
puede encontrar una lista con la notación del trabajo.

Para una mejor comprensión del esquema de este trabajo, introducimos brevemente algo de
terminologı́a en los siguientes párrafos.

Una red de reacciones quı́micas es un grafo dirigido finito cuyos vértices están etiqueta-
dos por complejos y cuyas aristas representan las reacciones. El digrafo G tiene m vértices,
y el vértice i de G representa el i-ésimo complejo quı́mico, al cual le asociamos el monomio
xyi = xyi11 xyi22 · · ·xyiss . Las incógnitas x1, x2, . . . , xs representan las concentraciones de las
s especies en la red, y las consideramos funciones xi(t) del tiempo t. Estas redes de reac-
ciones quı́micas usualmente se asumen bajo cinética de acción de masas y la dinámica se
describe a través de un sistema de ecuaciones diferenciales autónomas, dx

dt
= f(x), donde

x = (x1, x2, . . . , xs). Un aspecto importante de la dinámica es estudiar los estados de equili-
brio del sistema, es decir, los valores de x para los cuales f(x) = 0. Bajo cinética de acción
de masas, las funciones coordenadas f1, . . . , fs son polinomios en las concentraciones de las
especies x1, . . . , xs y los estados de equilibrio del sistema forman la variedad (real no negativa)
del ideal I = 〈f1, . . . , fs〉.

Generalmente, los sistemas de cinética de acción de masas se descomponen en f(x) =
ΣΨ(x), donde Σ es una matriz s × m que guarda los coeficientes del sistema polinomial, y
Ψ(x) guarda los monomios. La matriz Σ de estos sistemas particulares de cinética de acción de
masas tiene muchas caracterı́sticas interesantes. Se puede decir mucho a partir de esta generosa
linealidad, y muchos de los resultados en esta área explotan esta caracterı́stica del sistema.
Incluso para describir los estados de equilibrio, las propiedades de la matriz Σ son muy útiles,
y tomamos ventaja de ellas en los Capı́tulos 3, 4 y 5. Sin embargo, como mencionamos en
el párrafo anterior, encontrar los estados de equilibrio del sistema es equivalente a resolver el
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sistema polinomial f1(x) = · · · = fs(x) = 0, que a su vez es equivalente a describir la varie-
dad del ideal I = 〈f1, . . . , fs〉. Más aún, uno está interesado en buscar los ceros positivos del
ideal I , y esto invita a la geometrı́a algebraica real a jugar un rol importante en esta búsqueda.
Presentamos en los Capı́tulos 4 y 5 algunas herramientas de la geometrı́a algebraica, y le abri-
mos la puerta a la geometrı́a algebraica real en el Capı́tulo 6. Además introducimos algunas
condiciones semialgebraicas para las constantes de reacción en el Capı́tulo 4.

Otro enfoque para modelar redes biológicas se presenta en el Capı́tulo 7, donde trabajamos
con un modelo discreto de un sistema biológico especı́fico: el módulo de regulación del factor
nuclear NF-κB. NF-κB es una familia de factores de transcripción de expresión ubicua que
regula la expresión de numerosos genes que juegan roles importantes en respuestas celulares,
crecimiento celular, supervivencia y respuestas inflamatorias e inmunes. Los modelos discretos
han surgido como una alternativa a los modelos continuos cuando la intención es estudiar re-
des con información disponible poco detallada, con la idea de proveer una primera descripción
de las interacciones de la red por medio de métodos del álgebra computacional. Una de las
ventajas de este tipo de modelado es que es independiente de parámetros como constantes de
afinidad y catalı́ticas especı́ficas, las cuales en muchos casos son muy difı́ciles de determinar y
requieren un profundo conocimiento del sistema (lo cual, salvo para el módulo de regulación
de NF–κB y algún otro caso particular, es muy poco frecuente). Además, aunque tuviéramos
datos experimentales con precisión perfecta y resolución temporal ilimitada, los modelos de
sistemas dinámicos continuos suelen ser no identificables (es decir, dos redes de reacciones
diferentes pueden generar sistemas dinámicos continuos idénticos, lo que hace imposible dis-
criminar entre ellos).

Reconstruimos la red como un sistema dinámico discreto, con un enfoque cualitativo de-
terminı́stico. Para ser más precisos, es un sistema polinomial dinámico sobre el cuerpo base
F3. El camino de transducción de señales de NF-κB también ha sido abordado con modelos de
ecuaciones diferenciales. Nuestro modelo se basa en uno de estos modelos continuos y además
en información experimental de la literatura.

Outline y contribución

En el Capı́tulo 2 comenzamos presentando algunos preliminares de la teorı́a de redes de reac-
ciones quı́micas. Recolectamos definiciones de la literatura, principalmente de [48, 80] y
preparamos el escenario para nuestros resultados presentes en los capı́tulos subsiguientes.

En el Capı́tulo 3, explotamos la teorı́a de redes reacciones quı́micas para desarrollar un
procedimiento eficiente para calcular invariantes que son combinaciones lineales simbólicas
de “complejos”, o los monomios provenientes de cinética de acción de masas. Recuperamos,
como un caso especial, el Teorema de Shinar y Feinberg [144], que da condiciones estructurales
para que una red de deficiencia uno tenga “robustez de concentración absoluta” (ACR por sus
iniciales en inglés). Luego usamos invariantes lineales en los complejos para analizar dos ejem-
plos de bifuncionalidad enzimática, el regulador de osmolaridad bacteriano EnvZ/OmpR, que
tiene deficiencia dos, y el regulador glicolı́tico fosfofructoquinasa-2-fructosa-2 ,6-bisfosfatasa
de mamı́feros, que tiene deficiencia cuatro, mostrando cómo los métodos desarrollados en ese
capı́tulo se pueden utilizar para el análisis algebraico de los estados de equilibrio de redes
realistas.
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En el Capı́tulo 4, nos enfocamos en sistemas donde el ideal de los estados de equilibrio
es un ideal binomial. Decimos que tales sistemas tienen estados de equilibrio tóricos. Damos
condiciones suficientes para que un sistema de reacciones quı́micas tenga estados de equilibrio
tóricos (Teoremas 4.2.2 y 4.2.4) y mostramos en este caso que el locus de estados de equili-
brio tiene una buena parametrización monomial (Teoremas 4.2.3 y 4.2.5). Además analizamos
la capacidad de estos sistemas de exhibir estados de equilibrio positivos y multiestacionaridad.
Una aplicación importante de nuestro trabajo se refiere a las redes que describen la fosforilación
en varios sitios de una proteı́na por un par quinasa/fosfatasa en un mecanismo secuencial dis-
tributivo. El Teorema 4.3.1 resume nuestros resultados en estos sistemas.

En el Capı́tulo 5, clarificamos la relación entre las condiciones algebraicas que deben satis-
facer las constantes de reacción en sistemas de cinética (de acción de masas) generalizada para
la existencia de estados de equilibrio microrreversibles (“detailed balancing”) o con “complejos
balanceados” (“complex balancing”). Estos sistemas tienen una amplia aplicación en quı́mica y
biologı́a [32,60,64,112,142,146]. Sus propiedades principales han sido establecidas por Horn,
Jackson y Feinberg [45, 49, 50, 79–82]. El principal resultado se presenta en el Teorema 5.1.1.

En el Capı́tulo 6, usamos herramientas del álgebra computacional, la geometrı́a algebraica y
la geometrı́a algebraica real para detectar si un sistema de reacciones quı́micas muestra robustez
de concentración absoluta para una cierta especie (definida en [144]). Comentamos sobre las
dificultades para un algoritmo general y presentamos algunas condiciones suficientes para que
un sistema tenga robustez de concentración absoluta.

El último capı́tulo de este trabajo, el Capı́tulo 7, presenta un modelo algebraico discreto,
cualitativo y determinı́stico para el módulo de regulación del factor nuclear NF-κB. Para des-
cribir la dinámica entre los componentes del sistema del camino de transducción de señales
de NF-κB, construimos un modelo discreto mayormente basado en la información molecular
presente en Lee et ál. [109] y Hoffmann et ál. [76], y el modelo continuo desarrollado por
Lipniacki et ál. [110]. Concebimos estos componentes en una red con once nodos que pueden
tomar a lo sumo tres niveles (es decir, discretizamos la información en tres niveles {0, 1, 2}) y
luego construimos un sistema polinomial dinámico f : F11

3 → F11
3 . La estrategia utilizada se

basa en un enfoque de abajo hacia arriba, comenzando con un extenso repaso de datos mole-
culares publicados para reconstruir la red biológica subyacente. Formamos las once funciones
correspondientes a cada nodo usando el sistema de álgebra computacional Singular [35]. Final-
mente, pudimos reproducir la dinámica observada en el tipo silvestre con estı́mulo persistente
y también en el caso A20 knockout. Este modelo se puede construir con la información que
usualmente manejan los biólogos: IκB se une a NF–κB y evita que entre al núcleo, IKKa in-
duce la degradación de IκB, etc. Y a pesar de simplemente requerir este tipo de información,
puede brindar más información, como predicciones en casos mutantes.

Publicaciones

El trabajo presentado en esta tesis se basa mayormente en artı́culos previamente publicados o
enviados a publicación. La mayor parte del trabajo se ha hecho en estrecha colaboración con
varios coautores.

El Capı́tulo 3 está basado en
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Complex–linear invariants of biochemical networks. Karp R., Pérez Millán M., Dasgupta
T., Dickenstein A. and Gunawardena J., 2011. Enviado. [92].

Esencialmente trabajé en todo el artı́culo. Especialmente, participé en la producción del
resultado teórico.

El Capı́tulo 4 está basado en
Chemical reaction systems with toric steady states. Pérez Millán M., Dickenstein A., Shiu

A., Conradi C., 2011. Aceptado para su publicación en el Bulletin of Mathematical Biology.
Disponible en lı́nea en DOI: 10.1007/s11538-011-9685-x. [126].
Aunque trabajé en todo el artı́culo, particularmente generé un análisis detallado y las prue-

bas para el sistema para la fosforilación en varios sitios de una proteı́na por un par quinasa/fos-
fatasa en un mecanismo secuencial distributivo, lo que fue el punto de partida para producir los
resultados más generales de las primeras secciones del artı́culo.

El Capı́tulo 5 está basado en
How far is complex balancing from detailed balancing?. Dickenstein A. and Pérez Millán

M, 2011. Bulletin of Mathematical Biology, 73:4, pp. 811–828.
Disponible en lı́nea en DOI:10.1007/s11538-010-9611-7. [39].
Mis contribuciones más importantes al artı́culo fueron los enunciados y pruebas de los

resultados principales. También redacté gran parte del trabajo.

El artı́culo A discrete model of the nuclear factor NF–κB regulatory network está en prepa-
ración y es trabajo conjunto con J. I. Fuxman Bass y A. S. Jarrah. Se presenta en el Capı́tulo 7.
Mis contribuciones a este trabajo fueron la construcción y el análisis matemáticos del modelo.
Establecı́ las conexiones entre los resultados de este modelo y la teorı́a de redes de reacciones
quı́micas. Diseñé e implementé los algoritmos, y asistı́ a J.I.F.B. en la construcción de las
tablas.
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Chapter 1

Introduction

Mathematics is an important tool for addressing many of the problems that nowadays arise in
biology, while biology is a new gate to the development of future mathematical theories. The
main goal of this work is to apply and develop (computational) algebraic tools for the study of
biochemical networks.

We mainly approach these biochemical networks by a continuous dynamical modeling.
In general, the nonlinearities found in molecular networks prevent mathematical analysis of
network behavior, which has largely been studied by numerical simulation, for which the bio-
chemical details and the numerical values of all parameters must be specified in advance. This
has made it difficult, if not impossible, to “see the wood for the trees” and to discern gen-
eral principles within the overwhelming molecular complexity of cellular processes. However,
molecular networks give rise, through mass–action kinetics, to polynomial dynamical systems,
whose steady states are zeros of a set of polynomial equations. These equations may be an-
alyzed by algebraic methods, in which parameters are treated as symbolic expressions whose
numerical values do not have to be known in advance.

Karin Gatermann introduced the connection between mass–action kinetics and computa-
tional algebra at the beginning of the last decade [54–56]. Gunawardena also started approach-
ing results from Chemical Reaction Network Theory (CRNT) with algebraic tools [63,64,112,
164]. In [30], Craciun et al. studied toric dynamical systems (or complex balanced mass–action
systems), whose main feature is that the steady state locus is a toric variety, with an algebro-
geometric perspective. They agree with Gatermann in that “the advantages of toric varieties
are well-known”, and develop the basic theory of toric dynamical systems in the context of
computational algebraic geometry.

Since then, more algebraic tools have been introduced, although most of them are still
basic. We work throughout this thesis in the algebraic direction, with the intention of incorpo-
rating more tools from algebra, discrete mathematics, combinatorics, computational algebra,
algebraic geometry and real algebraic geometry. We apply some of our results to well known
biological networks.

The first chapters of this work deal with results on chemical reaction systems. Our focus
is mainly on steady states of chemical reaction systems. Firstly we find (complex-linear) in-
variants that are satisfied at steady state. These invariants are useful for verifying the suitability
of the model. We then move to systems whose steady states are described by binomials. We
say that such systems have toric steady states. We show that the important enzymatic mech-
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anism of sequential phosphorylations and dephosphorylations by a pair of kinase/phosphatase
enzymes has this feature. Afterwards, we concentrate on systems whose positive steady states
satisfy special binomials. They are called in the literature “complex balanced” and “detailed
balanced” systems, and we describe the relationship between them. To end this continuous
approach, we expand on results for positive steady states.

In the last chapter we incorporate a new type of modeling, namely a discrete deterministic
algebraic model for describing a specific biological system: we propose and study a discrete
model for the NF-κB regulatory module. This last approach was first introduced in the 1960s
with Boolean network models. Qualitative models of molecular networks such as logical mod-
els, do not require kinetic parameters but can still provide information about network dynamics
and serve as tools for hypothesis generation. Structural and qualitative analysis is emerging as
a feasible and useful alternative [124,134,171]. Moreover, discrete models have the advantage
of being more intuitive than models based on differential equations, so they have added ap-
peal for researchers without a strong mathematical background. In Hinkelmann et al. [75], the
authors propose the mathematical framework of polynomial dynamical systems over a finite
field, which provides access to theoretical and computational tools from computer algebra and
discrete mathematics, which we pursue.

We invite the reader to survey the introduction of each chapter of the thesis for a deeper
insight of our work and the related bibliography. On page 139, a list of notations can be found.

For a better understanding of the outline of this work, we briefly introduce some terminol-
ogy in the following paragraphs.

A chemical reaction network is a finite directed graph whose vertices are labeled by com-
plexes and whose edges represent the reactions. The digraph G has m vertices, and the vertex
i of G stands for the i-th chemical complex, to which we associate the monomial xyi =
xyi11 xyi22 · · ·xyiss . The unknowns x1, x2, . . . , xs represent the concentrations of the s species in
the network, and we regard them as functions xi(t) of time t. These chemical reaction net-
works are usually assumed under mass–action kinetics and the dynamics is described through
an autonomous system of differential equations, dx

dt
= f(x), where x = (x1, x2, . . . , xs). An

important aspect of the dynamics is the study of the steady states of the system, i.e. the values
of x for which f(x) = 0. Under mass–action kinetics, the coordinate functions f1, . . . , fs are
polynomials in the species concentrations x1, . . . , xs and the steady states of the system form
the (real nonnegative) variety of the ideal I = 〈f1, . . . , fs〉.

Generally, mass–action kinetics systems are decomposed as f(x) = ΣΨ(x), where Σ is
an s × m matrix that keeps the coefficients of the polynomial system, and Ψ(x) keeps the
monomials. The matrix Σ of these particular mass–action kinetics systems has many nice
features. Much can be said from this generous linearity, and most of the results in the area
exploit this characteristic of the system. Even for describing the steady states, the properties of
the matrix Σ are very helpful, and we take advantage of them in Chapters 3, 4 and 5. However,
as we mentioned in the previous paragraph, finding the steady states of the system is equivalent
to solving the polynomial system f1(x) = · · · = fs(x) = 0, which is in turn equivalent to
describing the variety of the ideal I = 〈f1, . . . , fs〉. Moreover, one is interested in pursuing the
positive zeros of the ideal I , and this invites real algebraic geometry to play an important role
in this search. We introduce in Chapters 4 and 5 some tools from algebraic geometry, and we
open the door for real algebraic geometry in Chapter 6. We also introduce some semialgebraic
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conditions for the reaction constants in Chapter 4.

Another approach to model biological networks is presented in Chapter 7, where we work
with a discrete model of a specific biological system: the NF-κB regulatory module. NF-κB is
a ubiquitously expressed family of transcription factors that regulates the expression of numer-
ous genes that play important roles in cellular responses, cell growth, survival and inflammatory
and immune responses. Discrete models have emerged as an alternative to continuous models
when the intention is to study networks with poorly detailed data available, with the idea of
providing a first description of the interactions of the network by means of computational al-
gebra methods. One of the advantages of this type of modeling is that it does not depend on
specific affinity and catalytic constants, which are usually difficult to determine and require a
deep understanding of the system (which, except for the NF–κB regulatory module and some
other special cases, is rare). Moreover, even if we were given experimental data of perfect
accuracy and unlimited temporal resolution, continuous dynamical system models are some-
times unidentifiable (i.e.two different reaction networks might generate identical continuous
dynamical systems, making it impossible to discriminate between them).

We reconstruct the network as a discrete dynamical system, with a qualitative deterministic
approach. To be more precise, it is a polynomial dynamical system over the ground field F3.
The NF-κB signaling pathway has also been approached with models of differential equations.
Our model is based on one of these continuous models and also on experimental data from the
literature.

1.1 Outline and contribution

In Chapter 2 we start by presenting some preliminaries on Chemical Reaction Network Theory.
We collect definitions from the literature, mainly form [48, 80] and prepare the setting for our
results in the subsequent chapters.

In Chapter 3, we exploit Chemical Reaction Network Theory (CRNT) to develop an effi-
cient procedure for calculating invariants that are symbolic linear combinations of “complexes”,
or the monomials coming from mass action. We recover, as a special case, the Shinar-Feinberg
Theorem [144], that gives structural conditions for a network of deficiency one to have “ab-
solute concentration robustness” (ACR). We then use complex-linear invariants to analyze two
examples of enzyme bifunctionality, the bacterial EnvZ/OmpR osmolarity regulator, having
deficiency two, and the mammalian phosphofructokinase-2-fructose-2,6-bisphosphatase gly-
colytic regulator, having deficiency four, showing how the methods developed in that chapter
can be used for steady-state algebraic analysis of realistic networks.

In Chapter 4, we focus on systems where the steady state ideal is a binomial ideal. We
say that such systems have toric steady states. We give sufficient conditions for a chemical
reaction system to have toric steady states (Theorems 4.2.2 and 4.2.4) and show in this case
that the steady state locus has a nice monomial parametrization (Theorems 4.2.3 and 4.2.5).
Furthermore, we analyze the capacity of such a system to exhibit positive steady states and
multistationarity. An important application of our work concerns the networks that describe
the multisite phosphorylation of a protein by a kinase/phosphatase pair in a sequential and
distributive mechanism. Theorem 4.3.1 summarizes our results on these systems.
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In Chapter 5, we clarify the relation between the algebraic conditions that must be satisfied
by the reaction constants in general (mass–action) kinetics systems for the existence of detailed
or complex balancing equilibria. These systems have a wide range of applications in chemistry
and biology [32, 60, 64, 112, 142, 146]. Their main properties have been set by Horn, Jackson
and Feinberg [45, 49, 50, 79–82]. The main result is presented in Theorem 5.1.1.

In Chapter 6, we use tools from computational algebra, algebraic geometry and real alge-
braic geometry to detect if a chemical reaction system shows absolute concentration robustness
for a certain chemical species (defined in [144]). We comment on the difficulties for a general
algorithm and present some sufficient conditions for a system to have ACR.

The last chapter of this work, Chapter 7, presents a discrete qualitative deterministic al-
gebraic model for the NF-κB regulatory module. In order to describe the dynamics between
the components of the NF-κB signaling pathway, we construct a discrete model mostly based
upon the molecular data present at Lee et al. [109] and Hoffmann et al. [76], and the continuous
model developed by Lipniacki et al. [110]. We conceive these components in a network with
eleven nodes which can take at most three levels (i.e., we discretize the data into the levels
{0, 1, 2}) and we then build a polynomial dynamical system f : F11

3 → F11
3 . The strategy used

is based on a bottom-up approach, starting with an extensive overview of published molecular
data to reconstruct the underlying biological network. We formed the eleven functions corre-
sponding to each node using the computer algebra system Singular [35]. Eventually, we could
reproduce the dynamics observed in the wild-type case with persistent stimulation and also in
the A20 knock-out. This model can be built with the information biologists normally handle:
IκB binds to NF–κB and prevents it from entering the nucleus, IKKa induces IκB degradation,
etc. And despite it simply requires this kind of data, it can render even more information, such
as predictions in mutant cases.

1.2 Publications

The work presented in this thesis is largely based on previously published or submitted articles.
Note that most work has been done in close collaboration with various authors.

Chapter 3 is based on
Complex–linear invariants of biochemical networks. Karp R., Pérez Millán M., Dasgupta

T., Dickenstein A. and Gunawardena J., 2011. Submitted. [92].
I essentially worked all throughout the paper. Specially, I participated in producing the

theoretical result.

Chapter 4 is based on
Chemical reaction systems with toric steady states. Pérez Millán M., Dickenstein A., Shiu

A., Conradi C., 2011. Accepted for publication at the Bulletin of Mathematical Biology.
Available online at DOI: 10.1007/s11538-011-9685-x. [126].
Although I worked on all the article, I particularly generated a detailed analysis and the

proofs for the system for the multisite phosphorylation of a protein by a kinase/phosphatase
pair in a sequential and distributive mechanism, which was the starting point for producing the
more general results in the first sections of the article.
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Chapter 5 is based on
How far is complex balancing from detailed balancing?. Dickenstein A. and Pérez Millán

M, 2011. Bulletin of Mathematical Biology, 73:4, pp. 811–828.
Available online at DOI:10.1007/s11538-010-9611-7. [39].
My main contributions to the paper were the statements and proofs of the main results. I

also redacted great part of the article.

The article A discrete model of the nuclear factor NF–κB regulatory network is in prepa-
ration and is joint work with J. I. Fuxman Bass and A. S. Jarrah. It is presented in Chapter 7.
My contributions to this work were the mathematical construction and analysis of the model.
I established the connections between the results in this model and Chemical Reaction Net-
work Theory. I designed and implemented the algorithms, and I assisted J.I.F.B. in building the
tables.
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Chapter 2

Chemical Reaction Network Theory

Chemical Reaction Network Theory (CRNT) has been developed over the last 40 years, ini-
tially through the work of Horn and Jackson and subsequently by Martin Feinberg and his
students. The CRNT connects qualitative properties of ordinary differential equations (ODEs)
corresponding to a reaction network to the network structure. In particular, its assertions are
independent of specific parameter values and it generally assumes that all kinetics are of the
mass–action form. The theory introduces new concepts, such as the deficiency of a reaction
network, and gives conditions on such networks for the existence, uniqueness, multiplicity and
stability of fixed points. As conclusions try to disregard the values of the parameters in the
system, this theory should be of interest to those who associate such behavior with biological
robustness [4, 169].

In this chapter we review the basic concepts of CRNT that will serve useful for the subse-
quent chapters. Most of the ideas and definitions below are inspired in the seminal works of
Feinberg and Horn and Jackson [48, 80].

2.1 Chemical Reaction Systems

An example of a chemical reaction, as it usually appears in the literature, is the following:

A+B −→ 3A+ C (2.1)

In this reaction, one unit of chemical species A and one of B react to form three units of A
and one of C. The educt (or reactant or source) A + B and the product 3A + C are called
complexes. We will refer to complexes such as A + B that are the educt of a reaction as educt
complexes. The molar concentrations of the three species, denoted by xA = [A], xB = [B], and
xC = [C], will change in time as the reaction occurs (in fact it is the temporal evolution of the
composition that we wish to investigate). A molar concentration, say xA, specifies the number
of A molecules per unit volume of mixture. More precisely, xA is the number of A molecules
per unit volume divided by Avogadro’s number, 6.023×1023.

We define a chemical reaction network as a finite directed graph whose vertices are labeled
by complexes and whose edges represent the reactions. Specifically, the digraph is denoted
G = (V,R), with vertex set V and cardinality #V = m, and edge set R ⊆ V × V without

7
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any self-loops. Throughout this work, the integer unknowns m, s, and r denote the numbers of
complexes, species, and edges (reactions), respectively.

The vertex i ofG represents the i-th chemical complex, and we associate to it the monomial

xyi = x
(yi)1
1 x

(yi)2
2 · · · x(yi)s

s .

More precisely, if the i-th complex is (yi)1A+ (yi)2B + · · · (where the j-th coordinate (yi)jis
in Z≥0 for j = 1, 2, . . . , s), then it defines the monomial x(yi)1

A x
(yi)2
B · · · .

For example, the two complexes in network (2.1) give rise to the monomials xAxB and
x3
AxC , which determine two vectors y1 = (1, 1, 0) and y2 = (3, 0, 1). We will refer to
y1, . . . , ym as the complexes in the network. The component (yi)j (corresponding to the j-
th species, sj) of the vector yi is usually called by chemists the stoichiometric coefficient of sj
in complex yi. When the context is clear, will denote (yi)j as yij , and we will sometimes use
y or y′ for arbitrary complexes. We record the complexes by an s×m-matrix of non-negative
integers Y = (yji), which contains these stoichiometric coefficients. The i-th column of the
matrix is then ((yi)1, · · · , (yi)s)†. Here, and all throughout this work, † denotes transpose.

As we regard the complexes to be vectors in Rs (in particular, they lie in Zs≥0), it makes
sense to add two complexes, to subtract one complex from another, to multiply a complex by
a number, and to take the scalar product of a complex with any other vector of Rs. More-
over, it makes sense to speak of the support of a complex, that is, the nonzero entries of the
corresponding vector. The support of the complex yi will be denoted supp(yi).

A chemical reaction network, then, consists of three sets:

(i) a finite set S = {s1, . . . , ss}, elements of which are called the species of the network.

(ii) a finite set C of distinct vectors in Zs≥0 called the complexes of the network. They must
satisfy that each element of S “appears in” at least one complex; that is, S contains no
superfluous species.

(iii) a relation R ⊂ C × C such that

(a) (y, y) /∈ R, for all y ∈ C . That is, no complex reacts to itself.

(b) For each y ∈ C there exists a y′ ∈ C such that (y, y′) ∈ R or such that (y′, y) ∈ R.

Elements of R are called the reactions of the network. For each (y, y′) ∈ R we say that
complex y reacts to complex y′ (which will also be written as y → y′). Then the last
condition here means that each element of C is the product complex of some reaction or
is the educt complex of some reaction.

The notation RS (or ZS ) is sometimes introduced in the literature [45] in order to avoid
the numbering of the species.

We would like to write down differential equations that describe the evolution of the molar
concentrations. Since chemical reactions are the source of changes in the concentrations of the
species, the key to understanding how to write down differential equations lies in knowing how
rapidly each of the several reactions occurs. What is generally assumed is that the instantaneous
occurrence rate of each reaction depends on its own way on the vector x = (x1, . . . , xs). Thus,
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we presume, for example, the existence of a non–negative real valued rate function Ky→y′(·)
such that Ky→y′(x) is the instantaneous occurrence rate of reaction y → y′ (per unit volume of
mixture) when the instantaneous mixture composition (i.e., the concentration of the species in
the mixture) is given by the vector x.

Definition 2.1.1. A kinetics for a reaction network G = (V,R, Y ) is an assignment to each
reaction (y, y′) ∈ R of a continuous rate function Ky→y′ : Rs

≥0 → R≥0 such that

Ky→y′(x) > 0 if and only if supp(y) ⊆ supp(x).

We are now ready to define what a chemical reaction system is.

Definition 2.1.2. A chemical reaction systemG = (V,R,K, Y ) is a chemical reaction network
G = (V,R, Y ) endowed with a kinetics K.

Suppose that, at some instant, the concentration of the species is represented in x. Let
us begin by thinking about the instantaneous rate of change of xA. Every time the reaction
A + B → 3A + C occurs, we gain two molecules of A, and that reaction has an occurrence
rate KA+B→3A+C(x). Thus we write

dxA
dt

= 2KA+B→3A+C(x). (2.2)

If we turn our attention to speciesB we notice that whenever reactionA+B → 3A+C occurs,
we lose one molecule of B. Thus, we write

dxB
dt

= −KA+B→3A+C(x). (2.3)

Continuing in this way we have

dxC
dt

= KA+B→3A+C(x). (2.4)

Definition 2.1.3. Let G = (V,R, Y ) be a reaction network. The reaction vector corresponding
to reaction (y, y′) ∈ R is the vector y′ − y ∈ Rs.

Note that the component of y′ − y corresponding to the i-th species in S is just (y′)i −
(y)i, the difference between the stoichiometric coefficient of si in the product complex y′ and
its stoichiometric coefficient in the educt complex y. This difference is the net number of
molecules of si produced with each occurrence of the reaction y → y′. Consider, for example,
the reaction in (2.1); the corresponding reaction vector is (2,−1, 1).

Definition 2.1.4. For a reaction system G = (V,R,K, Y ) the species formation rate function
f : Rs

≥0 → Rs is defined by

f(x) :=
∑
R

Ky→y′(x)(y′ − y).

That is, f(·) is obtained by summing the reaction vectors for the network, each multiplied by
the corresponding reaction rate function.
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Interpretation: If, in a homogeneous reactor, the concentrations are represented by x ∈ Rs
≥0

then, for each i ∈ {1, . . . , s}, fi(x) gives the instantaneous rate of generation (per unit volume
of mixture) of moles of the i-th species due to the simultaneous occurrence of all reactions in
R. Note that

fi(x) =
∑
R

Ky→y′(x)((y)′i − (y)i),

so that fi(x) is obtained by summing all the reaction occurrence rates, each weighted by the
net number of molecules of si produced with each occurrence of the corresponding reaction.

By the differential equation for a reaction system we mean

.
x = f(x), (2.5)

where the dot denotes time differentiation and f(·) is the species formation rate function. That
is, for a reaction system G = (V,R,K, Y ) the corresponding differential equation is

.
x =

∑
R

Ky→y′(x)(y′ − y).

2.1.1 Mass–action kinetics systems

If we regard a single elementary reaction as representing an encounter and interaction between
reactant molecules, kinetic theory suggests the familiar mass–action form for the rate function.

A chemical reaction system under mass–action kinetics is a finite directed graph G =
(V,R, κ, Y ) endowed with a kinetics such that each reaction takes place at a rate that is pro-
portional to the product of the concentrations of the species being consumed in that reaction.

Definition 2.1.5. A kineticsK for a reaction networkG = (V,R, Y ) is mass–action if, for each
(y, y′) ∈ R, there exists a positive number κy→y′ such that

Ky→y′(x) := κy→y′x
y.

The positive number κy→y′ is called the rate constant for the reaction (y, y′).

For the reaction A + B → 3A + C, an occurrence requires that a molecule of A meet a
molecule ofB in the reactor, and we take the probability of such an encounter to be proportional
to the product xAxB. We take the occurrence rate of A+B → 3A+ C to be given by

KA+B→3A+C(x) = κxAxB,

where κ is a positive constant.
Usually, when a reaction network is considered under mass–action kinetics, the rate con-

stants are indicated alongside the corresponding reaction arrows in the network diagram. That
is, the edges of the directed graph G are labeled by parameters (reaction rate constants).

Recalling reaction (2.1) with mass–action kinetics, we have:

A+B
κ−→ 3A+ C (2.6)
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We can rewrite equations (2.2), (2.3) and (2.4) as

dxA
dt

= 2κxAxB ,

dxB
dt

= − κxAxB , (2.7)

dxC
dt

= κxAxB .

The species formation rate function for a mass–action system takes the form

f(x) :=
∑
R

κy→y′x
y(y′ − y).

And the corresponding differential equations are then
.
x =

∑
R

κy→y′x
y(y′ − y),

represented in the vector
.
x = (ẋ1, . . . , ẋs)

† =
(
dx1
dt
, . . . , dxs

dt

)†.
Observe that the function f , in the case of mass–action kinetics is polynomial in each

coordinate. The variables are the concentrations xi, and the coefficients belong to Q[κ] (that is,
the coefficients are polynomials in the reaction rate constants).

Before we move on, we will make a simple but important observation due to V. Hárs, J.
Tóth, 1979 [68]. It tells us when a polynomial system can come from a mass–action kinetics
system.

Lemma 2.1.1 (Hungarian). A polynomial system of s real polynomials f1, . . . , fs in s variables
arises from a mass–action kinetics dynamical system if and only if there exist real polynomials
pk, qk, k = 1, . . . , s with non negative coefficients such that fk = pk − xkqk for all k ∈
{1, . . . , s}.

From here we can deduce that the dynamics that arises from the Lorenz equations

dx

dt
= σy − σx

dy

dt
= ρx− y − xz

dz

dt
= xy − βz,

cannot come from a mass–action kinetics modeling since the last term on the right-hand side
of the second equation has a negative coefficient and the monomial does not involve the corre-
sponding variable y.

Let us see in an example from [68] how a chemical reaction network can be constructed
from a system of equations of the form described in the statement of Lemma 2.1.1:

Example 2.1.1.
ẋA = −2αx2

AxD + 2γx4
C

ẋB = 3αx2
AxD − 3βx3

Bx
2
D

ẋC = 4βx3
Bx

2
D − 4γx4

C

ẋD = αx2
AxD − 2βx3

Bx
2
D + γx4

C

(2.8)
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We can build the following reaction network corresponding to this dynamics:

2A+D

2A+ 2DA+D 2A+B +D

α
3α

2α

uulllllllllllllllllll

�� ))RRRRRRRRRRRRRRRRRRR

4C

4C +DA+ 4C 3C

γ
4γ2γ

uulllllllllllllllllll

�� ))RRRRRRRRRRRRRRRRRRR

3B + 2D

3B +D2B + 2D 3B + C + 2D

2β
4β3β

uulllllllllllllllllll

�� ))RRRRRRRRRRRRRRRRRRR

On the other hand, the kinetic differential equation of the mechanism

3B + 2DD + 2A

4C

β

α

γ
yytttttttttttttttteeLLLLLLLLLLLLLLLLL

//

is also (2.8).

Although there is nonlinearity in mass–action, arising from the pattern of substrate stoi-
chiometry (this is reflected in the monomials xy), the differential equations come from linear
processes on complexes . This observation is the starting point of CRNT and reveals that bio-
chemical networks conceal much linearity behind their nonlinearity, [48,63,66, and see below].
This arises from the underlying network of chemical reactions, which define a directed graph
on the complexes that participate in the chemical reactions. The existence of this underlying
structure limits the nonlinearity that can appear, which is why the strong results of CRNT are
possible.

Working at the level of complexes serves to disentangle the interactions between individual
chemical species. For example, the steady states (see Section 2.2 below) of the system fall into
two categories: those that arise at the level of complexes and those that arise from the way in
which different complexes contain the same chemical species. The deficiency of a network,
which we define below as the dimension of a certain vector space (see Section 2.4), measures
the extent of the second possibility. However, one of the most interesting discoveries of CRNT
has to do with steady states of the first kind.

We now rebuild the dynamics from a different perspective. Given a directed graph, G, with
labels in R>0 it will give rise to an abstract dynamics in which each edge is treated as if it
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were a first-order chemical reaction with its label as rate constant (a first-order reaction is one
that depends on the concentration of only one reactant). Since the rates are all first-order, the
dynamics are linear and may therefore be written in matrix terms as dy/dt = L(G).y, where
y ∈ Rm is a column vector, consisting of an abstract concentration yi at each node i of G, and
L(G) is am×mmatrix called the Laplacian matrix ofG (anm×m-matrix whose off-diagonal
entries are the κji and whose column sums are zero). In the literature, L(G) is also noted as
Aκ. Here, “.” signifies matrix multiplication, regarding vectors as matrices of one row or one
column.

For example, with network 2.6

A+B
κ−→ 3A+ C,

we can form the network

y1
κ−→ y2,

for which the differential equations are[
dy1
dt
dy2
dt

]
=

[
−κy1

κy1

]
=

[
−κ 0
κ 0

] [
y1

y2

]
.

For CRNT, the Laplacian, L(G) : Rm → Rm, is a linear analogue for complexes of the
nonlinear function, f : Rs → Rs, for species, in the following sense. Let Ψ : Rs → Rm be the
nonlinear function that lists the monomials for each complex, Ψ(x) = (xy1 , · · · , xym)†. Let Y
be as before. We can think of it as Y : Rm → Rs, the linear function that associates to each
complex, considered as a basis element of Rm, its corresponding stoichiometry pattern. With
these definitions, it may be checked that f(x) = Y.L(G).Ψ(x), for any x ∈ Rs.

This fundamental observation, which originates in the pioneering work of Horn and Jack-
son, [80], is the starting point of CRNT. It shows that the the nonlinear rate function f can be
decomposed into a purely linear part, Y.L(G), that includes the Laplacian, and the essential
nonlinearity, Ψ, coming from the complex monomials.

Now we define the complex-to-species rate matrix of size s×m to be

Σ := Y · L(G) . (2.9)

The reaction network G defines, then, the following dynamical system:

dx

dt
=

(
dx1

dt
,
dx2

dt
, . . . ,

dxs
dt

)†
= Σ ·Ψ(x) . (2.10)

Example 2.1.2. The following chemical reaction network is the 1-site phosphorylation system.
We will study generalizations of this network all throughout this work. The notation comes from
Wang and Sontag 2008 ( [170]).

S0 + E
kon0−→
←−
koff0

ES0

kcat0→ S1 + E (2.11)

S1 + F
lon0−→
←−
loff0

FS1

lcat0→ S0 + F .
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The key players in this network are a kinase enzyme (E), a phosphatase enzyme (F ), and two
substrates (S0 and S1). The substrate S1 is obtained from the unphosphorylated protein S0

by attaching a phosphate group to it via an enzymatic reaction involving E. Conversely, a
reaction involving F removes the phosphate group from S1 to obtain S0. The intermediate
complexes ES0 and ES1 are the bound enzyme-substrate complexes. Under the ordering of
the 6 species as (S0, S1, ES0, FS1, E, F ) and the 6 complexes as (S0 + E, S1 + E,ES0, S0 +
F, S1 + F, FS1), the matrices whose product defines the dynamical system (2.10) follow:

Ψ(x) = (xS0xE, xS1xE, xES0 , xS0xF , xS1xF , xFS1)
† = (x1x5, x2x5, x3, x1x6, x2x6, x4)† ,

Y =


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
1 1 0 0 0 0
0 0 0 1 1 0

 , and

L(G) :=


−kon0 0 koff0 0 0 0

0 0 kcat0 0 0 0
kon0 0 −koff0 − kcat0 0 0 0

0 0 0 0 0 lcat0

0 0 0 0 −lon0 loff0

0 0 0 0 lon0 −lcat0 − loff0

 .

2.2 Steady States

By an equilibrium for a reaction system G = (V,R,K, Y ) we mean a vector of concentrations
x ∈ Rs

≥0 at which the species formation function takes the value zero. By a positive equilibrium
we mean an equilibrium in Rs

>0; that is, an equilibrium at which all species concentrations are
positive.

Some reaction networks (e.g., A → 2B) have the property that, when taken with mass–
action kinetics, the induced differential equations admit no positive equilibria for some or even
for any assignments of the rate constants. Any equilibria that do exist are characterized by the
“extinction” of one or more species.

On the other hand, some networks (e.g. , A � 2B) taken with mass–action kinetics admit
at least one equilibrium in each positive stoichiometric compatibility class, regardless of the
values that the rate constants take (see Section 2.3).

Even if we grant that the existence or non–existence of positive equilibria is easy to de-
cide for simple networks, this is not true for complicated networks. Ultimately one is con-
fronted with a large system of polynomial equations in many variables (species concentrations)
in which many parameters (rate constants) appear.

The nonlinearities in (2.7) usually preclude mathematical analysis of the dynamical behav-
ior of such ODE systems, which are customarily studied by numerical simulation. This requires
that the rate constants be given numerical values, which in most cases are neither known nor
readily measurable. The resulting “parameter problem” remains a major difficulty in exploit-
ing mathematical models, [65]. However, the steady states of such ODEs are zeros of a set of
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polynomial equations, f1(x, κ) = 0, · · · , fs(x, κ) = 0. Computational algebra and algebraic
geometry provide powerful tools for studying these solutions, [28], and these have recently
been used to gain new biological insights, [30, 34, 112, 126, 164, 165]. The rate constants can
now be treated as symbolic parameters, whose numerical values do not need to be known in
advance. The capability to rise above the parameter problem allows more general results to be
obtained than can be expected from numerical simulation, [165].

The focus on steady states, rather than transient dynamics, is still of substantial interest.
For instance, in time-scale separation, which has been a widespread method of simplification
in biochemistry and molecular biology, a fast sub-system is assumed to be at steady state with
respect to a slower environment and steady-state analysis is used to eliminate the internal com-
plexity in the sub-system, [66]. Approximate or quasi-steady states have also been shown to
exist under various cellular conditions and can now be engineered in vivo, [103, 108]. Finally,
steady states provide the skeleton around which the transient dynamics unfolds, so knowledge
of the former can be helpful for understanding the latter.

A formal definition of steady states within this context is given below.

Definition 2.2.1. Consider a polynomial dynamical system dxi/dt = fi(x), for i = 1, 2, . . . , s,
with f1, f2, . . . , fs ∈ R[x1, x2, . . . , xs]. We are interested in the nonnegative zeros of the steady
state ideal:

JΣΨ = 〈f1, f2, . . . , fs〉 =

{
s∑
i=1

hi(x)fi(x) | hi(x) ∈ R[x1, . . . , xs] for 1 ≤ i ≤ s

}
.

The nonnegative zeros of JΣΨ are called steady states, and the term steady state locus is used
to denote the set of nonnegative zeros of JΣΨ:{

x̃ ∈ Rs
≥0 | f1(x̃) = f2(x̃) · · · = fs(x̃) = 0

}
.

Hence, the steady states of the chemical reaction system form the nonnegative real variety
of the ideal JΣΨ.

Note that in the case of mass–action kinetics chemical reaction systems, the polynomials
f1, f2, . . . , fs correspond to the rows of the system (2.10).

In order to exploit the linearity mentioned before, we note that the steady states of the
Laplacian dynamics are elements of the kernel of L(G): kerL(G) = {y ∈ Rm | L(G).y = 0}.

Once we introduce the stoichiometry, we must study the kernel of Σ. Before concentrating
on this, we must define what linkage classes, strong linkage classes and terminal strong linkage
classes are.

Definition 2.2.2. A linkage class refers to a connected component of a network.
In graph theory a directed graph is called strongly connected if for every pair of nodes

y and y′ there is a path from y to y′ and vice versa. The strong linkage classes (or strongly
connected components) are the maximal strongly connected subgraphs of a directed graph. If
no edge from a node inside a strong linkage class to a node outside exists, we have a terminal
strong linkage class.

Now, the kernel of Σ can be calculated in two stages, [46, 66]. First, if G is strongly
connected, then dim(kerL(G)) = 1. Following [30], we introduce the following definition:
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Definition 2.2.3. Consider any directed subgraph T of G such that the underlying undirected
graph of T is a spanning tree of the underlying undirected graph of G. We denote the set of
vertices of T by V (T ) and its set of edges by R(T ). Thus, R(T ) consists ofm−1 edges. Write
κT for the product of the m− 1 rate constants which correspond to all edge labels of the edges
in R(T ). Let i be one of the nodes of G. The directed tree is called an i-tree if the node i is its
unique sink, i.e., all edges are directed towards node i. We introduce the following constants,
which are polynomials in the (κij):

Ki =
∑

T an i−tree

κT . (2.12)

Note that each Ki is a nonempty sum of positive terms because, as G is strongly connected,
there exists at least one i-tree for every vertex i and each κuv > 0 for (u, v) ∈ R.

It follows from the Matrix-Tree Theorem [149] that for any i ∈ V , the absolute value of
the determinant of the submatrix of L(G) obtained by deleting the i-th column and any one of
the rows, equals Ki. This (non-zero) minor is independent (up to sign) of the choice of rows
because the column sums of L(G) are zero.

Example 2.2.1. We will introduce a mathematical example to make the calculations more
transparent. Let G be the following connected chemical reaction system:

y1

κ14

��

κ12 //
y2

κ21
oo

κ23

��

κ25 //
y5

κ52
oo

κ56

��
y4

κ41

OO

κ43 //
y3

κ34
oo

κ32

OO

κ36 //
y6,

κ63
oo

κ65

OO

For example, K1 =
∑

T an 1−tree
κT = κ21κ32κ63κ41κ52 + κ21κ32κ63κ41κ56 + κ21κ32κ63κ43κ52

+κ21κ32κ63κ43κ56 +κ21κ52κ65κ32κ41 +κ21κ52κ65κ32κ43 +κ21κ52κ65κ34κ41 +κ21κ52κ65κ36κ41

+κ21κ52κ65κ36κ43 +κ41κ63κ34κ21κ52 +κ41κ63κ34κ21κ56 +κ41κ63κ34κ23κ52 +κ41κ63κ34κ23κ56

+κ41κ63κ34κ25κ56 + κ41κ52κ23κ34κ65.

The Matrix-Tree Theorem then provides an explicit construction of a basis element, ρG ∈
Rm, in terms of the spanning trees of G: kerL(G) = 〈 ρG 〉 = 〈(K1, . . . , Km)†〉. The compo-
nents (ρG)i are then polynomials in the symbolic labels.

If G is not strongly connected, it can be partitioned into its maximal strongly-connected
sub-graphs, or “strong linkage classes”. These inherit from G a directed graph structure, G,
in which there is an edge in G from the strong linkage class Gu to the strong linkage class Gv

whenever there is an edge in G from some node in Gu to some node in Gv. G cannot have any
directed cycles and so always has terminal strong linkage classes, with no edges leaving them.
Let these be G1, · · · , Gt. For each 1 ≤ t ≤ t, let ρt ∈ Rm be the vector which, for vertices of
G that lie in Gt, agrees with the vector ρGt , coming from the Matrix-Tree Theorem applied to
Gt as an isolated graph, and, for all other vertices, j, (ρt)j = 0. Then, the ρt form a basis for
kerL(G):

kerL(G) = 〈 ρ1, · · · , ρt 〉 . (2.13)
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Note that ρt may be very sparse, being non-zero only for vertices in the single strong linkage
class Gt.

2.3 Stoichiometric Compatibility Class

The essential idea here is that, regardless of the kinetics, reaction network structure alone im-
poses restrictions on the way that composition trajectories can look. In particular, a trajectory
that passes through x ∈ Rs

≥0 can eventually reach x′ ∈ Rs
≥0 only if the pair (x′,x) is compatible

with certain “stoichiometrical” conditions the reaction network imposes.
To see this, we consider a reaction system G = (V,R,K, Y ). The species formation rate

function is given by

f(x) =
∑
R

Ky→y′(x)(y′ − y).

From Definition 2.1.1, we have the following well known lemma:

Lemma 2.3.1. Let G = (V,R,K, Y ) be a reaction system with species formation rate function
f(·). Then, for every i ∈ {1, . . . , s} and every x ∈ Rs

≥0, xi = 0 implies that fi(x) ≥ 0.

Thus, for each x ∈ Rs
≥0, f(x) is a non–negative linear combination of the reaction vectors

for the network G = (V,R, Y ). In particular, for x ∈ Rs
>0, f(x) is a positive linear combi-

nation of the reaction vectors. In any case f(x) must point along the cone generated by the
reaction vectors and must certainly lie in the linear subspace of Rs spanned by them. This last
idea serves as motivation for our next definition.

Definition 2.3.1. The stoichiometric subspace for a reaction network G = (V,R, Y ) is the
linear subspace S ⊂ Rs defined by

S := span{y′ − y ∈ Rs : (y, y′) ∈ R}.

A vector x′ ∈ Rs
≥0 can follow a vector x ∈ Rs

≥0 along a solution of
.
x =

∑
R

Ky→y′(x)(y′−y)

only if x′− x lies in the stoichiometric subspace (and, in particular, in the stoichiometric cone:
the set of all non–negative linear combinations of the reaction vectors of the stoichiometric
subspace) for the network G = (V,R, Y ). Thus, if x : I ⊆ R → Rs

≥0 is a solution of
.
x =

∑
R

Ky→y′(x)(y′ − y) which passes through x0 then, for all t ∈ I , we must have

x(t) ∈ (x0 + S) ∩ Rs
≥0,

where S is the stoichiometric subspace and

x0 + S := {x0 + γ ∈ Rs : γ ∈ S}.

This is to say that a vector of concentrations x can lie on a trajectory passing through x0 only
if x and x0 are “stoichiometrically compatible”.
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Definition 2.3.2. Let G = (V,R, Y ) be a reaction network, and let S ⊂ Rs be its stoichiomet-
ric subspace. Two vectors x ∈ Rs

≥0 and x′ ∈ Rs
≥0 are stoichiometrically compatible if x′ − x

lies in S. Stoichiometric compatibility is an equivalence relation that induces a partition of
Rs
≥0 (resp.Rs

>0 ) into equivalence classes called the stoichiometric compatibility classes (resp.
positive stoichiometric compatibility classes) for the network. In particular, the stoichiometric
compatibility class containing x ∈ Rs

≥0 is the set (x+S)∩Rs
≥0, and the positive stoichiometric

compatibility class containing x ∈ Rs
>0 is the set (x + S) ∩ Rs

>0.
The stoichiometric compatibility class is also called the “invariant polyhedron”, and we

will denote it by

Px0 := (x0 + S) ∩ Rs
≥0 , (2.14)

for all positive time. In other words, this set is forward-invariant with respect to the dynam-
ics (2.10). It follows that any stoichiometric compatibility class of a network has the same
dimension as the stoichiometric subspace.

Let us consider the following two examples from [48].

Example 2.3.1. Consider the simple network

A� 2B (2.15)

If we suppose that this network is endowed with mass–action kinetics, the appropriate dif-
ferential equations are

.
xA = κ2B→Ax

2
B − κA→2BxA

.
xB = 2κA→2BxA − 2κ2B→Ax

2
B

(2.16)

The set of equilibrium points for (2.16) is given by those x ∈ Rs
≥0 that satisfy

xA =
κ2B→A

κA→2B

x2
B

The phase portrait for (2.16) is sketched in Figure 2.1.

Example 2.3.2. Consider the network

2A

CB

eeKKKKKKKKKKKKKKKxxppppppppppppppp

oo // (2.17)

As the figure is intended to suggest, a composition trajectory must lie entirely within a
stoichiometric compatibility class.

In the earlier example shown in (2.1), we have y2− y1 = (2,−1, 1), which means that with
the occurrence of each reaction, two units of A and one of C are produced, while one unit of B
is consumed. This vector (2,−1, 1) spans the stoichiometric subspace S for the network (2.1).

The question of real interest is whether the differential equations for a reaction system can
admit multiple positive equilibria within a stoichiometric compatibility class.

A chemical reaction system exhibits multistationarity if there exists a stoichiometric com-
patibility class Px0 with two or more steady states in its relative interior. A system may admit
multistationarity for all, some, or no choices of positive rate constants κij; if such rate constants
exist, then we say that the network has the capacity for multistationarity.



2.3. STOICHIOMETRIC COMPATIBILITY CLASS 19

Stoichiometric
Compatibility
Class

S
Composition
Trajectory

Locus of
equilibria

RS
>0

xA

xB

Figure 2.1: Stoichiometric compatibility class for network (2.15).

Stoichiometric

Compatibility

Class

RS
>0

S

xC

xB

xA

Figure 2.2: Stoichiometric compatibility class for network (2.17).
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2.4 Deficiency

The deficiency of a chemical reaction network is an important invariant. Before we give any
definition we focus on the fact that ker Σ contains the subspace kerL(G) since Σ = Y.L(G).
This directs our attention to the kernel of Y and more specifically to that part of the kernel of
Y which lies in the image of L(G). This leads us to the following definition:

Definition 2.4.1. The “dynamic deficiency” of a biochemical network, δD ∈ N≥0, is the dif-
ference in dimension between the two subspaces: δD = dim ker Σ− dim kerL(G), or, equiva-
lently,

δD = dim(kerY ∩ Image L(G)).

Note that the deficiency of a reaction network is non-negative because it can be interpreted
as the dimension of a certain linear subspace [45].

The “dynamic deficiency” just defined is different from the “deficiency” as usually defined
in CRNT, [48, 63], which we call the “structural deficiency”, δS ∈ N≥0:

δS = m− dimS − l,

where m denotes the number of complexes, l is the number of linkage classes (connected
components) and S is the stoichiometric subspace.

While δD may depend on the values of rate constants, δS is independent of them. However,
the former will be more convenient for our purposes.

It is known that δD ≤ δS . Furthermore, if there is only a single terminal strong linkage class
in each linkage class of G, then δD = δS . Recall that a graph is connected if any two distinct
nodes are linked by a path of contiguous edges, ignoring directions. A linkage class of G is
then a maximal connected sub-graph. Distinct linkage classes are totally disconnected, with no
edges between them.

For systems arising from zero-deficiency networks and networks whose linkage classes
have deficiencies zero or one, there are many results due to Feinberg that concern the existence,
uniqueness, and stability of steady states [45, 49–51].

2.5 Generalized mass–action kinetics

We can admit for consideration networks containing peculiar reactions like A→ 2A or 0→ A
(zero reacts to A) which, at first glance, appear to be incompatible with the conservation of
matter.

We would also like to study homogeneous (well-stirred) reactors that are open to the influx
or efflux of at least certain species. There are varieties of open reactors for which the appro-
priate differential equations can be viewed as deriving from a reaction network obtained by
modifying or augmenting the true chemical network in such a way as to model, by means of
“pseudo–reactions”, various non–chemical effects.

Obviously in open systems there is no longer any reason to require that the kinetic behavior
be consistent with the requirements of thermodynamics applied to closed systems. Neverthe-
less, it is still of interest to identify classes of kinetic equations which behave as though the
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laws of closed system thermodynamics applied, for we are then able to say something about
the uniqueness and stability of their equilibrium states.

Biological systems suffer many further complexities, some of which appear to be accom-
modated within CRNT. Experimental studies of biological systems like metabolic pathways
are often carried out by by buffering the concentration of certain substrates so that they remain
approximately fixed over the duration of the experiment. With mass–action kinetics, these
fixed concentrations can be incorporated into the rate constants of the reactions in which the
substrates participate.

Following Horn and Jackson [80], we say that a network G = (V,R, Y ) is conservative if
there exists a (positive) vector contained in S⊥, the orthogonal complement of the stoichiomet-
ric subspace for the network.

One of the pleasant features of conservative networks is given by Horn and Jackson. They
show that a network is conservative if and only if all its stoichiometric compatibility classes are
compact (they call the stoichiometric compatibility classes reaction simplices).

In Appendix 1 of [80] it is shown that a stoichiometric compatibility class is bounded if
and only if the system is conservative. Furthermore, if there is one bounded stoichiometric
compatibility class, then all stoichiometric compatibility classes are bounded.

We may now assert that a kinetic description of chemical reactions in closed systems with
ideal mixtures, completely consistent with the requirements of stoichiometry and thermody-
namics, may be obtained by satisfying the following four requirements.

(a) The rate function of each elementary reaction is of the mass–action form.

(b) The stoichiometric coefficients are such that mass is conserved in each elementary reaction.

(c) The kinetic constants in the rate functions are constrained in such a way that the principle
of detailed balancing is satisfied.

(d) The stoichiometric coefficients are non-negative integers.

There then arises the question whether anything might be gained by investigating the con-
sequences of relaxing one or more of the conditions (b), (c) and (d); in other words, by studying
generalized mass–action kinetics, in which only (a) need be satisfied.

In this work we are interested in the characteristics of some systems in which (b), (c) have
been relaxed.

By relaxing condition (b), requiring mass conservation in each elementary reaction, many
open systems can be drawn into the formal structure of mass–action kinetics.

Turning to condition (c), the principle of detailed balance stands for the condition that in
case of equilibrium (= stationarity) the rate of each reaction equals the rate of the corresponding
antireaction (κy→y′xy = κy′→yx

y′). The detailed balancing requirement in closed systems is
possibly less firmly rooted than the other requirements, and it is possible to find a more general
class of kinetics which is fully consistent with the laws of thermodynamics. Furthermore, when
the formal structure of generalized mass–action kinetics is used to describe open systems, in
the manner just outlined, it would be quite inappropriate to require detailed balancing. For
instance, in the following example:

A→ B, A↔ 0, B ↔ 0,
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detailed balancing would require the rate of addition of A (corresponding to 0 → A) to equal
the rate of removal of A (corresponding to A → 0) in the steady state. But clearly this cannot
be so, because of the chemical reaction A→ B.

When establishing a setting for generalized mass–action kinetics systems, we seek to clas-
sify reaction networks according to their capacity to induce differential equations which admit
behavior of a specified type.

In practice, complete sets of rate constants for intricate networks are hardly ever known
with great precision. It is often the case that chemists have a very good sense of what reactions
are occurring but can estimate or measure rate constants only to within a considerable margin
of uncertainty. See [45, 47, 102].

Moreover, even though a great variety of computational methods have been developed for
the identification of chemical reaction networks and their reaction rate constants from time-
dependent measurements of chemical species concentrations, two different reaction networks
might generate identical dynamical system models, making it impossible to discriminate be-
tween them, even if we are given experimental data of perfect accuracy and unlimited temporal
resolution. In [33], Craciun and Pantea describe necessary and sufficient conditions for two
reaction networks to give rise to the same dynamical system model. Also, they show that, even
if we know the reaction network that gives rise to the chemical dynamics under study, there
might exist multiple sets of reaction rate constants that provide perfect fit for the data since
they give rise to identical dynamical system models.

In this new context of generalized mass–action kinetics, it is possible to find equilibria
which are not detailed balance.

Definition 2.5.1. A complex balanced mass–action kinetics system is a dynamical system for
which the algebraic equationsL(G)Ψ(x) = 0 admit a strictly positive solution x0 ∈ Rs

>0. Such
a solution x0 is a steady state of the system, i.e., the s coordinates of Y L(G)Ψ(x0) vanish.

Clearly, a mass–action kinetics system (5.3) being complex balanced depends on both the
digraph G and the rate constants κij . A main property of complex balanced systems is that all
strictly positive steady states x satisfy L(G)Ψ(x) = 0.

Complex balanced systems are shown to satisfy the “quasithermostatic” (QTS) and “quasi-
thermodynamic” (QTD) conditions [80] (in the terminology of [30], “quasithermostatic” means
that the positive steady state variety is toric). QTS and QTD roughly mean that a Lyapunov
function of a certain form exists, for a unique interior steady state in each invariant polyhedron
(stoichiometric compatibility class).

We introduce here an example of a system that is complex balanced and not detailed bal-
anced.

Example 2.5.1. This reaction network diagram represents a nonsequential multisite phospho-
rylation system with two sites, under mass–action kinetics. This network models, for example,
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the MEK-MKP3-ERK2 system [14, 52, 112, 113]:

E + S01

κ46 //

κ42yysssssssss
ES01

κ64
oo

κ67

%%KKKKKKKKK

E + S00

κ12 //
ES00

κ21
oo

κ24
99sssssssss

κ23

%%KKKKKKKKK E + S11

κ76

eeKKKKKKKKK

κ75yysssssssss

E + S10

κ35 //κ32

eeKKKKKKKKK
ES10

κ53
oo

κ57
99sssssssss

FS01

κ1311//

κ1314yyttttttttt
F + S01

κ1113
oo

κ119

%%JJJJJJJJJ

F + S00

κ1413
99ttttttttt

κ1412

%%JJJJJJJJJ FS11

κ98 //κ911

eeJJJJJJJJJ

κ910yyttttttttt
F + S11

κ89
oo

FS10

κ1210//κ1214
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oo
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99ttttttttt

(2.18)

The four phosphoforms, S00, S10, S01, S11, are interconverted by the kinase E and the phos-
phatase F . There are other six species ES00, ES10, ES01, FS11, FS10, FS01. 1

Under mass–action kinetics, although the rate constants κ32, κ42, κ75, κ76, κ109, κ119, κ1412,
κ1413, are usually taken to be very small and so the corresponding reactions are omitted, we will
not ignore them in this example because we are interested in special properties of the reaction
constants in reversible networks.

Assuming for any choice of first order rate constant κ1 and second order rate constant κ2

for which the value of κ1 equals the value of κ2 regardless of the corresponding units, the rate
constants of the mass–action kinetics system satisfy:

κ12 = κ46 = κ89 = κ1012 = κ2

κ24 = κ53 = κ67 = κ910 = κ1214 = κ1311 = κ1

κ32 = κ42 = κ75 = κ76 = κ109 = κ119 = κ1412 = κ1413 =
1

4
κ2

κ35 = κ1113 =
3

4
κ2, κ23 = κ57 = κ64 = κ911 = κ1314 =

3

4
κ1,

κ21 =
23

4
κ1, κ98 =

47

4
κ1, κ1210 =

69

22
κ1. (2.19)

Then, for any α ∈ R>0, the real vector in R12
>0 of the values of the molar concentrations

of the different species x0,α = α (23, 17, 11, 47, 1, 2, 4, 8, 14, 11, 13, 16) is a positive steady
state of the system. Moreover, it satisfies L(G)Ψ(x0,α) = 0, that is, it is a complex balancing
equilibrium ( [80], [30], see definition 2.5.1 below). On the other hand, for this choice of
rate constants the system is not detailed balanced since the requirement of the rate of each

1In the MEK-MKP3-ERK2 system, E would stand for MEK, F for MKP3, S00 for ERK2, S11 for the dou-
bly phosphorylated ERK2 (ppERK2) and S10 and S01 for the two monophosphorylated forms of ERK2 (the form
phosphorylated on tyrosine, pY ERK2, or threonine, pT ERK2, alone); alsoES00, ES10, ES01, FS11, FS10, FS01

represent MEK·ERK2, MEK·pY ERK2, MEK·pT ERK2, MKP3·ppERK2, MKP3·pY ERK2, MKP3·pT ERK2, re-
spectively.
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reaction equaling the rate of the corresponding antireaction does not hold, for instance, for
both i1 = 1, j1 = 2 and i2 = 10, j2 = 12 simultaneously that is, for the pairs of reactions

E + S00

κ2 //
ES00 ,

23
4
κ1

oo FS10

69
22
κ1//
F + S10.

κ2
oo

In Chapter 5 we clarify the relation between complex and detailed balanced systems.

2.5.1 The Michaelis-Menten formula

One case worth mentioning (although it is not entirely related to generalized mass–action ki-
netics) is the Michaelis-Menten formula which usually arises while studying enzymes. Bio-
chemists usually describe the kinetics of enzyme catalyzed reactions by formulae which look
much more complex than mass–action rules like. The well-known Michaelis-Menten kinetics
for a reaction A→ B, catalyzed by an enzyme E,

dxB
dt

=
VmaxxA
KM + xA

,

is a rational, and not linear, function of the concentration xA. However, the Michaelis-Menten
formula is derived from the reaction network

A+ E � EA→ B + E

under mass–action, assuming that the transitional enzyme-substrate complex, EA, is in steady
state, xB is small and xE is much smaller than xA , ( [27], §2.2). Michaelis-Menten kinetics may
hence be incorporated into the CRNT framework by appropriately modifying the underlying
reaction network.

We are now ready to focus on some new results on this area.



Chapter 3

Invariants of biochemical networks

As we mentioned in the Introduction of this work, the nonlinearities found in molecular net-
works usually prevent mathematical analysis of network behavior, which has largely been
studied by numerical simulation. This can lead to difficult problems of parameter determi-
nation. However, molecular networks give rise, through mass-action kinetics, to polynomial
dynamical systems, whose steady states are zeros of a set of polynomial equations. These
equations may be analyzed by algebraic methods, in which parameters are treated as symbolic
expressions whose numerical values do not have to be known in advance. For instance, an
“invariant” of a network is a polynomial expression on selected state variables that is satis-
fied in any steady state. Invariants have been found that encode key network properties and
that discriminate between different network structures. Although invariants may be calculated
by computational algebraic methods, such as Gröbner bases, these become computationally
infeasible for biologically realistic networks. In this chapter, we exploit Chemical Reaction
Network Theory (CRNT) to develop an efficient procedure for calculating invariants that are
linear combinations of “complexes”, or the monomials coming from mass action. Complex-
linear invariants form a limited subset of all invariants but, as shown here, they have biolog-
ical significance and can be efficiently calculated for realistic networks. Our work clarifies
and subsumes many previous results and provides a new tool for symbolic, steady-state anal-
ysis of molecular networks. For instance, we recover as a special case the Shinar-Feinberg
Theorem, that gives structural conditions for a network of deficiency one to have “absolute
concentration robustness” (ACR). We also apply our method to enzyme bifunctionality, ana-
lyzing two examples, the bacterial EnvZ/OmpR osmolarity regulator, having deficiency two,
and the mammalian phosphofructokinase-2-fructose-2,6-bisphosphatase glycolytic regulator,
having deficiency four. As we said, complex-linear invariants provide a tool for systematically
analyzing the steady-state properties of complex networks, without knowledge of parameter
values.

The focus on steady states, rather than transient dynamics, is still of substantial interest.
For instance, in time-scale separation, which has been a widespread method of simplification
in biochemistry and molecular biology, a fast sub-system is assumed to be at steady state with
respect to a slower environment and steady-state analysis is used to eliminate the internal com-
plexity in the sub-system, [66]. Approximate or quasi-steady states have also been shown to
exist under various cellular conditions and can now be engineered in vivo, [103, 108]. Finally,
steady states provide the skeleton around which the transient dynamics unfolds, so knowledge

25
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of the former can be helpful for understanding the latter.
The present chapter focuses on the algebraic concept of an “invariant”: a polynomial ex-

pression on selected state variables that is zero in any steady state, with the coefficients of
the expression being rational expressions in the symbolic rate constants, [112]. Recall that a
rational expression is a quotient of two polynomials; an example of such being the classical
Michaelis-Menten constant of an enzyme, [27]. (A more general definition of an invariant al-
lows the coefficients to include conserved quantities, [173], but this extension is not discussed
here.) Since each of the rate functions, fi(x;κ), is zero in any steady state, the force of the defi-
nition comes from the restriction to “selected state variables”. It is possible that, by performing
appropriate algebraic operations on f1, · · · , fs, non-selected variables can be eliminated, leav-
ing a polynomial expression on only the selected variables that must be zero in any steady
state.

Invariants turn out to be surprisingly useful. They have been shown to characterize the bio-
chemical networks underlying multisite protein phosphorylation, [112], suggesting that differ-
ent network architectures can be identified through experimental measurements at steady state.
If an invariant has only a single selected variable that appears linearly, this variable has the
same value in any steady state since it is determined solely by the rate constants. In particular,
its value is unaffected by changes to the initial conditions or to the total amounts of any species.
This is “absolute concentration robustness” (ACR), as introduced in [144], which accounts for
experimental findings in some bacterial bifunctional enzymes, [8, 141, 143]. The mammalian
bifunctional enzyme, phosphofructokinase-2-fructose-2,6-bisphosphatase (PFK2-F2,6BPase),
which has a more complex enzymatic network, also yields invariants, with implications for reg-
ulation of glycolysis, [34]. The methods developed here provide a systematic way to analyze
such bifunctional enzymes, as explained below.

Computational algebra exploits the method of Gröbner bases to provide an Elimination
Theorem, [28], that permits variables to be systematically eliminated among the rate equations,
f1, · · · , fs, [112]. Algorithms for calculating Gröbner bases are available in general-purpose
tools like Mathematica, Matlab and Maple and in specialized mathematical packages such as
Singular [35] and Macaulay2 [61].However, these algorithms are computationally expensive
for the task at hand. They have been developed for general sets of polynomials and have not
been optimized for those coming from biochemical networks. For instance, Mathematica’s
Gröbner basis algorithm does not terminate on the network for PFK2-F2,6BPase. If invariants
are to be exploited further, alternative approaches are needed.

Aside from this nonlinearity, the defining rate equations come from linear processes on
complexes. This observation is the starting point of CRNT and reveals that biochemical net-
works conceal much linearity behind their nonlinearity, [48, 63, 66, and see below]. This sug-
gests the possibility of using fast linear methods, in preference to slow polynomial algorithms,
to construct a subset of invariants: those that are symbolic linear combinations of the com-
plex monomials, xy. As before, this definition acquires substance by restricting the complexes
that can appear. If y1, . . . , yk are the selected complexes, then a complex-linear invariant is a
polynomial expression of the form a1x

y1 + · · · + akx
yk , that is zero in any steady state, where

a1, · · · , ak may be rational expressions in the symbolic rate constants.
In this chapter, based on joint work with R. Karp, T. Dasgupta, A. Dickenstein and J. Gu-

nawardena, we examine a large class of complex-linear invariants that we call “type 1”. We
determine the dimension of the space of type 1 invariants (Proposition 3.3.1) and provide a lin-
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ear algorithm for calculating them (Theorem 3.3.1). We recover the Shinar-Feinberg Theorem
for ACR, [144], as Corollary 3.4.2. We then apply the method to contrast two examples of
enzymatic bifunctionality, the bacterial EnvZ/OmpR osmolarity regulator and the mammalian
PFK2-F2,6BPase glycolytic regulator. The method is sufficiently straightforward that the in-
variants for networks of this kind can be found by manual inspection of an appropriate matrix.
This provides a foundation for the steady-state algebraic analysis of a broad class of relevant
biochemical networks.

3.1 CRNT and the graphical framework

It is assumed that there are s species, S = {s1, · · · , ss}, whose concentrations are x1, · · · , xs
∈ R, respectively, and m complexes, C = {y1, . . . , ym}.

Recall that the reactions in the network define a directed graph on the complexes, with
an edge yi → yj whenever there is a reaction with substrate stoichiometry given by yi and
product stoichiometry given by yj . This graph may be studied using a graphical framework
for analyzing steady states that underpins many crucial analyses in biochemistry and systems
biology. This is fully explained in [66] and briefly reviewed here.

As we saw in Chapter 2, the kernel of L(G) can be calculated as follows: Let G1, · · · , Gt

be the terminal strong linkage classes of G. For each 1 ≤ t ≤ t, let ρt ∈ Rm be the vector
which, for vertices of G that lie in Gt, agrees with the vector ρGt , coming from the Matrix-Tree
Theorem applied to Gt as an isolated graph, and, for all other vertices, j, (ρt)j = 0. Then, the
ρt form a basis for kerL(G):

kerL(G) = 〈 ρ1, · · · , ρt 〉 . (3.1)

This graphical, linear framework provides a way to rewrite certain nonlinear biochemical
systems as linear, at steady state. It has many applications, [66]. For CRNT, the Laplacian,
L(G) : Rm → Rm, is a linear analogue for complexes of the nonlinear function, f : Rs →
Rs, for species. With the definitions given in Section 2.1 it may be checked that f(x) =
Y.L(G).Ψ(x), for any x ∈ Rs.

This fundamental observation, which originates in the pioneering work of Horn and Jack-
son, [80], is the starting point of CRNT. It shows that the the nonlinear rate function f can be
decomposed into a purely linear part, Y.L(G), that includes the Laplacian, and the essential
nonlinearity, Ψ, coming from the complex monomials. This decomposition is the basis for
what follows.

3.2 Generating complex-linear invariants

Depending on the application, invariants may be required that involve only certain complexes,
yi1 , . . . , yik . Since the indices can be permuted so that the complexes of interest appear first in
the ordering, it can be assumed that invariants are sought on y1, . . . , yk. Let Σ be the s × m
matrix representing the linear part of the CRNT decomposition, Σ = Y.L(G). A simple way
to construct a complex-linear invariant on y1, . . . , yk is to find a vector, a† ∈ Rk, such that, if
(a, 0)† ∈ Rm is a extended with m − k zeros, (a, 0) = (a1, · · · , ak, 0, · · · , 0), then (a, 0) is in
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the rowspan of Σ. That is, it is a linear combination of the rows of Σ. If x ∈ Rs is any steady
state of the system, so that f(x) = 0, then Ψ(x) ∈ ker Σ because Σ.Ψ(x) = Y.L(G).Ψ(x) =
f(x) = 0. Since (a, 0) is in the rowspan of Σ, (a, 0).Ψ(x) = 0. Hence, by definition of Ψ,
a1x

y1 + · · ·+ akx
yk = 0, giving a complex-linear invariant on y1, . . . , yk.

Not all such invariants may arise in this way. For that to happen, it is necessary not just
for (a, 0).Ψ(x) = 0 whenever x is a steady state but for (a, 0).v = 0 for all v ∈ ker Σ. The
relationship between {Ψ(x) | x is a steady state} and ker Σ is not straightforward. To sidestep
this problem, we focus here only on those invariants, a1x

y1 + · · · + akx
yk , in which (a, 0) is

in the rowspan of Σ. We call these type 1 complex-linear invariants. Non-type 1 invariants
do exist, as we show in Subsection 3.2.1. The type 1 invariants form a vector space that we
abbreviate Ik; note that Ik depends on y1, . . . , yk and not just on k. Two basic problems are,
first, to determine the dimension of Ik and, second, to generate its elements.

A simple solution to the second problem is to break the matrix Σ into the s× k sub-matrix
K consisting of the first k columns of Σ and the s × (m − k) sub-matrix Σ̃ consisting of the
remaining m − k columns, so that Σ = K | Σ̃. Any vector b† ∈ Rs which is in the left null
space of Σ̃, b ∈ N L(Σ̃), so that b.Σ̃ = 0, gives an (a, 0) = b.Σ that is in the rowspan of Σ. The
assignment b→ b.Σ thereby defines a surjection,N L(Σ̃)→ Ik. Moreover, b1.Σ = b2.Σ, if, and
only if, (b1−b2) ∈ N L(Σ) ⊆ N L(Σ̃). Hence, there is an isomorphism Ik ∼= N L(Σ̃)/N L(Σ). If
X is any s×r matrix, dimN L(X) = n−rankX . We conclude that dim Ik = rankΣ−rankΣ̃,
which yields a convenient way to determine the dimension of Ik by Gaussian elimination.

This method amounts to eliminating the complexes yk+1, . . . , ym by taking linear combina-
tions of the defining rate functions, f1, · · · , fs. This can be biologically informative because it
suggests which rate functions, and, hence, which species at steady state, determine the invari-
ant, [34]. An alternative approach, based on duality, allows the sparsity of (3.1) to be exploited.
We will develop it in Section 3.3, but first we will make some comments on non-type 1 invari-
ants.

3.2.1 Invariants that are not of type 1

Consider the hypothetical reaction network in Figure 3.1A. While such chemistry is unlikely, it
illustrates the mathematical issues. The network has three species, s1, s2, s3 and nine complexes
y1, . . . , y9, ordered as in Figure 3.2C. The ODEs are

dx1

dt
= k1x1

dx2

dt
= k4x1x3 − k2x

2
2

dx3

dt
= k5x1x2 − k3x

2
3 .

(3.2)

With the given ordering, the matrix Σ = Y.L(G) is k1 0 0 0 0 0 0 0 0
0 0 −k2 0 0 0 k4 0 0
0 0 0 0 −k3 0 0 k5 0

 .
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A
s1 → 2s1

2s2 → s2

2s3 → s3

s1 + s3 → s1 + s2 + s3

s1 + s2 → s1 + s2 + s3

B
1 2

3 4

5 6

7

9

8

k1

k2

k3

k4

k5

C y1 s1

y2 2s1

y3 2s2

y4 s2

y5 2s3

y6 s3

y7 s1 + s3

y8 s1 + s2

y9 s1 + s2 + s3

Figure 3.1: Network with complex-linear invariants that are not of type 1. A Hypothetical
reaction network. B Labeled, directed graph on the complexes, with the terminal strong linkage
classes outlined in green. C Numbering scheme for the complexes.

Focusing on the complexes y1, y3, y5, y7, y8, Proposition 3.3.1 shows that the space of type 1
complex-linear invariants has dimension three. However, it is easy to see from (3.2) that the
only steady state of the network is when x1 = x2 = x3 = 0. Hence, for any values of
a, b, c, d, e ∈ R, the polynomial expression

axy1 + bxy3 + cxy5 + dxy7 + exy8

always vanishes in any steady state. Hence, the space of complex-linear invariants on y1, y3,
y5, y7, y8 has dimension five.

3.3 Duality and the structure of Ik
Let d = dim ker Σ and let B be any m× d matrix whose columns form a basis of ker Σ. Then,
Σ.B = 0 and the rowspan of Σ and the columnspan of B are dual spaces of each other. If
a† ∈ Rk, then (a, 0) is in the rowspan of Σ if, and only if, (a, 0).B = 0. If B′ is the k × d
sub-matrix of B consisting of the first k rows, then (a, 0).B = 0 if, and only if, a.B′ = 0.
Hence, type 1 invariants form the dual space to the columns of B′.

Proposition 3.3.1. The space Ik of type 1 complex-linear invariants on y1, . . . , yk satisfies
dim Ik = rankΣ− rankΣ̃ = k − rankB′.

Let d = rankB′. Note that d ≤ min(k, d). If d = k, then dim Ik = 0 and there are no type 1
invariants on y1, . . . , yk. If, however, d < k, then the original matrix B can be simplified in two
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steps. First the columns. Since the column rank of B′ is d, elementary column operations—
interchange of two columns, multiplication of a column by a scalar, addition of one column
to another—can be applied to the columns of B′, to bring the last d − d columns to zero. If
exactly the same elementary column operations are applied to the full matrix B, a new matrix
is obtained, which we still call B, whose columns still form a basis for ker Σ. B is now in
lower-triangular block form,

B =

[
B′ 0
∗ ∗

]
(3.3)

where, as before, B′ is the k × d sub-matrix consisting of the first k rows and d columns.
For the rows, since the row rank of B′ is still d, there are d rows of B′ that are linearly

independent. Let U ⊆ {1, · · · , k} be the corresponding subset of d indices and let V ⊆
{1, · · · , k} be the subset of k− d remaining indices. This defines a partition of the row indices
of B′: U ∩V = ∅ and U ∪V = {1, · · · , k}. Let B′U be the d×d sub-matrix of B′ consisting of
the rows with indices inU andB′V be the (k−d)×d sub-matrix consisting of the remaining rows
of B′. Using the same notation for a† ∈ Rk, a.B′ = 0 if, and only if, aU .(B′U) + aV .(B

′
V ) = 0.

Since, by construction, B′U has full rank and is hence invertible, this may be rewritten as

aU = −aV .(B′V ).(B′U)−1 . (3.4)

This gives a non-redundant procedure for generating all elements of Ik by choosing a†V ∈ Rk−d

arbitrarily and a†U ∈ Rd to satisfy 3.4. The resulting a† ∈ Rk satisfy a.B′ = 0 and give exactly
the type 1 complex-linear invariants on y1, . . . , yk.

Using the same notation for Ψ(x) ∈ Rm, the invariants themselves are given by aU .Ψ(x)U+
aV .Ψ(x)V = 0, for any steady state x ∈ Rs. Substituting 3.4 and rearranging gives aV .(Ψ(x)V−
(B′V ).(B′U)−1.Ψ(x)U) = 0. Since aV can be chosen arbitrarily in the dual space, we conclude
that

Ψ(x)V = (B′V ).(B′U)−1.Ψ(x)U , (3.5)

which we summarize as follows.

Theorem 3.3.1. Each of the k−d rows of the matrix equation in 3.5 gives an independent type
1 complex-linear invariant on y1, . . . , yk.

All the calculations above are linear and can be readily undertaken in any computer algebra
system with the rate constants treated as symbols. (Mathematica was used for the calculations
in the SI.) The coefficients are then rational expressions in the symbolic rate constants.

3.4 Haldane relationships and the Shinar-Feinberg Theorem

Since Σ = Y.L(G), ker Σ contains the subspace kerL(G). Since the structure of the latter
is known from 3.1, this should assist in the calculation of invariants. Recall the definitions of
dynamic deficiency, δD, and structural deficiency, δS , from §2.4. While δD may depend on the
values of rate constants, δS is independent of them. However, the former is more convenient
for our purposes.

As we mentioned before, δD ≤ δS , and if there is only a single terminal strong linkage
class in each linkage class of G, which holds for the graph in Figure 3.2C but not for that in
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Figure 3.4A, then δD = δS , [48, 63]. Recall that a graph is connected if any two distinct nodes
are linked by a path of contiguous edges, ignoring directions. A linkage class of G is then a
maximal connected sub-graph. Distinct linkage classes are totally disconnected, with no edges
between them.

Suppose first that δD = 0 and that there is a positive steady state x ∈ (R>0)s. Since
L(G).Ψ(x) = 0, x is a “complex-balanced” steady state, in the terminology of Horn and
Jackson, [80]. According to 3.1, the vectors ρt provide a basis for ker Σ = kerL(G) and,
furthermore, (ρt)j 6= 0 if, and only if, yj ∈ Gt. Choose any terminal strong linkage class
of G, which we may suppose to be G1, and suppose that y1, . . . , yk are the complexes in G1.
Choose the matrix B so that ρ1 is its first column and the other ρt for t > 1 are assigned to
columns arbitrarily. By construction, B is already in lower-triangular block form and d = 1.
Setting U = {1} and V = {2, · · · , k} the k − 1 type 1 invariants coming from 3.5 are xyi =
((ρ1)i/(ρ

1)1)xy1 for 2 ≤ i ≤ k. It is not difficult to see from the structure of B that these are
the only type 1 invariants.

These invariants may be rewritten xyi/xy1 = (ρ1)i/(ρ
1)1 to resemble the Haldane relation-

ships that hold between substrates and products of a reaction at equilibrium, [27]. Horn and
Jackson introduced the concept of a complex-balanced steady state, in part, to recover gener-
alized Haldane relationships for networks of reactions that might be in steady state but not at
thermodynamic equilibrium, [66, 80].

Corollary 3.4.1. If a network has δD = 0 and a positive steady state, x ∈ (R>0)s, then
the type 1 complex-linear invariants correspond to generalized Haldane relationships between
complexes in the same terminal strong linkage class.

Now suppose that δD = 1. Then, ker Σ = 〈χ, ρ1, · · · , ρt 〉, where χ ∈ Rm is any vector in
ker Σ that is not in kerL(G). Choose B to have columns in the same order. Suppose that there
are k complexes that are not in any terminal strong linkage class and that indices are chosen
so that these are y1, . . . , yk. Then, (ρt)i = 0 for 1 ≤ i ≤ k and 1 ≤ t ≤ t, so that B is
already in lower-triangular block form with d = 1. If x ∈ (R>0)s is a positive steady state, then
Ψ(x) ∈ ker Σ and Ψ(x)i 6= 0 for 1 ≤ i ≤ m. If follows that χi 6= 0 for 1 ≤ i ≤ k. We may
therefore choose U = {1} and V = {2, · · · , k} and deduce from 3.5 that xyi = (χi/χ1)xy1 for
2 ≤ i ≤ k. These type 1 complex-linear invariants imply the following.

Corollary 3.4.2. [144, Theorem] Suppose a network has δS = 1 and that y1 and y2 are two
complexes that are not in any terminal strong linkage class, whose stoichiometry differs only in
species sq. If the network has a positive steady state, x ∈ (R>0)s, then sq exhibits ACR.

Proof: It is known that δD ≤ δS so either δD = 0 or δD = 1. Suppose the former. The ρt then
form a basis for ker Σ. Because y1 is not in any non-terminal strong linkage class, v1 = 0 for
any v ∈ ker Σ. However, Ψ(x) ∈ ker Σ and, since x ∈ (R>0)s, Ψ(x)1 6= 0. This contradiction
shows that δD = 1. Using the type 1 invariant above and the assumption that the stoichiometry
of y1 and y2 differ only in the species sq, we find that (xq)

y2q−y1q = χ2/χ1, showing that the
steady-state concentration of sq depends only on the rate constants, as required.

�
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3.5 Bifunctional enzymes

Corollaries 3.4.1 and 3.4.2 only exploited Theorem 3.3.1 when d = 1. We now consider
examples with d > 1. The examples concern enzyme bifunctionality. Enzymes are known
for being highly specific but some exhibit multiple activities. One form of this arises when a
protein catalyzes both a forward phosphorylation—covalent addition of phosphate, with ATP
as the donor—and its reverse dephosphorylation—hydrolysis of the phosphate group. What
advantage does such bifunctionality bring over having two separate enzymes?

We discuss one bacterial and one mammalian example. In Escherichia coli, osmolarity
regulation is implemented in part by the EnvZ/OmpR two-component system (Figure 3.2A);
for references, see [141]. Here, the sensor kinase, EnvZ, autophosphorylates on a histidine
residue and catalyzes the transfer of the phosphate group to the aspartate residue of the response
regulator, OmpR, which then acts as an effector. Bifunctionality arises because EnvZ, when
ATP is bound, also catalyzes hydrolysis of phosphorylated OmpR-P.

It was suggested early on that the unusual design of the EnvZ/OmpR system might keep
the absolute concentration of OmpR-p stable, [132]. This was later supported by experimental
and theoretical analysis, [8], and the theoretical analysis was extended to other bifunctional
two-component systems, [141]. These ad-hoc calculations were clarified when a core network
for EnvZ/OmpR was found to have δS = 1 and Corollary 3.4.2 could be applied to confirm
ACR for OmpR-p, [144]. Attempts were made to broaden the analysis by extending the core
network to include additional reactions thought to be present. For instance, EnvZ bound to
ADP may also dephosphorylate OmpR-P. Adding these reactions to the core gives a network
(Figure 3.2B) with δS = 2, so that Corollary 3.4.2 can no longer be applied. However, it was
shown by direct calculation in [141, Supplementary Information] that this network also satisfies
ACR for OmpR-p.

Here, we use complex-linear invariants to confirm ACR and to find a formula for the abso-
lute concentration value of OmpR-p in terms of the rate constants. The labeled, directed graph
on the complexes has thirteen nodes and fifteen edges (Figure 3.2C). Each linkage class has
only a single terminal strong linkage class and δD = δS = 2. We can apply Theorem 3.3.1 to
systematically find two new invariants.

Corollary 3.5.1. If the complexes in the reaction network in Figure 3.2B are ordered as shown
in Figure 3.2D, then the space of type 1 complex-linear invariants on the complexes y1, y3, y8,
y11 has dimension 2 and the following are independent invariants,

(
k1k3
k2

)
xy1 − (k4 + k5)xy3 = 0

k5x
y3 −

(
k12k10
k11 + k12

)
xy8 −

(
k15k13
k14 + k15

)
xy11 = 0 .

Proof. The nine species and thirteen complexes in the EnvZ/OmpR network in Figure 3.2 are
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ordered as follows.

s1 EnvZ-P-OmpR y1 s8 EnvZ-ADP
s2 EnvZ-ATP-OmpR-P y2 s4 EnvZ
s3 EnvZ-ADP-OmpR-P y3 s7 EnvZ-ATP
s4 EnvZ y4 s9 EnvZ-P
s5 OmpR y5 s9 + s5 EnvZ-P + OmpR
s6 OmpR-P y6 s1 EnvZ-P-OmpR
s7 EnvZ-ATP y7 s4 + s6 EnvZ + OmpR-P
s8 EnvZ-ADP y8 s7 + s6 EnvZ-ATP + OmpR-P
s9 EnvZ-P y9 s2 EnvZ-ATP-OmpR-P

y10 s7 + s5 EnvZ-ATP + OmpR
y11 s8 + s6 EnvZ-ADP + OmpR-P
y12 s3 EnvZ-ADP-OmpR-P
y13 s8 + s5 EnvZ-ADP + OmpR

With this ordering and with the rate constants as in Figure 3.2C, the matrix Σ = Y.L(G) is


0 0 0 0 k6 −k7 − k8 k9 0 0 0 0 0 0
0 0 0 0 0 0 0 k10 −k11 − k12 0 0 0 0
0 0 0 0 0 0 0 0 0 0 k13 −k14 − k15 0
k1 −k2 − k3 k4 0 0 k8 −k9 0 0 0 0 0 0
0 0 0 0 −k6 k7 0 0 k12 0 0 k15 0
0 0 0 0 0 k8 −k9 −k10 k11 0 −k13 k14 0
0 k3 −k4 − k5 0 0 0 0 −k10 k11 + k12 0 0 0 0
−k1 k2 0 0 0 0 0 0 0 0 −k13 k14 + k15 0

0 0 k5 0 −k6 k7 0 0 0 0 0 0 0


A basis for the kernel of Σ can then be calculated to make up the columns of a matrix B.

0 k2(k4+k5)k15
k1k3k5

0 k2(k4+k5)k12
k1k3k5

0 0

0 (k4+k5)k15
k3k5

0 (k4+k5)k12
k3k5

0 0

0 k15
k5

0 k12
k5

0 0

0 0 0 0 0 1

0 (k7+k8)k15
k6k8

0 (k7+k8)k12
k6k8

k7k9
k6k8

0

0 k15
k8

0 k12
k8

k9
k8

0

0 0 0 0 1 0

0 0 0 k11+k12
k10

0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 k14+k15
k13

0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0


Corollary 3.5.1 focuses on the complexes y1, y3, y8, y11, so that k = 4. These are not the first
four complexes in the ordering, as was assumed for convenience before. We can imagine that
the columns of Σ and the rows of B have been permuted so that these complexes are now the
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first in the ordering but we will not bother to write out these new matrices. We note that columns
2 and 4 of B have non-zero entries in the relevant four rows, while the remaining columns have
zero entries. We can undertake elementary column operations on B, as described before (in
fact, only interchange of columns is required), to bring B into lower-triangular block form.
The resulting 4× 2 sub-matrix, B′, in Equation (3.3), is then given by

k2(k4+k5)k15
k1k3k5

k2(k4+k5)k12
k1k3k5

k15
k5

k12
k5

0 k11+k12
k10

k14+k15
k13

0


The columns of this are linearly independent, so that rankB′ = 2. It follows from Proposi-
tion 3.3.1 that the dimension of the space of type 1 complex-linear invariants on y1, y3, y8, y11

is 2, as claimed. To generate the invariants, we note that rows 2 and 3 of B′ are linearly inde-
pendent, so that we can follow the prescription above and take U = {2, 3} and V = {1, 4}.
Then

B′U =

[
k15
k5

k12
k5

0 k11+k12
k10

]
, B′V =

[
k2(k4+k5)k15

k1k3k5

k2(k4+k5)k12
k1k3k5

k14+k15
k13

0

]
Since Ψ(x)U = (xy3 , xy8)† and Ψ(x)V = (xy1 , xy11)†, the two linearly independent type 1
complex-linear invariants may be read off from Equation (3.5),[

xy1

xy11

]
=

[
k2(k4+k5)
k1k3

0
k5(k14+k15)
k13k15

−k10k12(k14+k15)
k13k15(k11+k12)

] [
xy3

xy8

]
to yield the expressions in Corollary 3.5.1, as claimed.

Using the expressions for the complexes in Figure 3.2D, it can be seen that

xy8 = xy3 [OmpR-P] , xy11 = xy1 [OmpR-P] .

Provided that [EnvZ-ATP] = xy3 6= 0, the invariants can be combined and simplified to yield
the following expression

[OmpR-P] =

k1k3k5(k11 + k12)(k14 + k15)

k1k3k10k12(k14 + k15) + k2k13k15(k4 + k5)(k11 + k12)
.

(3.6)

This confirms that, as long as there is a positive steady state, the steady-state concentration of
OmpR-P is not affected by changes in either the amount of OmpR or of EnvZ. The network
exhibits ACR for OmpR-P, with the absolute value being given in terms of the rate constants
by 3.6.

We now turn to our second example. Phosphofructokinase1 (PFK1) is one of the key regu-
latory enzymes in glycolysis, converting the small molecule fructose-6-phosphate to fructose-
1,6-bisphosphate (Figure 3.3A); for references, see [34]. In mammalian cells, the bifunc-
tional PFK2-F2,6BPase has two domains. PFK2 has the same substrate as PFK1 but pro-
duces fructose-2,6-bisphosphate. This is a terminal metabolite that is not consumed by other
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metabolic processes. Instead, it acts as an allosteric effector, activating PFK1 and inhibit-
ing fructose-1,6-bisphosphatase, the reverse enzyme present in gluconeogenic cells, such as
hepatocytes. The other domain, F2,6BPase, catalyzes the dephosphorylation of F2,6BP and
produces F6P.

Biochemical studies lead to the reaction network in Figure 3.3B. The kinase domain has
an ordered, sequential mechanism and the kinase and phosphatase domains operate simultane-
ously; for more details, see [34]. The corresponding labeled, directed graph on the complexes
has fourteen nodes and nineteen edges (Figure 3.4A). One of the linkage classes has two termi-
nal strong linkage classes, δD = 4 and δS = 5.

Corollary 3.5.2. If the complexes in the reaction network in Figure 3.3B are ordered as shown
in Figure 3.4B, then the space of type 1 complex-linear invariants on the complexes y1, y2, y4,
y6, y8, y11 has dimension 2 and the following are the independent invariants,

k1x
y1 − k2x

y2 + (k10 − k8)xy6 − (k9 + k11)xy8 − k19x
y11 = 0

k5x
y4 − k8x

y6 − k11x
y8 + (k18 − k19)xy11 = 0 .

Proof. The eight species and fourteen complexes of the PFK2-F2,6BPase network in Fig-
ures 3.3 and 3.4 are ordered as follows.

s1 F2,6BP y1 s5 E
s2 F6P y2 s7 E-ATP
s3 E-ATP-F6P y3 s7 + s2 E-ATP + F6P
s4 E-ATP-F6P-F2,6BP y4 s3 E-ATP-F6P
s5 E y5 s5 + s1 E + F2,6BP
s6 E-F2,6BP y6 s6 E-F2,6BP
s7 E-ATP y7 s5 + s2 E + F6P
s8 E-ATP-F2,6BP y8 s8 E-ATP-F2,6BP

y9 s7 + s1 E-ATP + F2,6BP
y10 s3 + s1 E-ATP-F6P + F2,6BP
y11 s4 E-ATP-F6P-F2,6BP
y12 s8 + s2 E-ATP-F2,6BP + F6P
y13 s6 + s1 E-F2,6BP + F2,6BP
y14 s3 + s2 E-ATP-F6P + F6P

With this ordering and with the rate constants in Figure 3.4A, the matrix Σ = Y.L(G) is



0 0 0 k5 −k6 k7 0 k13 −k12 −k14 k15 + k18 0 0 0
0 0 −k3 k4 0 k8 0 k11 0 0 k17 + k19 −k16 0 0
0 0 k3 −k4 − k5 0 0 0 0 0 −k14 k15 + k19 0 0 0
0 0 0 0 0 0 0 0 0 k14 −k15 − k17 − k18 − k19 k16 0 0
−k1 k2 0 k5 −k6 k7 + k8 0 0 0 0 0 0 0 0

0 0 0 0 k6 −k7 − k8 − k10 0 k9 0 0 k18 0 0 0
k1 −k2 −k3 k4 0 0 0 k11 + k13 −k12 0 0 0 0 0
0 0 0 0 0 k10 0 −k9 − k11 − k13 k12 0 k17 −k16 0 0





36 CHAPTER 3. INVARIANTS OF BIOCHEMICAL NETWORKS

and a matrix B, whose columns form a basis for the kernel of Σ, can then be calculated as


0 0 k8−k10
k1k10

k19
k1

(−k8+k10)k12
k1k10

k8k9+k10k11
k1k10

0 k2
k1

0 0 0 0 0 0 0 1

0 0
−k5k10+(k4+k5)k8

k3k5k10

−k4k18+(k4+k5)k19
k3k5

− (k4+k5)k8k12
k3k5k10

(k4+k5)(k8k9+k10k11)
k3k5k10

0 0

0 0 k8
k5k10

−k18+k19
k5

− k8k12
k5k10

k8k9+k10k11
k5k10

0 0

0 0 k7+k8+k10
k6k10

− k18
k6

− (k7+k8+k10)k12
k6k10

(k7+k8)k9
k6k10

0 0

0 0 1
k10

0 − k12
k10

k9
k10

0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 k11+k13
k12

0 0

0 0 − 1
k14

k15+k18+k19
k14

0 0 0 0

0 0 0 1 0 0 0 0

0 0 1
k16

k17
k16

0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0


Corollary 3.5.2 focuses on the complexes y1, y2, y4, y6, y8, y11, so that k = 6. As before, we can
imagine that the columns of Σ and the rows of B have been permuted to make these complexes
first in the ordering. Only columns 3, 4, 5, 6, 8 of B have non-zero entries in the relevant rows
and, when restricted to these rows, column 5 is a scalar multiple of column 3. As before, we
can interchange columns to bring B into lower-triangular block form, with the resulting 6 × 4
sub-matrix, B′, in Equation 3.3 given by

k8−k10
k1k10

k19
k1

k8k9+k10k11
k1k10

k2
k1

0 0 0 1
k8

k5k10

−k18+k19
k5

k8k9+k10k11
k5k10

0
1
k10

0 k9
k10

0

0 0 1 0

0 1 0 0


with B′ evidently of full rank 4. It follows from Proposition 3.3.1 that the space of type 1
complex-linear invariants on y1, y2, y4, y6, y8, y11 has dimension two, as claimed. To generate
the invariants, we can take U = {2, 4, 5, 6} and V = {1, 3} so that

B′U =


0 0 0 1
1
k10

0 k9
k10

0

0 0 1 0

0 1 0 0

 , B′V =

[
k8−k10
k1k10

k19
k1

k8k9+k10k11
k1k10

k2
k1

k8
k5k10

−k18+k19
k5

k8k9+k10k11
k5k10

0

]

B′U is evidently non-singular. The two linear-independent type 1 complex-linear invariants can
then be read off from Equation (3.5),

[
xy1

xy4

]
=

[
k2
k1

(k8−k10)
k1

(k9+k11)
k1

k19
k1

0 k8
k5

k11
k5

(−k18+k19)
k5

]
xy2

xy6

xy8

xy11


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to yield the expressions in Corollary 3.5.2, as claimed.

The second invariant in Corollary 3.5.2 was originally discovered by ad-hoc algebraic cal-
culation. It is used in [34] to show that, if the kinase dominates the phosphatase, in the sense
that k18 > k19, then the steady state concentration of F6P is held below a level that depends
only on the rate constants and not on the amounts of the enzymes or the substrate. Conversely,
if the phosphatase dominates the kinase, so that k18 < k19, then the steady state concentration
of F2,6BP is similarly constrained below a level that depends only on the rate constants and not
on the amounts. Interestingly, regulation of PFK2-F2,6BPase by phosphorylation, under the
influence of the insulin and glucagon, causes the kinase and phosphatase activities to be shifted
between the regimes k18 > k19 and k18 < k19. The implications of this for control of glycolysis
are discussed in [34].

Despite the considerable differences between the reaction networks in Figures 3.2 and 3.3,
the bifunctionality in both cases serves to limit the steady state concentrations of the substrate
forms. In the simpler bacterial case, the concentration of OmpR-p is held at a constant level at
steady state, while in the more complex mammalian case, either the steady-state concentration
of F2,6BP or that of F6P is held below a constant level, depending on regulatory choices. In
all cases, the “constant” levels depend only on the rate constants and not on the amounts of
substrate or enzyme. We speculate that this may be a design principle of those bifunctional
enzymes that catalyze forward and reverse modifications. There are other forms of bifunction-
ality, such as enzymes that catalyze successive steps in a metabolic pathway, and preliminary
studies suggest that these behave very differently. If modification bifunctionality did evolve
to implement concentration control, different enzymes still have markedly different reaction
networks and steady-state properties, as seen above. The complex-linear invariants introduced
here provide a way to systematically analyze this for realistic networks, without becoming
mired in problems of parameter determination.
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A
ATP ADP

EnvZ

His
P

Asp

OmpR

B
EnvZ-ADP � EnvZ � EnvZ-ATP → EnvZ-P

EnvZ-P + OmpR � EnvZ-P-OmpR � EnvZ + OmpR-P

EnvZ-ATP + OmpR-P � EnvZ-ATP-OmpR-P → EnvZ-ATP + OmpR

EnvZ-ADP + OmpR-P � EnvZ-ADP-OmpR-P → EnvZ-ADP + OmpR

C
1 2 3 4

5 6 7

8 9 10

11 12 13

k5

k12

k15

k1

k2

k3

k4

k6

k7

k8

k9

k10

k11

k13

k14

D y1 EnvZ-ADP

y2 EnvZ

y3 EnvZ-ATP

y4 EnvZ-P

y5 EnvZ-P + OmpR

y6 EnvZ-P-OmpR

y7 EnvZ + OmpR-P

y8 EnvZ-ATP + OmpR-P

y9 EnvZ-ATP-OmpR-P

y10 EnvZ-ATP + OmpR

y11 EnvZ-ADP + OmpR-P

y12 EnvZ-ADP-OmpR-P

y13 EnvZ-ADP + OmpR

Figure 3.2: Two component signaling and the E. coli osmolarity network. A Schematic of
two-component phospho-transfer between a histidine residue on the autophosphorylating sen-
sor kinase and an aspartate on the response regulator. B Extended reaction network for the
EnvZ/OmpR two-component osmoregulator in E. coli. Hyphens, as in EnvZ-ATP, indicate the
formation of a biochemical complex between the components. C Corresponding labeled, di-
rected graph on the complexes, with the terminal strong linkage classes outlined in yellow.
Each linkage class has only a single terminal strong linkage class. D Numbering scheme for
the complexes.
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A

F1,6BPase

F6P

F1,6BP

PFK2-F2,6BPase F2,6BP

PFK1

B
E � E-ATP

E-ATP - F6P � E-ATP-F6P → E + F2,6BP

E + F2,6BP � E-F2,6BP → E + F6P

E-ATP + F2,6BP � E-ATP-F2,6BP

E-F2,6BP � E-ATP-F2,6BP → E-ATP +F6P

E-ATP-F6P + F2,6BP � E-ATP-F6P-F2,6BP
E-F2,6BP+F2,6BP

↗
E-ATP-F2,6BP + F6P � E-ATP-F6P-F2,6BP

↘
E-ATP-F2,6BP + F6P

Figure 3.3: The bifunctional enzyme phosphofructokinase2-fructose-2,6-BPase (PFK2-
F2,6BPase). A Schematic of glycolysis at the step involving phosphofructokinase1
(PFK1), that converts fructose-6-phosphate (F6P) into fructose-1,6-bisphosphate (F1,6BP),
and fructose-1,6-bisphosphatase (F1,6BPase), that catalyzes the opposing reactions in gluco-
neogenic tissues. PFK2-F2,6BPase operates bifunctionally to produce and consume fructose-
2,6-bisphosphate (F2,6BP), which allosterically regulates PFK1 and F1,6BPase. B The corre-
sponding reaction network.

A
1 2

4 5

3

8 6 7

9

10 13

11

12 14

k5

k8

k11

k18

k19

k1

k2

k3 k4

k6 k7

k9

k10

k12 k13

k14

k15

k16

k17

B y1 E
y2 E-ATP
y3 E-ATP + F6P
y4 E-ATP-F6P
y5 E + F2,6BP
y6 E-F2,6BP
y7 E + F6P
y8 E-ATP-F2,6BP
y9 E-ATP + F2,6BP
y10 E-ATP-F6P + F2,6BP
y11 E-ATP-F6P-F2,6BP
y12 E-ATP-F2,6BP + F6P
y13 E-F2,6BP + F2,6BP
y14 E-ATP-F6P + F6P

Figure 3.4: PFK2-F2,6BPase, as in Figure 3.3. A Labelled, directed graph on the complexes,
with the terminal strong linkage classes outlined in yellow. The last linkage class has two
terminal strong linkage classes. B Numbering scheme for the complexes.
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Chapter 4

Chemical reaction systems with toric
steady states

As we have already mentioned, the polynomial dynamical systems arising from mass–action
chemical reaction systems are often large (consisting of tens or even hundreds of ordinary
differential equations) and poorly parametrized (due to noisy measurement data and a small
number of data points and repetitions). Therefore, it is often difficult to establish the existence
of (positive) steady states or to determine whether more complicated phenomena such as mul-
tistationarity exist. If, however, the steady state ideal of the system is a binomial ideal, then we
show that these questions can be answered easily. The focus of this chapter is on systems with
this property, and we say that such systems have toric steady states. An example of these sys-
tems are those whose steady states are described by complex-linear invariants with two terms
(recalling Chapter 3).

Our main result here gives sufficient conditions for a chemical reaction system to have
toric steady states. Furthermore, we analyze the capacity of such a system to exhibit posi-
tive steady states and multistationarity. Examples of systems with toric steady states include
weakly-reversible zero-deficiency chemical reaction systems. An important application of our
work concerns the networks that describe the multisite phosphorylation of a protein by a ki-
nase/phosphatase pair in a sequential and distributive mechanism. This chapter is based on
joint work with A. Dickenstein, A. Shiu and C. Conradi.

4.1 Toric Steady States

Ordinary differential equations (ODEs) are an important modeling tool in Systems Biology
and many other areas of Computational Biology. Due to the inherent complexity of biological
systems, realistic models are often large, both in terms of the number of states and the (un-
known) parameters. Moreover, models are often poorly parametrized, a consequence of noisy
measurement data, a small number of data points, and a limited number of repetitions. Hence,
for mass-action chemical reaction systems, the focus of the present chapter, simply establishing
the existence of (positive) steady states can be demanding, as it requires the solution of a large
polynomial system with unknown coefficients (usually the parameters). Moreover, due to the
predominant parameter uncertainty, one is often not interested in establishing the existence of a
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particular steady state, but rather in obtaining a parametrization of all steady states – preferably
in terms of the system parameters [164]. Frequently one is also interested in the existence of
multiple steady states (multistationarity), for example, in modeling the cell cycle [9, 19, 139],
signal transduction [90, 113] or cellular differentiation [162, 163]. For general polynomial sys-
tems with unknown coefficients, the tasks of obtaining positive solutions or a parametrization
of positive solutions, and deciding about multiple positive solutions, are clearly challenging.
For the systems considered in this chapter – chemical reaction systems with toric steady states
– these questions can be answered easily.

We say that a polynomial dynamical system dx/dt = f(x) has toric steady states if the
ideal generated by its steady state equations is a binomial ideal (see Definition 4.1.1). We give
sufficient conditions for a chemical reaction system to have toric steady states (Theorems 4.2.2
and 4.2.4) and show in this case that the steady state locus has a nice monomial parametrization
(Theorems 4.2.3 and 4.2.5). Furthermore, we show that the existence of positive steady states
in this case is straightforward to check (Theorem 4.4.1).

There are several important classes of mass-action kinetics chemical reaction systems which
have toric steady states. These include usual instances of detailed-balanced systems in the
sense of Feinberg, Horn, and Jackson [45, 49, 79, 80], which show particularly nice dynamical
behavior. These systems are weakly-reversible, a hypothesis we do not impose here.

A chemical reaction system with toric steady states of great biological importance is the
multisite phosphorylation system; this network describes the n-site phosphorylation of a pro-
tein by a kinase/phosphatase pair in a sequential and distributive mechanism. Biochemically,
these systems play an important role in signal transduction networks, cell cycle control, or cel-
lular differentiation: for example, members of the family of mitogen-activated kinase cascades
consist of several such phosphorylation systems with n = 2 or n = 3 (see e.g. [83, 140]), the
progression from G1 to S phase in the cell cycle of budding yeast is controlled by a system with
n = 9 (by way of the protein Sic1, see e.g. [37]), and a system with n = 13 plays an important
role in T-cell differentiation (by way of the protein NFAT [74, 77, 111]).

Consequently there exists a body of work on the mathematics of phosphorylation systems
and the more general class of post-translational modification systems: for example, Conradi et
al. [25], Wang and Sontag [170], Manrai and Gunawardena [112], and Thomson and Gunawar-
dena [164, 165]. While the first two references are concerned with the number of steady states
and multistationarity, the references of Gunawardena et al. deal with parametrizing all positive
steady states. The present chapter builds on these earlier results. In fact, the family of mono-
mial parametrizations obtained here for multisite phosphorylation systems (Theorem 4.3.1) is
a specific instance of a rational parametrization theorem due to Thomson and Gunawardena,
and one parametrization of the family was analyzed earlier by Wang and Sontag. Furthermore,
we show that by using results from [25] one can determine whether multistationarity exists for
systems with toric steady states by analyzing certain linear inequality systems. In this sense
our results can be seen as a generalization of [25].

Our main results on toric steady states appear in Section 4.2: Theorems 4.2.2 and 4.2.4
give sufficient criteria for a system to exhibit toric steady states, and Theorems 4.2.3 and 4.2.5
give parametrizations for the steady state locus. As an application of this work, we analyze the
steady state loci of multisite phosphorylation systems in Section 4.3. Theorem 4.3.1 summa-
rizes our results: we show that these systems have toric steady states for any choice of reaction
rate constants, and we give an explicit parametrization of the steady state locus. Section 4.4
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focuses on multiple steady states for chemical reaction systems with toric steady states. The-
orem 4.4.1 gives a criterion for such a system to exhibit multistationarity, and we make the
connection to a related criterion due to Feinberg.

Definition 4.1.1. Consider a polynomial dynamical system dxi/dt = fi(x), for i = 1, 2, . . . , s,
with f1, f2, . . . , fs ∈ R[x1, x2, . . . , xs]. We are interested in the nonnegative zeros of the steady
state ideal:

JΣΨ = 〈f1, f2, . . . , fs〉 =

{
s∑
i=1

hi(x)fi(x) | hi(x) ∈ R[x1, . . . , xs] for 1 ≤ i ≤ s

}
.

The nonnegative zeros of JΣΨ are called steady states, and the term steady state locus is used
to denote the set of nonnegative zeros of JΣΨ:{

x̃ ∈ Rs
≥0 | f1(x̃) = f2(x̃) · · · = fs(x̃) = 0

}
.

We say that the polynomial dynamical system has toric steady states if JΣΨ is a binomial ideal
and it admits nonnegative zeros.

We are interested in positive steady states x ∈ Rs
>0 and will not be concerned with boundary

steady states x ∈
(
Rs
≥0 \ Rs

>0

)
.

This chapter focuses on mass-action kinetics chemical reaction systems. In this case, the
polynomials f1, f2, . . . , fs correspond to the rows of the system (2.10). In general, having toric
steady states depends both on the reaction network and on the particular rate constants, as the
following simple example shows.

Example 4.1.1 (Triangle network). Let s = 2, m = 3, and let G be the following network:

2A

A+B2B

κ31

κ13

κ32

κ23

κ21

κ12

%%KKKKKKKKKKKKKKK eeKKKKKKKKKKKKKKKxxppppppppppppppp 88ppppppppppppppp
oo //

We label the three complexes as xy1 = x2
1, xy2 = x2

2, xy3 = x1x2, and we define κij to be
the (real positive) rate constant of the reaction from complex xyi to complex xyj . The resulting
mass-action kinetics system (2.10) equals

dx1

dt
= − dx2

dt
= (−2κ12 − κ13)x2

1 + (2κ21 + κ23)x2
2 + (κ31 − κ32)x1x2 .

Then, the steady state locus in R2 is defined by this single trinomial. As only the coefficient of
x1x2 can be zero, this system has toric steady states if and only if κ31 = κ32.

A chemical reaction system exhibits multistationarity if there exists a stoichiometric com-
patibility class Px0 (see Section 2.3) with two or more steady states in its relative interior. A
system may admit multistationarity for all, some, or no choices of positive rate constants κij; if
such rate constants exist, then we say that the network has the capacity for multistationarity.
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4.2 Sufficient conditions for the existence of toric steady states

The main results of this section, Theorems 4.2.1, 4.2.2, and 4.2.4, give sufficient conditions
for a chemical reaction system to have toric steady states and state criteria for these systems to
have positive toric steady states. Theorems 4.2.3 and 4.2.5 give a monomial parametrization of
the steady state locus in this case.

We first state several conditions and intermediate results that will lead to Theorem 4.2.2.
Recall that a partition of {1, 2, . . . ,m} is a collection of nonempty disjoint subsets I1, I2, . . . , Id
with respective cardinalities l1, l2, . . . , ld such that their union equals {1, 2, . . . ,m} (or equiva-
lently, such that l1 + l2 + · · · + ld = m). The support supp(b) of a real vector b ∈ Rm is the
subset of indices corresponding to the nonzero entries of b. The following condition requires
that a certain linear subspace has a basis with disjoint supports.

Condition 4.2.1. For a chemical reaction system given by a network G with m complexes
and reaction rate constants κ∗ij , let Σ denote its complex-to-species rate matrix (2.9), and set
d := dim(ker(Σ)). We say that the chemical reaction system satisfies Condition 4.2.1, if there
exists a partition I1, I2, . . . , Id of {1, 2, . . . ,m} and a basis b1, b2, . . . , bd ∈ Rm of ker(Σ) with
supp(bi) = Ii.

Remark 4.2.1. Most of the networks considered in this chapter have the property that each
linkage class contains a unique terminal strong linkage class. In this case, the dimension of the
kernel of Σ satisfies d := dim(ker(Σ)) = l+δS , where l denotes the number of linkage classes,
and δS is the structural deficiency of the network; this result is due to Feinberg [50, Lemma
6.1.3].

Remark 4.2.2. Conditions 4.2.1, 4.2.2, and 4.2.3 in this chapter are simply linear algebra
conditions. However, the objects of interest (such as the subspace in Condition 4.2.1) are
parametrized by the unknown rate constants κij , so verifying the conditions can become quite
complicated for large networks.

Condition 4.2.1 implies that the steady state ideal JΣΨ is binomial:

Theorem 4.2.1. Consider a chemical reaction system with m complexes, and let d denote
the dimension of ker(Σ). Assume that Condition 4.2.1 holds (i.e., there exists a partition
I1, I2, . . . , Id of {1, 2, . . . ,m} and a basis b1, b2, . . . , bd ∈ Rm of ker(Σ) with supp(bi) = Ii).
Then the steady state ideal JΣΨ is generated by the binomials

bjj1x
yj2 − bjj2xyj1 , for all j1, j2 ∈ Ij , and for all 1 ≤ j ≤ d. (4.1)

Proof. Consider the vectors βjj1,j2 = bjj1ej2 − b
j
j2
ej1 ∈ Rm for all j1, j2 ∈ Ij , for all 1 ≤ j ≤ d.

It is straightforward to check that these vectors span the orthogonal complement ker(Σ)⊥ of
the kernel of Σ. But by definition, this complement is spanned by the rows of the matrix Σ.
Therefore, the binomials bjj1Ψj2(x) − bjj2Ψj1(x) are R-linear combinations of the polynomials
f1(x), f2(x), . . . , fs(x), and vice-versa. And so the binomials in (4.1) give another system of
generators of JΣΨ.

Remark 4.2.3. Under the assumptions of Theorem 4.2.1, we can present a smaller set of gen-
erators of the ideal JΣΨ. Namely, let us call j0 the first element of Ij , that is

j0 := min Ij. (4.2)
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Then the steady state ideal JΣΨ is generated by the binomials

bjj′x
yj0 − bjj0xyj′ , for all j′ ∈ Ij , j′ 6= j0, and for all 1 ≤ j ≤ d. (4.3)

Note that Theorem 4.2.1 does not provide any information about the existence of (toric)
steady states (i.e. nonnegative solutions to the binomials (4.1), cf. Definition 4.1.1), let alone
positive steady states. In general, this is a question of whether a parametrized family of poly-
nomial systems has nonnegative solutions. For this purpose two further conditions are needed:

Condition 4.2.2. Consider a chemical reaction system given by a networkG withm complexes
and reaction rate constants κ∗ij that satisfies Condition 4.2.1 for the partition I1, I2, . . . , Id of
{1, 2, . . . ,m} and a basis b1, b2, . . . , bd ∈ Rm of ker(Σ) (with supp(bi) = Ii). We say that this
chemical reaction system additionally satisfies Condition 4.2.2, if for all j ∈ {1, 2, . . . , d}, the
nonzero entries of bj have the same sign, that is, if

sign
(
bjj1
)

= sign
(
bjj2
)

, for all j1, j2 ∈ Ij , for all 1 ≤ j ≤ d. (4.4)

The next result can be used to check the validity of Condition 4.2.2.

Lemma 4.2.1. Consider a chemical reaction system with m complexes that satisfies Condi-
tion 4.2.1 for the partition I1, I2, . . . , Id of {1, 2, . . . ,m} and the basis b1, b2, . . . , bd ∈ Rm of
ker(Σ). Let j ∈ {1, 2, . . . , d}, There exists an (lj − 1) × lj submatrix Σj of Σ with columns
indexed by the elements of Ij and linearly independent rows (that is, rank(Σj) = lj − 1). Let
Σj be any such matrix. For i ∈ {1, . . . , lj}, call Σj(i) the submatrix of Σj obtained by deleting
its i-th column. Then the system satisfies Condition 4.2.2 (that is, equations (4.4) are satis-
fied) if and only if, for all j ∈ {1, 2, . . . , d}, the sign of det(Σj(i)) is different from the sign of
det(Σj(i+ 1)) for 1 ≤ i ≤ lj − 1.

Proof. First, note that the kernel of the submatrix of Σ formed by the columns indexed by Ij
has dimension one and is spanned by the vector b′j which consists of the lj entries of bj that are
indexed by Ij . So there exist lj − 1 rows that give a matrix Σj as in the statement.

By a basic result from Linear Algebra, the kernel of Σj is spanned by the vector v′ with
i-th entry equal to (−1)i det(Σj(i)). As the vector b′j must be a multiple of v′, it is immediate
that (4.4) holds if and only if the sign of Σj(i) is different from the sign of Σj(i + 1) for
1 ≤ i ≤ lj − 1.

Condition 4.2.2 is necessary for the existence of positive real solutions to the system defined
by setting the binomials (4.3) to zero. In working towards sufficiency, observe that the system
can be rewritten as

xyj′−yj0 =
bjj′

bjj0
, for all j′ ∈ Ij , j′ 6= j0, and for all 1 ≤ j ≤ d,

where j0 is as in Equation (4.2).
Note that Condition 4.2.2 implies that the right-hand side of the above equation is positive.

In addition, we are interested in positive solutions x ∈ Rs
>0, so we now apply ln (·) to both

sides and examine the solvability of the resulting linear system:

lnx (yj′ − yj0)† = ln
bjj′

bjj0
, for all j′ ∈ Ij , j′ 6= j0, and for all 1 ≤ j ≤ d,
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where lnx = (ln(x1), ln(x2), . . . , ln(xs)). Now collect the differences (yj′ − yj0)† as columns
of a matrix

∆ :=
[
(yj′ − yj0)†

]
∀j′∈Ij ,j′ 6=j0,∀1≤j≤d

, (4.5)

and define the (row) vector

Θκ :=

(
ln
bjj′

bjj0

)
∀j′∈Ij ,j′ 6=j0,∀1≤j≤d

. (4.6)

Observe that the basis vectors bj and hence the vector Θκ depend on the rate constants. The
binomials (4.1) admit a real positive solution (in the presence of Condition 4.2.2), if and only
if the linear system

(lnx) ∆ = Θκ (4.7)

has a real solution (lnx) ∈ Rs. This is the motivation for our final condition and Theorem 4.2.2
below:

Condition 4.2.3. Consider a chemical reaction system given by a networkG withm complexes
and reaction rate constants κ∗ij that satisfies both Condition 4.2.1 (i.e. there exists a partition
I1, I2, . . . , Id of {1, 2, . . . ,m} and a basis b1, b2, . . . , bd ∈ Rm of ker(Σ) with supp(bi) = Ii)
and Condition 4.2.2 (i.e., the coefficients of each binomial in equation (4.1) are of the same
sign). Recall the matrix ∆ and the vector Θκ (defined in equations (4.5) and (4.6), respectively).
Let U be a matrix with integer entries whose columns form a basis of the kernel of ∆, that is, U
is an integer matrix of maximum column rank such that the following matrix product is a zero
matrix with s rows:

∆U = 0 .

We say that this chemical reaction system additionally satisfies Condition 4.2.3 if the linear
system (4.7) has a real solution (lnx) ∈ Rs. Equivalently, the Fundamental Theorem of Linear
Algebra [151] implies that equation (4.7) has a solution, if and only if

Θκ U = 0 . (4.8)

Remark 4.2.4. Conditions 4.2.2 and 4.2.3 impose semialgebraic constraints on the rate con-
stants:

• If the matrix ∆ defined in (4.5) has full column rank (i.e. the right kernel is trivial), then
U is the zero vector. It follows that equation (4.8) holds, and hence, Condition 4.2.3 is
trivially satisfied for any positive vector of rate constants. We will see that this is the case
for multisite phosphorylation networks.

• If the matrix ∆ does not have full column rank (i.e. there exists a nontrivial right kernel),
then equation (4.8) evaluates to a system of polynomial equations in the rate constants.

Now we can state sufficient conditions for a chemical reaction system to admit positive toric
steady states:

Theorem 4.2.2 (Existence of positive toric steady states). Consider a chemical reaction system
with m complexes which satisfies Condition 4.2.1 and hence has a binomial steady state ideal
JΣΨ. Then this chemical reaction system admits a positive toric steady state if and only if
Conditions 4.2.2 and 4.2.3 hold.
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Proof. Assume that Conditions 4.2.1, 4.2.2, and 4.2.3 hold. Lemma 4.2.1 implies that the co-
efficients of the binomial system are of the same sign, hence ∆ and Θκ given in equations (4.5)
and (4.6) and the linear system (4.7) are well-defined. Then Condition 4.2.3 gives a solution
(lnx) to the system (4.7), which immediately gives a positive steady state x ∈ Rs

>0 of the
chemical reaction system.

On the other hand, assume that Condition 4.2.1 holds and that the system admits a positive
steady state, that is, the binomial system (4.1) has a positive real solution. In this case the
coefficients of the binomials must be of the same sign, which implies that Condition 4.2.2
holds additionally. Again, positive real solutions of the binomial system imply solvability of
the linear system (4.7) and thus, Condition 4.2.3 is satisfied as well.

Remark 4.2.5 (Existence of steady states using fixed point arguments). In some cases, we
can establish the existence of positive steady states by using fixed-point arguments. If the
stoichiometric compatibility classes of a network are bounded and the chemical reaction system
has no boundary steady states, then the Brouwer fixed point theorem guarantees that a positive
steady state exists in each compatibility class. For example, the multisite phosphorylation
networks that are studied in this chapter have this property.

The focus of our results, however, is slightly different. We are more interested in parametriz-
ing the steady state locus (and hence all positive steady states) and less with the actual number
of steady states within a given stoichiometric compatibility class (apart from Section 4.4, where
we are concerned with compatibility classes having at least two distinct positive steady states).
Moreover, using fixed point arguments, the existence of positive steady states may only be de-
duced if the chemical reaction system has no boundary steady states, which is somewhat rare
in examples from Computational Biology. Our results do not require any information about
boundary steady states.

Example 4.2.1 (Triangle network, continued). We return to Example 4.1.1 to illustrate the
three conditions. First, ker(Σ) is the plane in R3 orthogonal to the vector (−2κ12−κ13, 2κ21 +
κ23, κ31 − κ32). It follows that the partition {1, 2}, {3} works to satisfy Condition 4.2.1 if and
only if κ31 = κ32. Therefore, for a chemical reaction system arising from the Triangle network,
Condition 4.2.1 holds (with partition {1, 2}, {3}) if and only if the system has toric steady
states. The forward direction is an application of Theorem 4.2.1, while for general networks
the reverse implication is false: we will see in Example 4.2.3 that there are networks with toric
steady states that do not satisfy Condition 4.2.1 for any partition.

Next, for those systems for which κ31 = κ32, Condition 4.2.2 comes down to verifying that
the entries of the vector (−2κ12−κ13, 2κ21 +κ23) have opposite signs, which is clearly true for
positive rate constants. Finally, Condition 4.2.3 asks (again, in the κ31 = κ32 setting) whether
the following linear system has a real solution (lnx1, lnx2) ∈ R2:

(lnx1, lnx2)

(
2
−2

)
︸ ︷︷ ︸

=∆

= ln

(
2κ21 + κ23

2κ12 + κ13

)
︸ ︷︷ ︸

=Θκ

,

which is clearly true. This linear equation arises from the binomial equation

(2κ12 + κ13)x2
1 − (2κ21 + κ23)x2

2 = 0 .

As Condition 4.2.3 holds, Theorem 4.2.2 implies that these systems admit positive steady states.
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Under the hypothesis of Theorem 4.2.2, the following result shows how to parametrize the
steady state locus.

Theorem 4.2.3. Consider a chemical reaction system that satisfies Conditions 4.2.1, 4.2.2, and
4.2.3. Let A ∈ Zw×s be a matrix of maximal rank w such that ker(A) equals the span of all the
differences yj2 − yj1 for j1, j2 ∈ Ij , where 1 ≤ j ≤ d. For 1 ≤ i ≤ s, we let Ai denote the i-th
column of A. Let x̃ ∈ Rs

>0 be a positive steady state of the chemical reaction system. Then all
positive solutions x ∈ Rs

>0 to the binomial system (4.1) can be written as

x =
(
x̃1 t

A1 , x̃2 t
A2 , . . . , x̃s t

As
)
, (4.9)

for some t ∈ Rw (where we are using the standard notation for multinomial exponents). In par-
ticular, the positive steady state locus has dimension w and can be parametrized by monomials
in the concentrations. Any two distinct positive steady states x1 and x2 satisfy

lnx2 − lnx1 ∈ im
(
A†
)

= span {yj2 − yj1 | j1, j2 ∈ Ij, 1 ≤ j ≤ d}⊥ . (4.10)

Proof. By definition the rows of A span the orthogonal complement of the linear subspace
spanned by the differences yj2 − yj1 for j1, j2 ∈ Ij , 1 ≤ j ≤ d. Let x̃ ∈ Rs

>0 be a positive
steady state of the chemical reaction system; in other words, it is a particular positive solution
for the following system of equations:

bjj1x
yj2 − bjj2xyj1 = 0 for all j1, j2 ∈ Ij, and for all 1 ≤ j ≤ d .

(Here the bj are the basis vectors of ker(Σ) with disjoint support.) Then it follows from basic
results on binomial equations [38] that all positive solutions x ∈ Rs

>0 to the above system of
binomial equations can be written as

x =
(
x̃1 t

A1 , x̃2 t
A2 , . . . , x̃s t

As
)
,

for some t ∈ Rw. In particular, the positive steady state locus has w degrees of freedom.
For the convenience of the reader, we expand now the previous argument. In fact, it is easy to
check that any vector of this shape is a positive solution. We first let x∗ be a particular positive
solution of the above binomials. Then x∗

x̃
:=

(
x∗1
x̃1
,
x∗2
x̃2
, . . . x

∗
s

x̃s

)
is a positive solution of the

system of equations:

xyj2 − xyj1 = 0 for all j1, j2 ∈ Ij, for all 1 ≤ j ≤ d .

Therefore,
(
x∗

x̃

)yj2−yj1 = 1. Or, equivalently, ln
(
x∗

x̃

)
· (yj2 − yj1) = 0. This implies that

ln
(
x∗

x̃

)
belongs to the rowspan of A, and this means there exist λ1, λ2, . . . , λw such that, if

A1,A2, . . . ,Aw represent the rows of A, then we can write(
ln

(
x∗

x̃

))
i

= λ1(A1)i + · · ·+ λw(Aw)i for all 1 ≤ i ≤ s .

If we call t` := exp(λ`) for 1 ≤ ` ≤ w, then x∗i = x̃it
Ai for all 1 ≤ i ≤ s, which is what we

wanted to prove.
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We now turn to the case of a network for which Condition 4.2.1 holds with the same par-
tition for all choices of rate constants. The following result, which follows immediately from
Theorem 4.2.2, states that for such a network, the semialgebraic set of rate constants that give
rise to systems admitting positive steady states is defined by Conditions 4.2.2 and 4.2.3.

Corollary 4.2.1. Let G be a chemical reaction network with m complexes and r reactions, and
assume that there exists a partition I1, I2 . . . , Id of the m complexes such that for any choice
of reaction rate constants, the resulting chemical reaction system satisfies Condition 4.2.1 with
this partition. Then a vector of reaction rate constants κ∗ij ∈ Rr

>0 gives rise to a system that
admits a positive steady state if and only if κ∗ij satisfies Conditions 4.2.2 and 4.2.3.

In the following example, we see that the 2-site phosphorylation network satisfies the hy-
pothesis of Corollary 4.2.1. The 2-site system generalizes the 1-site system in Example 2.1.2,
and we will consider general n-site systems in Section 4.3.

Example 4.2.2 (2-site phosphorylation system). The dual phosphorylation network arises from
the 1-site network (2.11) by allowing a total of two phosphate groups to be added to the sub-
strate of S0 rather than only one. Again there are two enzymes (E and F ), but now there are
3 substrates (S0, S1, and S2). The substrate Si is the substrate obtained from S0 by attaching
i phosphate groups to it. Each substrate can accept (via an enzymatic reaction involving E)
or lose (via a reaction involving F ) at most one phosphate; this means that the mechanism is
“distributive”. In addition, we say that the phosphorylation is “sequential” because multiple
phosphate groups must be added in a specific order, and removed in a specific order as well.

S0 + E
kon0−→
←−
koff0

ES0

kcat0→ S1 + E
kon1−→
←−
koff1

ES1

kcat1→ S2 + E

(4.11)

S2 + F
lon1−→
←−
loff1

FS2

lcat1→ S1 + F
lon0−→
←−
loff0

FS1

lcat0→ S0 + F

We order the 9 species as (S0, S1, S2, ES0, ES1, FS1, FS2, E, F ), and we order the 10 com-
plexes as (S0 +E, S1 +E, S2 +E,ES0, ES1, S0 +F, S1 +F, S2 +F, FS1, FS2). The 9× 10-
matrix Y and the 10× 10-matrix L(G) for this system are the following:

Y =



1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0


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L(G) :=



−kon0 0 0 koff0 0 0 0 0 0 0
0 −kon1 0 kcat0 koff1 0 0 0 0 0
0 0 0 0 kcat1 0 0 0 0 0
kon0 0 0 −koff0 − kcat0 0 0 0 0 0 0

0 kon1 0 0 −koff1 − kcat1 0 0 0 0 0
0 0 0 0 0 0 0 0 lcat0 0
0 0 0 0 0 0 −lon0 0 loff0 lcat1

0 0 0 0 0 0 0 −lon1 0 loff1

0 0 0 0 0 0 lon0 0 −lcat0 − loff0 0
0 0 0 0 0 0 0 lon1 0 −lcat1 − loff1



We will analyze the steady state locus of the resulting chemical reaction system by fo-
cusing on the structure of the kernel of the matrix Σ = Y L(G) of the system. Note that
the network (4.11) has only two terminal strong linkage classes, {S2 + E} and {S0 + F}.
Also, span{e3, e6} ⊆ ker(Σ), where ei denotes the i-th canonical vector of R10. A parti-
tion of the 10 complexes that satisfies Condition 4.2.1 is given by I1 = {1, 4, 7, 9}, I2 =
{2, 5, 8, 10}, I3 = {3}, and I4 = {6}. A corresponding basis of ker(Σ), that is, one in

which the i-th basis vector has support Ii, is: b1 =



(koff0 + kcat0)kon1kcat1 lon1 lon0 lcat0

0
0

kon0kon1kcat1 lon1 lon0 lcat0

0
0

kon0kcat0kon1kcat1 lon1(lcat0 + loff0)
0

kon0kcat0 lon0kon1kcat1 lon1

0


,

b2 =



0
kon0kcat0 lon0(koff1 + kcat1)lon1 lcat1

0
0

kon0kcat0 lon0kon1 lon1 lcat1

0
0

kon0kcat0 lon0kon1kcat1(lcat1 + loff1)
0

kon0kcat0 lon0kon1kcat1 lon1


, b3 = e3 , b

4 = e6 .

The structure of this basis {bi} implies that for v ∈ R10, v ∈ ker(Σ) if and only if v satisfies
the following binomial equations:

b1
1v4 − b1

4v1 = 0 , b2
2v5 − b2

5v2 = 0 ,
b1

1v7 − b1
7v1 = 0 , b2

2v8 − b2
8v2 = 0 ,

b1
1v9 − b1

9v1 = 0 , b2
2v10 − b2

10v2 = 0 ,
(4.12)

Hence, any steady state of the 2-site phosphorylation system must satisfy the following equa-
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tions in the species concentrations x = (xS0 , xS1 , . . . , xE, xF ):

b1
1x4 − b1

4x8x1 = 0 , b2
2x5 − b2

5x8x2 = 0 ,
b1

1x9x2 − b1
7x8x1 = 0 , b2

2x9x3 − b2
8x8x2 = 0 ,

b1
1x6 − b1

9x8x1 = 0 , b2
2x7 − b2

10x8x2 = 0 .
(4.13)

To check Condition 4.2.3, we consider the matrix ∆ and the vector Θκ:

∆ = [e4 − e8 − e1 | e9 + e2 − e8 − e1 | e6 − e8 − e1 | e5 − e8 − e2 | e9 + e3 − e8 − e2 | e7 − e8 − e2]

Θκ =

(
ln
b1

4

b1
1

, ln
b1

7

b1
1

, ln
b1

9

b1
1

, ln
b2

5

b2
2

, ln
b2

8

b2
2

, ln
b2

10

b2
2

)
.

It is straightforward to check that ∆ has rank 6 and hence full rank. Thus Condition 4.2.3 is
trivially satisfied and does not pose any constraints on the rate constants.

Following the proof of Theorem 4.2.3, we first will parametrize the solution set of the fol-
lowing reduced system:

x4 − x8x1 = 0 , x5 − x8x2 = 0 ,
x9x2 − x8x1 = 0 , x9x3 − x8x2 = 0 ,
x6 − x8x1 = 0 , x7 − x8x2 = 0 .

(4.14)

We are interested in an integer matrix A such that ker(A) = im (∆). One such matrix is

A =

 0 1 2 1 2 1 2 1 0
0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 0 0

 .

This provides the following 3-dimensional parametrization of the reduced system:

(t1, t2, t3) 7→
(
t3, t1t3, t

2
1t3, t1t2t3, t

2
1t2t3, t1t2t3, t

2
1t2t3, t1t2, t2

)
,

where t2 is the concentration of the enzyme F , t1 is the quotient of the concentration of the
enzyme E divided by the concentration of the enzyme F , and t3 is the concentration of the
substrate S0. Returning to the original binomials (4.13), we have the following particular
solution:

x∗1 = x∗8 = x∗9 = 1, x∗2 =
b1

7

b1
1

, x∗3 =
b2

8b
1
7

b1
1b

2
2

, x∗4 =
b1

4

b1
1

, x∗5 =
b2

5b
1
7

b1
1b

2
2

, x∗6 =
b1

9

b1
1

, x∗7 =
b2

10b
1
7

b1
1b

2
2

.

Therefore we obtain the following 3-dimensional parametrization of the steady state locus
(4.13), as predicted in Theorem 4.2.3:

R3 → R9 (4.15)

(t1, t2, t3) 7→
(
t3,

b1
7

b1
1

t1t3,
b2

8b
1
7

b1
1b

2
2

t21t3,
b1

4

b1
1

t1t2t3,
b2

5b
1
7

b1
1b

2
2

t21t2t3,
b1

9

b1
1

t1t2t3,
b2

10b
1
7

b1
1b

2
2

t21t2t3, t1t2, t2

)
.

Recall that the values bij are polynomials in the rate constants shown in the display of the
vectors b1 and b2. Finally, note that none of the calculations in this example depends on the
specific values of the rate constants; in particular, one partition works for all systems, so the
hypothesis of Corollary 4.2.1 holds. In fact, as Condition 4.2.3 does not impose any constraints
on the rate constants, it follows that all 2-site phosphorylation systems admit positive steady
states. Actually, a stronger result holds: each stoichiometric compatibility class contains a
steady state in its relative interior [23, 170].
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4.2.1 More general sufficient conditions

We show in Example 4.2.3 below, extracted from [144], that the conditions in Theorem 4.2.2
are not necessary for a chemical reaction system to have toric steady states; in other words,
the converse of Theorem 4.2.2 does not hold. However, the condition for the steady state
ideal to be generated by binomials always can be checked algorithmically via a Gröbner basis
computation, as stated in the following lemma.

Lemma 4.2.2 (Proposition 1.1.(a) of [43]). Let I be a binomial ideal, let ≺ be a monomial
order, and let G be the reduced Gröbner basis of I for that ordering. Then G consists of
binomials.

Lemma 4.2.2 is a basic result about binomial ideals which is due to Eisenbud and Sturm-
fels [43]; it is a result concerning polynomial linear combinations. Note however that Theo-
rem 4.2.2 requires only linear algebra computations over R. We make use of Lemma 4.2.2 in
the following example. We will return to it later to show that Theorem 4.2.4 below can be used
to prove that this system has toric steady states, without needing to compute a Gröbner basis.

Example 4.2.3 (Shinar and Feinberg network). This example demonstrates that Condition 4.2.1
is not necessary for a chemical reaction system to have toric steady states. The network in
Example (S60) of the Supporting Online Material of the recent article of Shinar and Feinberg
is the following [144]:

XD
κ12
�
κ21

X
κ23
�
κ32

XT
κ34→ Xp

Xp + Y
κ56
�
κ65

XpY
κ67→ X + Yp

XT + Yp
κ89
�
κ98

XTYp
κ9,10→ XT + Y

XD + Yp
κ11,12

�
κ12,11

XDYp
κ12,13→ XD + Y

(4.16)

We denote by x1, x2, . . . , x9 the concentrations of the species as follows:

xXD = x1, xX = x2, xXT = x3, xXp = x4 ,

xY = x5, xXpY = x6, xYp = x7, xXTYp = x8, xXDYp = x9 .

Note that the numbering of the 13 complexes in the network is reflected in the names of the rate
constants κij . The chemical reaction system is the following:

dx1
dt

= −κ12x1 + κ21x2 − κ11,12x1x7 + (κ12,11 + κ12,13)x9
dx2
dt

= κ12x1 + (−κ21 − κ23)x2 + κ32x3 + κ67x6
dx3
dt

= κ23x2 + (−κ32 − κ34)x3 − κ89x3x7 + (κ98 + κ9,10)x8
dx4
dt

= κ34x3 − κ56x4x5 + κ65x6
dx5
dt

= −κ56x4x5 + κ65x6 + κ9,10x8 + κ12,13x9
dx6
dt

= κ56x4x5 + (−κ65 − κ67)x6
dx7
dt

= κ67x6 − κ89x3x7 + κ98x8 − κ11,12x1x7 + κ12,11x9
dx8
dt

= κ89x3x7 + (−κ98 − κ9,10)x8
dx9
dt

= κ11,12x1x7 + (−κ12,11 − κ12,13)x9

(4.17)
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The reduced Gröbner basis with respect to the lexicographical order x1 > x2 > x4 > x5 >
x6 > x8 > x9 > x3 > x7 consists of the following binomials:

g1 = [κ89κ12κ23κ9,10(κ12,11 + κ12,13) + κ11,12κ21κ12,13(κ98 + κ9,10)(κ32 + κ34)]x3x7+
+[−κ23κ34κ12(κ12,11 + κ12,13)(κ98 + κ9,10)]x3

g2 = [−κ11,12κ21κ34(κ98 + κ9,10)(κ32 + κ34)]x3+
+[κ11,12κ21κ12,13(κ98 + κ9,10)(κ32 + κ34) + κ12κ23κ89κ9,10(κ12,11 + κ12,13)]x9

g3 = [−κ23κ34κ89κ12(κ12,11 + κ12,13)]x3+
+[κ23κ9,10κ89κ12(κ12,11 + κ12,13) + κ11,12κ21κ12,13(κ98 + κ9,10)(κ32 + κ34)]x8

g4 = κ67x6 − κ34x3

g5 = κ56κ67x4x5 + κ34(−κ65 − κ67)x3

g6 = κ23x2 + (−κ32 − κ34)x3

g7 = −κ21(κ32 + κ34)x3 + κ12κ23x1

(4.18)
Therefore, the network has toric steady states (for any choice of positive reaction rate con-

stants) because the steady state ideal can be generated by g1, g2, . . . , g7. However, we claim
that this chemical reaction system does not satisfy Condition 4.2.1. In fact, for any rate con-
stants, it is not possible to find a partition I1, I2, . . . , I6 ⊆ {1, 2, . . . , 13} such that ker(Σ) has
a basis {b1, b2, . . . , b6} with supp(bi) = Ii. This can be seen by noting that the kernel of Σ can
be generated as follows:

ker(Σ) =

〈
e4, e7, e10, e13,

(
κ21κ12,13(κ32 + κ34)

κ23κ34κ12

)
e1 +

(
κ12,13(κ32 + κ34)

κ23κ34

)
e2 +

(
κ12,13

κ34

)
e3+

+

(
(κ65 + κ67)κ12,13

κ67κ56

)
e5 +

(
κ12,13

κ67

)
e6 +

(
(κ12,11 + κ12,13)

κ11,12

)
e11 + e12,(

κ21κ9,10(κ32 + κ34)

κ23κ34κ12

)
e1 +

(
κ9,10(κ32 + κ34)

κ23κ34

)
e2 +

(
κ9,10

κ34

)
e3+

+

(
(κ65 + κ67)κ9,10

κ67κ56

)
e5 +

(
κ9,10

κ67

)
e6 +

(
κ98 + κ9,10

κ89

)
e8 + e9

〉
. (4.19)

Our next result, Theorem 4.2.4, will generalize Theorem 4.2.2 by giving a stronger con-
dition that guarantees that the steady state locus is generated by binomials. We first need to
generalize Conditions 4.2.1, 4.2.2, and 4.2.3 to any (finite) polynomial system.

First we must introduce some notation. For polynomialsF1, F2, . . . , Fs′ ∈ R[x1, x2, . . . , xs],
we denote by xy1 , xy2 , . . . , xym′ the monomials that occur in these polynomials; that is, there
exist Fij ∈ R such that Fi(x) =

∑m′

j=1 Fijx
yj for i = 1, 2, . . . , s′. We can write the polynomial

system F1(x) = F2(x) = · · · = Fs′(x) = 0 as

Σ′ ·Ψ′(x) = 0 , (4.20)

where Σ′ = (Fij) ∈ Rs′×m′ is the coefficient matrix and Ψ′(x) = (xy1 , xy2 , . . . , xym′ )†. We will
let d′ denote the dimension of ker(Σ′).

Condition 4.2.4. We say that the polynomial system (4.20) satisfies Condition 4.2.4 if there
exists a partition I1, I2, . . . , Id′ of {1, 2, . . . ,m′} and a basis b1, b2, . . . , bd

′ ∈ Rm′ of ker(Σ′)
such that supp(bi) = Ii.
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Condition 4.2.5. Consider a polynomial system (4.20) that satisfies Condition 4.2.4 for the
partition I1, I2, . . . , Id′ of {1, 2, . . . ,m′} and a basis b1, b2, . . . , bd

′ ∈ Rm′ of ker(Σ′) (with
supp(bi) = Ii). We say that the system satisfies additionally Condition 4.2.5, if for all j ∈
{1, 2, . . . , d′}, the nonzero entries of bj have the same sign.

As before, we collect the differences of exponent vectors as columns of a matrix

∆′ :=
[
(yj′ − yj0)†

]
∀j′∈Ij ,j′ 6=j0,∀1≤j≤d′

(4.21)

and define the (row) vector

Θ′ :=

[
ln
bjj0
bjj′

]
∀j′∈Ij ,j′ 6=j0,∀1≤j≤d′

. (4.22)

Condition 4.2.6. Consider a polynomial system (4.20) which satisfies Conditions 4.2.4 and 4.2.5.
Let U ′ be a matrix with integer entries whose columns form a basis of the kernel of ∆′. We say
that this system satisfies additionally Condition 4.2.6, if the following holds:

Θ′ U ′ = 0 .

We then have the following sufficient conditions:

Theorem 4.2.4. Consider a chemical reaction system with m complexes and assume that there
exist monomials xα1 ,xα2 , . . . ,xα` and indices i1, i2, . . . , i`, with {i1, i2, . . . , i`} ⊆ {1, 2, . . . , s},
such that Condition 4.2.4 holds for the enlarged polynomial system

f1 = · · · = fs = xα1fi1 = · · · = xα`fi` = 0.

Then the steady state ideal JΣψ is binomial.
Moreover, the system has positive (toric) steady states if and only if Conditions 4.2.5

and 4.2.6 hold additionally for the enlarged system.

This theorem can be proved following the lines of the proof of Theorem 4.2.2 for the en-
larged system defined in the statement. It is important to note that the ideal 〈f1, f2, . . . , fs〉
equals the ideal 〈f1, . . . , fs,x

α1fi1 , . . . ,x
α`fi`〉.

With similar proof as in Theorem 4.2.3, we moreover have:

Theorem 4.2.5. Under the hypotheses of Theorem 4.2.4, the steady state locus can be parame-
trized by monomials in the concentrations.

We end this section by returning to Example 4.2.3.

Example 4.2.4 (Shinar and Feinberg network, continued). Consider the system of equations:

f1 = 0
f2 = 0
...
f9 = 0
x7f1 = 0
x7f3 = 0
x7f8 = 0
x7f9 = 0

, (4.23)
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This enlarged system satisfies Conditions 4.2.4 and 4.2.5 for the following partition:

I1 = {4}, I2 = {10}, I3 = {13}, I4 = {14, 15}, I5 = {16, 17}, I6 = {1, 2, 3, 5, 6, 7, 8, 9, 11, 12}

and the following basis b1, b2, . . . , b6 of its kernel verifying supp(bj) = Ij:

b1 = e4 , b2 = e10 , b3 = e13 ,

b4 = (k12,11 + k12,13)e14 + k11,12e15, b5 = (k98 + k910)e16 + k89e17,

b6 = (k12k23k89k9,10(k12,11 + k12,13) + k21k11,12k12,13(k32 + k34)(k98 + k9,10))k21(k32 + k34)k56k67e1+

(k12k23k89k9,10(k12,11 + k12,13) + k21k11,12k12,13(k32 + k34)(k98 + k9,10))k12(k32 + k34)k56k67e2+

(k12k23k89k9,10(k12,11 + k12,13) + k21k11,12k12,13(k32 + k34)(k98 + k9,10))k12k23k56k67e3+

(k12k23k89k9,10(k12,11 + k12,13) + k21k11,12k12,13(k32 + k34)(k98 + k9,10))k12k23k34(k65 + k67)e5+

(k12k23k89k9,10(k12,11 + k12,13) + k21k11,12k12,13(k32 + k34)(k98 + k9,10))k12k23k34k56e6+

k212k23k34(k32 + k34)k56k67(k98 + k9,10)(k12,11 + k12,13)e7+

k212k
2
23k34k56k67(k98 + k9,10)(k12,11 + k12,13)e8 + k212k

2
23k34k56k67k89(k12,11 + k12,13)e9+

k12k21k23k34(k32 + k34)k56k67(k98 + k9,10)(k12,11 + k12,13)e11+

k12k21k23k34(k32 + k34)k56k67(k98 + k9,10)k11,12e12 .

In addition to the monomials already occurring in f1, f2, . . . , f9, the following 4 monomials
are also in the augmented system: xy14 = x1x

2
7, x

y15 = x9x7, x
y16 = x3x

2
7, and xy17 = x8x7.

By Theorem 4.2.4, the system has toric steady states. Recall that the binomials g1, g2, . . . , g7 in
equation (4.18) generate the ideal 〈f1, f2, . . . , f9〉 = 〈f1, f2, . . . , f9, x7f1, x7f3, x7f8, x7f9〉.
We can see immediately that there are positive steady states for any choice of positive rate con-
stants, and so there is no need to check Condition 4.2.6.

4.3 The n-site phosphorylation system has toric steady states

In this section we introduce the n-site phosphorylation system (under the assumption of a dis-
tributive and sequential mechanism). To show that these systems have toric steady states, we
apply Theorem 4.2.2; this generalizes Example 4.2.2 (the n = 2 case). Further, we note that the
parametrization of the steady state locus given by Theorem 4.2.3 is implicit in work of Wang
and Sontag [170].

4.3.1 The n-site phosphorylation system

We now define the n-site phosphorylation system (also called a “multiple futile cycle”) Σn(κ, C),
which depends on a choice of rate constants κ ∈ R6n

>0 and values of the conservation relations
C = (Etot, Ftot, Stot) ∈ R3

>0. As in the earlier example of the 1-site network (2.11) and the
2-site network (4.11), we will make the assumption of a “distributive” and “sequential” mech-
anism (see, for example, [25]). As discussed in the first section of this chapter, this n-site
phosphorylation system is of great biochemical importance: it is a recurring network motif in
many networks describing processes as diverse as intracellular signaling (e.g. MAPK signaling
with n = 2 and n = 3), cell cycle control (e.g. Sic1 with n = 9), and cellular differentiation
(e.g. NFAT with n = 13).

Following notation of Wang and Sontag [170], the n-site phosphorylation system arises
from the following reaction network:
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S0 + E
kon0−→
←−
koff0

ES0

kcat0→ S1 + E

...

Sn−1 + E
konn−1−→
←−

koffn−1

ESn−1

kcatn−1→ Sn + E

S1 + F
lon0−→
←−
loff0

FS1

lcat0→ S0 + F

...

Sn + F
lonn−1−→
←−

loffn−1

FSn
lcatn−1→ Sn−1 + F

We see that the n-site network has 3n + 3 chemical species S0, . . . , Sn, ES0, . . . , ESn−1,
FS1, . . . , FSn, E, and F , so we write a concentration vector as x = (s0, . . . , sn, c0, . . . , cn−1,
d1, . . . , dn, e, f), which is a positive vector of length 3n + 3. These species comprise 4n + 2
complexes, and there are 6n reactions. Each reaction has a reaction rate, and we collect these
in the vector of rate constants κ =

(
kon0 , . . . , lcatn−1

)
∈ R6n

>0.
For our purposes, we will introduce the following numbering for the complexes (which is

compatible with the numbering in Examples 2.1.2 and 4.2.2):

1 � n+ 2→ 2

2 � n+ 3→ 3

...
n� 2n+ 1→ n+ 1

2n+ 3 � 3n+ 3→ 2n+ 2

2n+ 4 � 3n+ 4→ 2n+ 3

...
3n+ 2 � 4n+ 2→ 3n+ 1

The conservation relations here correspond to the fact that the total amounts of free and
bound enzyme or substrate remain constant. That is, the following three conservation values
C = (Etot, Ftot, Stot) remain unchanged as the dynamical system progresses:

Etot = e+
n−1∑
i=0

ci ,

Ftot = f +
n∑
i=1

di , (4.24)

Stot =
n∑
i=0

si +
n−1∑
i=0

ci +
n∑
i=1

di .

Any choice of these three values defines a stoichiometric compatibility class of dimension 3n:

PC =
{
x ∈ R3n+3

≥0 | the conservation equations (4.24) hold
}

We will see in Theorem 4.3.1 that the steady state locus in this system is 3-dimensional. A
forthcoming work will concern the question of how many times the steady state locus intersects
a compatibility class PC for multisite phosphorylation systems [23].
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4.3.2 Results

For the n-site phosphorylation system, we will call its complex-to-species rate matrix Σn, and
we will letGn denote the underlying digraph of the chemical reaction network. In order to apply
the results of Section 4.2 to this system, we now aim to exhibit a specific basis of the kernel
of Σn that satisfies Condition 4.2.1. We begin by describing the rows of Σn := Y · L(Gn)
as linear combinations of the rows of L(Gn). Recall that L(Gn) is minus the transpose of the
Laplacian matrix of the associated digraph. Letting R(i) represent the i-th row of L(Gn), we
have:

Σn := Y · L(Gn) =



R(1) +R(2n+ 2)
R(2) +R(2n+ 3)

...
R(n+ 1) +R(3n+ 2)

R(n+ 2)
...

R(2n+ 1)
R(3n+ 3)

...
R(4n+ 2)

R(1) +R(2) + · · ·+R(n+ 1)
R(2n+ 2) + · · ·+R(3n+ 2)



∈ R(3n+3)×(4n+2) (4.25)

Our next aim is to exhibit a submatrix of Σn that shares the same kernel as Σn. The only
relations that exist among the rows of L(Gn) arise from the fact that the sum of the rows in
each of the two blocks equals zero. Consequently, it is straightforward to check that

rank(Σn) = 3n .

Moreover, if we delete any of the first 3n + 1 rows and the last two rows of Σn, we obtain
a new matrix that has maximal rank. As we are interested in describing the kernel of Σn,
we will discard the first and the last two rows, and we will focus on the resulting submatrix.
Furthermore, as the (n + 1)-st and (2n + 2)-nd columns on Σn are equal to zero, we already
know that en+1 and e2n+2, the (n + 1)-st and (2n + 2)-nd canonical basis vectors of R4n+2,
belong to ker(Σn). Hence we can now focus on an even smaller submatrix of Σn obtained by
deleting the first and the last two rows, and the (n + 1)-st and (2n + 2)-nd columns. We will
call this submatrix Σ′n, and we will denote by C(j) the column of Σ′n which corresponds to
the j-th column of Σn after deleting the first row and the last two (for example, C(n + 2) will
represent the (n + 1)-st column of Σ′n). Then, if we call Σ′′n the submatrix of Σ′n formed by its
first 3n columns, the system Σ′nv = 0 is equivalent to the following one:

Σ′′n

 v1
...
v3n

 = −
[
C(3n+ 3) . . . C(4n+ 2)

]  v3n+1
...
v4n

 . (4.26)

Let us call
D := det(Σ′′n) . (4.27)
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If D 6= 0, then we can use Cramer’s rule to solve system (4.26). In fact, we will show in
Proposition 4.3.1 that this is the case and that we can find solutions to the system Σnw = 0
such that all the nonzero entries have the same sign.

Next we introduce a partition and a set of basis vectors bi that will be used to show that the
n-site system satisfies Condition 4.2.1. The partition I1, I2, . . . , In+2 of {1, 2, . . . , 4n + 2} is
the following:

Ij = {j, n+ j, 2n+ j + 2, 3n+ j + 2} (for 1 ≤ j ≤ n), In+1 = {n+ 1}, In+2 = {2n+ 2} .
(4.28)

The entries in our vectors bi will be certain determinants. More precisely, let D`(j) be
minus the determinant of the matrix obtained by replacing C(`(j)) by C(3n+ j+ 2) in Σ′′n, for
`(j) = j, n+ j + 1, 2n+ j + 2, where 1 ≤ j ≤ n:

D`(j) = −det


C(1)| . . . |

`(j)

↓
C(3n+ j + 2)| . . . |C(3n+ 2)


 . (4.29)

Note that D, Dj, Dn+j+1, and D2n+j+2, for 1 ≤ j ≤ n, define polynomial functions of κ
on R6n

>0. We will show in Proposition 4.3.1 that these functions D, Dj , Dn+j+1, and D2n+j+2

are nonzero and have the same sign, for 1 ≤ j ≤ n.
Now we may define the vectors b1, b2, . . . , bn of R4n+2

>0 by:

(bj)i =


Dj if i = j
Dn+j+1 if i = n+ j + 1
D2n+j+2 if i = 2n+ j + 2
D if i = 3n+ j + 2
0 otherwise

, (4.30)

for 1 ≤ i ≤ 4n+ 2, where 1 ≤ j ≤ n.
We are now equipped to state our main result in this section.

Theorem 4.3.1. The n-site phosphorylation system has toric steady states. The steady state
locus has dimension 3 and can be parametrized by

R3 → R3n+3

(t1, t2, t3) 7→
(
t3,

D2n+3

D1
t1t3, . . . ,

D2n+3

D1
. . .

D3n+2

Dn
tn1 t3,

Dn+2

D1
t1t2t3, . . . ,

Dn+2

D1
. . .

D2n+1

Dn
tn1 t2t3,

D

D1
t1t2t3, . . . ,

D

Dn

D2n+3

D1
. . .

D3n+1

Dn−1
tn1 t2t3, t1t2, t2

)
.

Moreover, the system satisfies Condition 4.2.1 with the partition I1, I2, . . . , In+2 described
in (4.28) and the basis {b1, . . . , bn} ∪ {en+1, e2n+2} where the vectors bj are defined in (4.30)
and en+1 and e2n+2 are the (n+ 1)-st and (2n+ 2)-nd vectors of the canonical basis of R4n+2.
In addition, it satisfies Conditions 4.2.2 and 4.2.3.
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In particular,

x̃ =

(
1,

D2n+3

D1
, . . . ,

D2n+3

D1
. . .

D3n+2

Dn
,
Dn+2

D1
, . . . ,

Dn+2

D1
. . .

D2n+1

Dn
,

D

D1
, . . . ,

D

Dn

D2n+3

D1
. . .

D3n+1

Dn−1
, 1, 1

)
is an explicit positive steady state of the system.

We remark that the parametrization given in the statement of this theorem, which is one
of the possible parametrizations provided by Theorem 4.2.3, gives systematically what Wang
and Sontag obtained “by hand” in [170]. We note that the fact that this variety (the steady
state locus) has a rational parametrization is a special case of a rational parametrization theo-
rem for general multisite post-translational modification systems as analyzed by Thomson and
Gunawardena [164].

4.3.3 Proof of Theorem 4.3.1

We start with the following proposition:

Proposition 4.3.1. LetD be the determinant defined in (4.27), and letDj ,Dn+j+1, andD2n+j+2

be as in (4.29), for 1 ≤ j ≤ n. Then each polynomial function D,Dj, Dn+j+1, D2n+j+2 :
R6n
>0 → R for 1 ≤ j ≤ n, never vanishes, and these functions all have the same constant sign

on R6n
>0.

Proof. For this proof, we will denote by R(i) the i-th row of the matrix obtained from L(Gn)
after deleting columns n + 1 and 2n + 2. (Note that this notation differs slightly from that
introduced in equation (4.25).) The proof has two steps: first we demonstrate that D 6= 0 on
the positive orthant, and then we show that the other functions Dj , Dn+j+1, and D2n+j+2 are
also nonzero on the positive orthant and that their signs coincide with that of D.

To prove that D 6= 0 on R6n
>0, we proceed by induction on n. First, if n = 1, we have:

Σ′′1 =

 0 kcat0 −lon0

kon0 −koff0 − kcat0 0
0 0 lon0

 .

In this case, D = −kon0kcat0lon0 6= 0, as we wanted.
For the n > 1 case, we suppose now that the D 6= 0 result is valid for Gn−1, the network of

the (n− 1)-site phosphorylation system. In order to visualize the calculations, we will reorder
the rows and columns of Σ′′n, placing C(1), C(n+ 2), and C(2n+ 3) as the leftmost columns,
and R(2) + R(2n + 3), R(n + 2), and R(3n + 3) as the uppermost rows. We notice that this
ordering does not alter the sign of the determinants, hence we can write

D = det




0 kcat0 −lon0 · · ·
kon0 −koff0 − kcat0 0 0

0 0 lon0 0

0 0 0 D̃


 = − kon0kcat0lon0 det(D̃) , (4.31)
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where D̃ is a (3n − 3) × (3n − 3)-submatrix of Σ′′n. This matrix D̃ does not include either
C(1), C(n+2), C(2n+3), nor the first (n+1)-st or (2n+1)-st rows of Σ′′n. We next will see how
the matrix D̃ can be interpreted as the 3(n−1)×3(n−1)-matrix Σ′′n−1, the corresponding matrix
of the smaller network Gn−1. This interpretation will allow us to conclude by the inductive
hypothesis that D 6= 0 in the positive orthant.

For the purpose of interpreting this submatrix of Σ′′n as the matrix of Gn−1, it is important
to note that the deletion of C(1), C(n+ 2), and C(2n+ 3) from Σ′′n is equivalent to calculating
Σ′′n after having deleted these columns from L(Gn) before calculating Σn. In turn, it is also
equivalent to having deleted all the reactions that begin at the first, (n+ 2)-nd and (2n+ 3)-rd
complexes of the network. Once we have additionally deleted the first, (n+1)-st, and (2n+1)-
st rows (i.e. R(2) + R(2n + 3), R(n + 2), and R(3n + 3)), we obtain a new submatrix of Σn

whose entries we can rename as follows:

konj
=: k′onj−1

, koffj
=: k′offj−1

, kcatj =: k′catj−1
, lonj

=: l′onj−1
, loffj

=: l′offj−1
, lcatj =: l′catj−1

.

In fact, this new matrix is the corresponding complex-to-species rate matrix Σ′n−1 for the net-
work Gn−1, with corresponding rate constants indicated by primes. We can also establish a
correspondence between the nodes of the two networks: letting j′ denote the j-th node of
Gn−1, then j′ corresponds to the following node of Gn:

j′ corresponds to


j + 1 if 1 ≤ j′ ≤ n (complexes S0 + E, . . . , Sn−1 + E in Gn−1)
j + 2 if n+ 1 ≤ j′ ≤ 2n (complexes ES0, . . . , ESn−2 in Gn−1)
j + 3 if 2n+ 1 ≤ j′ ≤ 3n− 1 (complexes S0 + F, . . . , Sn−1 + F in Gn−1)
j + 4 if 3n ≤ j′ ≤ 4n− 2 (complexes FS0, . . . , FSn−1 in Gn−1) .

From this correspondence, it follows that det(D̃) equals det(Σ′′n−1), which is nonzero by
inductive hypothesis, and therefore D 6= 0, which we wanted to prove.

We now complete the proof by verifying the following claim: the polynomial functions Dj,
Dn+j+1, D2n+j+2 never vanish, and they all have the same constant sign as that of D on R6n

>0

(for 1 ≤ j ≤ n).
We first prove this claim for the case j = 1. We again reorder the entries of the matrices as

described above, and as this ordering does not alter the sign of the determinants, we can write:

D1 = − det




loff0 kcat0 −lon0 · · ·
0 −koff0 − kcat0 0 0

−lcat0 − loff0 0 lon0 0

0 0 0 D̃




= − (koff0 + kcat0)lon0 lcat0 det(D̃) ,

Dn+2 = − det




0 loff0 −lon0 · · ·
kon0 0 0 0

0 −lcat0 − loff0 lon0 0

0 0 0 D̃




= − kon0 lon0 lcat0 det(D̃) ,



4.3. THE N -SITE PHOSPHORYLATION SYSTEM 61

D2n+3 = − det




0 kcat0 loff0 · · ·
kon0 −koff0 − kcat0 0 0

0 0 −lcat0 − loff0 0

0 0 0 D̃




= − kon0kcat0(lcat0 + loff0) det(D̃) ,

where D̃ is the same matrix we described in equation (4.31). That is, D̃ = Σ′′n−1. As we
already know that D 6= 0, we deduce that det(D̃) 6= 0. By examining equation (4.31) and the
display above, we conclude that the claim is true for j = 1.

For the j > 1 case, we will prove our claim by induction on n. The base case is n = 2 (as
j > 1 is not possible when n = 1). In this case, the functions of interest are

D = kon0kcat0lon0kon1kcat1lon1 , D2 = kon0kcat0lon0(koff1 + kcat1)lon1lcat1 ,

D5 = kon0kcat0lon0kon1lon1lcat1 , D8 = kon0kcat0lon0kon1kcat1(lcat1 + loff1),

all of which can be seen to be positive functions on R12
>0. Hence our claim holds for n = 2.

We now assume that the claim is true for Gn−1. As we did above, we view Gn−1 as a
subgraph of Gn, and if we call D′`(j′) the corresponding determinant of the (n− 1)-site system
(for `(j′) = j′, (n− 1) + j′ + 1, 2(n− 1) + j′ + 2, for 1 ≤ j′ ≤ n− 1), then we have:

D`(j) = (−1)(n+1)+1kon0(−1)1+nkcat0(−1)(2n−1)+(2n−1)lon0D
′
`(j′) =

= −kon0kcat0 lon0D
′
`(j′) , (4.32)

for `(j′) = j′, (n − 1) + j′ + 1, 2(n − 1) + j′ + 2, where 1 ≤ j′ ≤ n − 1. By the inductive
hypothesis, the claim holds for the D′`(j′), so by equation (4.32), the claim holds for the D`(j)

as well. This completes the proof.

We now take care of the zero entries of the vectors bj defined in (4.30). We start by defining
Du↔v as minus the determinant of the matrix obtained by replacing column C(u) by C(v) in
Σ′′n, for 1 ≤ u ≤ 3n+ 2 such that u 6= n+ 1, u 6= 2n+ 2, and 3n+ 3 ≤ v ≤ 4n+ 2:

Du↔v := − det

C(1)| . . . |
u
↓

C(v)| . . . |C(3n+ 2)

 . (4.33)

We will deduce from the following lemma that Du↔v is equal to zero unless u = j, n+ j + 1,
or 2n+ j + 2 and v = 3n+ j + 2, for 1 ≤ j ≤ n.

Lemma 4.3.1. Fix j ∈ {1, 2, . . . , n} and call Σ̂′n, the submatrix of Σ′n obtained by deleting any
two columns indexed by two elements of Ij . It holds that any 3n × 3n-minor of Σ̂′n is equal to
zero.

Proof. We will keep the notation R(i) from the proof of Proposition 4.3.1. We now prove the
lemma first for j = 1, then j = n, and then finally for 1 < j < n.

For the case j = 1, we focus on the reactions 1 � n+ 2→ 2, 2n+ 3 � 3n+ 3→ 2n+ 2,
and 3n+ 4→ 2n+ 3. If we delete C(1) and C(n+ 2), or C(2n+ 3) and C(3n+ 3), then the
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rows of Σ̂′n corresponding to R(n + 2) or R(3n + 3) will be equal to zero and the minor will
be zero.

If we delete C(1) and C(2n+ 3) (or C(3n+ 3)), or we delete C(n+ 2) and C(2n+ 3) (or
C(3n+3)), the rows corresponding toR(n+2) andR(3n+3) will have only one entry different
from zero and the determinant will be obviously zero if the column corresponding to any of this
entries is not considered, or it will be the product of two constants and a (3n− 2)× (3n− 2)-
minor that does not include the columns C(1), C(n + 2), C(2n + 3), C(3n + 3) nor the rows
R(n+ 2), R(3n+ 3).

It is important to notice that the columns of L(Gn) carry the information of the reactions
whose source (educt) is the corresponding complex, therefore, C(`) carries the information of
the reaction whose source is the `-th complex. As the only complexes that generate reactions
whose product is the (n+ 2)-nd or (3n+ 3)-rd complexes are the first and (2n+ 2) complexes,
respectively, it follows that the columns that are being considered in this new (3n−2)×(3n−2)-
minor carry the information of reactions that do not end in either the (n+2)-nd or the (3n+3)-rd
complexes. Hence the sum of the rows in this new submatrix, and therefore the minor as well,
is equal to zero.

For j = n, the analysis is similar.
For 1 < j < n we focus on the reactions j � n + j + 1 → j + 1 and 2n + j + 2 �

3n+j+2→ 2n+j+1. If we deleteC(j) andC(n+j+1), orC(2n+j+2) andC(3n+j+2),
then the rows of Σ̂′n corresponding to R(n+ j + 1) or R(3n+ j + 2) will be equal to zero and
the minor will be zero.

If we delete C(j) and C(2n + j + 2) (or C(3n + j + 2)), or we delete C(n + j + 1) and
C(2n+ j + 2) (or C(3n+ j + 2)), the rows corresponding to R(n+ j + 1) and R(3n+ j + 2)
will have only one entry different from zero, and thus the determinant will be obviously zero
if the column corresponding to any of these entries is not considered. Otherwise it will be the
product of two nonzero rate constants and a (3n − 2) × (3n − 2)-minor that does not include
any of C(j), C(n+j+1), C(2n+j+2), C(3n+j+2) nor any ofR(n+j+1), R(3n+j+2).

But deleting these columns is equivalent to not considering the reactions whose sources
(educts) are the complexes j, n+ j + 1, 2n+ j + 2, or 3n+ j + 2. This disconnects the graph
into four linkage classes, so this new graph gives a Laplacian matrix formed by four blocks.
The rows of Σn that we are considering in Σ′n come from adding rows of the first and third
blocks of L(Gn), or the second and fourth ones; and the last rows of Σn, which correspond to
intermediary species, clearly belong to only one of the blocks. Then, this new submatrix of
Σ̂′n can be reordered into a two-block matrix, for which the sums of the rows in each block are
zero. Hence, the matrix obtained from Σ̂′n without these four columns and two rows has rank
at most 3n− 3 and therefore any (3n− 2)× (3n− 2)-minor will be zero.

We are now ready to prove Theorem 4.3.1.

Proof of Theorem 4.3.1. Due to Lemma 4.3.1, for a 3n× 3n-minor of Σ′n to be different from
zero, we must obtain these 3n columns by choosing three from each group indexed by Ij , for
1 ≤ j ≤ n. In fact, any 3n × 3n-minor of Σ′n that includes three columns from each group of
four indexed by Ij , for 1 ≤ j ≤ n, is always nonzero due to Proposition 4.3.1.
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We can now solve system (4.26) by applying Cramer’s rule. Recall the notation from (4.33): v1
...
v3n

 =
−1

D

 D1↔3n+3 . . . D1↔4n+2
...

...
D3n+2↔3n+3 . . . D3n+2↔4n+2


 v3n+1

...
v4n

 .
By Lemma 4.3.1, we already know that in the 3n × n-matrix in the right-hand side above, the
only nonzero entries are Dj, Dn+j+1, and D2n+j+2. This gives us a description of ker(Σn),
which has a basis of the following form:

{en+1, e2n+2} ∪ {b1, b2, . . . , bn}

for bj as in (4.30).
This proves that the n-site phosphorylation system satisfies Condition 4.2.1 for the partition

I1, I2, . . . , In+2 and the basis of ker(Σn), {b1, b2, . . . , bn, en+1, e2n+2}, described above.
We now prove that the n-site phosphorylation system additionally satisfies Conditions 4.2.2

and 4.2.3. Condition 4.2.2 is satisfied immediately by Proposition 4.3.1. With respect to Con-
dition 4.2.3, we notice that the subspace spanned by the columns of the matrix ∆ has the
following basis:

{e2n+j+1 − ej − e3n+2, e2n+j+1 − en+j+1, e2n+j+1 − ej+1 − e3n+3 | 1 ≤ j ≤ n}. (4.34)

Therefore, the dimension of the image of ∆ is 3n, so ker(∆) = 0. Hence, equation (4.8) is
trivially satisfied, as noted in Remark 4.2.4.

Then, by Theorem 4.2.2, it is immediate that the n-site phosphorylation system has toric
steady states that are positive and real. Finally, for a parametrization of the steady state locus,
let us consider the following matrix:

A =

 0 1 2 . . . n 1 2 . . . n 1 2 . . . n 1 0
0 0 0 . . . 0 1 1 . . . 1 1 1 . . . 1 1 1
1 1 1 . . . 1 1 1 . . . 1 1 1 . . . 1 0 0

 ∈ R3×(3n+3).

It has maximal rank, and its kernel equals the span of all the differences yj2−yj1 , for j1, j2 ∈ Ij ,
where 1 ≤ j ≤ n + 2, shown in (4.34). After applying Theorem 4.2.3, we are left to see that
the point x̃ defined in the statement of the present theorem is a positive steady state of the
system. But it is easy to check that x̃ is a positive steady state by applying Theorem 4.2.1 to
the following binomials:
Dxjx3n+2−Djx2n+j+1, Dxn+j+1−Dn+j+1x2n+j+1, Dxj+1x3n+3−D2n+j+2x2n+j+1, for 1 ≤
j ≤ n.

This completes the proof.

4.4 Multistationarity for systems with toric steady states

In this section we focus on the capacity of a chemical reaction system with toric steady states
to exhibit multiple steady states. Following prior work of Conradi et al. [24] and Holstein [78],
we make use of an alternative notation for reaction systems to obtain a characterization of
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steady states (Proposition 4.4.1). This result is used to prove a criterion for the existence of
multistationarity for systems with toric steady states that satisfy Conditions 4.2.1, 4.2.2, and
4.2.3 (Theorem 4.4.1). At the end of this section, we make the connection to a related criterion
of Feinberg.

Often a chemical reaction system has a continuum of steady states, as long as one steady
state exists. However, as defined earlier (and as it is in Chemical Engineering), multistation-
arity refers to the existence of multiple steady states within one and the same stoichiometric
compatibility class. In general one is interested in situations where the steady state locus inter-
sects a stoichiometric compatibility class in a finite number of points [50]. In Computational
Biology one is sometimes interested in situations where the steady state locus intersects an
affine subspace distinct from translates of the stoichiometric subspace S [53]. Here we define
multistationarity with respect to a linear subspace in the following way. Consider a matrix
Z ∈ Rs×q, where q is a positive integer. We say that the chemical reaction system ẋ = Σ ·Ψ(x)
exhibits multistationarity with respect to the linear subspace ker(Z†) if and only if there exist
at least two distinct positive steady state vectors x1, x2 ∈ Rs

>0 such that their difference lies in
ker(Z†); in other words the following equations must hold:

Σ ·Ψ(x1) = 0 (4.35a)
Σ ·Ψ(x2) = 0 (4.35b)

Z† x1 = Z† x2 . (4.35c)

Note that if the columns of Z form a basis for S⊥, one recovers the usual definition of multi-
stationarity given before. In this case, Equation (4.35c) states that the steady states x1 and x2

belong to the same stoichiometric compatibility class, and we simply speak of multistationarity,
omitting the linear subspace we are referring to.

4.4.1 Second representation of a chemical reaction system

We now introduce a second representation of the differential equations that govern a chemical
reaction system (2.10); this will prove useful for the characterization of steady states (Proposi-
tion 4.4.1) and for establishing the capacity of a chemical reaction network for multistationarity.
Letting r denote the number of reactions of a chemical reaction network G, we fix an ordering
of these r reactions and define the incidence matrix CG ∈ {−1, 0, 1}m×r of the network to be
the matrix whose i-th column has a 1 in the row corresponding to the product complex of the
i-th reaction and a −1 for the educt (reactant) complex. Then the (s× r)-matrix product

Γ := Y CG (4.36)

is known as the stoichiometric matrix. Thus, the i-th column of Γ is the reaction vector corre-
sponding to reaction i. Next we define the educt-complex matrix

Y := [ỹ1, ỹ2, . . . , ỹr] , (4.37)

where the column ỹi of Y is defined as the vector of the educt complex of the i-th reaction.
Now we can define the vector of educt complex monomials

φ(x) :=
(
xỹ1 , xỹ2 , . . . , xỹr

)†
. (4.38)
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We also define k ∈ Rr
>0 to be the vector of reaction rate constants: ki is the rate constant of the

i-th reaction (that is, ki = κi′j′ where the i-th reaction is from the complex xyi′ to xyj′ ). We
now give a second formulation for a chemical reaction system (2.10) (cf. [55]):

ẋ = Γ diag(k)φ(x) . (4.39)

Both formulations of a chemical reaction system given in equations (2.10) and (4.39) lead to
the same system of ODEs and hence are equivalent. This can be made explicit by way of the
doubling matrix D of dimension m × r which relates Y and Y via Y = Y D. Here the i-th
column vector of D is defined as the unit vector ej of Rm such that yj is the educt (reactant)
complex vector of the i-th reaction. From

ẋ = Γ diag(k)φ(x) = Y CG diag(k)D†Ψ(x) = ΣΨ(x) ,

it follows that φ(x) = D†Ψ(x) and L(Gn)t = CG diag(k)D†.

Example 4.4.1. For the 1-site phosphorylation network (2.11), one obtains the matrices

CG =



−1 1 0 0 0 0
1 −1 −1 0 0 0
0 0 1 0 0 0
0 0 0 −1 1 0
0 0 0 1 −1 −1
0 0 0 0 0 1

 , D =



1 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1

 ,

Y =
[
y†1, y

†
3, y

†
3, y

†
5, y

†
6, y

†
6

]
=



1 0 0 0 0 0
0 0 0 1 0 0
0 1 1 0 0 0
0 0 0 0 1 1
1 0 0 0 0 0
0 0 0 1 0 0

 ,

and the monomial vector φ(x) = (x1 x5, x3, x3, x2 x6, x4, x4)†.

It follows from the differential equations (4.39) that a positive concentration vector x ∈ Rs
>0

is a steady state for the chemical reaction system defined by the positive reaction rate constant
vector k if and only if

diag(k)φ(x) ∈ ker(Γ) ∩ Rr
>0 .

We now recognize that the set ker(Γ) ∩Rr
>0, if nonempty, is the relative interior of the pointed

polyhedral cone ker(Γ) ∩ Rr
≥0. To utilize this cone, we collect a finite set of generators (also

called “extreme rays”) of the cone ker(Γ) ∩ Rr
≥0 as columns of a non-negative matrix M . Up

to scalar multiplication, generators of a cone are unique and form a finite set; as the cone of
interest arises as the intersection of an orthant with a linear subspace, the generators are the
vectors of the cone with minimal support with respect to inclusion. (Background on polyhedral
cones can be found in the textbook of Rockafeller [129].) Letting p denote the number of
generators of the cone, we can use M to express the condition for a positive vector x ∈ Rs

>0 to
be a steady state of the chemical reaction system in the following way:

diag(k)φ(x) = M λ , for some λ ∈ Rp
≥0 with M λ ∈ Rr

>0 . (4.40)

Note that this proves the following result which appears in [24]:
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Proposition 4.4.1 (Characterization of steady states of chemical reaction systems). For a chem-
ical reaction networkG, letM denote a corresponding generator matrix as defined above. Then
a positive vector x ∈ Rs

>0 is a steady state for the chemical reaction system defined by reaction
rate vector k ∈ Rr

>0, if and only if there exists a vector λ ∈ Rp
≥0 such that

k = diag (φ(x))−1 M λ and M λ ∈ Rr
>0 . (4.41)

We now note that outside of a degenerate case, any positive concentration vector can be a
steady state for appropriately chosen rate constants k.

Remark 4.4.1. We now comment on the degenerate case of a network for which the set ker(Γ)∩
Rr
>0 is empty. First, this case is equivalent to either of the following three conditions: (i) there

is no positive dependence among the reaction vectors (yj − yi), (ii) the cone ker(Γ) ∩ Rr
≥0 is

contained in a coordinate hyperplane, and (iii) the generator matrix M has at least one zero
row. Now, in this degenerate case, it is clear that for any choice of reaction rate constants, the
chemical reaction system has no positive steady states. This is because if x∗ ∈ Rs

>0 is a steady
state for the system with reaction rate constants κij , then the numbers αij := κij ·(x∗)yi witness
to the positive dependence among the reaction vectors (yj − yi)’s.

Outside of this degenerate case, it follows from Proposition 4.4.1 that there exists a vector
of reaction rate constants k for which the resulting chemical reaction system has a positive
steady state. Moreover, in this case any positive vector x can be a steady state, by choosing k
as in equation (4.41) for some valid choice of λ ∈ Rp

≥0.

Using our new notation, we return to the question of existence of steady states.

Remark 4.4.2. Recall the content of Corollary 4.2.1: for a chemical reaction network for which
a single partition works to satisfy Condition 4.2.1 for all choices of positive rate constants, the
set of rate constant vectors k that yield systems with positive steady states is the semialgebraic
set of Rr

>0 defined by Conditions 4.2.2 and 4.2.3. We now note that Proposition 4.4.1 implies
that this set of rate constant vectors is the image of the following polynomial map:

β : Rs
>0 × Ω → Rr

>0

(x, λ) 7→ diag(φ(x))−1M λ ,

where Ω := {λ ∈ Rp
≥0 | Mλ ∈ Rr

>0}. In the case that Condition 4.2.1 holds and Con-
dition 4.2.3 is trivially satisfied (i.e. ∆ has full row rank), the image of β is cut out by the
inequalities defined by Condition 4.2.2.

4.4.2 Main result on multistationarity

We now make use of Proposition 4.4.1 to examine which chemical reaction systems with toric
steady states exhibit multistationarity. We first note that in the setting of Section 4.2, the set
of differences lnx1 − lnx2, where x1 and x2 are positive steady states for the same system,
form a linear subspace. As before, the notation “lnx” for a vector x ∈ Rs

>0 denotes the
vector (lnx1, lnx2, . . . , lnxs) ∈ Rs; similarly we will make use of the notation “ex” to denote
component-wise exponentiation.
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Our next theorem, the main result of this section, is a consequence of [24, Lemma 1]. It
states that a network that satisfies Condition 4.2.1 has the capacity for multistationarity if and
only if two subspaces, namely im(A†) and S, both intersect non-trivially some (possibly lower-
dimensional) orthant {x ∈ Rs | sign(x) = ω} defined by a sign vector ω ∈ {−, 0,+}s. We
remark that this is a matroidal condition. Related ideas appear in work of Feinberg [51], and
details on the connection between our work and Feinberg’s appears at the end of this section.

Theorem 4.4.1 (Multistationarity for networks with toric steady states). Fix a chemical reac-
tion network G with s species and m complexes, and let Z ∈ Zs×q be an integer matrix, for
some positive integer q. Assume that the cone ker(Γ) ∩Rr

≥0 is not contained in any coordinate
hyperplane. Assume moreover that there exists a partition I1, I2, . . . , Id of the m complexes of
G such that Condition 4.2.1 is satisfied for all rate constants.

Recall the matrix A for this partition from the proof of Theorem 4.2.3. Then there exists a
reaction rate constant vector such that the resulting chemical reaction system exhibits multista-
tionarity with respect to the linear subspace ker(Z†) if and only if there exists an orthant of Rs

that both subspaces im(A†) and ker
(
Z†
)

intersect nontrivially. More precisely, given nonzero
vectors α ∈ im(A†) and σ ∈ ker

(
Z†
)

with

sign(α) = sign(σ) , (4.42)

then two steady states x1 and x2 and a reaction rate constant vector k that witness multista-
tionarity (that is, that satisfy equations (4.35a), (4.35b), and (4.35c)) arise in the following
way:

(
x1
i

)
i=1, ..., s

=

{
σi

eαi−1
, if αi 6= 0

x̄i > 0, if αi = 0 ,
(4.43)

where x̄i denotes an arbitrary positive number, and

x2 = diag(eα)x1 (4.44)
k = diag(φ(x1))−1M λ , (4.45)

for any non-negative vector λ ∈ Rp
≥0 for which M λ ∈ Rr

>0. Conversely, any witness to
multistationarity with respect to ker

(
Z†
)

(given by some x1, x2 ∈ Rs
>0, and k ∈ Rr

>0) arises
from equations (4.42), (4.43), (4.44), and (4.45) for some vectors α ∈ im(A†) and σ ∈
ker
(
Z†
)

that have the same sign.

Proof. Assume that there exist nonzero vectors α ∈ im(A†) and σ ∈ ker
(
Z†
)

having the same
sign. First note that the vectors x1, x2, and k defined by (4.43), (4.44), and (4.45), respectively,
are positive because α and σ have the same sign and because the cone ker(Γ) ∩ Rr

≥0 is not
contained in a coordinate hyperplane. By Proposition 4.4.1, equation (4.45) implies that x1 is a
steady state of the system defined by k. We now claim that x2 too is a steady state of the same
system. This follows from Theorem 4.2.3 because the difference between lnx1 and lnx2 is in
im(A†):

lnx1 − lnx2 = − α ∈ im(A†) .
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Conversely, assume that vectors x1, x2, and k are a witness to multistationarity with respect
to ker(Z†). Let us now construct appropriate vectors α and σ. By Theorem 4.2.3, the vector
α := lnx2 − lnx1 is in im(A†). Next, we define σ ∈ Rs by σi = (eαi − 1)x1

i if αi 6= 0 and
σi = 0 if αi = 0, so by construction, α and σ have the same sign. In addition, equations (4.43)
and (4.44) easily follow for these values of α and σ. We also see that

−σ = x1 − x2 ∈ ker(Z†) ,

so σ ∈ ker(Z†). Finally, Proposition 4.4.1 implies that there exists a valid λ ∈ Rp
≥0 that

satisfies (4.45).

Remark 4.4.3. If a chemical reaction system defined by reaction rate constants k∗ and a par-
tition of its complexes satisfy Conditions 4.2.1, 4.2.2, and 4.2.3 (but not necessarily for other
choices of rate constants), then the equations (4.42), (4.43), (4.44), and (4.45) in Theorem 4.4.1
still characterize multistationarity. In other words, x1 and x2 are two steady states that demon-
strate that the system defined by k∗ has the capacity for multistationarity with respect to ker(Z†)
if and only if there exist α ∈ im(A†), σ ∈ ker(Z†), and λ ∈ Rp

≥0 such that those four equations
hold.

Example 4.4.2 (Triangle network, continued). We return to the Triangle network analyzed in
Examples 4.1.1 and 4.2.1. The stoichiometric subspace is

ker(Σ) = S = span{(1,−1)} .
In the toric setting (recall that this is when κ31 = κ32), the partition for which the system
satisfies Condition 4.2.1 is {1, 2}, {3}, so a matrix A for which

ker(A) = span{y2 − y1} = span{(2,−2)}
is A = [1 1]. We can see that the subspaces ker(S) and im(A†) = span{(1, 1)} do not both
intersect some orthant nontrivially. So Theorem 4.4.1 allows us to conclude that no system (for
which κ31 = κ32) arising from the Triangle network exhibits multistationarity.

Although the capacity of the Triangle network to exhibit multistationarity is easily deter-
mined directly, without the need to apply Theorem 4.4.1, it is more difficult in the case of
the multisite phosphorylation system. Recall that we proved in Theorem 4.3.1 that any n-site
phosphorylation system satisfies Condition 4.2.1 with the same partition (for fixed n). Hence,
Theorem 4.4.1 can be used to compute the semialgebraic set of reaction rate constants k that
give rise to multistationarity for the phosphorylation networks. This was performed by Con-
radi et al. (for the 2-site network) [24] and Holstein (for the general n-site network) [78];
multistationarity is possible only for n ≥ 2. Results on the number of steady states of phospho-
rylation systems appeared in work of Wang and Sontag [170] and is the focus of a forthcoming
work. [23].

4.4.3 Connection to related results on multistationarity

We now make the connection between our results on the capacity of a chemical reaction net-
work to exhibit multistationarity and related results of Feinberg [51]. To state Feinberg’s re-
sults, we must first give some definitions. Recall that a “linkage class” is a connected compo-
nent of a network; a “terminal strong linkage class” is a maximal strongly connected subgraph
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of a network in which there are no edges (reactions) from a complex in the subgraph to a
complex outside the subgraph.

A regular network is a network for which (i) ker(Γ)∩Rr
>0 6= ∅, (ii) each linkage class con-

tains a unique terminal strong linkage class, and (iii) removing the reaction(s) between any two
adjacent complexes in a terminal strong linkage class disconnects the corresponding linkage
class. Recall from Remark 4.4.1 that condition (i) in this definition is simply the requirement
that the reaction vectors yj − yi are positively dependent, and that this condition is necessary
for the existence of positive steady states.

We now can explain the relationship between Feinberg’s result and ours. Feinberg examined
regular deficiency-one networks, while we are concerned with networks for which there exists a
partition that satisfies Condition 4.2.3 (for all rate constants). In these respective settings, both
Theorem 4.1 and Corollary 4.1 of [51] and Theorem 4.4.1 in this chapter state that a certain
subset of Rs and the stoichiometric subspace both intersect the same orthant non-trivially if
and only if the network has the capacity for multistationarity. In the result of Feinberg, this set
is a union of certain polyhedral cones, while in our case, this set is the image of A†. In both
cases, this set consists of all vectors ln(x∗/x∗∗), where x∗ and x∗∗ are steady states arising from
the same rate constants. As an illustration, see Example 4.4.3 below.

Let us now explain how the two results are complementary. First, there are some networks
for which only Feinberg’s results apply. For example, consider any network for which the
union of polyhedral cones obtained from Feinberg’s results is not a linear space. Additionally,
for some networks, only our results apply. As an example, the n > 1 multisite networks have
deficiency greater than one. Finally, for some networks, both our results and Feinberg’s apply,
such as in the following example.

Example 4.4.3. The 1-site phosphorylation network of Example 2.1.2 is regular and has defi-
ciency one. In this case, both the image of A† and Feinberg’s union of cones are the subspace
of R6 spanned by the three vectors (e1 +e2 +e3 +e4), (e2 +e3 +e4 +e5), and (e3 +e4 +e5 +e6).
So in this instance, our Theorem 4.4.1 and Feinberg’s Corollary 4.1 of [51] coincide.

Finally we note that the proofs of both results make use of special structure of ker(Σ). In
our case, we assume the existence of a basis with disjoint support. For Feinberg’s results, there
is a non-negative basis whose supports of the first L correspond exactly to the L terminal strong
linkage classes, and the last basis vector is the all-ones vector (here L denotes the number of
terminal strong linkage classes).
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Chapter 5

How far is complex balancing from
detailed balancing?

In this chapter we study the conditions in parameter space which ensure the existence of partic-
ularly well behaved dynamics in general (mass–action) kinetics chemical reaction systems and
we compare from an algebraic perspective important classical notions.

Special cases of systems whose ideal of positive steady states is binomial are detailed and
complex balanced systems. Throughout this chapter, and in particular in Theorem 5.1.1, we
clarify the relation between the algebraic conditions that must be satisfied by the reaction con-
stants in general mass–action kinetics systems for the existence of detailed or complex bal-
anced equilibria. The main properties of these systems have been set by Horn, Jackson and
Feinberg [45, 49, 50, 79–82]. These systems have remarkable dynamic properties and have a
wide range of applications in chemistry and biology [31, 32, 60, 63–65, 112, 142, 146].

We plan to further apply this point of view to the study of biologically meaningful biochem-
ical reaction networks, in particular those associated to enzymatic reactions as in [2,32,64,112],
where we expect that tools from elimination theory in the framework of algebraic varieties (and
in particular, toric varieties), together with results in algebraic combinatorics (as the Matrix-
Tree Theorem), will contribute to generalize current approaches.

5.1 Setting and results

Here, we restate the precise definitions of detailed and complex balancing, and we show that
a reversible Horn–Jackson general mass–action kinetics system satisfying Feinberg’s circuit
conditions is detailed balanced if and only if it is complex balanced. In other words, under
formal balancing conditions for the cycles (of the underlying undirected graph) of the reaction
graph, both notions coincide. We formulate this property in terms of the algebraic equations
defining the corresponding varieties in rate constant space.

In order to illustrate some of the definitions and concepts along the chapter, we will recall
Example 2.5.1, which represents a nonsequential multisite phosphorylation system with two
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sites, under mass–action kinetics.

E + S01

κ46 //

κ42yysssssssss
ES01

κ64
oo

κ67

%%KKKKKKKKK

E + S00

κ12 //
ES00

κ21
oo

κ24
99sssssssss

κ23

%%KKKKKKKKK E + S11

κ76

eeKKKKKKKKK

κ75yysssssssss

E + S10

κ35 //κ32

eeKKKKKKKKK
ES10

κ53
oo

κ57
99sssssssss

FS01

κ1311//

κ1314yyttttttttt
F + S01

κ1113
oo

κ119

%%JJJJJJJJJ

F + S00

κ1413
99ttttttttt

κ1412

%%JJJJJJJJJ FS11

κ98 //κ911

eeJJJJJJJJJ

κ910yyttttttttt
F + S11

κ89
oo

FS10

κ1210//κ1214

eeJJJJJJJJJ
F + S10

κ1012
oo

κ109
99ttttttttt

(5.1)

The four phosphoforms, S00, S10, S01, S11, are interconverted by the kinase E and the phos-
phatase F . There are other six species ES00, ES10, ES01, FS11, FS10, FS01.

Assuming mass–action kinetics, each reaction between two of the 14 complexes is anno-
tated with the corresponding rate constant, indicated by a choice of numbering of the com-
plexes. Although the rate constants κ32, κ42, κ75, κ76, κ109, κ119, κ1412, κ1413, are usually taken
to be very small and so the corresponding reactions are omitted, we will not ignore them in this
example because we are interested in special properties of the reaction constants in reversible
networks.

In general, recalling Chapter 2, we will consider s species, with x1, x2, . . . , xs represent-
ing their molar concentrations; a set of m complexes, and a numbered set R of r reactions
between different complexes. The associated chemical reaction network is the finite directed
graph G = (V,R, Y ), whose vertices V are labeled by the complexes y1, . . . , ym and whose
edges R correspond to the reactions. We record the complexes by an s × m-matrix of non-
negative integers Y = (yji), which contains these stoichiometric coefficients. For instance, in
the reaction diagram (5.1), we will name the 12 concentrations as x1, . . . , x12 according to the
following order of the species: S00, S10, S01, S11, E, F , ES00, FS11, ES10, FS10, ES01, FS01.
The columns of the stoichiometric matrix Y ∈ {0, 1}12×14 are ordered according to the num-
bering of the complexes which is reflected in the names of the rate constants in diagram (5.1).
For example, y1 = e1 + e5, where ei denotes the i-th canonical basis vector in R12, and the
corresponding concentrations will be denoted by x1, x5.

In this chapter, in order to simplify the notation, we will refer to reaction (yi, yj) ∈ R as
(i, j) ∈ R.

We assume there is a non-negative continuous real-valued rate function Kij(x) for each
reaction (i, j) in the network, with the property that Kij(x) = 0 if and only if xk = 0 for
some k in the support of yi (that is, yik 6= 0). The reaction network (V,R, Y ) endowed with
a kinetics is called a chemical reaction system and we record this information in the notation
as G = (V,R,K, Y ). In a mass–action kinetics chemical reaction system, we simply have
Kij(x) = κijx

yi , where κij ∈ R>0 are the rate constants, and in this case the notations G =
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(V,R, κ, Y ) and G = (V,R,K, Y ) will refer to the same system.
The instantaneous rate of change of the concentrations xk is given by:

dxk
dt

=
∑

(i,j)∈R

Kij(x) (yjk − yik) , k = 1, . . . , s. (5.2)

In what follows, we will assume general mass–action kinetics. In this case, the differential
equations (5.2) can be written in the following form. Let L(G) denote the negative of the trans-
pose of Laplacian ofG. HenceL(G) is them×m-matrix whose off-diagonal entries are the κij
and whose column sums are zero. We denote by Ψ(x) the vector Ψ(x) = (xy1 ,xy2 , . . . ,xym)†.
For instance, in our example (5.1) we have

Ψ(x) = (x5x1, x7, x5x2, x5x3, x9, x11, x5x4, x6x4, x8, x6x2, x6x3, x10, x12, x6x1)†.

Then, the dynamical mass–action kinetics system (5.2) equals:

dx

dt
=

(
dx1

dt
, . . . ,

dxs
dt

)†
= Y L(G)Ψ(x), (5.3)

where x denotes the vector of species concentrations (x1(t), . . . , xs(t))
†.

Recall from Section 2.5 the definition of a complex balanced system.

Definition 5.1.1. A complex balanced mass–action kinetics system is a dynamical system (5.3)
for which the algebraic equations L(G)Ψ(x) = 0 admit a strictly positive solution x0 ∈ Rs

>0.
Such a solution x0 is a steady state of the system, i.e., the s coordinates of Y L(G)Ψ(x0) vanish.

Remark 5.1.1. Clearly, a mass–action kinetics system (5.3) being complex balanced depends
on both the digraphG and the rate constants κij . A main property of complex balanced systems
is that all strictly positive steady states x satisfy L(G)Ψ(x) = 0. They are quasi-thermostatic
[80], which in the terminology of [30] means that the positive steady state variety is toric.

We will assume throughout the chapter that digraphs G = (V,R, Y ) representing a chemi-
cal reaction network are reversible, i.e. if (i, j) ∈ R, then (j, i) ∈ R. We can thus identify G
with the underlying undirected graph G̃ = (V, R̃, Y ), where R̃ = {{i, j} : (i, j) ∈ R}.
Definition 5.1.2. A detailed balanced mass–action kinetics system is a dynamical system (5.3)
for which the following algebraic equations admit a strictly positive solution x0 ∈ Rs

>0:

− κijxyi0 + κjix
yj
0 = 0, for all {i, j} ∈ R̃. (5.4)

As it is for complex balanced mass–action kinetics systems, the condition of being detailed
balanced depends on the graph G̃ and the constants κij .

Note that L(G) decomposes as the sum of m ×m matrices L(G){i,j} for each undirected
edge {i, j} ∈ R̃ of the graph G, where in rows i, j and columns i, j the matrix L(G){i,j} equals(

−κij κji
κij −κji

)
,

and all other entries of the matrix L(G){i,j} are 0. Since the algebraic equation −κijxyi0 +
κjix

yj
0 = 0 means that L(G){i,j}Ψ(x0) = 0, we see that every detailed balanced mass–action
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kinetics system is also complex balanced. The converse is not true in general. Again, a main
property of a detailed balanced mass–action kinetics system is that all of its positive steady
states x satisfy −κijxyi + κjix

yj = 0 for every {i, j} ∈ R̃.

For instance, in our example (5.1), for any choice of first order rate constant κ1 and second
order rate constant κ2 for which the value of κ1 equals the value of κ2 regardless of the corre-
sponding units, the mass–action kinetics system with the following rate constants is complex
balanced but not detailed balanced:

κ12 = κ46 = κ89 = κ1012 = κ2

κ24 = κ53 = κ67 = κ910 = κ1214 = κ1311 = κ1

κ32 = κ42 = κ75 = κ76 = κ109 = κ119 = κ1412 = κ1413 = 1
4κ2

κ35 = κ1113 = 3
4κ2, κ23 = κ57 = κ64 = κ911 = κ1314 = 3

4κ1, κ21 = 23
4 κ1, κ98 = 47

4 κ1,
κ1210 = 69

22κ1.

(5.5)

For any α ∈ R>0, the real vector in R12
>0 of the values of the molar concentrations of the

different species x0,α = α (23, 17, 11, 47, 1, 2, 4, 8, 14, 11, 13, 16) is a positive steady state of
the system for which L(G)Ψ(x0,α) = 0, and hence the system is complex balanced. On the
other side, for this choice of rate constants the system is not detailed balanced since (5.4) does
not hold, for instance, for both i1 = 1, j1 = 2 and i2 = 10, j2 = 12 simultaneously that is, for
the pairs of reactions

E + S00

κ2 //
ES00 ,

23
4
κ1

oo FS10

69
22
κ1//
F + S10.

κ2
oo

We now recall Feinberg’s circuit conditions [49]. They correspond to linear relations which
only depend on the structure of the reaction graph and not on the particular complexes. For
every cycle C̃ in G̃, we will choose one direction and define C+ as the cycle in G in that
direction. C− will be the cycle in the opposite direction. Although the directions are arbitrarily
chosen, we will not worry about that since we will only need to distinguish between the two of
them.

Definition 5.1.3. A formally balanced mass–action kinetics system is a dynamical system (5.3)
for which the following circuit condition holds for every cycle C̃ of G̃:∏

(i,j) in C+

κij =
∏

(j,i) in C−

κji. (5.6)

We will talk about formally balanced systems, although this definition can be applied to any
digraph whose edges are reversible and labeled by constants κij .

In our example (5.1), we can consider the cycle C̃:

E + S01

sssssssss
ES01

KKKKKKKKK

ES00 E + S11

E + S10

KKKKKKKKK

ES10

sssssssss

(5.7)
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As (5.6) is not satisfied for C̃, the system is not formally balanced.

Equations (5.6) show that the set

FBY = {κ = (κij)(i,j)∈R : G = (V,R, κ, Y ) is formally balanced}
is an algebraic variety in Rr

>0, i.e., it is cut out by polynomial equations in the rate constants.
We will review in §5.2.1 the known conditions for detailed balance, which are relations

among the rate constants. Proposition 5.2.1 will recast the results in [49,137], which imply that
the set

DBY = {κ = (κij)(i,j)∈R : G = (V,R, κ, Y ) is detailed balanced}
is also an algebraic variety in Rr

>0.
In turn, it follows from [30, Section 2] that the set

CBY = {κ = (κij)(i,j)∈R : G = (V,R, κ, Y ) is complex balanced}
is a third algebraic subvariety of Rr

>0 (see Proposition 5.3.2), called the moduli space of toric
dynamical systems in [30].

As we have already remarked, DBY ⊆ CBY . In fact, the main Theorem in [49] shows that
DBY ⊆ FBY .

In this chapter we prove the following result for a mass–action kinetics dynamical system
associated to a reversible chemical reaction system G = (V,R, κ, Y ):

Theorem 5.1.1. Under the assumption of formal balancing, a reversible mass–action kinetics
system is detailed balanced if and only if it is complex balanced. That is,

CBY ∩ FBY = DBY . (5.8)

Our result generalizes two particular situations in which it is known that the notions of
detailed and complex balancing coincide: the case in which G̃ has no cycles, and the case of
deficiency zero networks for which DBY = FBY ( [49], see also Proposition 5.3.1 below).

Our algebraic approach follows the lines of [30]. Our arguments easily imply that (5.8)
holds at the level of ideals (which are radical). We refrain from giving a more algebraic for-
mulation since it is straightforward and our main concern is to clarify these notions in the
framework of general mass–action kinetics systems.

In Section 5.2 we recall known results, mainly from [30,49,137], that we state in a language
adapted to our setting. In Section 5.3, we introduce new quotient variables which allow us to
characterize formal and complex balancing in terms of the rate constants, and which we use to
organize the proof of Theorem 5.1.1 in Section 5.4.

In Section 5.5, following a suggestion of Martin Feinberg, we translate Theorem 5.1.1 to the
setting of general kinetic systems in Theorem 5.5.1, and we express in Proposition 5.5.1 another
necessary and sufficient condition for a complex balanced system to be detailed balanced.

5.2 Preliminaries for this chapter

In this section we only consider reversible mass–action kinetics systems. Given a chemical
reaction network G = (V,R, Y ), we will denote by G̃ = (V, R̃, Y ) the associated undirected
graph. Since we assume that G is reversible, there is no loss of information in passing to G̃.
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Choose a numbering of the set of reactions, that is of the set of edges R of G and form the
signed incidence matrix CG ∈ {−1, 0, 1}m×r whose column associated to the reaction (i, j)
has a −1 on row i, a 1 on row j and all other entries equal to 0. We denote by

N = kerZ(Y · CG) ⊂ Zr, (5.9)

the kernel over Z of the product matrix Y · CG. Another name for the kernel of a matrix is the
(right) nullspace of the matrix.

Clearly, the vector with a 1 on its (i, j)-th coordinate and on its (j, i)-th coordinate (and
all other coordinates equal to zero) lies in N . We could instead choose one direction for each
pair of reactions (i, j), (j, i) in any way to get a directed subgraph G′ of G, and consider the
associated signed incidence matrix CG′ , with integer kernel

N ′ = kerZ(Y · CG′) ⊂ Z
r
2 , (5.10)

since we can clearly reconstruct N ′ from N and vice versa.

Remark 5.2.1. For interested readers, we survey the different notations occurring in the liter-
ature for the nullspace N ′ in (5.10). In [49], it is the subspace spanned by the vectors (αi→j)i,j
with (i, j) reactions in G′. In [137], it is the subspace spanned by the columns of the matrix
λ (there, Y · CG′ is called C). In [168], it is the subspace spanned by the vectors (εw)w with
w = {i, j} ∈ R̃. Finally, it is the subspace spanned by the columns of the matrix B in [42],
where N stands instead for the matrix Y · CG′ .

We introduce the following variables, which are usually known as equilibrium constants:

Definition 5.2.1. Let G = (V,R, κ, Y ) be a reversible chemical reaction system defining a
dynamical system as in (5.3). For each (i, j) ∈ R we define

qij =
κij
κji
. (5.11)

Clearly, qijqji = 1 for all (i, j) ∈ R.

5.2.1 Detailed balanced systems

Detailed balanced systems have been broadly studied. In 1989, Feinberg ( [49]) and Schuster
and Schuster ( [137]) described necessary and sufficient conditions for detailed balance to oc-
cur. The latter conceived these conditions as a generalization of Wegscheider’s condition, which
states that for cycles of monomolecular reactions the product of the equilibrium constants (qij ,
according to our notation) around these cycles must be equal to unity. Feinberg grouped these
conditions more structurally into circuit and spanning forest conditions (see § 5.3.1).

In accordance to our notations, Theorem in [49, Section 3] and Theorem 1 in [137] can be
restated as follows. As usual, for any z = (z1, . . . , zn) ∈ Rn and λ = (λ1, . . . , λn) ∈ Zn, zλ

will denote the product
∏n

i=1 z
λi
i .

Proposition 5.2.1. A chemical reaction system, G = (V,R, κ, Y ), is detailed balanced if and
only if

qλ = 1 for all λ ∈ N, (5.12)

where q denotes the vector q = (qij)(i,j)∈R .
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In fact, it is possible to derive a proof of this proposition using the following basic result
[43]:

Proposition 5.2.2. Let k be a field and a1, . . . , an ∈ Zs. Given a vector z = (z1, . . . , zn) ∈
(k− {0})n, there exists x = (x1, . . . , xs) ∈ (k− {0})s such that zi = xai for all i = 1, . . . , n
if and only if zλ = 1 for all λ ∈ Zn such that

∑n
i=1 λiai = 0.

When k = R and z ∈ Rn
>0, which will be our case, an easy proof of Proposition 5.2.2 can

be given by taking logarithms.

Proof (of Proposition 5.2.1). A positive vector x0 satisfies a binomial equation−κijxyi0 +κjix
yj
0

= 0 if and only if x
yi−yj
0 = qij . The result follows from Proposition 5.2.2 for n = r and

{a1, . . . , an} = {yi − yj, (i, j) ∈ R}.

One can translate Conditions (5.12) into a finite number of equalities associated to a system
of generators of N , as described in [49], or in general, by matrix algebra tools as in [137, 168].
In [42], a new formalism of thermodynamic-kinetic modeling is introduced, where detailed
balanced is imposed.

5.2.2 The minors of L(G)

We will recall in this section the shape of the minors of L(G), already seen in Section 2.2. This
time, we work with a digraph not necessarily strongly connected.

Let G be a reversible digraph corresponding to a chemical reaction network and call Gt,
t = 1, . . . , l, the linkage classes of G, with corresponding sets of vertices Vt and edges Rt. Up
to renumbering, we can assumeL(G) is block diagonal, with diagonal blocks the corresponding
matrices L(Gt) for the components G1, . . . , Gl. Following [30], we introduce the following
definition:

Definition 5.2.2. Consider any directed subgraph T of G such that the underlying undirected
graph of T is a spanning forest of the underlying undirected graph of G. We denote the set of
vertices of T by V (T ) and its set of edges by R(T ). Thus, R(T ) consists of m − l edges. Fix
a connected component Gt of G and write κTt for the product of the #Vt − 1 rate constants
which correspond to all edge labels of the edges in R(T )∩Rt. Let i be one of the nodes of Gt.
The directed tree obtained by the restriction Tt of T to Gt is called an i-tree if the node i is its
unique sink, i.e., all edges are directed towards node i. We will write κTt for the product of the
#Vt− 1 rate constants which correspond to all edge labels of the edges of Tt. We introduce the
following constants, which are polynomials in the (κij):

Ki =
∑

Tt an i−tree

κTt . (5.13)

Note that each Ki is a nonempty sum of positive terms because, as Gt is strongly connected,
there exists at least one i-tree for every vertex i and each κuv > 0 for (u, v) ∈ Rt.

It follows from the Matrix-Tree Theorem [149] that for any i ∈ Vt, the absolute value of
the determinant of the submatrix of L(Gt) obtained by deleting the i-th column and any one of
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the rows, equals Ki. This (non-zero) minor is independent (up to sign) of the choice of rows
because the row sums of L(Gt) are zero. Compare also with the statements in [100].

In Example 2.2.1 in Chapter 2 we showed how these minors look like.

5.2.3 The linear relations

We recall the structure of the nullspaces N and N ′ defined in (5.9) and (5.10). The statements
that follow are all contained in [49] (with a different language).

The subsequent combinatorial arguments go back to Kirchoff. We can distinguish the fol-
lowing sublattice N ′1 of N ′. It is the Z-module spanned by the cycles of the underlying undi-
rected graph G̃. More precisely, given any oriented cycle C we form the vector vC ∈ {−1, 0, 1} e2
whose (i, j) coordinate equals 1 if the edge (i, j) ∈ G′ is in C, −1 if instead the edge (j, i) lies
in C, and 0 if neither of the edges (i, j), (j, i) is in C.

The rank ofN ′1 equals r
2
−m+ l, and a basis is formed by the fundamental cycles associated

to a choice of a spanning forest T of G. The fundamental cycles associated to T are those
(undirected) cycles which are created when we add an edge in the associated undirected graph
T̃ between any two vertices in the same connected component of G. Note that although the
number of fundamental cycles in a graph is fixed, the cycles that become fundamental change
with the spanning forest.

If we fix a spanning forest T̃ of G̃, we can moreover choose a direct complement N ′2 of N ′1
in N ′ as follows. Consider all vectors v = (vij, (i, j) ∈ R(G′)) in N ′ such that vij 6= 0 ⇒
{i, j} ∈ R(T̃ ). CallN ′2 the Z-span of all these vectors v with support contained in R(T̃ ). Then

N ′ = N ′1 ⊕N ′2.

With our notations, the structural deficiency of the network G (see Section 2.4) equals δS =
m− dimS − l, where S is the stoichiometric linear subspace defined by

S = span{yi − yj, (i, j) ∈ R}.

Thus, dimS = rank(Y · CG′) = rank(Y · CG). As dimS = r
2
− rank(N ′), we get that

rank(N ′2) = δS , so that N ′2 = 0 if and only if δS = 0, and for δS > 0 we could choose a system
of δS generators of N ′2.

In a similar way, we can decompose N as N = N0 ⊕ N1 ⊕ N2, where N0 is the lattice
of rank e

2
spanned by the 0, 1 vectors in N which express the fact that the (i, j)-th column of

Y · CG is minus its (j, i)-th column, and Ni for i = 1, 2 is isomorphic to N ′i (we simply add 0
coordinates for the entries corresponding to the edges not in G′).

5.3 Characterizing formally balanced and complex balanced
systems

We keep the notations of § 5.2.
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5.3.1 Formally balanced systems

We recall that our definition of formally balanced systems reformulates with our notation Fein-
berg’s circuit conditions, which in the case of monomolecular reactions are also equivalent to
Wegscheider’s condition.

We can use the description of the kernel N in § 5.2.3 to translate our definition of formal
balancing, similarly to the characterization of detailed balanced systems in Proposition 5.2.1.

Proposition 5.3.1. Given a chemical reaction system, G = (V,R, κ, Y ), the following state-
ments are equivalent:

(i) The associated system is formally balanced,

(ii) For every cycle C̃ of G̃, it holds that ∏
(i,j) in C+

qij = 1, (5.14)

(iii) The vector q = (qij)(i,j)∈R verifies

qλ = 1 for all λ ∈ N1. (5.15)

Then, a formally balanced system G is detailed balanced if and only if Equations (5.12)
hold for all λ in a set of generators of N2. These are the spanning forest conditions in [49].

5.3.2 Complex balanced systems

We now characterize mass–action kinetics complex balanced chemical reaction systems. We
introduce new variables which are suitable for our formulations.

Definition 5.3.1. Let G = (V,R, κ, Y ) be a reversible chemical reaction system defining a
dynamical system as in (5.3). For each (i, j) ∈ R, we define

Qij =
Kj

Ki

. (5.16)

Remark 5.3.1. The following equations hold

QijQji = 1 for all (i, j) ∈ R.

We define Qij by the same formula for any pair i, j in 1, . . . ,m and then

QijQjk = Qik for all i, j, k ∈ {1, . . . , n}.

It turns out that the existence of a positive steady state x0 satisfying L(G)Ψ(x0) = 0 as in
Definition 2.5.1, is again equivalent to algebraic conditions given purely in terms of the rate
constants.
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Proposition 5.3.2. A chemical reaction system, G = (V,R, κ, Y ), is complex balanced if and
only if

Qλ = 1 for all λ ∈ N. (5.17)

Here, Q denotes the vector Q = (Qij)(i,j)∈R .

Proof. We first claim that a system G = (V,R, κ, Y ) defines a complex balanced system if
and only if there exists a positive vector x0 ∈ Rs such that the following binomial equations
are satisfied

Kix
yj
0 −Kjx

yi
0 = 0, for all (i, j) ∈ R. (5.18)

To prove this claim, we form as in [30] the following binomial ideals in Q[x] := Q[x1, . . . , xs]:

I = I1 + · · ·+ Il, It = 〈Kix
yj −Kjx

yi , (i, j) ∈ Rt〉, t = 1, . . . , l. (5.19)

Here R1, . . . ,Rl are the edges of the different connected components of G, as in Section 5.2.
We moreover define the ideal TG as the saturation

TG = (I : (x1x2 . . . xs)
∞) = {p ∈ Q[x] : ∃ u ∈ Z≥0 such that p(x1x2 . . . xs)

u ∈ I}.

We denote by V>0(I) the positive variety of I , that is, the zeros of I in (R>0)s, and similarly for
other ideals. As TG = (I : (x1x2 . . . xs)

∞) = (I1 : (x1x2 . . . xs)
∞)+· · ·+(Il : (x1x2 . . . xs)

∞),
we deduce from display (8) in [30] that V>0(TG) = {x ∈ Rs

>0 : L(G)Ψ(x) = 0}. But a point x
with all non-zero coordinates is annihilated by TG if and only if it is annihilated by I . We then
have that

V>0(I) = {x ∈ Rs
>0 : L(G)Ψ(x) = 0},

and so the system G is complex balanced if and only if there exists a positive vector x0 satisfy-
ing Equations (5.18).

Now, we argue as in the proof of Proposition 5.2.1. These equations are equivalent to
x
yi−yj
0 = Qij for all (i, j) ∈ R. By Proposition 5.2.2, for n = r and {a1, . . . , an} = {yi −
yj, (i, j) ∈ R}, these conditions are in turn equivalent to Qλ = 1 for all λ ∈ N , as stated.

Remark 5.3.2. From the definition of the vectorQ, it is clear that the equalitiesQλ = 1 always
hold for any λ ∈ N0 ∪N1. Therefore, it is enough to check Equalities (5.17) for λ in a basis of
N2. For instance, the rank of N2 in (5.1) is 3. It is straightforward to check that for any choice
of constants as in (5.5):

Q1
12 ×Q1

24 ×Q1
1113 ×Q1

1314 =
K4K14

K1K11

= 1

Q1
12 ×Q1

23 ×Q1
1012 ×Q1

1214 =
K3K14

K1K10

= 1

Q1
35 ×Q1

57 ×Q1
89 ×Q1

910 =
K7K10

K3K8

= 1,

which proves again that the system is complex balanced (without needing to show a complex
balanced steady state).
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5.4 Proof of Theorem 5.1.1

Consider a reversible mass–action kinetics chemical reaction systemG = (V,R, κ, Y ) which is
formally balanced. By Propositions 5.2.1, 5.3.1 and 5.3.2, we need to show that if the constants
qij satisfy Equations (5.14), then

Qλ = 1 for all λ ∈ N

if and only if
qλ = 1 for all λ ∈ N.

These relations possibly involve constants associated to edges in several connected com-
ponents of G. In fact, it holds that, modulo the formal balancing relations, an algebraic de-
pendency relation P (K) = 0 among the (invertible) variables Qij holds for a polynomial P
in r variables if and only if the “same” algebraic relation P (q) = 0 is true for the (invertible)
variables qij . This is an immediate consequence of the following proposition.

Proposition 5.4.1. Let G = (V,R, κ, Y ) be a reversible mass–action kinetics system which is
formally balanced. Then,

Qij = qij for all (i, j) ∈ R. (5.20)

Proof. Since Equations (5.14) relate variables quv for (u, v) in a single connected component
of G, and since for given (i, j) ∈ R, i, j belong to the same component, we can assume G is
connected.

Fix (i, j) ∈ R. We define a bijection between the set of j-trees and the set of i-trees as
follows (see Example 5.4.1 for an illustration). Let T be any j-tree.

(i) If the edge (i, j) ∈ R(T ), then let T ′ be the tree obtained by replacing (i, j) by the
opposite edge (j, i).

(ii) If the edge (i, j) /∈ R(T ), let Cij be the undirected fundamental cycle which is created
in T̃ by adding the edge (i, j). Call C+

ij the corresponding oriented cycle which contains
(i, j). Then, let T ′ be the tree obtained by giving to the edges of T which “lie” on Cij the
direction in C+

ij (that is, we “reverse” all these edges in T ).

It is straightforward to check that in both cases T ′ is, in fact, an i-tree and that the map
T 7→ T ′ is a bijection. So, we have established a bijection between the terms in Ki and the
terms in Kj .

Let T be a j-tree. We compare the term κT in Kj with the corresponding term κT
′ in Ki. If

(i, j) ∈ R(T ), we clearly have that

κT = qij κ
T ′ .

If instead we have that (i, j) /∈ T then

κT =

 ∏
(u,v)∈C+ij ,(u,v)6=(i,j)

qvu

 κT
′
.
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By the assumption of formal balance, we have that
∏

(u,v)∈C+ij

quv = 1 and so

∏
(u,v)∈C+ij ,(u,v) 6=(i,j)

qvu = qij.

Therefore,

Qij =
Kj

Ki

= qij,

as wanted.

Example 5.4.1 (Example 2.2.1 continued). Considering the network

y1

κ14

��

κ12 //
y2

κ21
oo

κ23

��

κ25 //
y5

κ52
oo

κ56

��
y4

κ41

OO

κ43 //
y3

κ34
oo

κ32

OO

κ36 //
y6,

κ63
oo

κ65

OO

choose the following 1-tree T :

y1 y2

κ23

��

y5

κ56

��
y4

κ41

OO

y3
κ34

oo y6
κ63

oo

Let (i, j) = (4, 1). It is clear that by reversing the edge (4, 1) ∈ R(T ) one gets a 4-tree.
Let now (i, j) = (2, 1), which does not lie in R(T ), and C+

12 be the corresponding oriented
fundamental cycle:

y1

κ14

��

y2
κ21

oo

C+
12

y4

κ43 //
y3

κ32

OO

Then, reversing the arrows in the cycle gives the following 2-tree T ′

y1

κ14

��

y2 y5

κ56

��
y4

κ43 //
y3

κ32

OO

y6
κ63

oo
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5.5 General kinetic systems

In this section we generalize Theorem 5.1.1 to non–necessarily mass–action kinetic systems in
the sense of [48], see also [142, Section 2].

Let G = (V,R,K, Y ) be a kinetic system as in the introduction of this chapter. The
differential equations (5.2) that describe the corresponding dynamics can be written as

dx

dt
= Y CGK, (5.21)

where K is the e × 1 matrix with entries Kij , and C†G is the (transpose of) the corresponding
signed incidence matrix we considered in Subsection 5.2.3.

Remark 5.5.1. It might be useful to compare our notation with the notation in [2, 56]. For
instance,

dx

dt
= ΓK(x), where Γ = Y.CG ∈ Zs×r.

Assume we have a mass–action kinetics system. We denote byK the r×m real matrix with entry
equal to κij in column indicated by complex i and row indicated by the reaction edge (i, j), and
equal to zero elsewhere. Then, K(x) = KΨ(x), the Laplacian matrix equals L(G) = CGK
and we have

dx

dt
= Y L(G)Ψ(x) = Y (CGK)Ψ(x) = ΓK(x).

In the notation of [56], Y is called Ys, and the incidence matrices are denoted by CG =
Ia, K

† = IK .

In this general context, we adapt the previous definitions.

Definition 5.5.1. A complex balanced kinetic system is a dynamical system (5.21) associated
with the data G = (V,R,K, Y ) for which the equations CGK = 0 admit a strictly positive
solution x0 ∈ Rs

>0. Such a solution x0 is a steady state of the system, i.e., the s coordinates of
Y CGK vanish. We call x0 a complex balancing equilibrium.

As before, we will assume that the digraph G is reversible, and thus identify G with the
underlying undirected graph G̃.

Definition 5.5.2. A detailed balanced kinetic system is a dynamical system (5.21) associated
with the data G = (V,R,K, Y ) for which the equations Kij(x)−Kji(x) = 0, for all {i, j} ∈
R̃, admit a strictly positive steady state x0 ∈ Rs

>0. We call x0 a detailed balancing equilibrium.

Again, every detailed balanced kinetic system is also complex balanced. To define formal
balancing, we need to start from a particular positive steady state:

Definition 5.5.3. Given a complex balanced system at the positive steady state x0 ∈ Rs
>0

corresponding to the data G = (V,R,K, Y ), we say the kinetic system is formally balanced at
x0 (or that x0 is a formally balancing equilibrium) if the following condition holds for every
cycle C̃ of G̃: ∏

(i,j) in C+

Kij(x0) =
∏

(j,i) in C−

Kji(x0). (5.22)
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We can now reformulate Theorem 5.1.1:

Theorem 5.5.1. Consider a kinetic system (5.21) associated to the dataG = (V,R,K, Y ) with
a complex balancing positive steady state x0 ∈ Rs

>0. We have that x0 is a detailed balancing
equilibrium if and only if it the system is formally balanced at x0.

Proof. Given the complex balancing steady state x0 ∈ Rs
>0, we define constants

κij = Kij(x0)x−yi0

for each (i, j) ∈ R and we consider the mass–action kinetics dynamical system dx
dt

= Y L(G)Ψ(x)
associated with G = (V,R, κ, Y ). As Kij(x0) = κijx

yi
0 , we have L(G)Ψ(x0) = 0, and so this

new mass–action kinetics system is complex balanced in the previous sense.
Moreover, as the kinetic system is formally balanced at x0, we have that∏

(i,j) in C+

κij = C
∏

(i,j) in C+

Kij(x0) = C
∏

(j,i) in C−

Kji(x0) =
∏

(j,i) in C−

κji,

where C = x
−

∑
i∈R(C̃) yi

0 6= 0. Then, the mass–action kinetics system associated with G =
(V,R, κ, Y ) is formally balanced. By Theorem 5.1.1 it is detailed balanced. This means that
every binomial κijxyi − κjix

yj vanishes at x0, implying Kij(x0) − Kji(x0) = 0, and so the
kinetic system associated with G = (V,R,K, Y ) is detailed balanced at x0. The other impli-
cation is clear.

We end the chapter by showing another necessary and sufficient condition for a complex
balanced kinetic system to be detailed balanced.

Proposition 5.5.1 (Feinberg). Given a kinetic system (5.21) associated to the data G =
(V,R,K, Y ) with a complex balancing positive steady state x0 ∈ Rs

>0, the following statements
are equivalent:

(i) The equilibrium x0 is detailed balancing.

(ii) For every cycle C̃ in G̃ there exists an edge {iC̃ , jC̃} ∈ R(C̃) such that

Ki
C̃
j
C̃

(x0)−Kj
C̃
i
C̃

(x0) = 0.

(iii) Property (ii) holds for every basic cycle associated to any spanning forest of G̃.

Proof. The equivalence between (ii) and (iii) is clear, as well as the implication from (i) to
(ii). To see that (iii) implies (i), let G′ be the digraph obtained from G by “deleting” all
edges (iC̃ , jC̃), (jC̃ , iC̃) in the corresponding directed cycle C, together with their labels, for
all basic cycles C̃. Then, the associated undirected graph G̃′ has no cycles and so any pos-
itive complex balancing equilibrium x0 for G′ is automatically also detailed balancing. Call
L(G)(x0) (respectively, L(G)′(x0)) the Laplace matrices of the mass–action kinetics system
associated with G (resp. G′) with reaction constants κij = Kij(x0)x−yi0 for each (i, j) ∈ R
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(resp. κij = Kij(x0)x−yi0 for each (i, j) ∈ R − {(iC̃ , jC̃), (jC̃ , iC̃), C̃ a basic cycle of G̃}).
But if x0 satisfies the conditions in (iii), it follows that

L(G)′(x0)Ψ(x0) = L(G)(x0)Ψ(x0) = 0.

Therefore, x0 is detailed balancing for G′, which together with the equalities in (iii) implies
that x0 is detailed balancing for G, as wanted.
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Chapter 6

Finding absolute concentration robustness
with tools from computational algebra

We address in this chapter the determination of Absolute Concentration Robustness (ACR,
defined in [144]), using more advanced tools from computational algebra. We make clear
throughout these pages that, when dealing with the steady states of a chemical reaction system
under mass–action kinetics, we are not only working with the zeros of a certain polynomial
ideal, but we are necessarily faced with the positive zeros. It is inevitable, then, to eventually
introduce tools from real algebraic geometry for describing and analyzing the properties of the
positive steady states of a mass–action kinetics system.

In [144], Shinar and Feinberg define that a biological system shows absolute concentration
robustness (ACR) for an active molecular species if the concentration of that species is identical
in every positive steady state the system might admit. We use here tools from computational
algebra, algebraic geometry and real algebraic geometry to detect if a chemical reaction system
shows absolute concentration robustness for a certain chemical species. We comment on the
difficulties for a general algorithm and present some sufficient conditions for a system to have
absolute concentration robustness.

6.1 Setting

All the chemical reaction systems here will be considered under mass–action kinetics.

We keep throughout this chapter the notions and notations from previous chapters, which
will be briefly presented in the subsequent paragraphs.

Recall that a chemical reaction system under mass–action kinetics is a finite directed graph
G = (V,R, κ, Y ), with vertices labeled by y1, . . . , ym and edges called “reactions”, endowed
with a kinetics such that each reaction takes place at a rate that is proportional to the product of
the concentrations of the species being consumed in that reaction. In other words, the rate of
the reaction from yi to yj has the form κijx

yi , where κij is a positive number called the reaction
rate constant, and x = (x1, . . . , xs)

† is the vector whose `-th coordinate contains the molar
concentration of the `-th species. Recall that † denotes transpose.

A reaction system defines differential equations that describe the evolution of the molar

87
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concentrations of the species
dx

dt
= f(x).

In the case of mass–action systems, the coordinate functions f1, . . . , fs are polynomials in
Q[κ][x1, . . . , xs], where κ = (κij).

We will call I the ideal generated by the polynomials f1, . . . , fs:

I = 〈f1, . . . , fs〉 = {
s∑
i=1

gifi, gi ∈ R[x1, . . . , xs], i = 1, . . . , s }. (6.1)

This ideal was also called JΣΨ in Section 2.2.
A steady state of the reaction system will be a point x ∈ Rs

≥0 such that f(x) = 0. A positive
steady state is a zero of f that belongs to Rs

>0. It is important to notice that the steady states of
a system are the nonnegative zeros of the ideal I .

We define now ACR with a more “mathematical flavor”, using the terminology above.

Definition 6.1.1. Let f1, . . . , fs ∈ Q[κ0][x1, . . . , xs], with reaction rate constants κ0 ∈ Rr
>0,

and i ∈ {1, . . . , s}. We say that the system f1 = · · · = fs = 0 has absolute concentration
robustness (ACR) in the i-th variable if there exists a positive constant c such that for any
x ∈ Rs

>0 satisfying f1(x) = · · · = fs(x) = 0, it holds that xi = c. That is, the value of xi is
independent of x for any positive steady state of the system.

Throughout this chapter, we will make no distinctions between a chemical reaction system
and its corresponding ideal I , as we are only interested in the characteristics of the steady states.
Neither will we separate the i-th species from the corresponding variable xi. For instance, there
should be no confusion if we say that the ideal I shows ACR in the variable xi.

We will give in the following sections some sufficient conditions for a system to show ACR
and some algorithms, but we will also explain why it is impossible to develop an algorithm for
the general case without further hypotheses.

We will make use of results from commutative algebra, algebraic geometry and real alge-
braic geometry. The reader not familiar with the terminology is referred to [7, 29, 62, 147].

6.2 Some basic algebraic notions

This section presents some basic definitions from commutative algebra and algebraic geometry
that can be found in [28]. We will need these notions and notation for our results.

Let k be a field. Throughout this chapter, k will be either Q, R, C, or Q(κ), the field of
the rational functions with coefficients over Q and variables determined by κ. If we consider a
particular value κ0 ∈ Rr

>0 of κ, we obtain the field Q(κ0) ⊂ R. And let X be a set, which for
us will be C, C∗ (the complex numbers without zero), R, R>0, or a real closed field R that we
will mention later.

For the moment, we will work over any field k, and let J ⊂ k[x1, . . . , xs] be an ideal of
polynomials over k. We can define the following sets:
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• The variety of J over the set X is the set of zeros of the ideal that belong to X (for X a
“suitable” set for k). We will denote it as VX(J).

VX(J) := {x ∈ Xs : g(x) = 0 for all g ∈ J}

• The radical of J is the ideal of the polynomials in k[x1, . . . , xs] that vanish over Vk(J),
where k is the algebraic closure of k. This is in fact an equivalence stated by Hilbert’s
Nullstellensatz of the actual definition of the radical

√
J of J :

√
J := {g ∈ k[x1, . . . , xs] : gn ∈ J for some n ∈ N}.

An ideal J is called radical if J =
√
J .

• Let h be a polynomial in k[x1, . . . , xs], the saturation of J with respect to h is the ideal
(J : h∞) defined by

(J : h∞) := {g ∈ k[x1, . . . , xs] : hng ∈ J for some n ∈ N}.

For us, h will be the monomial m formed by the product of all the variables in the ring.
For example, for the ring k[x1, . . . , xs], m = x1 · · ·xs. Notice that the zeros of J with
nonzero coordinates are the zeros of (J : m∞) with nonzero coordinates. Roughly speak-
ing, (J : m∞) allow us to “divide” the polynomials in J by monomials in the variables.

It can be easily proved that if J = 〈g1, . . . , gt〉, and z is a new variable, then

(J : h∞) = 〈g1, . . . , gt, hz − 1〉 ∩ k[x1, . . . , xs].

Both, the saturation ideal and the radical ideal, can be computed from I with Gröbner basis
methods, implemented for instance in the computer algebra systems Macaulay2 [61] or Singu-
lar [35]. In these systems, the output of each method is a set of generators of the corresponding
ideal.

6.3 First sufficient conditions for ACR

Inspired in Example 4.2.3 of Chapter 4, from Shinar and Feinberg [144], we use the saturation
of I with respect to the monomial m = x1 · · ·xs to help us check if a given ideal shows ACR
for a certain variable i. The following lemma goes in that direction.

Lemma 6.3.1. If there exists i ∈ {1, . . . , s} and a polynomial g ∈
√

(I : m∞) ∩ R[xi] with
only one positive real root, then the system shows ACR for the i-th species.

Proof. We need to show that there exists a positive c such that, for every positive steady state,
the i-th coordinate equals c. Let i and g be as in the statement, and let c be the only positive
real root of g. There exists n such that mngn ∈ I . Let x̃ be a positive steady state, it holds
that (x̃1 . . . x̃s)

ngn(x̃i) = 0. As x̃j 6= 0 for 1 ≤ j ≤ s, we have g(x̃i) = 0, and therefore, as
x̃i > 0, it holds that x̃i = c. And this is true for any positive steady state x̃, which implies that
the system shows ACR for the i-th species.
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We then have the following algorithm to detect if the conditions in Lemma 6.3.1 are satis-
fied. This algorithm may not be optimal, but it can yet lead to the detection of ACR.

Algorithm 6.3.1. INPUT: f1, . . . , fs ∈ k[x1, . . . , xs] and i ∈ {1, . . . , s}.
OUTPUT: “Yes”, if there exists a polynomial g as in Lemma 6.3.1, or “No” if it does not.

Step 1: Compute the saturation ideal (I : m∞).
Step 2: Compute the elimination ideal Ii := (I : m∞) ∩ k[xi].
Step 3: Compute

√
Ii and pick a generator g.

Step 4: Compute the number of positive real roots of g (via Sturm’s theorem).

If g has only one positive real root, return “Yes”. Otherwise, return “No”.

Ideally, k = R. For computational reasons, one may assume k = Q or k = Q(κ0), but we
will deal with some problems related to these kind of assumptions in Examples 6.5.1 and 6.5.2.

Note that Sturm’s theorem counts all distinct real roots without counting their multiplicity.
Once we consider the radical ideal, we can be sure that each root of its generators has multi-
plicity one. We do not compute the radical ideal until Step 3 because it is sufficient and cheaper
to do the computations in one variable.

An important remark is that, if the answer to the algorithm is “Yes”, then we can confirm
ACR for the system in the i-th variable.

We apply the algorithm to the following example.

Example 6.3.1 (Shinar-Feinberg example, continued). Recall from Example 4.2.3 in Chap-
ter 4 that using the lexicographical order x1 > x2 > x4 > x5 > x6 > x8 > x9 >
x3 > x7, the reduced Gröbner basis of the ideal of the system contained the polynomial g1 =
[k89k12k23k910(k12,11+k12,13)+k11,12k21k12,13(k98+k9,10)(k32+k34)]x3x7+[−k23k34k12(k12,11+
k12,13)(k98 +k9,10)]x3. So, this computation already gives a binomial, which ensures ACR in x7.
If we follow the steps of Algorithm 6.3.1, we obtain the polynomial g = g1/x3. It is important
to notice that, in this case, the system exhibits ACR for any choice of rate constants κ.

The ideal I in this example is a binomial ideal: it can be generated by the binomials
g1, . . . , g7. Moreover, it can be proved that for any binomial ideal (not containing monomi-
als) and any term order, the reduced Gröbner basis is composed of binomials (Proposition
1.1.(a) of [43]). In particular, we could read the binomial g1. However, it is not true that if
there is a binomial of the form p = mxi−m c in a given ideal, the computation of any Gröbner
basis will show any binomial nor will easily allow to deduce the existence of such p. But this
will be always achieved from the steps in Algorithm 6.3.1.

Using the saturation of I with respect to m = x1 · · ·xs, we can also prove the following
proposition related to the results in Chapter 4, generalizing the Shinar-Feinberg Theorem for
ACR [144].

Proposition 6.3.1. Consider a mass–action system that admits a positive steady state and sup-
pose that the system satisfies Condition 4.2.1 defined in Section 4.2, for the partition I1, I2, . . . ,
Id of {1, 2, . . . ,m}. If, in the network, there are two different complexes yj1 and yj2 with
j1 6= j2, j1, j2 ∈ Ij for some j ∈ {1, 2, . . . , d}, that differ only in the i-th species, then the
system has ACR in the i-th species.
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Proof. As the system admits a positive steady state and satisfies Condition 4.2.1, according
to Theorem 4.2.1, any steady state satisfies the binomial bjj1x

yj2 − bjj2x
yj1 for some positive

bjj1 , b
j
j2

. Let us assume, without loss of generality, that (yj2)i > (yj1)i, then the polynomial

x
(yj2 )i
i − bjj2

bjj1

belongs to the ideal (I : m∞). As the zeros of I with nonzero coordinates are

the zeros of (I : m∞) with nonzero coordinates, in particular, all the positive steady states are

positive zeros of (I : m∞). Hence, if we call c the (yj2)i-th root of
bjj2
bjj1

, we have xi = c (> 0)

for all x positive steady state of the system, which is what we wanted to prove.

6.4 ACR vs. CACR

Many chemical reaction systems are classified according to special characteristics in their pos-
itive equilibria. We focus here on ACR, but we can recall, for example, detailed balance from
Chapter 5. Let us come back to Example 4.1.1 from Chapter 4.

Example 6.4.1 (Triangle network, continued). We have the network

2A

A+B2B

κ31

κ13

κ32

κ23

κ21

κ12

%%KKKKKKKKKKKKKKK eeKKKKKKKKKKKKKKKxxppppppppppppppp 88ppppppppppppppp
oo //

We label the three complexes as xy1 = x2
1, xy2 = x2

2, xy3 = x1x2, and we define κij to be
the (real positive) rate constant of the reaction from complex yi to complex yj . The resulting
mass-action kinetics system equals

dx1

dt
= − dx2

dt
= (−2κ12 − κ13)x2

1 + (2κ21 + κ23)x2
2 + (κ31 − κ32)x1x2 .

The steady state locus in R2
≥0 is defined by this single trinomial. As only the coefficient of x1x2

can be zero, this system has toric steady states if and only if κ31 = κ32.
But if we fix κ31 = κ23 = 2, κ13 = κ32 = κ12 = 1, κ21 = 4, the system does not have toric

steady states (κ31 = 2 6= 1 = κ32) since f1 = (3x1 + 5x2)(2x2 − x1). However, all positive
steady states satisfy the binomial equation 2x2 − x1 = 0. In fact, we have that the ideal of
polynomials vanishing on the positive roots of the ideal 〈f1〉 is 〈2 x2 − x1〉, which is binomial.
This system is an example of a detailed balanced system (recall Definition 5.1.2 in Chapter 5)
which is not binomial.

If we widen our scope to the (algebraically closed field of the) complex numbers C, we
may lose chemical significance in principle, but we can gain much from the theoretical and
computational point of view. Let us start by introducing a generalization of the notion of
absolute concentration robustness. It is simply an extension of this particular quality from the
positive zeros to the complex zeros with nonzero coordinates.
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Definition 6.4.1. Let f1, . . . , fs ∈ Q[κ0][x1, . . . , xs], with reaction rate constants κ0 ∈ Rr
>0,

and i ∈ {1, . . . , s}. We say that the system f1 = · · · = fs = 0 has complex absolute con-
centration robustness (CACR) in the i-th variable if there exists a constant c such that for any
x ∈ (C∗)s satisfying f1(x) = · · · = fs(x) = 0, it holds that xi = c. That is, the value of xi is
independent of x.

Remark 6.4.1. Assume a system f1 = · · · = fs = 0 has CACR in the i-th variable. If c ∈ R>0

then the system has ACR in the i-th species (and for any positive steady state, its i-th coordinate
equals c), but if c /∈ R>0, then the system cannot have any positive steady state.

What we gain from this new definition is necessary and sufficient conditions for CACR to
occur. Moreover, CACR can be detected algorithmically. We record our claim in the following
proposition and algorithm.

Proposition 6.4.1. Let I = 〈f1, . . . , fs〉 ⊂ R[x1, . . . , xs] as in (6.1). The system has CACR in
the i-th variable if and only if there exists a binomial of the form xi − c in

√
(I : m∞), where

m is the monomial x1 · · ·xs, and c is a rational function of the coefficients of the polynomials
f1, . . . , fs.

Proof. First assume that the system has CACR in the i-th variable, and xi = c for all x ∈ (C∗)s
satisfying f1(x) = · · · = fs(x) = 0. Then, m (xi − c) is identically zero over all the zeros
of I in Cs. We deduce from the Nullstellensatz that there exists a natural number n such that
mn (xi − c)n ∈ I . Thus, (xi − c)n ∈ (I : m∞) and only depends on xi. This implies that
xi − c ∈

√
(I : m∞).

Now assume that there exists a binomial of the form xi−c in
√

(I : m∞). Then there exists
n big enough such that mn(xi − c)n ∈ I . If x̃ ∈ VC∗(I), then (x̃1 . . . x̃s)

n(x̃i − c)n = 0. As
(x̃1 . . . x̃s)

n 6= 0, we have (x̃i − c)n = 0, and then xi = c for all x̃ zero of I in (C∗)s, as we
wanted to prove.

This algorithm detects if there is CACR in a certain variable xi.

Algorithm 6.4.1. INPUT: f1, . . . , fs ∈ k[x1, . . . , xs] and i ∈ {1, . . . , s}.
OUTPUT: c, if the system has CACR, or “No” if it does not.

Step 1: Compute the saturation ideal (I : m∞).
Step 2: Compute the elimination ideal Ii := (I : m∞) ∩ k[xi].
Step 3: Compute

√
Ii and pick a generator g.

If g has degree 1, return its root. Otherwise, return “No”.

As in Algorithm 6.3.1, ideally k = R but sometimes k = Q or k = Q(κ0) is assumed (see
Examples 6.5.1 and 6.5.2 below). We do not compute the radical ideal until Step 3 because it
is sufficient and cheaper to do the computations in one variable. As before, this algorithm may
not be optimal, but it still can lead us to CACR.

Example 6.4.2 (Shinar-Feinberg example, continued). We come back to this example where
using the lexicographical order x1 > x2 > x4 > x5 > x6 > x8 > x9 > x3 > x7, the reduced
Gröbner basis of the ideal of the system contained the polynomial g1 = [k89k12k23k910(k12,11 +
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k12,13)+k11,12k21k12,13(k98+k9,10)(k32+k34)]x3x7+[−k23k34k12(k12,11+k12,13)(k98+k9,10)]x3,
which ensures CACR in x7. If we follow the steps of Algorithm 6.4.1, we again obtain the
polynomial g = g1/x3. Notice that this system also exhibits CACR for any choice of rate
constants κ.

Even though detecting CACR is possible, there are systems that show ACR but do not have
CACR. We capture this situation in the following example.

Example 6.4.3. Consider the polynomials in two variables:

f1(x) := (x1− 2)(x1− 3)(x2
1 + 1), f2(x) := (x1− 2)(x1− 3)(x2

2− x2) + (x2
1 + 1)(2− x2).

Here s = 2 and there are two positive solutions: (2, 2) and (3, 2), so the system has ACR in the
second variable. However, there are two complex solutions with nonzero entries, with second
coordinate equal to 1, and therefore the system does not show CACR in this variable.

Note that the polynomials f1, f2 have the following shape: fi = pi−xiqi, i = 1, 2, where all
the coefficients of pi, qi are non negative. It follows from [68, Theorem 3.2], as we mentioned at
the end of Section 2.1, that it is possible to find a reaction network modeled with mass–action
kinetics, such that the associated system is dx1/dt = f1, dx2/dt = f2.

6.5 Towards detecting ACR with tools from real algebraic
geometry

We finally need to face the fact that we are not actually interested in all the complex zeros of a
given chemical reaction system, but we are looking for the real non-negative ones. Moreover
we are usually interested in the positive equilibria. We are then looking for a polynomial
g(x) := xi − c ∈ R[xi] that equals zero on any positive steady state.

In other words, we want to state that, given i ∈ {1, . . . , s}, there exists c > 0 such that, for
all xi > 0 such that there exist x1 > 0, . . . , xi−1 > 0, xi+1 > 0, . . . , xs > 0 satisfying f1(x) =
· · · = fs(x) = 0 for x = (x1, . . . , xs), then xi = c. This is a formula in the language of
ordered fields, that is equivalent to the projection of a semialgebraic set onto the i-th coordinate.
There are results from quantifier elimination theory ( [7, Chapter 2]) that allow us to decide
this existence algorithmically. The first result is due to Tarski and Seidenberg [138, 156, 157]
and there are more recent improvements [5, 6, 71–73, 127] related to the complexity of this
algorithm, which is usually quite expensive. There are some implementations of quantifier
elimination based on the method of Cylindrical Algebraic Decomposition (CAD) proposed by
Collins [13, 21, 22, 152].

In this section we address this issue from a different approach, which is more demanding but
serves as a starting point for the development of other computational tools from real algebraic
geometry for the analysis of steady states of biochemical reaction systems.

Recall now the ideal I = 〈f1, . . . , fs〉 ∈ Q[κ0][x1, . . . , xs] generated by the equations of
the mass–action chemical reaction system with rate constants κ0 ∈ Rr

>0. One thing we could
do is try to find the ideal P ⊆ R[x1, . . . , xs] of all the polynomials that vanish on the positive
real zeros of I , then ACR for the i-th species would be equivalent to xi − c ∈ P for some
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positive c. But an algorithm to find this ideal P in a generic case would imply computing the
factorization of polynomials over the field R, which is impossible.

Considering this dilemma, we will give some heuristics and further sufficient conditions
to decide whether a specific chemical reaction system shows ACR, using tools from algebraic
geometry, real algebraic geometry and computational algebra.

As we are interested in the positive zeros among the real ones, we can focus on the ideal
J ∈ Q[κ0][x1, . . . , xs, z1, . . . , zs] defined as

J := 〈I, x1z
2
1 − 1, x2z

2
2 − 1, . . . , xsz

2
s − 1〉.

This basic yet ingenious trick was suggested to us by Daniel Perrucci. Notice that the zeros
of J have nonzero coordinates. Moreover, if (x1, x2, . . . , xs, z1, z2, . . . , zs) belongs to the real
variety of J , then xi must be positive for 1 ≤ i ≤ s as it satisfies the equation xiz2

i = 1, with
zi ∈ R.

As we are only interested in a description of the (positive real) variety of the ideal, we can
focus on its radical ideal

√
J which we will denote Ĩ .

Ĩ := {g ∈ Q[κ0][x1, . . . , xs] : gn ∈ J for somen ∈ N}. (6.2)

We will focus then on the real zeros of Ĩ , as we can recover the positive zeros of I by
projecting VR(Ĩ) onto the first s coordinates. Moreover, there is no impediment in studying Ĩ
since it can be computed effectively.

We can also notice that Ĩ is equal to its saturation with respect to the monomial m =
x1 · · ·xsz1 · · · zs.
Lemma 6.5.1. Let Ĩ as in (6.2), then we have Ĩ = (Ĩ : m∞).

Proof. One inclusion is obvious (we take n = 1). For the other one, let g ∈ (Ĩ : m∞), then
there exists n ∈ N such that g.mn ∈ Ĩ . Let (x̃, z̃) be a zero of Ĩ , then x̃iz̃

2
i = 1 for all

i ∈ {1, . . . , s} and this implies x̃i 6= 0, z̃i 6= 0 for all i, and therefore (x̃1 . . . x̃sz̃1 . . . z̃s)
n 6= 0.

Then, necessarily g(x̃, z̃) = 0 and by the Nullstellensatz, g belongs to the radical of Ĩ , but Ĩ is
a radical ideal; hence, g ∈ Ĩ .

Let us see now how we can recover ACR even if the system does not have CACR. Recall
from Example 6.4.3 the polynomials f1(x) := (x1 − 2)(x1 − 3)(x2

1 + 1), f2(x) := (x1 −
2)(x1 − 3)(x2

2 − x2) + (x2
1 + 1)(2 − x2) that can be considered as dx1/dt = f1, dx2/dt = f2

for a chemical reaction system. We can find

Ĩ = 〈(x1−2)(x1−3)(x2
1 +1), (x1−2)(x1−3)(x2

2−x2)+(x2
1 +1)(2−x2), x1z

2
1−1, x2z

2
2−1〉.

This ideal can be decomposed as Ĩ = P1 ∩ P2, where P1 = 〈(x1 − 2)(x1 − 3), (x2
1 + 1)(2 −

x2), x1z
2
1 − 1, x2z

2
2 − 1〉 and P2 = 〈(x2

1 + 1), (x1 − 2)(x1 − 3)(x2
2 − x2), x1z

2
1 − 1, x2z

2
2 − 1〉.

As P2 has no real zeros (VR(P2) = ∅), we deduce that the real variety of Ĩ coincides with
the real variety of P1. This last ideal shows CACR in the second variable, with c = 2 > 0.
Therefore, this way we can also see that the system shows ACR for the second variable. In
general, we will give a sufficient condition to find ACR when there is no CACR in the following
lemma:
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Lemma 6.5.2. Let Ĩ be as in (6.2). If Ĩ can be written as the intersection of two ideals P1 and
P2:

Ĩ = P1 ∩ P2,

such that VR(P2) = ∅ and there exists a positive c such that xi−c ∈ P1, for some i ∈ {1, . . . , s},
then the system shows ACR in the i-th species.

Proof. Immediate since VR(Ĩ) = VR(P1).

This would lead us to a sufficient condition that could be checked algorithmically as in
Algorithm 6.4.1 if we could compute effectively the ideals P1 and P2 in the decomposition.
Notice that what we did in Example 6.4.3 is a factorization of f1 into f1 = g.h with g such that
all its roots are real, and h with all roots nonreal. In practice, this is impossible without further
hypotheses. For example, suppose that we want to factor the polynomial x3

1−2. We would like
to isolate the factor x1 − 3

√
2. A computer can either approximate the irrational number 3

√
2 or

give us a representation of the form x1−α = 0, α3− 2 = 0, which is informative but not quite
sufficient. Moreover, even if we were satisfied with this type of factorization, a description on
the roots of a polynomial in the form xni − C = 0 would imply the polynomial is solvable by
radicals, which is rare for univariate polynomials of degree bigger than four.

Many authors in real algebraic geometry have addressed the issue of finding the polynomi-
als that vanish in the real zeros of a certain ideal [7, 10, 106, 123, 131, 147, 148]. In [10, 123],
Becker and Neuhaus present algorithms to compute τ -radicals, in particular R

√
J . These algo-

rithms work if certain specified computational requirements for k are satisfied. The τ -radical of
an ideal J in k[x1, . . . , xs] is τ

√
J = {g ∈ k[x1, . . . , xs]; g

2t+
∑N

i=1 aih
2
i ∈ J for some t, N, ai ∈

τ, hi ∈ k[x1, . . . , xs]}, where k is a field and τ ⊂ k a preordering, i.e. τ is a subset of k,
closed under addition and multiplication such that k2 ⊆ τ,−1 /∈ τ . The smallest preordering
τ0 = k2 gives J = R

√
J which is called the real radical. Analogous to Hilbert’s Nullstellen-

satz, it holds that R
√
J is the ideal in k[x1, . . . , xs] of the polynomials that vanish on the real

variety VR(J) of J . The requirements, in order to cope with an arbitrary univariate polynomial
f ∈ k(κ1, . . . , κr)[x] are the following computational assumptions: The preordered field (k, τ)
should be effectively given and it should allow

(F) polynomial factorization of multivariate polynomials over k as well as

(R) an algorithm to test if a given irreducible polynomial p ∈ k[κ1, . . . , κr, x] is τ -real over
k(κ1, . . . , κr), i.e. if τ

√
(p) = (p) in k(κ1, . . . , κr)[x].

In the case of k = R with the usual order, (F) would mean effective factorization over R.
We could bypass this difficulty working on a field different from R. For instance, even

though for a fixed κ0 ∈ Rr
>0, Q(κ0) ⊂ R, we can think the polynomials in Q(κ)[x1, . . . , xs],

where absolute factorization can be implemented [20]. However, we must return to the special-
ization Q(κ0) for the specific system we are working with. Once we are back in R we face two
problems. The first one is whether the specialized polynomials are still irreducible. It follows
from Hilbert’s irreducibility theorem that the set of all irreducible specialization, called Hilbert
set, is Zariski dense in Qr, so we may be lucky to have κ0 in this Hilbert’s set. The second
problem is related to the strong dependence of ACR on the specific constants of the system.
We show in the following example why this might be inconvenient.
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Example 6.5.1. Consider the following polynomials in two variables:

f1 = (x1 − (κ1 − 1))(x1 − (κ2 − 2))

f2 = (x2 − 3)(x2 − 4)

• If κ1 > 1 and κ2 > 2, then there is no ACR in any variable.

• If κ1 ≤ 1 and κ2 ≤ 2, then there are no positive solutions to the system and ACR holds
vacuously for the first species.

• If κ1 > 1 and κ2 ≤ 2, then it holds that x1− (κ1− 1) = 0 for all (x1, x2) positive steady
state, and hence there is ACR in the first species.

• If κ1 ≤ 1 and κ2 > 2, then it holds that x1− (κ2− 2) = 0 for all (x1, x2) positive steady
state, and hence there is ACR in the first species.

Visually, this is

κ1

κ2

1 2 3

1

2

3

Vacuous

ACR

ACR with
x1 = κ1 − 1

ACR with
x1 = κ2 − 2 No ACR

We can see from this example how unstable the system can be.

Another option is to assume κ0 ∈ Qr. This is a sensible assumption since one cannot deal
with irrational numbers on a computer. However, we have to be careful at approximating our
real constants, as the following example points out.

Example 6.5.2. Consider the following polynomials in two variables:

f1 = (x1 − (κ− π))(x1 − (κ− 3.1415))

f2 = (x2 − 3)(x2 − 4)

Notice that if we approximate κ by 3.1416 or any number bigger than π, then there is no ACR. If
we chose instead a number smaller than or equal to 3.1415, the system shows ACR vacuously,
since there are no positive steady states for that choice. Finally, if we approximate κ by a
number in the interval (3.1415, π] then x1 = κ − 3.1415 > 0, for all positive steady states
(x1, x2).
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In the literature mentioned above, with the notions of pre-orderings, orderings, real closed
fields and real closure, the authors develop the theory for finding the real radical ideal. For
instance, a first approach to compute it comes from a result present in Bochnack et al. [12],
where with the extra notion of a non-singular point of an ideal they state a criterion that can
help us isolate the components of the ideal decomposition that eventually lead us to describe
the real zeros.

Definition 6.5.1. Let R be a real closed field and P = 〈g1, . . . , gt〉 be a prime ideal of
R[x1, . . . , xs] of dimension d. A point x in VR(P ) is called a non-singular point of P when
rank

([
∂gi
∂xj

(x)
])

= s− d.

The following proposition is deduced from Proposition 3.3.15 and Corollary 4.1.8 in [12]:

Proposition 6.5.1. Let P = 〈g1, . . . , gt〉 be a prime ideal of R[x1, . . . , xs] of dimension d, with
R a real closed field. If P has a non-singular zero in Rs, then P = R

√
P .

This implies that if we could, in theory, find the decomposition in prime ideals over R,
then we could check for the existence of a non-singular point in each component, and if there
is one such point, finding ACR is equivalent to finding CACR in that component. This last
procedure is computable (although its complexity is very high [7, Chapter 13]), and in case
there is no non-singular point, then all such zeros are in the ideal of the singular points of
the corresponding component and the procedure could be repeated in this new ideal of lower
dimension. This paragraph roughly describes an algorithm that could be implemented if it were
possible to factor over R. For a better understanding of this theoretical algorithm, we refer the
reader to Example 6.5.3.

We come back to the assumption of fi ∈ Q[x1, . . . , xs], keeping in mind the warning from
Example 6.5.2. We arrive to the following propositions whose proofs are immediate from the
discussion above.

Proposition 6.5.2. Let fi ∈ Q[x1, . . . , xs] for i = 1, . . . , s. Let Ĩ be as in (6.2), and assume
Ĩ = P1 ∩P2, with P1, P2 ⊆ Q[x1, . . . , xs], VR(P2) = ∅. If P1 shows CACR, then Ĩ shows ACR.

This proposition is similar to Lemma 6.5.2. The main difference is that over the ground
field Q the decomposition of Ĩ into P1 ∩ P2 with P1, P2 ⊆ Q[x1, . . . , xs] is computable. More
in general,

Proposition 6.5.3. Let I = 〈f1, . . . , fs〉 ⊆ Q[x1, . . . , xs]. Let Ĩ be as in (6.2), if we can write

Ĩ =
⋂̀
i=1

Qi with Qi ⊆ Q[x1, . . . , xs] prime ideals over Q[x1, . . . , xs]. Assume also that we can

regroup these ideals as P1 =
`′⋂
i=1

Qi and P2 =
⋂̀

i=`′+1

Qi such that VR(P2) = ∅ and VR(Qi) 6= ∅
for i = 1, . . . , `′.

We add two main hypotheses:

1. Qi ⊆ Q[x1, . . . , xs] is prime over R[x1, . . . , xs] for i = 1, . . . `′,

2. for all i ∈ {1, . . . `′}, there exists x ∈ VR(Qi) non-singular.
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Then Ĩ shows ACR if and only if P1 shows CACR.

It is important to notice that every assumption in the statement is checkable/computable
except for the first main hypothesis 1.

We end this chapter with an example that shows what could be an algorithm to compute
and detect ACR if all the steps involved could be done effectively.

Example 6.5.3. Consider the following polynomials in two variables:

f1(x) = x1[(x1 − 1)2 + (x2 − 2)2]

f2(x) = x2[(x1 − 1)2 + (x2 − 2)2].

Notice that these polynomials also have the shape: fi = pi − xiqi, i = 1, 2, where
all the coefficients of pi, qi are non negative. As we mentioned before, it is possible to find
a reaction network modeled with mass–action kinetics, such that the associated system is
dx1/dt = f1, dx2/dt = f2.

It is easy to see in this example that the system shows ACR for both variables, since the
only positive solution is x1 = 1, x2 = 2. However, we will ignore this obvious fact and use a
procedure inspired by our previous discussion. All the computations here can be checked using
any computer algebra system, such as Macaulay2 [61] and Singular [35].

We consider the ideal Ĩ = 〈f1, f2, x1z
2
1 − 1, x2z

2
2 − 1〉, which can be decomposed as

Ĩ = Q1 ∩Q2 ∩Q3 ∩Q4,

with Q1 = 〈(x1− 1)2 + (x2− 2)2, x1z
2
1 − 1, x2z

2
2 − 1〉, Q2 = 〈x1, (x1− 1)2 + (x2− 2)2, x1z

2
1 −

1, x2z
2
2 − 1〉, Q3 = 〈x2, (x1 − 1)2 + (x2 − 2)2, x1z

2
1 − 1, x2z

2
2 − 1〉 and Q4 = 〈x1, y, x1z

2
1 −

1, x2z
2
2 − 1〉.

We can easily see that VC(Q2) = VC(Q3) = VC(Q4) = ∅, hence, we deduce that the real
variety of Ĩ coincides with the real variety of Q1 (in symbols, VR(Ĩ) = VR(Q1)). This ideal
Q1 does not show CACR in any variable, but we could try to use Proposition 6.5.1. As Q1 is
a prime ideal over R[x1, . . . , xs, z1, . . . , zs] with dimension 1, and R is a real closed field, we
can check if there exists a non-singular point in the real variety of Q1. We have the generators
g1 = x2

1− 2x1 + x2
2− 4x2 + 5, g2 = x1z

2
1 − 1, g3 = x2z

2
2 − 1, and let us consider the matrix of

partial derivatives:  2x1 − 2 2x2 − 4 0 0
z2

1 0 2x1z1 0
0 z2

2 0 2x2z2

 .
A real zero is non-singular if this matrix has rank 3 when specialized in that zero. In other
words, a real zero is non-singular if there exists a 3 × 3 minor of this matrix that does not
vanish on this zero of the ideal Q1. All the 3× 3 minors of this matrix are h1 = (x1− 1)x1z1z

2
2 ,

h2 = (x2−2)x2z
2
1z2, h3 = (x1−1)x1x2z1z2, h4 = (x2−2)x1x2z1z2. If w1, w2, w3, w4 are new

variables, we can form the ideals Ji = 〈g1, g2, g3, hiwi − 1〉, and finding a non-singular real
zero is equivalent to checking if any of the varieties VR(Ji) is nonempty (we refer the reader
to [7, Chapter 13]). Once checked that VR(Ji) = ∅ for all i = 1, . . . , 4, we define the ideal
Q

(1)
1 = 〈g1, g2, g3, h1, h2, h3, h4〉, whose real variety then coincides with the real variety of Ĩ ,
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and has dimension 0 (< 1). We repeat the reasoning for Q(1)
1 . This ideal can be decomposed

in several prime ideals over R[x1, . . . , xs], most of which can be easily seen to have an empty
complex variety, except for the ideal

Q
(2)
1 := 〈x1 − 1, x2 − 2, x1z

2
1 − 1, x2z

2
2 − 1〉,

and so VR(Ĩ) = VR(Q
(1)
1 ) = VR(Q

(2)
1 ). The matrix of partial derivatives for this new ideal is

1 0 0 0
0 1 0 0
z2

1 0 2x1z1 0
0 z2

2 0 2x2z2

 ,
which has full rank at, for example, (1, 2, 1, 1√

2
). Hence, Q(2)

1 has ACR if and only if it has
CACR, and this is the case for both variables, x1 and x2.

In this chapter we started dealing with interesting mathematical questions that have already
appeared in other contexts, but now can be located inside the framework of chemical reaction
systems. Even assuming mass–action kinetics, the special shape of the equations does not
provide much information for finding positive zeros of the system. For instance, if we have two
polynomials g1, g2 in two variables x1, x2, we can build the system dx1/dt = x1g1, dx2/dt =
x2g2, which has the shape fi = pi − xiqi, i = 1, 2, where all the coefficients of pi, qi are non
negative. As we have done before, it is possible from [68, Theorem 3.2] (see Section 2.1), to
find a reaction network modeled with mass–action kinetics, such that the associated system is
this one.

Nevertheless, there are systems with special characteristics that may allow to perform the
computations needed to be able to describe the real zeros of the polynomial ideal associated to
the system.
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Chapter 7

A discrete model for the NF-κB module

7.1 Introduction

In this chapter we focus on the NF-κB regulatory module. NF-κB is a ubiquitously expressed
family of transcription factors that regulates the expression of numerous genes that play im-
portant roles in cellular responses, cell growth, survival and inflammatory and immune re-
sponses [57, 70, 110]. It is also involved in numerous sterile and non-sterile diseases such as
autoimmunity, cancer and sepsis [130]. Therefore the comprehension of the mechanisms that
govern NF-κB responsive gene expression is indispensable for understanding these pathologies
and to identify appropriate drug targets.

In mammals, five related gene products participate in NF-κB functions (p50, p52, RelA/p65,
RelB and cRel) forming various homo- and heterodimeric complexes with different transcrip-
tional activities and tissue specificities [15, 69]. Among them, p65-p50 heterodimers are the
predominant species in many cell types [76].

In resting cells, p65-p50 heterodimers (referred herein as NF-κB) are normally held inac-
tive in the cytoplasm by being bound to a family of proteins called inhibitory κB (IκB) that
includes IκBα, -β and -ε [58]. Most of the inhibitory potential of this family is carried out
by IκBα which is evidenced by the fact that its absence, but not of the other two isoforms,
is lethal in mice [11, 101]. In response to various extracellular signals such as tumor necrosis
alfa, IL-1 and several pathogens associated molecular patterns, IκB kinase (IKK) complex is
transformed from its neutral form into its active form, a form capable of phosphorylating and
inducing IκB degradation by the 26S proteasome. Degradation of IκB releases the main acti-
vator NF-κB which then translocates to the nucleus, by exposing its nuclear localization signal,
where it recognizes DNA elements with the consensus sequence 5’-GGGRNYYYCC-3’ (R is
any purine, Y is any pyrimidine, and N is any nucleotide) and triggers transcription of numer-
ous genes including IκB [18, 89, 91, 105, 154]. The newly synthesized IκB enters the nucleus
leading NF-κB to the cytoplasm by means of the nuclear export signal present in IκB [84].
NF-κB regulation of IκB transcription represents a delayed negative feedback loop that drives
oscillations in NF-κB translocation to the nucleus [85, 86, 122].

The NF-κB signaling pathway has an additional negative regulation step mediated by the
protein A20, a zinc finger deubiquitylating enzyme that inactivates the regulatory subunit of the
IKK complex, IKKγ/NEMO, as well as several transducing proteins that link receptor activation
to IKK activation such as TRAF6, RIP1 and RIP2. A20, as IκB, is also induced by NF-κB,
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participating in a negative feedback loop that blocks IKK signaling and renders the complex
inactive following initial NF-κB translocation to the nucleus [26, 109, 155, 172]. A sketch of
these interactions can be seen in Figure 7.1.

This chapter presents the core regulatory network of this pathway, reconstructed from pub-
lished molecular data. It is the product of joint work with Juan Ignacio Fuxman Bass and
Abdul Salam Jarrah. The reconstructed network was modeled incorporating an approach dif-
ferent from the one used in the previous chapters: we model it as a discrete dynamical system,
with a qualitative deterministic approach. This type of modeling has been previously applied
to various regulatory networks [1, 115]. The network encompasses 11 nodes, namely S (the
stimulus), IKKneutral, IKKactive, IKKinactive, IκB, IκB|NF-κB, IκBnuclear, IκBtranscript,
A20transcript, A20, as well as their cross-regulatory interactions. The strategy used is based
on a bottom-up approach, starting with an extensive overview of published molecular data to
reconstruct the underlying biological network. The NF-κB signaling pathway has also been
approached with models of differential equations: the level of mRNAs, proteins, and other
components are assumed to be continuous functions of time, and the evolution of these com-
ponents within a cell is modeled by differential equations with mass–action kinetics or other
rate laws for the production and decay of all components [110]. Our work will be mostly based
upon the molecular data present at Lee et al. [109] and Hoffmann et al. [76], and the continuous
model developed by Lipniacki et al. [110].

7.2 Background on modeling tools

Modeling tools in mathematical biology include a spectrum of methods beyond the traditional
and very successful continuous models, with the introduction of Boolean network models in the
1960s and the more general so-called logical models in the 1980s. Since then, other methods
have been added, in particular Petri nets as models for metabolic and molecular regulatory net-
works. More recently, agent-based, or individual-based models, long popular in social science,
have been used increasingly in areas ranging from molecular to population biology. Discrete
models such as these have many useful features. Qualitative models of molecular networks such
as logical models, do not require kinetic parameters but can still provide information about net-
work dynamics and serve as tools for hypothesis generation. Structural and qualitative analysis
is emerging as a feasible and useful alternative [124, 134, 171]. On the other hand, quantitative
dynamic models are usually difficult to construct and validate because of the scarcity of known
mechanistic details and kinetic parameters. Moreover, discrete models have the advantage of
being more intuitive than models based on differential equations, so they have added appeal for
researchers without a strong mathematical background.

Most models can be classified by three dimensions of modeling: continuous and discrete;
quantitative and qualitative; stochastic and deterministic. However, these dimensions are not
entirely independent nor are they exclusive. Many modeling approaches are hybrid as they
combine continuous and discrete, quantitative and qualitative, stochastic and deterministic as-
pects.

With respect to time, in synchronous models, the state of each node is updated simultane-
ously at multiples of a common time step. Thus the future state means the state at the next
time step. Asynchronous models, however, update the state of each node individually. Syn-
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chronous models have deterministic state transitions, asynchronicity introduces stochasticity
(update order dependence) in the dynamics.

For many biological networks, and in particular genetic control or regulatory networks,
detailed information on the kinetic rates of protein-protein or protein-DNA interactions is rarely
available. However, for many biological systems, evidence shows that regulatory relationships
can be modeled as sigmoidal and be well approximated by step functions. In this case, Boolean
models, where every variable has only two states (ON/OFF), and the dynamics is given by
a set of logical rules, are frequently appropriate descriptions of the network of interactions
among genes and proteins. First proposed by Kauffman [94], Boolean network models have
the advantage of being more intuitive than ODE models. He used Boolean networks to study
the dynamics of gene regulatory networks [93–95]. A gene is assumed to be in one of two
states, expressed or not expressed, and is modeled by a binary value 1, 0, respectively. The next
state of a gene is determined by a Boolean function in terms of the current states of the gene
and its immediate neighbors in the network.

An important (continuous) model for Drosophila melanogaster segment polarity genes was
first developed in von Dassow et al. [169], where a thorough investigation of the parameter
space showed that the system is very robust with respect to variations in the kinetic constants.
They concluded that the topology of the network is more important than the fine-tuning of the
kinetic parameters, since its results are robust for a large region of parameter (scaling factor,
activation threshold) space. To investigate this, Albert and Othmer [1] proposed and analyzed
a Boolean model of the network of regulatory interactions throughout several stages of embry-
onic development of the Drosophila segment polarity genes. It was based on a binary ON/OFF
representation of mRNA and protein levels, and the interactions were formulated as logical
functions. The spatial and temporal patterns of gene expression were determined by the topol-
ogy of the network and whether components were present or absent, rather than the absolute
levels of the mRNAs and proteins and the functional details of their interactions. The model
was able to reproduce the wild-type gene expression patterns, as well as the ectopic expres-
sion patterns observed in overexpression experiments and various mutants. Furthermore, they
computed explicitly all steady states of the network and identified the basin of attraction of
each steady state. Both the continuous model and the discrete model agree in their overall
conclusions regarding the robustness of the segment polarity gene network.

In the work of Chaves et al. [17], they apply two methods for adapting qualitative models to
incorporate the continuous-time character of regulatory networks to the Boolean model of the
segment polarity gene network of Drosophila melanogaster in [1]. The first method consists of
introducing asynchronous updates in the Boolean model. In the second method, they adopt the
approach introduced by L. Glass [59] to obtain a set of piecewise linear differential equations
which continuously describe the states of each gene or protein in the network. They analyze the
dynamics of the model, and provide a theoretical characterization of the model’s gene pattern
prediction as a function of the timescales of the various processes.

In many cases, the biological information about a particular network node might not be
sufficient, however, to construct a logical function governing regulation. In the case of a con-
tinuous model, the remedy would be to insert a differential equation of specified form, e.g.,
mass action kinetics, with unspecified parameters. If experimental time course data for the
network is available, then one can use one of several existing inference methods to estimate a
function that will result in a model that fits the data. Data fit is determined by model simulation,



104 CHAPTER 7. A DISCRETE MODEL FOR THE NF-κB MODULE

using numerical integration of the equations in the model. Note, however that parameters are
not always identifiable from the dynamics [33].

The software package described in [41] addresses the need for a discrete analogue of this
process. In the case of missing information about a particular node in the network to be mod-
eled, one can insert a general Boolean function, maybe of a specified type, e.g., a nested can-
alyzing function. This is most easily done by viewing the Boolean function as a general poly-
nomial, with undetermined (0/1) coefficients. This function in addition satisfies a specified
optimality criterion, similar to the optimality criterion for the fitting of continuous parameters.
This process might be considered the discrete analogue of parameter estimation. The software
package described there integrates several different inference methods to accomplish this pur-
pose. It furthermore couples parameter estimation with extensive simulation capabilities. For
instance, it is increasingly likely that Boolean models using sequential update of the variables
are more realistic than parallel update systems. Moreover, it has been shown that stochastic
models are sometimes more appropriate than deterministic ones. The software package Poly-
nome has the capability of simulating models deterministically as well as stochastically. The
stochastic features can arise either through random update schedule choice or random choice of
functions at each update. Update-stochastic networks are common in the general framework of
logical models, and function-stochastic models have been introduced and used by Shmulevich
and collaborators [145].

One of the disadvantages of the Boolean network modeling framework is the need to dis-
cretize real-valued expression data into an ON/OFF scheme, which loses a large amount of
information. In response to this deficiency, multi-state discrete models and hybrid models have
been developed. The most complex one [158,159,161] uses multiple states for the genes in the
network corresponding to certain thresholds of gene expression that make multiple gene actions
possible. The authors are most interested in the modeling and function of feedback loops. The
model includes a mixture of multi-valued logical and real-valued variables, as well as the possi-
bility of asynchronous updating of the variables. While this modeling framework is capable of
better capturing the many characteristics of gene regulatory networks than Boolean networks,
it also introduces substantially more computational complications from a reverse-engineering
point of view.

Other examples of logical models include models of genetic networks in the fruit fly Droso-
phila melanogaster [135] and the flowering plant Arabidopsis thaliana [44, 116].

Milo et al. [118] show that certain graph theoretic motifs appear far more often in the topol-
ogy of regulatory network graphs than would be expected at random. In [97, 98, 120] it was
shown that a certain type of Boolean regulatory logic has the kind of dynamic properties one
would expect from molecular networks. And in [67] it was shown that logical rules that appear
in published Boolean models of regulatory networks are overwhelmingly of this type. These
rules, so-called nested canalyzing rules, are a special case of canalyzing rules, and they have
been broadly studied [88, 121]. In [128], Ribba et al. present a multiscale model of cancer
growth and examine the qualitative response to radiotherapy. The mathematical framework in-
cludes a Boolean description of a genetic network relevant to colorectal oncogenesis, a discrete
model of the cell cycle and a continuous macroscopic model of tumor growth and invasion.

A major drawback that discrete models of biological systems have is the relative lack of
mathematical analysis tools. While methods like bifurcation, sensitivity, and stability analysis
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are available for differential equations models, the principal tool in the discrete case is simula-
tion. This is very effective for small models, but it becomes impossible for larger models, since
the size of the phase space is exponential in the number of variables in the model. Thus, prob-
lems like the identification of steady states for a Boolean network model become difficult once
the model contains many more than 20 or 30 nodes, unless one makes use of high performance
computation capabilities. An added complication is the heterogeneity of the different discrete
model types so that tools developed for one type are unlikely to apply to another one.

Agent-based models are a class of computational models for simulating the actions and
interactions of autonomous agents with a view to assessing their effects on the system as a
whole. A natural way to approximate them by state space models that are grounded in a richer
mathematical theory and satisfies the constraints discussed above is to construct an algebraic
model specification, that is, a discrete time, discrete state dynamical system whose state space
represents exactly the dynamic properties of the agent-based models. Algebraic models can
be described by polynomial functions over finite fields, which provides access to the rich al-
gorithmic theory of computer algebra and the theoretical foundation of algebraic geometry.
In Hinkelmann et al. [75], they propose such a framework, which preserves all features of
agent-based models and provides access to mathematical analysis tools and they demonstrate
the added value that is gained from such a mathematical description through a collection of
examples.

The mathematical framework is that of polynomial dynamical systems over a finite field,
which provides access to theoretical and computational tools from computer algebra and dis-
crete mathematics. An algebraic structure of addition and multiplication is imposed on the set
of possible states of the model variables to obtain a field. (This has long been made in the case
of Boolean networks, where the choice of underlying field is the Galois field F2 = {0, 1}.) This
is possible whenever the number of states for a given variable is a power of a prime number.

A finite dynamical system is a time-discrete dynamical system on a finite state set. That is, it
is a mapping from a cartesian product of finitely many copies of a finite set to itself. Dynamics
is generated by iteration of the mapping. Once we choose such an algebraic structure F, then the
set function description of an agent-based model turns into a mapping between vector spaces
over the finite field F, which can be described in terms of polynomial coordinate functions.

More explicitly,let A be the set of possible states of the network nodes, and we assume that
A is a finite set. Consider

f : An → An,

iteration of f results in a time-discrete dynamical system over A of dimension n. And f can
be described in terms of its coordinate functions fi : An → A, for i = 1, . . . , n. This is, if
x = (x1, . . . , xn) ∈ An is a state, then f(x) = (f1(x), . . . , fn(x)). We will refer to such a
system as finite dynamical system. 1

If A has q = pr elements, for some prime p, we can render the structure of a finite field to
A (we denote it as F := A), and then any coordinate function fi : Fn → F can be described by
a unique polynomial in F[x1, . . . , xn] of degree less than q in each variable.

As mentioned in [75], polynomials are neither intuitive nor are they simple functions. But
they provide an exact representation of the dynamics of the model that is more compact than the

1For those readers who are familiar with the notation from the previous chapters, notice that here fi describes
the “trajectory” of the i-th node, and not the “derivative”. Actually, fi describes the state of node i at the following
time step, depending on the present state of all nodes.
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state space, which is not feasible to describe for most realistic models. Any computer algebra
system can be used to analyze a polynomial system, independent of a particular software or
implementation. The polynomials can be generated in an almost automatic way: a simple
script is provided to generate the polynomials that interpolates a given truth table, and tables
are easily generated from the description of the model.

The rigorous mathematical language is another advantage of the framework: the rich al-
gorithmic theory from computer algebra and the theoretical foundation of algebraic geometry
are available to analyze algebraic models. Furthermore, in [166], it was shown that logical
models [160] as well as Petri nets [150] could be viewed and analyzed as algebraic models.

But, unless all the correspondences are known, the polynomials fi cannot be determined.
For general networks only a few transition pairs are known. This means, the data available is
of the form s1, . . . sm, t1, . . . , tm ∈ Fn, where f(si) = ti, and usually m << qn. Hence, there
are many options for possible models after applying any reverse-engineering method.

In [107], Laubenbacher and Stigler describe the dynamics of the network from data of this
form. They find for each coordinate a minimal interpolator polynomial, in the sense that there
is no nonzero polynomial gi ∈ F[x1, . . . , xn], that arises from reodering and regrouping the
terms of fi, such that fi = hi + gi and gi(sj) = 0 for all j = 1, . . . ,m, i = 1, . . . , n. For this,
they choose the normal form of some interpolator with respect to a Gröbner basis for the ideal
of {s1, . . . , sm}. One of the biggest problems for this choice is that it strongly depends on the
particular monomial order chosen for computing the Gröbner basis. Different orderings of the
monomials can give rise to different polynomial models, since the algorithm uses such an order
for multivariate polynomial division, and there is no canonical choice for monomial orderings.

In [40], Dimitrova et al. present a systematic method for selecting most likely polynomial
models for a given data set, using the Gröbner fan of the ideal of the input data. The Gröbner
fan of a polynomial ideal [119, 153] is a combinatorial structure, which is a polyhedral com-
plex of cones in which every point encodes a monomial ordering. The cones are in bijective
correspondence with the distinct Gröbner bases of an ideal. (To be precise, the correspondence
is to the marked reduced Gröbner bases of the ideal.) Therefore, it is sufficient to select exactly
one monomial ordering per cone and, ignoring the rest of the orderings, still guarantees that all
distinct reduced models are generated.

Some methods aim to discover only the network topology, that is, which genes regulate
which others, with a directed graph or “wiring diagram” as output, possibly signed to indi-
cate activation or inhibition. This static network is a directed graph showing the influence
relationships among the components of the network, where an edge from node y to node x
implies that changes in the concentration of y could change the concentration of x. The goal
of other methods is to describe the dynamics of the network, which describes how exactly the
concentration of x is affected by that of y. Due to the fact that biological networks are not
well-understood and the available data about the network is usually limited, many models end
up fitting the available information and the criteria for choosing a particular model are usually
not biologically motivated but rather a consequence of the modeling framework.

The model in [87] is based on the primary decomposition of a monomial ideal generated
from the data. Here they are only interested in describing the causal relations among the nodes
of the network. This is why the aim is to find, for each coordinate, minimal (according to
inclusion) sets of variables for which there exists an interpolator.
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So far, we have presented a general overview of what discrete modeling concerns. We
develop in subsequent sections a discrete qualitative deterministic algebraic model for the NF-
κB regulatory module. To be more precise, it is a polynomial dynamical system over the ground
field F3.

Before introducing our model, we review a continuous model of this regulatory network
done by Lipniacki et al. [110].

7.3 A continuous model for the NF-κB module

In this section, we summarize the modeling considerations presented in Lipniacki et al. [110],
and we add some analysis of our own, regarding the steady states of the system they present
and the conservation relations that arise from the equations. The results of their work will be
presented later, together with our discrete model results.

They apply ordinary differential equations to model the NF-κB regulatory network. A
model is constructed that includes two regulatory feedback loops; the first involving the protein
IκBα and the second involving the protein A20. The kinetics considered involves formation
and dissociation of complexes, catalysis, mRNA synthesis and translations as well as transport
between the nucleus and the cytoplasm (considering their respective volumes). The proposed
model involves a very restricted number of components: RNA transcripts, proteins and com-
plexes, which were found to be the most important ones. Using this limited number of com-
ponents they attempted to model the NF-κB regulatory module, which in fact involves a much
larger set of components, and whose true kinetics is much more complicated. There are two
main reasons for the simplifications they made. First, they did not have enough data, second a
more elaborate model would be possibly too difficult to analyze; at least the parameter fitting
would be both very difficult and ambiguous.

The main simplifications and implicit assumptions of the model were firstly that they ne-
glected the formation of NF-κB and IKK, which are protein complexes themselves, as the
kinetics leading to their formation are complicated. Secondly, the inhibitory proteins A20 and
IκBα were considered to mimic a collective action of groups of inhibitors. Particularly, they
approximated the collective action of all IκB isoforms by the IκBα; which is the most active
and abundant one, and the knockout of which, in contrast to the other two isoforms, is lethal.
Finally, they assumed that all other proteins, some known, some unknown, which they do not
account for in the pathway, remain at their normal levels.

The authors amend the model in Hoffmann et al. [76] taking into account the difference
between the nuclear and the cytoplasmic volume generating a two-compartment kinetics; they
also impose an upper bound for the amount of free IκBα; and finally they re-estimate the
mRNA transcription and translation coefficients.

Because of a large number of undetermined parameters they decided to carry out the fit
“manually” rather than to try to quantify the data, which are in the form of blots (which are
a method of transferring proteins, DNA or RNA, onto a carrier that can be, for example, a
nylon membrane), and then to apply one of the fitting engines available. The first reason they
considered was that such quantification is by no means unique, the second was that when fitting,
they would have had to take into account diverse, usually not precise, information coming from
different researchers and their own intuitive understanding of the process. For the fitting, the
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authors start from a reasonable set of parameters, which produces a correct steady state in the
absence of stimulus. Secondly, they proceed with the signal initiated by the stimulus along
the autoregulation loop. Finally, they iterate the second step until the fit to all the data is
satisfactory.

They note that although it is not easy to find a fitting set of parameters, once the satisfac-
tory fit is found, it is not difficult to find other sets which are almost equivalent for rendering
approximately the same trajectories.

To reach the resting cell equilibrium state, they start the simulation 101 hours prior to the
signal being turned on. At t = 1 hour, the rectangular signal of the stimulus is turned on for 6
hours to the end of the simulation time.

Typical available experimental data consist of measurements made in time points that are
not uniformly distributed. The non-uniform distribution reflects the fact that during the first
hour, the oscillations are more rapid and more measurements are needed to accurately trace
the dynamic. Therefore, to compare their solutions with experimental data, Lipniacki et al.
rescaled the time coordinate. The total amount of NF-κB is kept constant in the course of sim-
ulation, and it is set by assuming the initial concentration of cytoplasmic complexes IκB—NF-
κB.

After parameter fitting, the proposed model in [110] is able to properly reproduce time be-
havior of all variables for which the data are available: NF-κB, cytoplasmic IκBα, A20 and IκB
mRNA transcripts, IKK and IKK catalytic activity in both wild-type and A20-deficient cells.
The model allowed detailed analysis of kinetics of the involved proteins and their complexes
and gave the predictions of the possible responses of the whole kinetics to the change in the
level of a given activator or inhibitor.

There is also a mathematical model in [174] but the authors disregard the influence of A20,
whose inhibitory potential was demonstrated by Lee et al. [109], who found that the knockout
of A20 in mice dramatically alters the cells response to TNF stimulation due to persistent IKK
activity, and causes A20-/- deficient mice to die prematurely.

Using tools from the previous chapters, we analyze below the steady states arising from
the equations in [110] considering the stimulus (TNF) as persistent (that is, TNF≡1), and the
constants listed in their Appendix.

Making the correspondence: x1 = IKKn, x2 = IKKa, x3 = IKKi, x4 = IKKa|IκBα, x5 =
IKKa|IκBα|NF-κB, x6 = NF-κB, x7 = IκBα|NF-κB, x8 = NF-κBn, x9 = IκBαn, x10 =
IκBαn|NF-κBn, x11 = A20, x12 = A20t, x13 = IκBα, x14 = IκBαt, and considering the
parameters in the Appendix of [110] we can describe the differential equations in this paper as
follows.

ẋ1 = 25
1000000

− ( 125
1000000

+ 25
10000

)x1;

ẋ2 = 25
10000

x1 + 1
10
x4 − ( 125

1000000
+ 15

10000
)x2 − 2

10
x2x13 − 1

10
x2x11 − x2x7 + 1

10
x5;

ẋ3 = 15
10000

x2 + 1
10
x2x11 − 125

1000000
x3;

ẋ4 = − 1
10
x4 + 2

10
x2x13;

ẋ5 = x2x7 − 1
10
x5;

ẋ6 = 1
10
x5 − 5

10
x13x6 + 2

100000
x7 − 25

10000
x6;

ẋ7 = −x2x7 + ( 5
10

)x13x6 − 2
100000

x7 + 1
100
x10;

ẋ8 = − 5
10
x9x8 + 125

10000
x6;
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ẋ9 = − 5
10
x9x8 − 25

10000
x9 + 5

1000
x13;

ẋ10 = − 5
100
x10 + 5

10
x9x8;

ẋ11 = 5
10
x12 − 3

10000
x11;

ẋ12 = 5
10000000

x8 − 4
10000

x12;

ẋ13 = − 2
10
x2x13 − 5

10
x13x6 + 5

10000
x9 − ( 1

1000
+ 1

10000
)x13 + 5

10
x14;

ẋ14 = 5
10000000

x8 − 4
10000

x14;

The polynomials on the right-hand side have the following shape: fi = pi − xiqi, i = 1, 2,
where all the coefficients of pi, qi are non negative. It follows from [68, Theorem 3.2], as we
mentioned at the end of Section 2.1, that it is possible to find a reaction network modeled with
mass action kinetics, such that the associated system is dxi/dt = fi, i = 1, . . . , 14. This
encourages us to examine the system as the mass–action systems we studied in the previous
chapters.

Lemma 7.3.1. When the stimulus is persistent (TNF≡1), the system of differential equations
in [110] (with the reaction constants listed in their Appendix) has a positive steady state if and
only if the concentration of IKKa satisfies 0 < [IKKa] < 4

273
. Moreover, for each [IKKa] ∈

(0, 4
273

) there is a unique positive steady state.

Proof. By elimination, using the computer algebra system Singular [35], we find the following
polynomials in the ideal generated by the equations of the system in [110].

g1 = 105x1 − 1

g3 = 21x3 + 21x2 − 4

g4 = x4 − 2x13x2

g5 = x5 − 10x7x2

g6 = x6 − 32000x9x12

g7 = (1254400x22(273x2 − 4)(50000x2 + 1)2)x27 − (448x2(50000x2 + 1)(2744000000x42 − 71036000x32

−1024849x22 + 10612x2 − 80))x7 − ((56000x22 − 245x2 + 4)(−4 + 273x2)2)

g8 = x8 − 800x12

g9 = 49x9x2 − 2x9 + 175x13x2

g10 = x10 − 8000x9x12

g11 = 3x11 − 5000x12

g12 = 28000000x12x2 + 273x2 − 4

g13 = (5600000x2(−4+273x2))x213+(11200x2(49000x22−1293x2−11))x13+((−4+273x2)(49x2−2))

g14 = x14 − x12

From g12, we notice that x2 has to be less than 4
273

in order to have a positive twelfth
coordinate. And then, analyzing in detail g7 and g13, we find that if x2 ∈

(
0, 4

273

)
, there exists

only one positive solution for the seventh and thirteenth coordinates. We can then solve for the
other coordinates i using the corresponding gi.

It can be shown that there is a single conservation relation arising from the equations in
[110]:

5[IKKa|IκB|NF-κB] + 5[NF-κB] + 5[IκB|NF-κB] + [NF-κBn] + [IκBn|NF-κBn] =C.
Moreover, using Singular [35], it can be seen that the dimension of the ideal generated by

the equations of the system and the conservation relation has dimension zero.
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The continuous model has numerous unknown parameters. In fact, according to [99], in the
case of the NF-κB signaling module, one-third of the parameters are known with a high degree
of confidence, one-third are significantly constrained by literature data, and the remaining third
has to be derived from parameter fitting (note that we took in Lemma 7.3.1 the values proposed
in [110] after fitting and adjusting to the literature.)

7.4 Algebraic modeling of the network

As we mentioned, we propose a discrete qualitative deterministic algebraic model for the NF-
κB regulatory module. In this section we present our model and how it was built.

7.4.1 A toy model

To illustrate how our model was built, let us start with a toy example that will introduce us to
the reasoning used while building a discrete model. Let us assume that we have two nodes x1

and x2 (two chemical species, for example), and we somehow know that each one influentiate
the other positively, i.e. each one leads to the formation (or activation) of the other one. We
could represent this network as

x1 � x2.

If we discretize the quantities of each species into three levels (0,1 and 2), we have 318 possible
models f = (f1, f2) : F2

3 → F2
3 that describe the behavior of each node.

We can start reducing the spectrum of possible models by assuming in this case that, if there
is no x1 nor x2, then there will not be any at any moment. In other words, if f1 and f2 describe
the behavior of x1 and x2, respectively, then f1(0, 0) = f2(0, 0) = 0 (which can be abbreviated
to (0, 0) 7→ (0, 0)).

We may also want to adjust our model to the mass–action kinetics system:

x1

κ1−→
←−
κ2

x2.

This leads to the system of differential equations{
dx1
dt

= −κ1x1 + κ2x2
dx2
dt

= κ1x1 − κ2x2

The only conservation relation for this system is

x1(t) + x2(t) = x1(0) + x2(0) for all t ≥ 0, (7.1)

and its unique equilibrium is x̃1 = (x1(0)+x2(0)) κ2
κ1+κ2

, x̃2 = (x1(0)+x2(0)) κ1
κ1+κ2

. Moreover,
as this system of ODEs is linear, we can solve the equations and we get

x1 =
x1(0) + x2(0)

κ1 + κ2

κ2 −
κ2x2(0)− κ1x1(0)

κ1 + κ2

exp(−(κ1 + κ2)t),

x2 =
x1(0) + x2(0)

κ1 + κ2

κ1 +
κ2x2(0)− κ1x1(0)

κ1 + κ2

exp(−(κ1 + κ2)t).
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Therefore, the derivatives are:

ẋ1 = (κ2x2(0)− κ1x1(0))exp(−(κ1 + κ2)t),

ẋ2 = (κ1x1(0)− κ2x2(0))exp(−(κ1 + κ2)t).

Returning to our discrete model, if we want it to reproduce the results from the continuous
mass–action kinetics model, we can do our parameter fitting to reduce the model space, adding
the following assumptions.

We want to translate into the discrete setting the fact that the total amount of x1 and x2

remains constant at all times, by the conservation relation in (7.1). One could expect that there
exists a function ϕ : F3 × F3 → F3 such that ϕ(f1, f2) = ϕ(x1, x2) and also

ϕ(0, 0) =0

ϕ(1, 0) =ϕ(0, 1) = 1

ϕ(2, y) =ϕ(x, 2) = 2 for all x, y ∈ {0, 1, 2}
ϕ(1, 1) =α ∈ {1, 2}.

Then, as all functions from F3 × F3 to F3 can be described with polynomials in two variables
with degree at most 2 in each variable, we interpolate and find that the shape of ϕ is

ϕα(x, y) = x+ y + xy + α(xy + x2y + xy2 + x2y2). (7.2)

We call such a function a pseudo conservation relation.

Let us, for the moment assume κ1 ≈ 0 and κ2 � κ1. This is similar to assuming that the
reaction x1

κ1→ x2 does not exist, and hence we could ask

f1(x, 0) =x for all x ∈ {0, 1, 2}
f1(2, y) =2 for all y ∈ {0, 1, 2}
f2(x, y) =cy for all x, y ∈ {0, 1, 2} and c0 = 0.

If we start at (1, 1), one would expect κ2x2(0) > κ1x1(0), and therefore x1 would be increasing
and x2 decreasing, leading us to assume f1(1, 1) 6= 0 and c1 ≤ 1.

We can summarize the case κ1 ≈ 0 and κ2 � κ1 in the following transition table (or truth
table), where c1, . . . , c6 are parameters to be determined:

x1 x2 f1 f2

0 0 0 0
1 0 1 0
2 0 2 0
0 1 c3 c1

1 1 c4 c1

2 1 2 c1

0 2 c5 c2

1 2 c6 c2

2 2 2 c2
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As we mentioned above, we want c1 ≤ 1, f1(1, 1) ≥ 1 (that is, c4 ≥ 1), and all the parame-
ters should also satisfy more restrictions arising from the condition ϕ(f1, f2) = ϕ(x1, x2).

By now, we have reduced the space of possible models, but we still have many options
satisfying the conditions above. To narrow down the search to one model, it is necessary to add
more criteria for the discrete model to satisfy. One sensible choice for our toy example with
κ1 ≈ 0 and κ2 � κ1 could be

x1 x2 f1 f2

0 0 0 0
1 0 1 0
2 0 2 0
0 1 1 0
1 1 2 0
2 1 2 0
0 2 2 0
1 2 2 0
2 2 2 0

This model satisfies the pseudo conservation relation ϕα(f1, f2) = ϕ(x1, x2) for α = 2.
With a similar analysis, a sensible model for 0 < ε < κ1 � κ2 could be

x1 x2 f1 f2

0 0 0 0
1 0 1 0
2 0 2 1
0 1 1 0
1 1 2 0
2 1 2 1
0 2 2 0
1 2 2 0
2 2 2 1

And for κ1 ≈ κ2 it would be

x1 x2 f1 f2

0 0 0 0
1 0 1 0
2 0 1 1
0 1 0 1
1 1 1 1
2 1 1 2
0 2 1 1
1 2 2 1
2 2 2 2

One can check that in both cases, the resulting functions f1, f2 satisfy ϕα(f1, f2) = ϕα(x1, x2)
for α = 2.
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7.4.2 Coming back to NF-κB: our model

The model

Stimulus

IKKne A20

IKKa IKKi

IκB

IκB IκB|NF-κB

IκBn IκBn|NF-κBn NF-κBn

A20mRNA

IκBmRNA

nucleus

cytoplasm

cell
membrane

Figure 7.1: A sketch of the NF-κB regulatory module. Upon stimulation, neutral IKKne is
transformed into its active form IKKa. Active IKKa forms complexes with IκB and IκB|NF-
κB; and strongly catalyzes IκB degradation. Liberated NF-κB enters the nucleus where it
binds to κB motifs in A20, IκB or other gene promoters. The newly synthesized IκB enters the
nucleus and leads NF-κB again to cytoplasm, while newly synthesized A20 triggers transfor-
mation of IKKa into inactive IKKi.

In order to describe the dynamics between the components of the NF-κB signaling pathway,
we construct a discrete model from published molecular data. We conceive these components
in a network with eleven nodes which can take at most three levels (i.e., we discretize the data
into the levels {0, 1, 2}) and we then build a polynomial dynamical system f : F11

3 → F11
3 . The

corresponding transition tables that lead us to the 11 polynomials are present in Appendix 1.
These tables were derived from experimental data and completed by considerations discussed in
Section 7.4.2. We formed the eleven functions corresponding to each node using the computer
algebra system Singular [35].

To be precise, the eleven nodes are S (the stimulus), IKKneutral (IKKne), IKKactive (IKKa),
IKKinactive (IKKi), IκB, IκB|NF-κB, IκBnuclear (IκBn), IκBtranscript (IκBt), A20transcript
(A20t), and A20. We discretized the observed quantities of each molecule in the data into two
or three levels. Nine of the eleven nodes in the network have three associated levels (“low”,
“medium” and “high”), whereas the other nodes have only two. The notation is equivalent to
assigning values 0, 1 and 2 in the first case, and 0 and 1 in the second. The stimulus has been
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assigned two levels corresponding to its presence or absence. According to the observed west-
ern blots, A20 can also be discretized into two levels (either it is present, or it is not). The rest
of the nodes have been assigned three levels according to the different results they could lead to
in the observed experimental data. We can summarize this information in the following figure.

S IKKne

IKKa IKKi A20

IκB IκB|NF-κB

IκBt A20t

IκBn NF-κBn

Light gray circles show the nodes that are modeled as ternary variables, whereas dark gray circles cor-
respond to the nodes modeled as binary variables. The activatory interactions are represented by pointed
arrows, and the inhibitory interactions by terminating segments.

Notation Guide:

• IKKne–cytoplasmic level of the neutral form of IKK,

• IKKa–cytoplasmic level of the active form of IKK,

• IKKi–cytoplasmic level of the inactive form of IKK,

• IκB–cytoplasmic level of IκBα,

• IκBn–nuclear level of IκBα,

• IκBt–IκB mRNA transcript level,

• IκB|NF–κB–cytoplasmic level of IκB|NF-κB complexes,

• A20–cytoplasmic level of A20 protein,

• A20t–A20 mRNA transcript level,

• NF-κBn–nuclear level of NF-κB,

• S–stimulus.
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Justification

In this section we discuss how the transition tables present in Appendix 1 were derived from
experimental data, and present the considerations that were used to complete these tables.
IKK activation and inactivation:

The cytoplasmic complex IKK may exist in one of three forms:

1. neutral (denoted by IKKne), which is specific to resting cells without any extracellular
stimuli like TNF-α or IL-1.

2. active (denoted by IKKa),

3. inactive, but different from the neutral form, possibly overphosphorylated (denoted by
IKKi) [36].

• IKKne: In resting cells all the IKK is in the neutral form. Upon stimulation all IKKne is
transformed intro IKKa, but there is a constant basal transcription and translation of new
IKKne [36].

• IKKa: It is formed only from IKKne upon signal activation (S), and all the IKKne be-
comes active. We consider some IKKa is preserved between two time steps, and the rest
of the existing becomes inactive. We also take into consideration the induced inactivation
by A20 [3,36,109,175]. As IKK is very active in phosphorylating IκB, we considered the
mild bands of IKKa observed in experimental data after peak activation to be of medium
level as they are capable of phosphorylating a considerable amount of IκB.

• IKKi: We assumed that IKK can only be transformed into IKKi from IKKa form, that is
independent of stimulus and that is triggered by the cytoplasmic protein A20 [26, 36].

A20 protein:
Since we are only interested in the existence of this protein, it will have two possible states,

and it will be 1 or 0 according to the existence of A20t in the previous time step.

IκB:
We focus on IκBα, postponing the inclusion of the other isoforms to a further study. More

precisely, we approximate the collective action of these three isoforms by the action of the most
active and abundant inhibitor, i.e. IκBα, the knock out of which, in contrast to the other two, is
lethal [11, 101, 114]. We refer to it as IκB.

In resting wild-type cells, IκB is observed only in the cytoplasm where it remains bound to
NF-κB.

Upon TNF-α stimulation, IKK is transformed into its active form IKKa and forms com-
plexes with IκB and IκB|NF-κB, which leads to IκB phosphorylation, ubiquitination, and
degradation. The free NF-κB rapidly enters the nucleus where it may bind to specific κB sites in
the A20 and IκB promoters and activate their expression. The newly synthesized A20 enhances
IKK inhibition, while the newly synthesized IκB enters the nucleus, binds to NF-κB and takes
it out into cytoplasm. Then the cycle may be repeated, but since the IKK activity is already
lowered by A20, the amplitude of the subsequent cycles is smaller [18, 58, 84–86, 105, 154].
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Free cytoplasmic IκB protein:
We consider its dependence on itself, IκBn, IκBt and IKKa. We disregard the influence of

free cytoplasmic NF-κB as it rapidly enters the nucleus. Moreover, compared to the induced
degradation by IKKa, the spontaneous degradation of IκB is negligible [125]. We assume
the half-life of IκB is longer than the time steps we considered; hence it will have a positive
influence on its future level. IκBn will also contribute to the level of its free cytoplasmic form
as the IκB protein shuttles between nucleus and cytoplasm as it contains nuclear export signals
as well as nuclear localization signals [133]. IκBt will also contribute to the level of IκB due to
translation. We considered that in the case where IKKa is 1, the only contribution to IκB comes
from its transcript. When IKKa is 2, even the newly synthesized IκB is degraded immediately.

Free nuclear IκB protein:
We consider its dependence on itself, on cytosolic IκB and on nuclear NF-κB. As IκB

shuttles between cytoplasm and nucleus (where it is more concentrated [16]), cytosolic and
nuclear IκB influence its level. Nuclear NF-κB also influences nuclear IκB as they associate
and the resulting complex exported to the cytoplasm.

Cytoplasmic IκB|NF-κB complexes:
As we did with cytoplasmic IκB protein, we consider its dependence on itself and IKKa,

we disregard its formation and spontaneous dissociation in the cytoplasm and its spontaneous
degradation as these processes are much slower than the induced degradation by IKKa and the
contribution of the nuclear IκB|NF-κB complex [110]. We incorporate the contribution of the
nuclear complex IκB|NF-κB, but as it is rapidly transported out of the nucleus, we actually
consider the influence of the level of the nuclear proteins IκB and NF-κB. When IKKa is 1,
there is a mild decrease on the level of the existing cytoplasmic IκB|NF-κB and there may
be contribution from the nuclear complex. If IKKa is 2, we will only consider the contribu-
tion from the nucleus as active IKK will almost completely induce IκB phosphorylation and
degradation releasing NF-κB and disrupting the complex.

IκB and A20 transcripts:
IκB and A20 transcripts are dependent on NF-κBn as both genes contain κB elements and

are highly responsive to NF-κB [104], and are also self regulatory as we consider the half lives
of the transcripts to be of approximately 1 time step.

Free nuclear NF-κB:
We consider the income due to the liberation of NF-κB from IκB|NF-κB complexes, in-

duced by IKKa in the cytoplasm. We also take into account the existing nuclear NF-κB and
the transport to cytoplasm from the formation of the complex with IκBn. With respect to the
income from the cytoplasm, IKKa is necessary, and if there is just 1 of it there only will be
freed some of the NF-κB present in the IκB|NF-κB complexes; whereas, if there is 2 of IKKa,
all the NF-κB will be liberated. Regarding the nuclear contribution, if IκBn equals 2, all the
existing NF-κBn will be transported out of the nucleus, while if IκBn equals 1, the decrease in
the level is only noticed if NF-κBn equals 1.
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7.5 Results

7.5.1 Comparison with experimental data and the continuous model

In order to validate our model, we present in this section our results, and compare them with
existing data. We show in each case what is conserved and explain some structural features that
our model infers. We also record other features that this discrete model is not able to reproduce.

Using Singular [35] we perform a simulation for the wild-type cells using our polynomial
dynamical system. We consider persistent stimulation (S=1) and our initial state consisted of:

• S=1: as the simulation starts with a stimulus activating resting cells.

• IKKne=2, IKKa=0 and IKKi=0: as all IKK is in the neutral form before activation

• IκB|NF-κB=2: since maximum amount of the complex is seen in resting cells.

• IκBn=1, IκB=0: As in resting cells there is some free IκB that is mainly localized in the
nucleus.

• A20=0: as protein A20 is mainly induced by NF-κB and is not observed in resting cells.

• A20t=0 and IκBt=0: as it is not observed in resting cells [109].

• NF-κBn=0: as NF-κB is retained in the cytoplasm by IκB in resting cells.

The wild type case:
The evolution of the system in the wild type case, from this initial state is depicted in

figure 7.2.

We can compare our results for the wild type case with the ones in [110]. In Figure 3 [110],
Lipniacki et al. show the numerical solution corresponding to wild-type cells; at the first hour
the stimulus (TNF) starts and persists; and the concentrations of the different molecules and
their complexes(vertical axis) are given in µM, while time (horizontal axis) is in hours. If
we discretize the vertical axis into 3 levels (or 2 levels for the graph corresponding to A20),
and assign certain times for each time step in our model, then we can compare both results
through the graphs shown in Figure 7.4. The discretization of the concentrations is depicted in
Figure 7.3, where dark orange corresponds to 2; light orange, to 1; and yellow, to 0.

Notice that the dynamics of our discrete model (including time, when time steps are re-
placed by minutes, comparing with kinetics model) is conserved for NF-κBn, IKKa, IκBt,
A20, A20t, IκB and IκBn. The dynamics of IκB—NF-κB is also conserved, except for a tran-
sient rise at min 25. We miss the damped oscillation for NF-κBn. However, if we transform
the results of the kinetics model or the experimental data into discrete values, the oscillation
is lost and coincides with our result. Another drawback is that our model is not additive: for
example, it is not possible to calculate total IκB, from IκB, IκB—NF-κB and IκBn, but, as
we will see below, there is a pseudo conservation relation between NF-κBn and IκB—NF-κB
that somehow coincides with the conservation relation we found for the continuous model of
Lipniacki et al. (see the following section for details). Moreover, we cannot reproduce the time
of IκB downregulation either, but just for little time.
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Figure 7.2: Evolution of the wild type system with persistent stimulus. The different states are
encoded as:

2 1 0

.
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Further insights into the NF-κB signaling pathway can be obtained from the simulation of
single or multiple null mutations, over-activations, or any combination thereof.

The A20 knock-out (A20-/-) case:
We computed the evolution of the A20 knock-out system by setting fA20 ≡ 0, fA20t ≡ 0.

The result is depicted in figure 7.5
In our discrete model, IKKa remains high, as well as in the continuous model. NF-κBn

and IκBt also remain high, as it is seen in the data. The times of the dynamics, if we assume
the same times in minutes as in the wild type case, are also conserved. In this discrete model,
however, in the steady state there is no IκB nor IκB—NF-κB but in the kinetics model there
is about half of the maximum of the total IκB. Nevertheless, in our favor, in experimental
data [109], no total IκB is detected in A20 -/- mice after activation with TNF-a (stimulus).

The case when the stimulus is removed at different time steps:
We also computed the evolution of the system in the wild-type case when the stimulus is

removed at different time steps. We show the result when we remove the stimulus at steady
state in figure 7.6. We should remark that our model reaches a final state without NF-κBn, as
observed in experimental data. Moreover we can point out that this final state is different from
the initial state without stimulus.

In figure 7.7 we represent the evolution of NF-κBn in the wild-type case when the stimulus
is removed at different time steps. As observed in experimental data, if we remove the stimulus
during the first NF-κBn peak, the intensity and duration of the NF-κBn peak remains unchanged
compared to persistent stimulus, then NF-κBn disappears and never increases again.

When IKKa is inhibited at steady state:
We also studied how the system evolves when IKKa is inhibited in the steady state. The

evolution is depicted in Figure 7.8. If we inhibit IKK at the steady state, NF-κBn drops to
zero. In experimental data, IKK inhibition lowers NF-κB activity, reduces NF-κB dependent
transcription, and reduces the impact of chronic inflammation. [136]

7.5.2 Conservation and final states

In the first chapters of this work we have focused on the steady states of continuous chemi-
cal reaction systems and also on the conservation relations they may satisfy. We now make
analogue studies for this discrete model.

We start by the concept of conservation. Our model satisfies the pseudo conservation rela-
tion ϕ2(x, y) = x+ y+ 2x2y+ 2xy2 + 2x2y2 for IκB—NF-κB and NF-κBn. This is, it verifies
ϕ2(fIκB|NF−κB, fNF−κBn) = ϕ2(xIκB|NF−κB, xNF−κBn). Notice that ϕ2(x, y) = 2 if x.y 6= 0,
ϕ2(1, 0) = 1, ϕ2(0, 1) = 1, ϕ2(0, 0) = 0. This means that, if xIκB|NF−κB (or xNF−κBn) is
nonzero, then ϕ2(xIκB|NF−κB, xNF−κBn) = 2; and if we start with a few of IκB—NF-κB or
NF-κBn (xIκB|NF−κB = 1 and xNF−κBn = 0, or xIκB|NF−κB = 0 and xNF−κBn = 1) then
ϕ2(xIκB|NF−κB, xNF−κBn) = 1; finally, if we start with no IκB—NF-κB nor NF-κBn, then
there will not be any in the next time steps, either. Recall that, in the continuous model [110],
there was a conservation relation among the complexes involving NF-κB. Namely, it was

5[IKKa|IκB|NF-κB] + 5[NF-κB] + 5[IκB|NF-κB] + [NF-κBn] + [IκBn|NF-κBn] =C.
In our discrete model, we only consider IκB|NF-κB and NF-κBn and could be expected that
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the respective concentrations satisfied a pseudo conservation relation involving [IκB|NF-κB]
and [NF-κBn],which is a situation similar to the one in the toy example. Therefore, it is sensible
to expect that our model satisfies the pseudo conservation relation ϕ2(fIκB|NF−κB, fNF−κBn) =
ϕ2(xIκB|NF−κB, xNF−κBn) prescribed by ϕ2. Note, however, that the functions corresponding
to IκB|NF-κB and NF-κBn depend on more proteins.

We now analyze the fixed points of the system and its cycle. We found 16 fixed points for
persistent stimulus (S=1). We present them in the following tables. The last column shows how
many initial states evolve towards that fixed point.

IκB IκB|NF-κB IKKa NF-κBn IκBn IκBt S A20 A20t IKKi IKKne Total
0 0 1 0 0 0 1 0 0 2 1 204
0 0 1 0 1 0 1 0 0 2 1 3603
0 0 2 0 0 0 1 0 0 2 1 39
0 0 2 0 1 0 1 0 0 2 1 528

These first fixed points are the final states for initial ones with neither IκB|NF-κB nor NF-
κBn. (This can be deduced from the pseudo conservation relation.) Initializations without the
presence of NF-κB are not of biological interest for this study.

IκB IκB|NF-κB IKKa NF-κBn IκBn IκBt S A20 A20t IKKi IKKne Total
1 1 1 1 1 1 1 1 1 2 1 14127
1 2 1 1 1 1 1 1 1 2 1 132
2 1 1 1 1 2 1 1 2 2 1 48
2 1 1 1 2 2 1 1 2 2 1 24
2 2 1 1 1 2 1 1 2 2 1 540
2 2 1 1 2 2 1 1 2 2 1 10983
1 1 1 1 1 1 1 1 2 2 1 84
1 2 1 1 1 1 1 1 2 2 1 66
2 1 1 1 1 2 1 1 1 2 1 84
2 1 1 1 2 2 1 1 1 2 1 48
2 2 1 1 1 2 1 1 1 2 1 60
2 2 1 1 2 2 1 1 1 2 1 48

We can notice the robustness of the system. When the stimulus is persistent (S=1), there are
basically 3 attractors with more than 20% of attraction, and they together collect the 86% of the
cases. The principal attractor is the one that we identified with the initial state proposed, and
shows correlation with the literature. Those attractors that do not come from initial states with-
out IκB|NF-κB nor NF-κBn, have NF-κBn=1, and this is a key fact in the biological function.

The steady states for the system without stimulus are shown in Appendix 2. With respect
to S = 0, all the fixed points show NF-κBn=0, and almost all of them have IKKa=0. This coud
be interpreted as, for any initial state, once the stimulus is removed, the system turns off.

There is only one cycle consisting of two states, and a total of 8748 initial states terminate
here.This cycle, represented in the two rows of the table below, shows an oscillation in NF-κBn,
similar to what is seen in most experiments. However, the damped oscillation is expected to be
seen a constant level in a discrete model.
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IκB IκB|NF-κB IKKa NF-κBn IκBn IκBt S A20 A20t IKKi IKKne
1 0 1 1 1 0 1 1 0 2 1
0 1 1 0 1 1 1 0 1 2 1

7.6 Discussion for this chapter and future work

We introduced in this model the discretization of time and concentrations of the different pro-
teins and their complexes. By the discretization on three states of most of the molecules in-
volved in this process, we could reproduce the dynamics observed in the wild-type case with
persistent stimulation and also in the A20 knock-out.

This model does not depend on affinity and catalytic constants, which are usually difficult
to determine and require a deep understanding of the system (which, except for the NF–κB
regulatory module and some other special cases, is rare). It can be built with the information
biologists normally handle: IκB binds to NF–κB and prevents it from entering the nucleus,
IKKa induces IκB degradation, etc.

And despite it simply requires this kind of data, it can render even more information, such
as predictions in mutant cases.

We expect to introduce, in the near future, some stochasticity into this model, and we would
also like to study its interaction with other systems within the context of a bigger model of a
cellular process.

However, there are also some open questions in our minds about the relations between
discrete models and continuous models. Which would be a correct way to compare the results
from both approaches?

In this model that we present here, we were faced to fitting parameters while completing
the transition (or truth) tables. Our parameters belong to the finite set {0, 1, 2}, and were fitted
using different data from the bibliography and our intuition. As we mentioned before, in [110]
the authors decided to carry out their fit “manually” rather than to try to quantify the data, and
then to apply one of the fitting engines available, claiming that such quantification is by no
means unique, and because, when fitting, they would have to take into account diverse, usually
not precise, information coming from different researchers and their own intuitive understand-
ing of the process. They in [110] remark that if there were no feedback loops in the pathway,
the proposed method would be quite efficient, but since they exist it was necessary to iterate
the signal tracing several times, until the fit was satisfactory. They say that it is not obvious
whether the method, in general, converges, but it seemed to them so, provided they started
from a relatively accurate set of parameters and provided that the model approximates the true
regulatory mechanism reasonably well.

As we did, they made some drastic simplifications, as it is usually inevitable. They alleged
that they did not have enough data, and that a more elaborate model would be possibly too
difficult to analyze; at least the parameter fitting would be both very difficult and ambiguous.

We must point out that all these assumptions and considerations made by the authors in
[110] are the usual ones in the context of continuous modeling, given the inherent difficulty of
these systems.

Besides, with respect to continuous models, particularly those where mass–action kinetics
is assumed, in most cases, only the identity of the chemical species present in the network
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is known, and the exact structure of the chemical reactions, as well as the reaction rate con-
stants are unknown; in other cases, the set of chemical reactions (i.e., the reaction network)
is also known, and only the reaction rate constants are unknown. And even though a great
variety of computational methods have been developed for the identification of chemical reac-
tion networks and their reaction rate constants from time-dependent measurements of chemi-
cal species concentrations, two different reaction networks might generate identical dynamical
system models, making it impossible to discriminate between them, even if we are given exper-
imental data of perfect accuracy and unlimited temporal resolution. In [33], Craciun and Pantea
describe necessary and sufficient conditions for two reaction networks under mass–action ki-
netics to give rise to the same dynamical system model. Also, they show that, even if we knew
the reaction network that gives rise to the chemical dynamics under study, there might exist
multiple sets of reaction rate constants that provide perfect fit for the data since they give rise
to identical dynamical system models.

Here are two specific mathematical questions that we expect to address in the near future:

Question 7.6.1. We would like to dig through the relationship between continuous and discrete
models.

As we mentioned in the background, for many biological systems that have been modeled
using both the continuous and the discrete frameworks, it has been shown that both models
have similar dynamical properties. Furthermore, it has been hypothesized that the dynamics
of biochemical networks are constrained by the topological structure of the wiring diagram.
This in turn suggests that mathematical models describing the same biochemical phenomena
should have similar behavior, even if they come from different frameworks. These connections
between the discrete and the continuous models have been studied by several authors, [96,
117]. In [167], Veliz-Cuba et al. provide mathematical proofs about the relationship between
steady states of continuous and discrete models, where the continuous model is “sigmoidal
enough” and has the same qualitative features of a discrete model. Their results generalize
some previous results and their proofs also show why the relationship between continuous and
discrete models is likely to occur even when continuous models are not very sigmoidal.

Is it possible to develop more mathematical theory to validate the coincidences that are
usually found between discrete and continuous models of the same system?

Question 7.6.2. We would also like to formalize and generalize the notion of pseudo conserva-
tion relations introduced in (7.2). The steady states of a dynamical system strongly depend on
the initial conditions. In the case of systems that can be modeled under mass–action kinetics,
this dependence is reflected in the conservation relations.

Is it possible to establish a formal correspondence between conservation relations in con-
tinuous models and pseudo conservation relations in discrete models?
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Figure 7.3: Discretization of concentrations of molecules and their complexes in Figure 3 in
[110]. Dark orange corresponds to 2; light orange, to 1; and yellow, to 0.
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Figure 7.4: Comparison between the continuous model [110] and the discrete model for the
wild type with persistent stimulus. For this, we discretized the results of the first model and
assigned a certain time for the time steps of the second one.
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Figure 7.5: Evolution of the A20 knock-out system. NF-κBn and IκBt remain high, as seen in
the literature.
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Figure 7.6: Evolution of the system when the stimulus is removed at steady state. A final state
without NF-κBn is reached, as observed in experimental data, moreover this final state differs
from the basal state without stimulus.
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tude of the peak nor in its length, as observed in experimental data.
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[39] Dickenstein A., Pérez Millán M., (2011), How far is complex balancing from detailed
balancing? Bulletin of Mathematical Biology 73(4):811–828.

[40] Dimitrova E. S., Jarrah A. S., Laubenbacher R., Stigler B., (2007), A Gröbner fan method
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Notation

s1, . . . , ss species
x1, . . . , xs molar concentration of the species
s number of species
y1, . . . , ym complexes
m number of complexes
κij constant for the reaction from complex yi to complex yj
r number of edges (reactions)
G directed graph
V set of vertices of the digraph G
R set of edges (reactions) of the digraph G
S set of species
C set of complexes
xyi xyi11 xyi22 · · ·xyiss
Ky→y′ rate function for reaction y → y′

R the field of real numbers
R≥0 the nonnegative real numbers
R>0 the positive real numbers
C the field of complex numbers
Z the ring of integers
Z≥0 the nonnegative integers
N the positive integers
Q the field of rational numbers
G = (V,R, Y ) chemical reaction network
G = (V,R,K, Y ) chemical reaction system with kinetics K
y′ − y reaction vector corresponding to reaction y → y′

κy→y′ rate constant for the reaction y → y′

f species formation rate function
.
x derivative of x with respect to time
f1, . . . , fs derivatives of x1, . . . , xs with respect to time:

·
x1, . . . ,

·
xs

L(G) the Laplacian matrix of the digraph G
† transpose
Ψ(x) (xy1 , · · · , xym)†

Y s×m matrix of non-negative integers (yji)

Σ complex-to-species rate matrix Y · L(G)
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E kinase
F phosphatase
Si substrate with i phosphate groups attached
JΣΨ ideal generated by f1, . . . , fs
T spanning tree of a strongly connected graph
V (T ) vertices of the tree T
R(T ) edges of the tree T
Ki a special polynomial in the rate constants (defined in §2.2)
l number of linkage classes
ρG generator of the kernel of L(G) for the strongly connected graph G
G directed graph with the strong linkage classes of G as nodes
Gu strong linkage class
G1, . . . , Gt terminal strong linkage classes of G
t number of terminal strong linkage classes
ρ1, . . . , ρT generators of the kernel of L(G), with support(ρi) = Gi
S stoichiometric subspace
Px0 stoichiometric compatibility class
δD dynamic deficiency (dim(kerY ∩ Image L(G)))
δS structural deficiency (m− dimS − l)
S⊥ orthogonal complement of the stoichiometric subspace
Ik vector space of type 1 complex-linear invariants on y1, . . . , yk
d dimension of ker(Σ)

B m× d matrix whose columns form a basis of ker(Σ)

B′ k × d sub-matrix of B consisting of the first k rows
d rank(B′)

I1, I2, . . . , Id partition of {1, 2, . . . ,m}
li cardinality of Ii
b1, b2, . . . , bd basis of ker(Σ) with supp(bi) = Ii
κ∗ij particular choice of rate constants
j0 min Ij
lnx (ln(x1), ln(x2), . . . , ln(xs))

∆ a matrix whose columns are the differences (yj1 − yj2)†

Θκ a (row) vector with
(

ln
bjj1
bjj2

)
∀j1, j2∈Ij , ∀1≤j≤d

as entries

U matrix with entries in Z whose columns form a basis of ker(∆)

A matrix of maximal rank in Zw×s with ker(A) = 〈yj2 − yj1〉j1,j2∈Ij , 1≤j≤d
w rank of A
Ai i-th column of A
x̃ particular positive steady state
t vector in Rw

Etot total amount of kinase E in the n-site phosphorylation system
Ftot total amount of phosphatase F in the n-site phosphorylation system
Stot total amount of substrate in the n-site phosphorylation system
C (Etot, Ftot, Stot) ∈ R3

>0

PC stoichiometric compatibility class for the conservation relations
defined by C
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Σn complex-to-species rate matrix for the n-site phosphorylation system
Σ′n submatrix of Σn obtained by deleting the first and the last two rows,

and the (n+ 1)-st and (2n+ 2)-nd columns
C(j) the column of Σ′n which corresponds to the j-th column of Σn after

deleting the first row and the last two
Σ′′n the submatrix of Σ′n formed by its first 3n columns
D det(Σ′′n)

D`(j) minus the determinant of the matrix obtained by replacing C(`(j))

by C(3n+ j + 2) in Σ′′n
CG incidence matrix of the graph G
Γ Y CG
Y educt-complex matrix
φ(x) vector of educt complex monomials
M matrix whose columns generate the cone ker(Γ) ∩ Rr≥0

G̃ = (V, R̃, Y ) the associated undirected graph of G
C̃ cycle of G̃
C+ the cycle in G in a certain direction
C− the cycle in the opposite direction (with respect to C+)
FBY the algebraic variety of Rr>0 for which the system is formally balanced
DBY the algebraic variety of Rr>0 for which the system is detailed balanced
CBY the algebraic variety of Rr>0 for which the system is complex balanced
N kerZ(Y · CG)

G′ directed subgraph of G with only one direction for each pair of
reactions (i, j), (j, i)

N ′ kerZ(Y · CG′)
qij

κij
κji

N ′1 the Z-module spanned by the cycles of the underlying undirected graph G̃
N ′2 a direct complement of N ′1 in N ′ constructed in § 5.2.3
N0 the lattice which expresses the fact that the (i, j)-th column of Y · CG is

minus its (j, i)-th column
Ni the Z-module in N isomorphic to N ′i for i = 1, 2

Q(κ) the field of the rational functions with coefficients over Q and variables
determined by κ

C∗ the complex numbers without zero
R a real closed field
VX(J) the variety of the ideal J over the set X√
J the radical of the ideal J

(J : h∞) the saturation of the ideal J with respect to the polynomial h
m the monomial formed by the product of all the variables in the polynomial ring
IKKne cytoplasmic level of the neutral form of IKK
IKKa cytoplasmic level of the active form of IKK
IKKi cytoplasmic level of the inactive form of IKK
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IκB cytoplasmic level of IκBα
IκBn nuclear level of IκBα
IκBt IκB mRNA transcript level
IκB|NF-κB cytoplasmic level of IκB|NF-κB complexes
A20 cytoplasmic level of A20 protein
A20t A20 mRNA transcript level
NF-κBn nuclear level of NF-κB
S stimulus



Appendix 1: The functions

The transition functions (fX,T+1, where X represents a node in the network and T stands for
time) were built using Singular [35], via interpolation over the finite field of three elements F3.
Each function was based on the corresponding table shown below, where XT denotes the state
of node X at time T . The last column of each table exhibits the image of the function for the
values shown in the columns on the left.
IκB function:

We separate the transition table into two parts. First, we consider the case IKKa=0, and
build the function fIκB,1. We then consider the case IKKa=1 and form the function fIκB,2.
And, finally, we build the function fIκB,T+1 as a function of fIκB,1 and fIκB,2, considering all
the levels of IKKa. We repeat a similar reasoning for the rest of the functions.

If IKKa=0:
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IκBT (IκBn)T (IκBt)T fIκB,1
0 0 0 0
1 0 0 0
2 0 0 1
0 1 0 0
1 1 0 1
2 1 0 1
0 2 0 1
1 2 0 1
2 2 0 2
0 0 1 1
1 0 1 1
2 0 1 2
0 1 1 1
1 1 1 1
2 1 1 2
0 2 1 1
1 2 1 2
2 2 1 2
0 0 2 2
1 0 2 2
2 0 2 2
0 1 2 2
1 1 2 2
2 1 2 2
0 2 2 2
1 2 2 2
2 2 2 2

If there is no IKKa then the level of cytoplasmic IκB depends on the previous level of IκB (considering
a half life of one time step), the previous level of IκBn considering that it can shuttle to and from the nucleus
and that is generally more concentrated in the nucleus, and the level of IκBt.

If IKKa=1:
fIκB,2 = (IκBt)T ;

fIκB,T+1 = (1 + IKKaT )((1 + 2IKKaT )fIκB,1 + 2IKKaTfIκB,2);

Notice that, if IKKaT = 0, then fIκB = fIκB,1; if IKKaT = 1, then fIκB = fIκB,2; and
if IKKaT = 2, then fIκB = 0.

IκB|NF-κB:
We consider first the income from the nucleus, and form the function fIκB|NF−κB,1:
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(NF − κBn)T (IκBn)T fIκB|NF−κB,1
0 0 0
1 0 0
2 0 0
0 1 0
1 1 1
2 1 1
0 2 0
1 2 1
2 2 2

fIκB|NF−κB,T+1:
IκB|NF − κBT IKKaT fIκB|NF−κB,1 fIκB|NF−κB,T+1

0 0 0 0
1 0 0 1
2 0 0 2
0 1 0 0
1 1 0 0
2 1 0 1
0 2 0 0
1 2 0 0
2 2 0 0
0 0 1 1
1 0 1 2
2 0 1 2
0 1 1 1
1 1 1 1
2 1 1 2
0 2 1 1
1 2 1 1
2 2 1 1
0 0 2 2
1 0 2 2
2 0 2 2
0 1 2 2
1 1 2 2
2 1 2 2
0 2 2 2
1 2 2 2
2 2 2 2

If there is some IKKa the contribution of the nuclear components to the IκB|NF-κB complex in the
cytoplasm depends on the minimum of IκBn and NF–κBn.

The level of IκB|NF-κB complex in the cytoplasm depends on the previous level of the
complex (non enzymatic degradation is considered much lower than degradation triggered by
IKKa), the level of IKKa that triggers degradation of IκB from the complex and the contribution
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of complex from the nucleus.

IKKa:
With Stimulus:
IKKaT A20T IKKneT fIKKa,1

0 0 0 0
1 0 0 0
2 0 0 1
0 1 0 0
1 1 0 0
2 1 0 0
0 0 1 1
1 0 1 1
2 0 1 2
0 1 1 1
1 1 1 1
2 1 1 1
0 0 2 2
1 0 2 2
2 0 2 2
0 1 2 2
1 1 2 2
2 1 2 2

If there is stimulus IKKa level depends on:

• the previous level of IKKa considering spontaneous inactivation.

• the previous level of IKKn that can be transformed to IKKa through activation by the stimulus.

• The previous level of A20 that inactivates all previous IKKa but not the new one that is generated
from IKKn in the presence of stimulus.

Without Stimulus:
IKKaT A20T fIKKa,2

0 0 0
1 0 0
2 0 2
0 1 0
1 1 0
2 1 1

In the absence of stimulus IKKa level depends on the previous level of IKKa and the level of A20 that
inactivates IKKa, but not on IKKn.

fIKKa,T+1 = STfIKKa,1 + (ST + 2)2fIKKa,2;

Notice that, if ST = 1, then fIKKa,T+1 = fIKKa,1; and if ST = 0, then fIKKa,T+1 =
fIKKa,2.

NF-κBn:
We consider first the income of NF-κB from the cytoplasm:
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(IκB|NF − κB)T IKKaT fNF−κB,1
0 0 0
1 0 0
2 0 0
0 1 0
1 1 1
2 1 1
0 2 0
1 2 1
2 2 2

The income of NF-κB from the cytoplasm to the nucleus depends on the level of complex in the cy-
toplasm and the activity of IKKa that triggers IκB degradation. Full activation of IKK induces complete
degradation of IκB and translocation of NF-κB to the nucleus.

If fNF−κB,1=0 (there is no income of NF-κB):
(NF − κBn)T (IκBn)T fNF−κB,2

0 0 0
1 0 1
2 0 2
0 1 0
1 1 0
2 1 2
0 2 0
1 2 0
2 2 0

If there is no income of NF-κB to the nucleus, the level of NF-κBn depends on the previous level of
NF-κBn and IκBn that can shuttle NF-κBn to the cytoplasm. If IκBn=1 it does not reduce NF-κBn content
significantly if NF-κBn=2, but if IκBn =2 it takes out all the NF-κBn.

fNF−κB,T+1 = 2 + (fNF−κB,1 + 1)(fNF−κB,2 + 1)(2fNF−κB,1fNF−κB,2 + 1);
If fNF−κB,1 = 0, fNF−κB,T+1 = fNF−κB,2; if fNF−κB,1 = 2, fNF−κB,T+1 = 2; if

fNF−κB,1 = 1, fNF−κB,T+1 = (fNF−κB,2)2 + 1. That is: if there is no income of NF-κB
from the cytosol, then NF-κBn only depends on the existing NF-κBn and IκBn; if the income
is maximal, then the state of NF-κB will be two (disregarding the previous nuclear state); if the
income equals 1, then the state of NF-κBn will be just 1, if there is no contribution from the
nucleus, or 2, if there is any nuclear contribution.

IκBn:
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IκBT (IκBn)T (NF − κBn)T fIκBn,T+1

0 0 0 0
1 0 0 1
2 0 0 2
0 1 0 1
1 1 0 1
2 1 0 2
0 2 0 1
1 2 0 2
2 2 0 2
0 0 1 0
1 0 1 1
2 0 1 2
0 1 1 0
1 1 1 1
2 1 1 1
0 2 1 1
1 2 1 1
2 2 1 2
0 0 2 0
1 0 2 1
2 0 2 2
0 1 2 0
1 1 2 1
2 1 2 2
0 2 2 0
1 2 2 1
2 2 2 2

The level of IκBn is influenced by the free shuttle of IκB between nucleus and cytoplasm considering a
preference of IκB to be in the nucleus, and the previous level of NF-κBn as it is taken out to the cytoplasm
by IκBn.

IκBt:
(NF − κBn)T (IκBt)T fIκBt,T+1

0 0 0
1 0 1
2 0 2
0 1 0
1 1 1
2 1 2
0 2 1
1 2 2
2 2 2

IκBt depends on the previous level of IκBt considering a half life of one time step, and the level of NF-
κBn that triggers transcription of the IκB gene. The contribution of NF-κBn is considered proportional to
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its level.

A20:
fA20,T+1 = ((A20t)T )2;
The level of A20 depends on the presence of its transcript. We only consider presence or

absence of A20.
That is: there will be A20 if and only if there is A20t.

A20t:
fA20t,T+1 is like fIκBt,T+1, but instead of (IκBt)T we consider (A20t)T . The regulation of

A20 expression was considered similar to the IκB expression.

IKKi:
IKKaT IKKiT fIKKi,T+1

0 0 0
1 0 1
2 0 2
0 1 1
1 1 2
2 1 2
0 2 2
1 2 2
2 2 2

The level of IKKi depends on the previous level of IKKi and the IKKa that can be subject to inactiva-
tion.

IKKne:
IKKneT ST fIKKne,T+1

0 0 1
1 0 1
2 0 2
0 1 1
1 1 1
2 1 1

The level of IKKn depends on the previous level of IKKn (considering that IKKn is constantly trans-
lated form its transcript) and the presence of a signal that activates IKK transforming all previous IKKn to
IKKa.
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Appendix 2: Fixed points for S=0

In this appendix we list the fixed points of the system for S=0. The last column shows how
many initial states terminate in the corresponding fix point.

IκB IκB|NF-κB IKKa NF-κBn IκBn IκBt S A20 A20t IKKi IKKne Total
0 0 0 0 0 0 0 0 0 0 1 12
0 0 0 0 0 0 0 0 0 0 2 6
0 0 0 0 0 0 0 0 0 1 1 24
0 0 0 0 0 0 0 0 0 1 2 12
0 0 0 0 0 0 0 0 0 2 1 108
0 0 0 0 0 0 0 0 0 2 2 54
0 0 0 0 1 0 0 0 0 0 1 36
0 0 0 0 1 0 0 0 0 0 2 18
0 0 0 0 1 0 0 0 0 1 1 96
0 0 0 0 1 0 0 0 0 1 2 48
0 0 0 0 1 0 0 0 0 2 1 750
0 0 0 0 1 0 0 0 0 2 2 375
0 0 2 0 0 0 0 0 0 2 1 18
0 0 2 0 0 0 0 0 0 2 2 9
0 0 2 0 1 0 0 0 0 2 1 144
0 0 2 0 1 0 0 0 0 2 2 72
0 1 0 0 0 0 0 0 0 0 1 12
0 1 0 0 0 0 0 0 0 0 2 6
0 1 0 0 0 0 0 0 0 1 1 12
0 1 0 0 0 0 0 0 0 1 2 6
0 1 0 0 0 0 0 0 0 2 1 12
0 1 0 0 0 0 0 0 0 2 2 6
0 1 0 0 1 0 0 0 0 0 1 48
0 1 0 0 1 0 0 0 0 0 2 24
0 1 0 0 1 0 0 0 0 1 1 108
0 1 0 0 1 0 0 0 0 1 2 54
0 1 0 0 1 0 0 0 0 2 1 444
0 1 0 0 1 0 0 0 0 2 2 222
0 2 0 0 0 0 0 0 0 0 1 12
0 2 0 0 0 0 0 0 0 0 2 6
0 2 0 0 0 0 0 0 0 1 1 12
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Fixed points for S=0 (continued).
IκB IκB|NF-κB IKKa NF-κBn IκBn IκBt S A20 A20t IKKi IKKne Total
0 2 0 0 0 0 0 0 0 1 2 6
0 2 0 0 0 0 0 0 0 2 1 12
0 2 0 0 0 0 0 0 0 2 2 6
0 2 0 0 1 0 0 0 0 0 1 60
0 2 0 0 1 0 0 0 0 0 2 30
0 2 0 0 1 0 0 0 0 1 1 108
0 2 0 0 1 0 0 0 0 1 2 54
0 2 0 0 1 0 0 0 0 2 1 156
0 2 0 0 1 0 0 0 0 2 2 78
1 0 0 0 1 0 0 0 0 0 1 72
1 0 0 0 1 0 0 0 0 0 2 36
1 0 0 0 1 0 0 0 0 1 1 168
1 0 0 0 1 0 0 0 0 1 2 84
1 0 0 0 1 0 0 0 0 2 1 408
1 0 0 0 1 0 0 0 0 2 2 204
1 0 0 0 2 0 0 0 0 0 1 36
1 0 0 0 2 0 0 0 0 0 2 18
1 0 0 0 2 0 0 0 0 1 1 84
1 0 0 0 2 0 0 0 0 1 2 42
1 0 0 0 2 0 0 0 0 2 1 132
1 0 0 0 2 0 0 0 0 2 2 66
1 1 0 0 1 0 0 0 0 0 1 204
1 1 0 0 1 0 0 0 0 0 2 102
1 1 0 0 1 0 0 0 0 1 1 552
1 1 0 0 1 0 0 0 0 1 2 276
1 1 0 0 1 0 0 0 0 2 1 2364
1 1 0 0 1 0 0 0 0 2 2 1182
1 1 0 0 2 0 0 0 0 0 1 36
1 1 0 0 2 0 0 0 0 0 2 18
1 1 0 0 2 0 0 0 0 1 1 36
1 1 0 0 2 0 0 0 0 1 2 18
1 1 0 0 2 0 0 0 0 2 1 36
1 1 0 0 2 0 0 0 0 2 2 18
1 2 0 0 1 0 0 0 0 0 1 336
1 2 0 0 1 0 0 0 0 0 2 168
1 2 0 0 1 0 0 0 0 1 1 768
1 2 0 0 1 0 0 0 0 1 2 384
1 2 0 0 1 0 0 0 0 2 1 1404
1 2 0 0 1 0 0 0 0 2 2 702
1 2 0 0 2 0 0 0 0 0 1 36
1 2 0 0 2 0 0 0 0 0 2 18
1 2 0 0 2 0 0 0 0 1 1 36



153

Fixed points for S=0 (continued).
IκB IκB|NF-κB IKKa NF-κBn IκBn IκBt S A20 A20t IKKi IKKne Total
1 2 0 0 2 0 0 0 0 1 2 18
1 2 0 0 2 0 0 0 0 2 1 36
1 2 0 0 2 0 0 0 0 2 2 18
2 0 0 0 2 0 0 0 0 0 1 168
2 0 0 0 2 0 0 0 0 0 2 84
2 0 0 0 2 0 0 0 0 1 1 276
2 0 0 0 2 0 0 0 0 1 2 138
2 0 0 0 2 0 0 0 0 2 1 384
2 0 0 0 2 0 0 0 0 2 2 192
2 1 0 0 2 0 0 0 0 0 1 348
2 1 0 0 2 0 0 0 0 0 2 174
2 1 0 0 2 0 0 0 0 1 1 588
2 1 0 0 2 0 0 0 0 1 2 294
2 1 0 0 2 0 0 0 0 2 1 1032
2 1 0 0 2 0 0 0 0 2 2 516
2 2 0 0 2 0 0 0 0 0 1 1500
2 2 0 0 2 0 0 0 0 0 2 750
2 2 0 0 2 0 0 0 0 1 1 2964
2 2 0 0 2 0 0 0 0 1 2 1482
2 2 0 0 2 0 0 0 0 2 1 10056
2 2 0 0 2 0 0 0 0 2 2 5028
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