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Modelos no-lineales para la teola de muestreo

(Resumen)

Un nuevo paradigma en la teoria de muestreo fue desamwakmientemente. El clasico
modelo lineal es reemplazado por un modelo no-lineal paraatarado, que consiste en
una union de subespacios. Este es el enfoque natural pateva teoria de muestreo
comprimido, sefales con representaciones ralas y cofinésade innovacion.

En esta tesis estudiamos algunos problemas relacionades@amceso de muestreo en
uniones de subespacios. Primero centramos nuestraa@tiencél problema de hallar una
union de subespacios que mejor aproxime a un conjunto fileiteectores. Utilizamos
técnicas de reduccion dimensional para disminuir lotosode algoritmos disefiados para
hallar uniones de subespacios 6ptimos.

Luego estudiamos el problema de muestreo para sefialeegeegqren a una union
de espacios invariantes por traslaciones enteras. Mastrgunre las condiciones para
la inyectividad y estabilidad del operador de muestreo saidas en el caso general
de espacios invariantes por traslaciones enteras gesgradoarcos de traslaciones en
lugar de bases ortonormales.

A raiz del estudio de los problemas mencionados anterimiensurgen dos cuestiones
gue estan relacionadas con la estructura de los espacaaintes por traslaciones en-
teras. La primera es si la suma de dos de estos espacios dsespacio cerrado. Usando
el angulo de Friedrichs entre subespacios, obtenemogotomels necesarias y suficientes
para que la suma de dos espacios invariantes por traslacoteras sea cerrada.

En segundo lugar se estudian propiedades de invariancigpdeies invariantes por
traslaciones enteras en varias variables. Presentamdiicmes necesarias y suficientes
COMO para que un espacio invariante por traslaciones srgeeainvariante por un sub-
grupo cerrado d&9. Ademas probamos la existencia de espacios invariantesgsta-
ciones enteras que son exactamente invariantes para urupabmerrado dado. Como
aplicacion, relacionamos la extra invariancia con el f&onde los soportes de la transfor-
mada de Fourier de los generadores de los espacios.

Palabras Claves:muestreo; espacios invariantes por traslaciones entaeasps; bases
de Riesz; operador Gramiano; fibras; reduccion dimenkidesigualdades de concen-
tracion; angulos entre subespacios.






Non-linear models in sampling theory
(Abstract)

A new paradigm in sampling theory has been developed rgceftie classical linear
model is replaced by a non-linear, but structured modelisting of a union of subspaces.
This is the natural approach for the new theory of compressading, representation of
sparse signals and signals with finite rate of innovation.

In this thesis we study some problems concerning the sagmpliocess in a union of
subspaces. We first focus our attention in the problem ofrigpdi union of subspaces
that best explains a finite data of vectors. We use technigudsnension reduction to
avoid the expensiveness of algorithms which were developdohd optimal union of
subspaces.

We then study the sampling problem for signals which belan@ wnion of shift-
invariant spaces. We show that, the one to one and stabilitglitons for the sampling
operator, are valid for the general case in which the sulespae describe in terms of
frame generators instead of orthonormal bases.

As a result of the study of the problems mentioned above, tvestions concerning the
structure of shift-invariant spaces arise. The first onétise sum of two shift-invariant
spaces is a closed subspace. Using the Friedrichs angledretsubspaces, we obtain
necessary and fiicient conditions for the closedness of the sum of two shifariant
spaces.

The second problem involves the study of invariance progseof shift-invariant spaces
in higher dimensions. We state and prove several necessdrgufiicient conditions for
a shift-invariant space to be invariant under a given clasdayroup ofR?, and prove the
existence of shift-invariant spaces that are exactly iavifor each given subgroup. As
an application we relate the extra invariance to the sizegpsrt of the Fourier transform
of the generators of the shift-invariant space.

Key words: sampling; shift-invariant spaces; frames; Riesz baseamin operator;
fibers; dimensionality reduction; concentration inediesi angle between subspaces.
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Introduction

A classical assumption in sampling theory is that the sgjt@be sampled belong to a
single space of functions, for example the Paley-Wienetespéband-limited functions.

In this case, the Kotelnikov-Shannon-Whittaker (KSW) tte®o states that any function
f € L2(R) whose Fourier transform is supported withir%[ %] can be completely recon-
structed from its sampleld (k)}x.z. More specifically, ifPW denotes the Paley Wiener

space

11

2°2|)°
then{sinc( — k)}xey forms an orthonormal basis f&\W, where sind() = %ﬁ“’ Moreover,
for all f € PW we have thaf (k) = (f, sinc( — k)) and

f(H) = Y f(Ksinct - K. (0.1)

keZ

PW = {f e L2(R) : supp(f) c

with the series on the right converging uniformly Bpas well as irn_?(R).

The KSW theorem is fundamental in digital signal processimge it provides a
method to convert an analog sigrfaio a digital signal f (k)}xcz and it also gives a recon-
struction formula.

The Paley-Wiener space is invariant under integer traoskati.e. if f € PW then
f(- — k) € PWfor anyk € Z. The closed subspacesIof(RY) which are invariant under
integer translates are called shift-invariant spacessSIS

A shift-invariant spac# is said to be generated by a set of functigpgc; < L?(RY)
if every function inV is a limit of linear combinations of integer shifts of the @ions
©Dj- That iS,

V = Spaity;(- - K) : je Jkez,

where the closure is taken in thé-norm. We will say that the SIS is finitely generated if
there exists a finite set of generators for the space. Thg-®dlener space is an example
of a shift-invariant space which is generateddgt) = sinct).

The function sindi) is well-localized in frequency but is poorly localized ime. This
makes the formulaQ(1) unstable in the presence of noise. To avoid this disadganta
other spaces of functions were considered as signal mddalsly, shift-invariant spaces
(SISs) generated by functions with better joint time-frexgey localization or with com-
pact support. One of the goals of the sampling problem in &Ssudying conditions
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on the generators of a SN5in order that every function of can be reconstructed from
its values in a discrete sequence of samples as in the baitédicase. The sampling
problem for SISs was thoroughly treated &{01, Sun05 Wal92, ZS99.

Assume now that we want to sample the signals in a finitefset {f;,..., fn} C
L?(RY) and that they do not belong to a computationally tractatfie Bor example, if the
cardinality of the data sehis large, the SIS generated By contains all the data, but
it is too large to be an appropriate model for use in applceti So, a space with less
generators would be more suitable. In order to model th&dgy a manageable SIS we
consider the following problem: givdn<< m, the goal is to find a SIS witk generators
that best models the data $€t That is, we would like to find a SIS, generated by at
mostk functions that is closest to the s&t= {f, ..., f,} € L?(RY) in the sense that

m
Vo = argmin, , Z I — Py fill?., (0.2)
i=1

where Ly is the set of all the SISs generated by at mosinctions, andPy is the orthog-
onal projection from_2(R%) ontoV.

In [ACHMO7] the authors proved the existence of an optimal space thatisa Q.2),
they gave a way to construct the generators of such spacesanheed the error between
the optimal space and the data get To obtain their results they reduced the problem
to the finite dimensional problem of finding a subspace of disin at mosk that best
approximates a finite data set of vectors in the Hilbert sgA@®). This last problem can
be solved by an extension of the Eckart-Young’s Theorem. Weeaview some of these
results inChapter 2

Recently, a new approach for the sampling theory has beezlapmd. The classical
linear model is replaced by a non-linear, but structuredehoohsisting of a union of sub-
spaces. More specifically, Lu and Doj08] extended the sampling problem assuming
that the signals to be sampled belong to a union of subspastesd of a single subspace.
To understand the importance of this new approach let usdatre some examples.

i) Compressed sensingin the compressed sensing settingcRroq, [CTO4],
[Don04q) the signalx € RN is assumed to be sparse in an orthonormal basid' of
That is, givend = {qﬁ,-}'j\':l an orthonormal basis f&N, x has at mosk non-zero
codficients in®, wherek << N. In other words, iB;(X) = (X, ¢;), then

160Nl = # j € {1,....N} : 6;(x) £ 0} < k.

The sparse signals live in the unionketlimensional subspaces, given by

Vi e (0.3)

.....

1<ji<...<jk<N

with V;, i, = spanéj,, ..., ¢j}.
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i)

ii)

Blind Spectral SupportLet [wo, wo + N] € R be an interval which is partitioned
into N equal interval€; = [wo + J,wo+ ] + 1] for 0 < j < N - 1. Assume we have
a functionf e L?(R) whose Fourier transform is supported in at miogttervals

Cj,»...,Cj, (with k << N), but we do not know the indicgs, . . ., j.
If we define

Vi, :={g€ L*R) : suppf) € Cj, U...UC;,

then the functiorf belongs to the union of subspaces

1<j1<...<jk<N

This class of signals are called multiband signals with wmkm spectral support

(see FB9€Q).

Stream of DiracsGivenk € N consider the stream &fDiracs
k
X = ) ciolt - t)),
j=1

Where{t,-}'j‘:1 are unknown locations ar{dj}'j‘:1 are unknown weights.

If the k locations are fixed, then the signals live ik-dimensional subspace. Thus,
they live in an infinite union ok-dimensional subspaces.

These signals havek2iegrees of freedonk for the weights andt for the locations
of the Diracs. Sampling theorems for this class of signal® teeen studied in the
framework of signals witHinite rate of innovation They receive this name since
they have a finite number of degrees of freedom per unit of.timgVMBO02] it
was proved that onlylRsamples are glicient to reconstruct these signals .

Note that if we considered the signals from a union of subspas elements of the
subspace generated by the union of these spaces, we wouldeb® apply the linear
sampling techniques for signals lying in only one subspdé.the problem is that we
would not be having into account an additional informatibouat the signals. For exam-
ple, in the case df-sparse signals (see Example i) from above) we only n&eh@ples
to reconstruct a signat € RN, k for the support of the cdicientsd(x) andk for the
value of the non-zero cdigcients. On the other side, if we considered the sigrad an
element of the subspace generated by the uriid) (i.e. RV) we would needN samples
to reconstruct it.

The model proposed by Lu y Da.P08] in which the signals live in a union of sub-
spaces instead of a single vector space represented a nagigmarfor signal sampling
and reconstruction. Since for each class of signals thérgggroint of this new theory
is the knowledge of the signal space, the first step for implaing the theory is to find
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an appropriate signal model from a set of observed dataA@#[08] the authors stud-
ied the problem of finding a union of subspacg¥;, C H that best explains the data
F = {f1,..., fn} in a Hilbert space/{ (finite or infinite dimensional). They proved that
if the subspace¥; belong to a family of closed subspacegsvhich satisfies the so called
Minimum Subspace Approximation Property (MSAP), an optis@ution to the non-
linear subspace modeling problem that best fit the datasgastl algorithms to find these
subspaces were developed.

In some applications the model is a finite union of subspandstais finite dimen-
sional. Once the model is found, the given data points canustered and classified
according to their distances from the subspaces, givirgtasthe so calledubspace
clustering problen{see e.g.,CL09] and the references therein). Thus a dual problem is
to first find a “best partition” of the data. Once this partitis obtained, the associated
optimal subspaces can be easily found. In any case, thendea@n optimal partition or
optimal subspaces usually involves heavy computatioristifsanatically increases with
the dimensionality ofH. Thus, one important feature is to map the data into a lower
dimensional space, and solve the transformed problem sndtier dimensional space.

If the mapping is chosen appropriately, the original problean be solved exactly or
approximately using the solution of the transformed data.

In Chapter 2we concentrate on the non-linear subspace modeling probieen the
model is a finite union of subspaces®f of dimensionk << N. Our goal is to find
transformations from a high dimensional space to lower dsial spaces with the aim
of solving the subspace modeling problem using the low dsimeral transformed data.
We find the optimal data partition for the transformed datd ase this partition for the
original data to obtain the subspace model associateddg#mtition. We then estimate
the error between the model thus found and the optimal sebspaodel for the original
data.

Once the union of subspaces that best explains a data setnid, fih is interesting to
study the sampling process for signals which belong to tinid & models. The sampling
results which are applied for signals lying in a single saogpare not longer valid for
signals in a union of subspaces since the linear structuostsThe approach of Lu and
Do [LDO08] had a great impact in many applications in signal procgssmparticular in
the emerging theory of compressed sensing(q, [CRT04g, [Don0q and signals with
finite rate of innovations\fMB02].

To understand the problem, let us now describe the procesangpling in a union of
subspaces. Assume thdtis a union of subspaces from some Hilbert spateand a
signalsis extracted fromX. We take some measurements of that signal. These measure-
ments can be thought of as the result of the application ofiassef functionalg¢, }, to
our signals. The problem is then to reconstruct the signal using only teasurements
{v.(9)}, and some description of the subspace&inThe series of functionals define an
operatorthe sampling operatgracting on the ambient spadé and taking values in a
suitable sequence space. Under some hypothesis on thaustro€ the subspaces, Lu
and Do [D08] found necessary and Sicient conditions on these functionals in order
for the sampling operator to be stable and one-to-one whstnated to the union of the
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subspaces. These conditions were obtained in two setlim¢jse euclidean space and in
L2(RY). In this latter case the subspaces considered were figjéslgrated shift-invariant
spaces.

Blumensath and Davie8P09] studied the problem of sampling in union of subspaces
in the finite dimensional case, extending some of the regults and Do [D08]. They
applied their results to compressed sensing models andespigmnals. INEMO09], Eldar
developed a general framework for robust afftteent recovery of a signal from a given
set of samples. The signal is a finite length vector that issgp@ some given basis and
is assumed to lie in a union of subspaces.

There are two technical aspects in the approach of Lu and &aektrict the applica-
bility of their results in the shift-invariant space casdeTirst one is due to the fact that
the conditions are obtained in terms of Riesz bases of atssbf the SISs involved, and
it is well known that not every SIS has a Riesz basis of traeslésee Exampl&.5.17).
The second one is that the approach is based upon the sumrgfterxeof the SISs in
the union. The conditions on the sampling operator are tiésireed using fiberization
techniques on that sum. This requires that the sum of eaclico$ubspaces is a closed
subspace, which is not true in general.

In Chapter 3we obtain the conditions for the sampling operator to be torere and
stable in terms of frames of translates of the SISs insteamttbbnormal bases. This
extends the previous results to arbitrary SISs and in pdaticemoves the first restriction
mentioned above. It is very important to have conditionsetdasn frames, specially for
applications, since frames are more flexible and simpleotstuct. Frames of translates
for shift-invariant spaces with generators that are smewih with good decay can be
easily obtained.

In Chapter 3we give necessary andfiigient conditions for the stability of the sam-
pling operator in a union of arbitrary SISs. We also show,théthout the assumption
of the closedness of the sum of every two of the SISs in thenym@ can only obtain
suficient conditions for the injectivity of the sampling openat

Using known results from the theory of SISs, @inapter 4we obtain necessary and
suficient conditions for the closedness of the sum of two shifafiant spaces. As a con-
sequence, we determine families of subspaces on which tibtmms for the injectivity
of the sampling operator are necessary arficent.

An important and interesting question in the study of SISah®&ther they have the
property to be invariant under translations other thangette. A limit case is when the
space is invariant under translations by all real numbershik case the space is called
translation invariant However there exist shift-invariant spaces with sa@reainvari-
ance that are not necessarily translation invariant. Thahiere are some intermediate
cases between shift-invariance and translation invagiambe question is then, how can
we identify them?

Recently, Hogan and Lakey defined tiscrepancyof a shift-invariant space as a way
to quantify thenon-translation invariancef the subspace, (seel[05]). The discrepancy
measures how far a unitary norm function of the subspacemcae away from it, when
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translated by non integers. A translation invariant spasediscrepancy zero.

In another direction, Aldroubi et al, (seeCHKM10]) studied shift-invariant spaces
of L2(R) that have some extra invariance. They show that i§ a shift-invariant space,
then itsinvariance setis a closed additive subgroupRfcontainingZ. The invariance set
associated to a shift-invariant space is theMeatf real numbers satisfying that for each
p € M the translations by of every function inv, belongs td/. As a consequence, since
every additive subgroup @ is either discrete or dense, there are only two possitslitie
left for the extra invariance. That is, eith¥ris invariant under translations by the group
(1/n)Z, for some positive integer (and not invariant under any bigger subgroup) or it
is translation invariant. They found fikrent characterizations, in terms of the Fourier
transform, of when a shift invariant space igr{iz-invariant.

A natural question arises in this context. Are the char&agons of extra invariance
that hold on the line, still valid in several variables?

The invariance seM C RY associated to a shift-invariant spade that is, the set
of vectors that leav®/ invariant when translated by its elements, is again, asenlth
dimensional case, a closed subgroufRéf(see Propositio®.2.1). The problem of the
extra invariance can then be reformulated as finding neeasa stficient conditions
for a shift-invariant space to be invariant under a closatitae subgroupM c RY con-
tainingz.

The main diterence here with the one dimensional case, is that the steuof the
subgroups oRY whend is bigger than one, is not as simple.

The results obtained for the 1-dimensional case transt&atewell in the case in which
the invariance seVl is a lattice, (i.e. a discrete group) or whiehis dense, that i1 = RY.
However, there are subgroupsRsfthat are neither discrete nor dense. So, can there exist
shift-invariant spaces which ak-invariant for such a subgrouy and are not translation
invariant?

In Chapter 5we study the extra invariance of shift-invariant spacesighér dimen-
sions. We obtain several characterizations paralleliedltdimensional results. In addi-
tion our results show the existence of shift-invariant gsathat areexactly Minvariant
for every closed subgroud c RY containingzd. By ‘exactly M-invariant’ we mean that
they are not invariant under any other subgroup contaiiMndVe apply our results to
obtain estimates on the size of the support of the Fouriestoam of the generators of
the space.

At the end ofChapter 5we also give a brief description of the generalization of the
extra invariance results to the context of locally compaetian (LCA) groups.

Thesis outline

Chapter 1contains the notation and some preliminary tools used girout this the-
sis. We present basic definitions and results regardingefsaand Riesz bases in Hilbert
spaces. We give some characterizations and propertiesfivirsfariant spaces. We also
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define the range function and the notion of fibers for shifamant spaces.

In Chapter 2we study the problem of finding models which best explain ddidata
set of signals. We first review some results about finding @sade that is closest to a
given finite data set. We then study the general case of umibagbspaces which best
approximate a set of signals. The results are proved in aglesetting and then applied
to the case of low dimensional subspaceR%fand to infinite dimensional shift-invariant
spaces of 2(RY).

For the euclidean case", the problem of optimal union of subspaces increases dra-
matically with the dimensioiN. In Chapter 2 we study a class of transformations that
map the problem into another one in lower dimension. We usebdst model in the
low dimensional space to approximate the best solutionarotiginal high dimensional
space. We then estimate the error produced between thitgosodund the optimal solution
in the high dimensional space.

The purpose oChapter 3is the extension of the results df[p08] for sampling in a
union of subspaces for the case that the subspaces in thearmeiarbitrary shift-invariant
spaces. We describe the subspaces by means of frame genénatead of orthonor-
mal bases. We give necessary anflisient conditions for the stability of the sampling
operator in a union of arbitrary SISs. We also show that, euitithe assumption of the
closedness of the sum of every two of the SISs in the union ameoaly obtain sfiicient
conditions for the injectivity of the sampling operator.

In Chapter 4we obtain necessary andfBaient conditions for the closedness of the
sum of two shift-invariant spaces in terms of the Friedriahgle between subspaces. As
a consequence of this, we determine families of subspacegih the conditions for
injectivity of the sampling operator are necessary arffiGent.

Finally, in Chapter Swve study invariance properties of shift-invariant spacesigher
dimensions. We state and prove several necessary dhciesut conditions for a shift-
invariant space to be invariant under a given closed sulpgodR?, and prove the exis-
tence of shift-invariant spaces that are exactly invarfanteach given subgroup. As an
application we relate the extra invariance to the size opsupof the Fourier transform
of the generators of the shift-invariant space. We exteondmeresults obtained for the
case of one variable to several variables. We also give$rctimpter a brief description of
the extra invariance results obtained ACJP104 for the general case of locally compact
abelian (LCA) groups.

Publications from this thesis

The new results ihapter 23, 4, and5 have originated the following publications:

e A. Aldroubi, M. Anastasio, C. Cabrelli and U. M. Molted dimension reduction
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1

Preliminaries

In this chapter we introduce the notation and some basicepiaaised throughout this
thesis. Some of the results presented below are well knoutrwe include them here
for the sake of completeness. We will not go into detailsemafig the reader to the
corresponding literature.

In Section 1.lwe establish some notatiosection 1.2Zgives basic definitions and re-
sults regarding frames and Riesz bases in Hilbert sp&mation 1.3tudies the Gramian
operator. InSection 1.4we present the definition and some properties of shift-iavar
spaces. FinallySection 1.5ntroduces the range function and the notion of fibers which
is a very useful tool in the theory of shift-invariant spaces

1.1 Notation

Throughout this thesisH stands for a separable Hilbert space over the real or complex
field.

The inner product inH will be denoted by-, -). We will use the notatiofj - || for the
norm induced by the inner product, that|i|?> = (h, hy for h € H.

Given a subspac¥ of a Hilbert space/, we denote by its closure and by* its
orthogonal complement.

We will write W = U @V to denote therthogonaldirect sum of closed subspaces of
‘H, i.e., the subspaces, V must be closed and orthogonal, ands their direct sum.

If V is a closed subspace #f, we write Py for the orthogonal projection oné.

Here and subsequentlystands for a countable index set. For a given sequegfe;
in H let sparix;}jc; denote the vector space consisting of all finite linear cortions of
Vectorsx;.

A sequencéx;}jc; is said to be complete it if Spanx}jc; = H.
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We write ¢£2(J) for the space of square summable scalar sequences
3) ={{x}jes ST = ) Ixif? < +ool.
jed
The cardinality of a finite st will be denoted by ¥.
If T:H — H is a bounded linear operator, the operator norm is defined by

ITX

||T||0p = Sup——-.
x20 |IXI

For each, j € J, lets; ; be the Kronecker’s delta defined by

{1 ifi = |
0ij = .
0 ifi#].

Throughout this thesis we will use the Fourier transfornegitby
flw) = f f(X) & 2% dx
Rd

for f € LY(RY), and extended to be a unitary operatord(R).
The translation by € R? will be denoted by, f := (- — ).

Let B be a subset oRY, we will say that a functiorf defined inRY is B-periodic if
t.f = f for all x € B, wheret, is the translation operator. A subg€etc RY is B-periodic
if its indicator function (denoted byg) is B-periodic.

The Lebesgue measure of a Bet RY will be denoted byE|.

1.2 Frames and Riesz bases in Hilbert spaces

In this section we will review the concept of Schauder baRéssz bases and frames in
Hilbert spaces. For more details sé&[11, Chr03 and the references therein.

We will say that a sequengg;};c; in H is a(Schauder) basifor H if, for eachh € H,
there exist unique scalar ddieients{c;(h)};c; such that

h= > chx

jed

The basis isorthonormalif (x, x;) = ¢;; for all'i,j € J. In this case, the unique
representation df € H in this basis ish = };;(h, xj)X;. Orthonormal bases satisfy the
so calledParseval’s identity

D KkhoxpP = [hP Vhe H. (1.1)

jed
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Theorem 1.2.1.Every separable Hilbert spacH has an orthonormal basis.

Example 1.2.2.Let {ej};c; be the sequence iff(J) defined by ¢); = & ; for every
i, j € J. Then{ej}jc; is an orthonormal basis f@f(J) and it is called theanonical basis

We will now introduce the definition of Riesz bases. We wik $ater that they can be
considered as a generalization of orthonormal bases.

Definition 1.2.3. A sequencéX;}jc; in H is aRiesz basigor H if it is complete inH
and there exist constants<Oa < 8 < +o0 such that

2
o Y el < | Dlex|| <8 D Iel? Vic € ). (1.2)
jed jed jed
The following proposition states a relationship betweeasRibases, bases and or-
thonormal bases.

Proposition 1.2.4.Let{X;}jc; be a sequence i4{. The following statements are equiva-
lent.
i) {Xj}jes is @ Riesz basis foH.
ii) {Xj}jes is @ basis forH, and
Z cjX; converges if and only if {c;};c; € £%(J).
jed
iii) There exist a bounded linear operator TH — H and an orthonormal basis

{€j}jes for H such that Te;) = x; forall j € J.

Taking T as the identity operator in item iii), we have that all ortbomal bases are
Riesz bases. The following proposition states that the@wevis true when the constants
of the inequality {.2) are equal to one.

Proposition 1.2.5.Let{X;};c; be a sequence 1. Then{X;};c; is a an orthonormal basis
if and only if it is a Riesz basis with constants- g = 1.

We will now introduce the concept of frames which can be seea generalization of
Riesz bases.

Definition 1.2.6. A sequencéX;}jc; in H is aframefor H if there exist constants &
a < B < +o0 such that

allh? < Z Kh, xp? < BIIAIZ VheH. (1.3)
jed

The constantg, 8 are calledframe bounds If {X;};c; satisfies the right inequality from
(1.3) we will call it a Bessel sequence
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The frame igightif @ = 8. A Parseval frames a tight frame with constants= g = 1.

The frame isexactif it ceases to be a frame whenever any single element isedelet
from the sequence.

We will say that{x;};c; is aframe sequenciéit is a frame for the subspa@panx;}e,.
Remarkl.2.7. Although a Parseval frame satisfy the Parseval’s identit) (it might not
be an orthogonal system. In fact, it is orthogonal if and ahgvery element of the set
has unitary norm. A simple example is the fanXy= {%el, %el, €n}ns2 Where{en}nen 1S

an orthonormal basis for an infinite dimensional Hilbertcsg#l. X is a Parseval frame
that is not orthogonal and it is not even a basis.

As we have mentioned above, frames can be considered as mlgat®n of Riesz
bases. The next proposition gives necessary afiitigmt conditions in order for a frame
to be a Riesz basis.

Proposition 1.2.8. Let {Xj};c; be a sequence iH. Then{x;};c; is a Riesz basis if and
only if it is an exact frame foyH.

We will now introduce some operators which play a crucia¢rol the theory of sam-
pling.
Definition 1.2.9. If X = {Xj};c; IS a Bessel sequenced, we define thenalysis operator

as
By : H — (%(J), Bxh={(h,Xj)}jes.

The adjoint ofB is thesynthesis operatogiven by
By : (°(J) > H, Bic=) cix;.
jed

The Bessel condition guarantees the boundedneBg afid as a consequence, thaBf

By composingB; andBy, we obtain thdrame operator

S:H > H, Shi=BBxh= Z(h, X;)Xj.
jed

Frame sequences can be characterized through its syntipesators as it is stated in
the following proposition.
Proposition 1.2.10.A sequence X% {Xj}je; in H is a frame sequence if and only if the
synthesis operatorBis well-defined o?(J) and has closed range.

As a consequence of the previous propositionxjfjc; is a frame for the subspace
V := SpanX}jes, then

V= {Z X 1 {cjle fz(J)} . (1.4)
jed
Using this, it is possible to construct for any infinite disemal separable Hilbert
space a Bessel sequence which is complefd @nd it is not a frame sequence.
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Example 1.2.11.Let{e,}nav be an orthonormal basis for an infinite dimensional separabl
Hilbert spaceH and definef, = e, + e,,1 for n € N. This is a Bessel sequence since, for
heH,

D khe+ennP = ) Khe)+h el

keN neN
< 22 Kh, e + 22 K, ensa)?
neN neN
< 4|

We also have thdftf,},oy iIs complete inH because if there exiskse H such thath, e, +
en1) = 0 foralln e N, then(h, &,) = —(h, e,;1) for all n. Thus|(h, e,)| is constant. Using
the Parseval’s identityl(1), we conclude thath, e,) = O for all n, soh = 0. Therefore,
{falnay IS complete inH.

Observe that foh = e, € H there exists nd¢c,} € £2(N) such thah = 3 C.f.. By
(1.4) this proves thatf,}nv is a Bessel sequence which is not a frame sequence.

Remarkl.2.12 Note that from Propositiod.2.1Q any finite sequencgxy, ..., Xy} in a
Hilbert spaceH is a frame for the closed subspaée- sparixy, ..., X}

The next proposition announces important properties ateutrame operator. It also
states one of the most important results about frames whithai every element it
has a representation as an infinite linear combination oélraents of the frame.

Recall that a serie§;.; X; is unconditionally convergent if};c; X-(j converges for
every permutationr of J.

Proposition 1.2.13.1f X = {X}je; is a frame forH with frame bounds, 3, then the
following statements hold.

i) The frame operator S is bounded, invertible, self-adjgmositive, and satisfies

allhl® < (Shhy <glhl® Yhe H.

i) {S71Xj}jes is a frame forH, with frame bound® < g~ < o™

iii) The following series converge unconditionally for édte H

h= Z<h, S_1Xj>Xj = Z(h, Xj>S_1Xj.

jed jed
iv) If the frame is tight, then & ol and St = a71I.
Let {Xj};c; be a frame forH, a Bessel sequendg;}c; is said to be alual frameof
{Xj}jeJ if

h= Z(h,yj>xj = Z(h, Xp)y; YheH.

jed jed
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By Propositionl.2.13 we have thatS=*x;};c; is a dual frame ofx;};c; which is called
thecanonical dual When({x;};c; is a Riesz basis, the unique dual is the canonical dual.

A frame which is not a Riesz basis is said to d®eercomplete When the frame is
overcomplete there exist dual frames which aféedent from the canonical dual.

As a consequence of item iii) of Propositiar2.13every elemenh € H has a rep-
resentation of the forrh = };.; ¢;x; with coeficientsc; = (h, S™xp). If {Xj}jes is @an
overcomplete frame, the representation given before isimigue, that is, there are other
codficients{c/}jc; € £*(J) for whichh = 3., ¢x;.

Note that by Theorer.2.1, every closed subspace of a separable Hilbert space has an
orthonormal basis. A gquestion that arises then is why stgdframes if in every closed
subspace there exists an orthonormal basis. One of the adesnof frames is their
redundancy. If the frame is overcomplete there are sevhmtes for the coicientsc;
in the representation of an elemér¢ H ash = };; ¢;x;. Thus, due to this redundancy,
if some of the cofficients are missing or unknown it is still possible to recawersignal
from the incomplete data.

Another application which shows the importance of workinthvirames will be shown
in future sections. We will study in this chapter the struetof closed subspacesIof(RY)
which are invariant under integer translations (shiftam&nt spaces). We will show that
every shift-invariant subspace has a frame formed by imtiegeslates of functions. We
will also prove that there exist shift-invariant subspatte do no have Riesz bases of
translates. Thus, for these spaces is essential to workfnaities instead of bases.

1.3 The Gramian operator

In this section we will introduce the Gramian operator agded to a Bessel sequence.
We will see that there exists a relationship between thetspaof this operator and the
fact that the sequence is a frame.

Definition 1.3.1. SupposeX = {Xj}je; is a Bessel sequence ¥ and By is the analysis
operator. The Gramian of the systefis defined by

Gx : 3(J) — £%(J), Gy := BxB;.
We identify Gy with its matrix representation.
(Gx)jk = X X)) V] ke
Given a Hilbert spac& and a bounded linear operaibr. K — K, we will denote by
o (T) the spectrum of, that is
o(T)={1eC : Al =T is notinvertible},
wherel denotes the identity operator &f.

The following lemmas will be useful to prove a property whiekates a frame sequence
with the spectrum of its Gramian.
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Lemma 1.3.2.Let T : K — K be a positive semi-definite self-adjoint operator and
T : ker(T)* — ker(T)* the restriction of T tker(T)*. Assumé < @ < 8 < +oo. The
following conditions are equivalent:

) o(T) € {0} U[a,p]

i) o(T) C [a,B].

iii) alIXI®P <(Txx) <BlIXIF Vxeker(T)*
Proof. We will first prove that i) implies ii). Assume that(T) < {0} U [a,5]. Given
A € o(T), sincec(T) € o(T), it follows thatd € {0} U [e,p]. If 4 = O, thendis an

isolated point ofr(T). Using thatT is self-adjoint, we have that is self-adjoint. Thus,
A must be an eigenvalue @f(see [Con9(). Hence, ker{) # 0, which is a contradiction.

The deduction of i) from ii) is left to the reader.
AsT : ker(T)* — ker(T)* is self-adjoint, we have that(T) < [«, 5] if and only if

allX|? < (Txx) <BIXI? Vxeker(T)*.

Thus, the equivalence between ii) and iii) is straightfaxva

The next lemma is proved itChr03 Lemma 5.5.4].

Lemma 1.3.3.Let X := {Xj}je; € H be a Bessel sequence, then X is a frame sequence
with constantsr andg if and only if the synthesis operatof Batisfies

allcll® < |IBxell” < Blicl® Ve € ker(By)*.

The following is a well known property, its proof can be deeddrom Lemmal.3.2
and Lemmal.3.3

Theorem 1.3.4.Let X := {Xj};cs € H be a Bessel sequence, then X is a frame sequence
with constantsr andg if and only if

O-(GX) c {0} U [Cl’,ﬁ].

We also have the property from below which relates the dimansf the subspace
spanned by a finite set of vectors with the rank of the Gramiatrim

Proposition 1.3.5.Let X = {X, ..., Xn} be a finite set of vectors k. Then

rank[Gx] = dim(spafixa, . . ., Xm}).

Proof. SinceGyx = BxBj, € C™™, we have that

rank[Gyx] = dim(rangeBy)) = dim(sparx, . . ., Xm}).
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1.4 Shift-invariant spaces

In this section we introduce some definitions and basic ptigseof shift-invariant spaces.
For a detailed treatment of the subject seéB[)R94 dBDVR94, Bow00, Hel64, RS9g
and the references therein.

Definition 1.4.1. A closed subspacé C L?(RY) is ashift-invariant spacéSIS) if f € V
impliest,f € V for anyk € Z9, wheret, is the translation bk.

Given® a set of functions i.2(RY), we denote byE(d) the set,
E(D) := {typ : ke 2%, ¢ € D).
Whend = {¢}, we will write E(yp).
The SIS generated by is

V(®) := SpanE(d)) = Spaityp : ¢ € @, k e Z%).
We call® a set of generatorfor V(®). When® = {¢}, we simply writeV(y).

Thelengthof a shift-invariant spac¥ is the cardinality of a smallest generating set for
V, that is
len(V) := min{#® : V = V(D)}.
A SIS of length one is called principal shift-invariant spacé€PSIS). A SIS of finite
length is afinitely generated shift-invariant spa¢eSIS).

Remarkl1.4.2 If ¢ € L2(RY) andy # 0 then the functiongt,p : k € 29} are linearly
independent (se€Chr03 Proposition 7.4.2] oriISWW104 for more details). So, every
non trivial SIS is an infinite dimensional linear space.

As a consequence of the integer invariance of the SISs wethavellowing lemma.
Lemma 1.4.3.Let V C L2(RY) be a SIS and {Pthe orthogonal projection onto V. Then
tPy = Pyty VkeZ

Let us remark here that # c L2(RY) is a set of generators for a shift-invariant space
V, thatisV = V(®), then the seE(®d) does not need to be a frame #éyeven for finitely
generated SISs (see Examfl®.15. However it is always true that there exists a set of
generators fo¥ such that its integer translates form a frame\Morhis is the result of the
next theorem.

Theorem 1.4.4.Given V a SIS of {(RY), there exists a subsét = {¢;}c; C V such that
E(®) is a Parseval frame for V. If V is finitely generated, the caaliof J can be chosen
to be the length of .V

We would like to note here that although a SIS always has adraintranslates, there
are SISs which have no Riesz bases of translates (see Exarbpld. This fact shows
the importance of considering frames instead of Riesz bakes we are studying the
structure of SISs.
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1.4.1 Sampling in shift-invariant spaces

Our aim in this section is to give a brief description of saimgin shift-invariant spaces,
for more details we refer the reader 01, Sun05 Wal92, ZS99.

We will begin by studying the structure of the canonical dofad frame of translates.
We will show that the canonical dual is formed by translatesioctions.

Proposition 1.4.5.Let ® = {g;}jc; be a set of functions of?(RY). Assume ED) is a
frame for a closed space ¥ L2(RY). Then, the dual frame of (@) is the set of translates
E(P) = {t@;}jeakeze, Wherep; = S‘lgo,- and S is the frame operator associated t@biE
given by

S:V-»>V Sf= Z Z(f,tk90j>tk90j-

kezd jed

Proof. Recall from Propositionl.2.13 that the canonical dual oE(®) is given by
{Stkp;) : k € 2% ] € J}. It is easily seen that the operatSrcommutes with inte-
ger translates. So, its inverse also commutes with integeslates. Thus, the canonical
dual is given by(t(S7Y¢;) : ke Z%, j € J}.

O

As we have mentioned in tHatroduction the Kotelnikov-Shannon-Whittaker (KSW)
theorem states that a band-limited functiboan be reconstructed from its values in the
integers using the formula

f(t) = Z f(K)sinct — k),

kezZ
with the series on the right converging uniformly Rnas well as in_?(R) (see 0.1)).

The space of band-limited functio®W = {f € L%(R) : supp(F) - —%,%]} is a
principal shift-invariant space generated by the funcgoensinc. That isPW = V(sinc).

As a generalization of the KSW theorem, the sampling probler8ISs consists in
studying conditions on the generators of a $18 order that every function of can be
reconstructed from its values in a discrete sequence oflsamp

In this section we will focus our attention in the problem afrgpling in principal shift-
invariant spaces. We will describe some of the conditionglwvh generatop for a PSIS
must satisfy in order to have a reconstruction formul¥ (@) similar to the one given in
the KSW theorem.

A closed subspac¥ < L?(RY) of continuous functions will be called rproducing
kernel Hilbert spac€RKHS) if for eachx € RY the evaluation function

fios £(X)

is a continuous linear functional ow. If this condition is verified, by the Riesz’s rep-
resentation theorem (see for instanG®9(), for every x € RY there exists a unique
functionNy € V such that

f(X)=(f,Ny) VfeV
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The set of function$N,},.r« IS called thereproducing kernel

Assume now that for a givep € L2(RY), the setE(yp) is a frame foV = V(p) and that
V is a RKHS. Then, for every € V andk € Z9,

(f,tNo) = (t«f, No) =t «f(0) = f(K) = (f, Ng).

That is,tcNp = Ng. If, in addition, E(No) is a frame forV with dual frameE(NB) (see
Propositionl.4.5, by Propositiorl.2.13we have that

f09 = D (FtNodteNo = > (Rt (15)
kezd kezd
If the convergence of the previous series is uniform, therefunctionf € V can be
reconstructed from its values in the integers. In this wag, abtain inV(¢) a result
similar to the one in the KSW theorem.

As a consequence of the previous analysis, we obtain thagaimgpling problem for
principal shift-invariant spaces is based on studying @@t on the generatas so that
every function oV = V() is continuous, the spa&éis a RKHS, the seE(Ny) is a frame
for V, and the convergence id.9) is uniform. All of these conditions were studied in
[2S99 Sun03j, for a fuller treatment of this problem we refer the readethiese papers.

1.5 Range function and fibers for shift-invariant spaces

A useful tool in the theory of shift-invariant spaces is whea early work of Helson
[Hel64. An L2(RY) function is decomposed into “fibers”. This produces a ottari
zation of SISs in terms of closed subspaceg(tY) (the fiber spaces). The advantage
of this approach is that, although the FSISs are infiniteetisional subspaces (see Re-
mark1.4.2), most of their properties can be translated into propediethe fibers of the
spanning sets. That allows to work with finite-dimensionddspaces of?(ZY).

In the sequel, we will give the definition and some propeuidhe fibers. For a detailed
description of this approach, se&dw0( and the references therein.

The Hilbert space of square integrable vector functiof(§0, 1), £2(2Y)), consists of
all vector valued measurable functiofs [0, 1)¢ — ¢2(Z9) such that

IFIl = f IF QI dx)°,
( [0,1)d ( ) £2 )
is finite.
Proposition 1.5.1. The functionr : L2(RY) — L2([0, 1)4, £2(Z%)) defined for fe L?(RY)

by _
7f(w) = {f(w + K)}keza,

is an isometric isomorphism betweef(R%) and L3([0, 1)¢, £2(Z9)).

The sequenc{a‘/\(w + K)}keze Is called the fiber of f ad.
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Definition 1.5.2. A range functioris a mapping
J:[0,1)? — {closed subspaces 6%(Z2%)}.

J is measurable if the operator valued function of the ortmagprojectionsv — Py,

is weakly measurable. In a separable Hilbert space meabiyrabequivalent to weak
measurability. Therefore, the measurability bfs equivalent tow — Py, (a) being
vector measurable for eaehe ¢%(2%), or w — Py, (F(w)) being vector measurable for
each fixed vector measurable functién [0, 1) — 2(Z9).

Shift-invariant spaces can be characterized through ramgions.

Proposition 1.5.3. A closed subspace ¥ L?(RY) is shift-invariant if and only if
V = {f e L2(RY) : 7f(w) € Jy(w) fora.e.w € [0, 1)},

where J is a measurable range function. The correspondence betWesrd J, is one-
to-one.

Moreover, if V= V(®) for some countable sdi C L?(RY), then

Jv(w) = Spante(w) : ¢ € ®) fora.e.w € [0, 1)
The subspacew) is called the fiber space of V at

Note that ifV c L%(RY) is an FSIS generated by the set of functidns: {¢4, ..., ¢m},
then

Jv(w) = spanrei(w),. .., Tem(w)}.

So, even thougV is an infinite dimensional subspaceldiRY), the fiber spacesd, (w)
are all finite dimensional subspaces/&z?).

We have the following property concerning fibers of SISs.

Proposition 1.5.4.Let V be a SIS of4(RY) and f € L2(RY), then
7(Py f)(w) = Py )(tf(w)) fora.e.we[0,1)"
As a consequence of the previous proposition, we obtainoilenfing.
Proposition 1.5.5.Let \; and \, be SISs. If \= V1 ®V,, then

() = Iy, ()& I,(w), a.e.wel0,1).

The converse of this proposition is also true, but will notneeded for the subjects
developed in this thesis.

Let us now introduce the concept of dimension function f@sSI
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Definition 1.5.6. GivenV a SIS of L?(RY), the dimension functiorassociated to/ is
defined by
dimy : [0, 1)¢ - Ny U {eo}, dimy(w) = dim(Jy(w)).

HereN, denotes the set of non-negative integers.

We have the following property which relates the essentipismum of the dimension
function to the length of an FSIS.

Proposition 1.5.7([dBDVR94]). Let V ¢ L?(RY) be an FSIS. Then
len(V) = ess-sufimy(w) : w € [0, 1)%.

1.5.1 Riesz bases and frames for shift-invariant spaces

The next two theorems characterize Bessel sequences,sfamleRiesz bases of trans-
lates in terms of fibers. The main idea is that every propeirthe setE(D) (being a
Bessel sequence, a frame or a Riesz basis) is equivalestfibats satisfying an analo-
gous property in a uniform way.

Theorem 1.5.8.Let® be a countable subset of(RY). The following are equivalent.

i) E(®) is a Bessel sequence iR(RY) with constanps.

i) T@(w) = {te(w) : ¢ € ®}is a Bessel sequence §AZ%) with constanss for a.e.
w € [0, 1)4.

Theorem 1.5.9.Let V = V(®), whered is a countable subset of(RY). Then the follow-
ing holds:

i) E(®) is a frame for V with constanig andg if and only if r®(w) is a frame for
Jv(w) with constantsr andg for a.e.w € [0, 1)°.

i) E(®) is a Riesz basis for V with constantsandg if and only ifr®(w) is a Riesz
basis for J(w) with constantsr andg for a.e.w € [0, 1) .

Furthermore, if® is finite, V has a Riesz basis of translates if and only if the di
mension function associated to V is constant a.e.[0, 1)°.

Remark1.5.1Q If V is an FSIS generated By = {¢1, ..., om} € L2(RY), thenJy(w) =
spantei(w), . .., Tom(w)} a.e. w € [0,1). So, by Remark..2.12 t®(w) is a frame for
Jv(w) for a.e. w. But, as we will see in Exampl&.5.15 E(®) might not be a frame for
V(®) in general. This is due to the fact that we need a pair of umfpositive frame
boundsa andp for the framer®(w) which are independent af in order forE(®) to be
a frame forV(®).

As we have mentioned in Theoretd.4every SIS has a frame of translates. Using
fiberization techniques, we will give below an example of & Slhich do not have a
Riesz basis of translates.
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Example 1.5.11.Consider the shift-invariant spase generated by € L2(R), where
o(w) = X[o,%)(w)- Since dig(w) = 1 for a.e. w € [0, %) and diny(w) = 0 for a.e.
w € [%, 1), it follows by Theoreni.5.9thatV has no Riesz bases of translates.

1.5.2 The Gramian operator for shift-invariant spaces

Definition 1.5.12. Let ® = {¢;};c; be a countable set of functions iF(R?) such that
E(®) is a Bessel sequence. The Gramiadaitw € [0, 1)1 is Go(w) : €2(J) — £2(J),

(Gal(w))i) = (7¢)(©), (s = Y Glw+Kgj(w+k) Vi, jed (1.6)

kezd

In the notation of Definitiorl.3.1, Go(w) is the Gramian operator associated to the Bessel
sequence®(w) = {ty;(w)}jes In €3(Z%), that iSGe(w) = Gro(w)-

When® = {¢}, the Gramian will be denoted gy, and its expression is

Go(w) = (), Tp(@))ees = ) | @lw + K.

kezd

From Theorenl.5.8and Theoreni.5.9we obtain the following result (se®&pw0(
for more details).

Theorem 1.5.13.Let® = {p;}jc; € L%[RY). Then,

1) E(®) is a Bessel sequence with constaimtand only if
eSS-Sup. 1 1yllGo (W)llop < B

i) E(®) is a frame for (@) with constantsr andg if and only if for almost alkw €
[0, 1),
a{Go(w)C, C) < (G2 (w)C, C) < B(Go(w)C,C) VY ce £3(d).

iii) E(®) is a Riesz basis for ) with constantsr andg if and only if for almost all
w € [0,1),
allel? < (Ga(w)e, ¢) < Bllcl® ¥ ¢ e £2(J).

Remarkl.5.14 As a consequence of Theoreinb.13 for a PSISV(¢) we have
i) E(y) is a frame foV(¢) with constantgr andg if and only if
@ < G,(w) <Bforalmost allw € N,,
whereN, = {w € [0,1) : G, (w) # 0}.
i) E(y) is a Riesz basis fov(¢) with constantsr andg if and only if

a < G,(w) < B for almost allw € [0, 1)°.
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We refer the reader ta{SWW104 to see how other properties B{y) (such as being
a Schauder basis f&(p)) correspond to those ¢f,.

We will present now an example fro@hr03 which shows a functiop whose trans-
lates are not a frame for the SIS generategby

Example 1.5.15.Let ¢ = xj_12. It can be shown (seeChr03) that G,(w) = 3 +
4 cos(zrw) + 2 cos(4w). Note thatg, is continuous and has two isolated ze@;{%) =
G4(3) = 0. So, by Remark.5.14 E(y) is not a frame folv(y).



2

Optimal signal models and dimensionality
reduction for data clustering

2.1 Introduction

In this chapter we are going to study the problem of finding et®avhich best explain a
finite data set of signals. We will first review some resultewfinding a subspace that
is closest to a given finite data set. More precisely; iE {fi,..., f,} is a set of vectors
of a Hilbert spaceH, we will study the problem of finding an optimal subspaec H
that minimizes the expression

E(F.V) = Y (V) = > IIf - Py il
i=1 i=1

over all possible choices of subspat€lkelonging to an appropriate claSof subspaces
of H.

We will focus our attention in finding optimal subspaces foo icases: whef = RN
andC is the set of subspaces of dimension at nkosith k << N, and wherH = L?(RY)
with C being the family of FSISs of length at mdst

Following the new paradigm for signal sampling and recartsion developed recently
by Luy Do [LDO8] which assumes that the signals live in a union of subspastead of
a single vector space, we will study the problem of finding pprapriate signal model
X = U,V from a set of observed dafa = {fy, ..., fu).

We will review the results fromACMO8], which find subspace¥y,...,V,, of some
Hilbert spaceH that minimize the expression

&oF, {Va,..., Vi) = Z min d?(f,, V),

over all possible choices dkubspaces belonging to an appropriate class of subspaces of
H.
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If the subspace¥; belong to a family of closed subspaa@swhich satisfies the so
called Minimum Subspace Approximation Property (MSAP)oatimal solution to the
non-linear subspace modeling problem that best fit the daéséseand algorithms to find
these subspaces were developediaj108].

The results fromACMO8] are proved in a general setting and then applied to the case
of low dimensional subspacesRf and to infinite dimensional shift-invariant spaces of
L2(RY).

For the euclidean cage, the problem of finding a union of subspaces of dimension
k << N that best explains a data $et= {fi, ..., f.,} € RN increases dramatically with the
dimensionN. In the present chapter we have focused on the computatongblexity
of finding optimal union of subspaces RI'. More precisely, we study techniques of
dimension reduction for the algorithm proposedACMO08]. These techniques can also
be used in a wide variety of situations and are not limitedhi® particular application.

We use random linear transformations to map the data to a ldineensional space.
The “projected” signals are then processed in that spaee,f(nding the optimal union
of subspaces) in order to produce an optimal partition. Maeapply this partition to the
original data to obtain the associated model for that pantiénd obtain a bound for the
error.

We analyze two situations. First we study the case when tteeldongs to a union
of subspaces (ideal case with no noise). In that case wendibi@ioptimal model using
almost any transformation (see Propositiba.3.

In the presence of noise, the data usually doesn’t belongitoaa of low dimensional
subspaces. Thus, the distances from the data to an optinddlradd up to a positive
error. In this case, we need to restrict the admissible toamstions. We apply recent re-
sults on distributions of matrices satisfying concentrainequalities, which also proved
to be very useful in the theory of compressed sensing.

We are able to prove that the model obtained by our approaghasi optimal with a
high probability. That is, if we map the data using a randontrix&rom one of the dis-
tributions satisfying the concentration law, then withthjgrobability, the distance of the
data to the model is bounded by the optimal distance plus staon This constant de-
pends on the parameter of the concentration law, and thengéees of the model (number
and dimension of the subspaces allowed in the model).

Let us remark here that the problem of finding the optimal nrabsubspaces that fit
a given data set is also known as “Projective clustering'vega algorithms have been
proposed in the literature to solve this problem. Partidyleelevant is PRVWO06] (see
also references therein) where the authors used resutts/stume and adaptive sampling
to obtain a polynomial-time approximation scheme. S€d(4] for a related algorithm.

The rest of the chapter is organized as followsSattion 2.2ve present the Eckart-
Young’s Theorem, which solves the problem of finding a subsmd dimension less than
or equal tck that best approximates a finite set of vector®®f We also review the results
from [ACHMO7] to find an FSIS which best fits a finite data set of functions“RY).
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In Section 2.3wve state the results fro\CMO8] which find, for a given set of vectors
in a Hilbert space, a union of subspaces minimizing the suthesquare of the distances
between each vector and its closest subspace in the coflettle also review the iterative
algorithm proposed inACMO08] for finding the solution subspaces.

In Section 2.4ve concentrate on the non-linear subspace modeling prolteen the
model is a finite union of subspaces®f of dimensionk << N. We study a class of
transformations that map the problem into another one iretaimension. We use the
best model in the low dimensional space to approximate teedwdution in the original
high dimensional space. We then estimate the error prodoewdeen this solution and
the optimal solution in the high dimensional space.

In Section 2.5ve give the proofs of the results froBubsection 2.4.2

2.2 Optimal subspaces as signal models

Given a set of vectorg = {fy,..., f,} in a separable Hilbert spadd and a family of
closed subspacé&s of H, the problem of finding a subspavec C that best models the
dataF has many applications to mathematics and engineering.

Since one of our goals is to model a set of data by a closed aobspe first provide a
measure of how well a given data set can be modeled by a suspac

Definition 2.2.1. Given a set of vectorg = {fy, ..., f,} in a separable Hilbert space, the
distance from a closed subspacg H to ¥ will be denoted by

E(F.V) = Y (V) = > IIf - Pyl
i=1 i=1

We will say that a family of subspacéshas the Minimum Subspace Approximation
Property (MSAP) if for any finite sef of vectors inH there exists a subspavlg € C
such that

E(F, Vo) = inf{E(F,V) : VeC}<EF,V), VYVeCcC. (2.1)

Any subspacé#/, € C satisfying @.1) will be called anoptimal subspacéor 7.
Necessary and flicient conditions foC to satisfy the MSAP are obtained iAT10].
Let us denote by (7, C) the minimal error defined by

Eo(F,C) :=Inf{&E(F,V) : VeC}. (2.2)

In this section we will study the problem of finding optimabspaces for two cases:
when#H = RN and( is the set of subspaces of dimension at nkostith k << N), and
whenH = L?(RY) with C being the family of FSISs of length at mdst

We will begin by studying the euclidean cagé= RN. Assume we have a finite data
setF = {fy,..., fn} CRN. Our goal is to find a subspadg such that dimy,) < k and

E(F, Vo) = E(F,C) = Inf{E(F,V) : V eCul,
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whereCy is the family of subspaces &" with dimension at mosk.

This well-known problem is solved by the Eckart-Young's @hem (see $ch07)
which uses the Singular Value Decomposition (SVD) of a maBefore stating the the-
orem, we will briefly recall the SVD of a matrix (for a detailag@atment see for example
[Bha97).

LetM = [fy,..., f] € RN™andd := rank(M). Consider the matriV*M € R™™,
SinceM*M is self-adjoint and positive semi-definite, it has eigeneall; > --- > 14 >
0 = A¢;1 = -+ = Am. The associated eigenvectors. . .,y can be chosen to form an
orthonormal basis d&™. The left singular vectors,, .. ., Uy can then be obtained from

m
U = /li_l/ZMyi = /li—l/ZZyij fj Yi<ic<d
ji=1
The remaining left singular vectorg,, ..., U, can be chosen to be any orthonormal

collection ofm — d vectors inRN that are perpendicular to the subspace spanned by the
columns ofM. One obtain the following SVD oM

M — UAl/ZY*,
whereU € RV™ s the matrix with columng, . . ., U}, AY2 = diag@dy’?, ..., 4n?), and
Y ={y1,....¥m} € R™™with U*U = I, = Y'Y =YY
We are now able to state the Eckart-Young’s Theorem.

Theorem 2.2.2.Let¥ = {f,..., f.} be a set of vectors iRN and let M= [f,,..., f,] €
RN*M pe the matrix with columns. fSuppose that M has a SVD MUAY2Y* and that
0 < k <d, with d:=rank(M). If Vo = sparuy, ..., U}, then

E(F, Vo) = Eo(F. C) = Inf{E(F, V) : V € G}
Furthermore,

d
E(F.CI= ). 4,

j=k+1
whered; > --- > 14 > 0 are the positive eigenvalues of*M.

The previous theorem proves that#h = RN, the clas<Cy of subspaces of dimension
at mostk has the MSAP. Therefore, for any finite sét = {f,..., f,} of vectors in
RN there exists an optimal subspadg € Cx which best approximates the data get
Moreover, Theoren2.2.2gives a way to construct the generators of an optimal sulespac
and estimates the minimal er&g(F, Cy).

Let us now study the problem of finding an FSISL3{RY) that best approximates a
finite data set of functions df?(RY). More specifically, given a set of functiofs =
{fy,..., fm} in L2(RY), our goal is to find an FSI¥, of length at mosk (with k much
smaller tharm) that is closest t¢- in the sense that

E(F, Vo) = &, Li) = Inf{E(F, V) 1 V e L, (2.3)
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where /Ly is the set of all the SISs of length less than or equél to

To solve this problem, infACHMO07] the authors used fiberization techniques to reduce
it to the finite dimensional problem of finding a subspace ofi€hsion at mosk that
best approximates a finite data set of vectors in the Hillgtas?(Z9). This last prob-
lem can be solved by an extension of the Eckart-Young’s Téradfor more details see
[ACHMO7]).

The following theorem states the existence of an optimasgabe which solves prob-
lem (2.3). Recall from Definitionl.6that for a given sef = {fy,..., f,,} of functions in
L2(RY), the Gramian matriGs(w) € C™™Mis defined by G5 (w))i; = (tfi(w), 7 fj(w)) for
every 1< i, j < m, wherer f(w) = { F(w + K)}xeze-

Theorem 2.2.3.Assumef = {fi,..., fy} is a set of functions in ARY), let 1;,(w) >
Ao(w) = - -+ = Am(w) be the eigenvalues of the Gramigi(w). Then

i) The eigenvaluesti(w), 1 < i < m are Z%-periodic, measurable functions in
L2([0, 1)¥) and

m
Eo(F, L) = Z f Ai(w)dw,
i:k+:|.[0’l)d
where Ly is the set of all the FSISs of length less than or equal to k.
i) Let N = {w : A(w) # 0}, and defingFi(w) = 4 *(w) on N and&i(w) = 0 on

NC. Then, there exists a choice of measurable left eigenve@wgt(w), . . ., yi(w) as-
sociated with the first k largest eigenvaluegf(w) such that the functions defined

by
F(0) = 51(0) Y Y@ fw). i=1...k weR
=1

are in L2(RY). Furthermore, the corresponding set of functidns: {¢, ..., ¢} is
a generator for an optimal space)@nd the set ED) is a Parseval frame for y/

As a consequence of the previous theorem we obtain that #ss € of FSISs of
L2(RY) of length at mosk satisfies the MSAP. So, probler.p) always has a solution.
Moreover, Theoren2.2.3gives a way to construct the generators of an optimal sulespac
and estimates the minimal err&g(F, Ly).

2.3 Optimal union of subspaces as signal models

In this section we will study the problem of finding a union abspaces that best approx-
imates a finite data set in a Hilbert spake

Let C be a family of closed subspacesAfcontaining the zero subspace. GivenN,
denote byB the collection ofbundlesof subspaces i@,

B={B={Vy,....Vi} : VieC, i=1..,1}
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Forasetofvectorg = {f,,..., fn} InH, the error between abundBe= {V4,...,V,} € B
and¥ will be defined by

m
- ind2(f V.
&F,B) = Z‘ min d(f,, V),
whered stands for the distance {H (see Figur&.1for an example).

Vq V2

5
4
3
2
1
0
1
2
3
4
5

Figure 2.1:An example of a data s6f = {fy,..., fs} in R? and a bundleB = {V1, V,} of two
lines. In this case(F, B) = d?(f1, V1) + d?(fa, V1) + d?(fz, Vo) + d?(fa4, Vo) + d?(fs, V1). The
partition generated by the bundieis S; = {1, 2,5} andS, = {3, 4}.

Observe that for the cade= 1 the errore coincides with the erro€ defined in the
previous section. That is,

oF, (V) = E(F., V) = > d¥(f, V).

Recall from the previous section that a family of subsp@céas the Minimum Sub-
space Approximation Property (MSAP) if for any finite §ebf vectors inH there exists
a subspac¥j € C such that

E(F, Vo) =inf{lE(F,V) : VeC}<&EF,V), VYVeC.

The following theorem states that the problem of finding atineg@l union of subspaces
has solution for every finite data s&tC H and every > 1 if and only ifC has the MSAP.

Theorem 2.3.1([ACMO08]). LetF = {fy,..., f} be vectors inH, and let | be given
(I < m). If C satisfies the MSAP, then there exists a bundle=BV?,...,V} € 8 such
that

&(F ., Bo) = &(F) = inf{e(F,B) : Be B}. (2.4)

Any bundle B € 8B satisfying 2.4) will be called anoptimal bundldor F.
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Remark2.3.2 In the context of the Hilbert spacd = L%(RY), Teorem2.2.3proves that
the family £y of shift-invariant spaces with length less than or equdl has the MSAP.
Thus, by Theoren2.3.1there exists a solution for the problem of optimal union of$sS

In the case ofH = RN, Theoren?.2.2states that the familg, of subspaces of dimen-
sion at mosk has the MSAP. So, also in this case there exists a uniddohensional
subspaces which is closest to a given data set.

2.3.1 Bundles associated to a partition and partitions asstted to a
bundle

The following relations between partitions of the indi¢és. .., m} and bundles will be
relevant for understanding the solution to the problem aino@l models. From now on
we will assume that the clagshas the MSAP.

We will denote byII, ({1, ..., m}) the set of all-sequenceS = {S,,..., S} of subsets
of {1,..., m} satisfying the property that foralld i, j <1,

|
| Jsi={1L....m and Sins;=0foriz]j

r=1

We want to emphasize that this definition does not excludedlse when some of the
S; are the empty set. By abuse of notation, we will still call éhements of1;({1, ..., m})
partitionsof {1, ..., m}.

Definition 2.3.3. Given a bundleB = {V,,...,V|} € 8, we can split the seftl, ..., m}
into a partitionS = {S4, ..., S} € I|({1, . .., m}) with respect to that bundle, by grouping
together intoS; the indices of the vectors iff that are closer to a given subspage
than to any other subspadg, j # i. Thus, the partitions generated Byare defined by
S={S;,....,S}eI{1,...,m}), where

jeSi ifandonlyif d(f;,Vi) <d(f,Vh), Vh=1...1L

We can also associate to a given partitia IT, the bundles ir8 as follows:

Definition 2.3.4. Given a partitionS = {S4,...,S;} € II;, we will denote by#; the set
Fi = {fj}jes,- AbundleB = {V4,...,V|} € B is generated by if and only if for every
i=1....1,

E(Fi, Vi) = Eo(Fi, C) = Inf{E(Fi, V) 1 V € C}.

In this way, for a given data s&t, every bundle has a set of associated partitions (those
that are generated by the bundle) and every partition hasod agsociated bundles (those
that are generated by the partition). Note however, thatatiethatS is generated by
does not imply thaB is generated by, and vice versa (an example is given in Figure
2.2). However, ifBy is an optimal bundle that solves the problem for the datas in
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Theorem2.3.1, then in this case, the partitid®y generated by, also generateB,. On
the other hand not every paiB,(S) with this property produces the minimal ere{¥).

Here and subsequently, the partiti8gn generated by the optimal bundiy will be
called an optimal partition foF .

S Vi Wy Va2
2, f1
AR ]
, ..
1 f2 .
f3
0
-1
2 f.s
3
-4
-5
5 4 3 1 2 3 4 5

Figure 2.2:The data seF = {fj,..., fs} is the same as in Figuz1l The bundleB = {V1, V5}
generates the partitich = {{1, 2, 5}, {3, 4}}. This partition generates the bundé= {W;, W>}.

An algorithm to solve the problem of finding an optimal unidrsabspaces was pro-
posed in ACMO08]. It consists in picking any partitios; € II; and finding a bundI®,
generated bys,. Then find a partitiors, generated by the bund®, and calculate the
bundleB, associated t&,. Iterate this procedure until obtaining the optimal bun@lee
[ACMO8] for more details).

2.3.2 The euclidean case: sparsity and dictionaries

In this section we will focus our attention in the problem gtimal union of subspaces
for the euclidean case. The study of optimal union of subspacodels for the case
H = RN has applications to mathematics and enginee@gp, EM09, EV09, Kan01,
KMO02, LD08, AC09, VMSO05]. In the previous section we have shown that the problem of
finding a union of subspaces of dimension less than or equélttat best approximates

a data set irRN has a solution (see Remazk3.2).

In this section, we will relate the existence of optimal unad subspaces iRN with the
problem of finding a dictionary in which the data set has aatesparsity. We will also
analyze the applicability of the algorithm given in the poass section for the euclidean
case.

Definition 2.3.5. Given a set of vector§ = {fy,..., f.,} in RN, a real numbep > 0
and positive integers k < N we will say that the daté is (I, k, p)-sparse if there exist
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subspaceV,, ..., V, of RN with dimension at mosk, such that

m
oF  {Vi,..., Vi) = ) mind*(f.V)) < p.

i=1
whered stands for the euclidean distanceril.
When¥ is (I, k, 0)-sparse, we will simply say th& is (I, k)-sparse.

Note that ifF is (I, k)-sparse, there exifsubspaceVy, .. ., V, of dimension at mo,
such that
F C U, V..

For the general case > 0, the (,k, p)-sparsity of the data implies th& can be
partitioned into a small number of subsets, in such a waydheh subset belongs to or
is at no more thap-distance from a low dimensional subspace. The collectidhese
subspaces provides an optimal non-linear sparse moddidatdta.

Observe that if the dat& is (I, k, p)-sparse, a model which verifies Definiti@3.5
provides a dictionary of length not bigger thlkn(and in most cases much smaller) in
which our data can be represented using at khasbms with an error smaller than

More precisely, letVy,...,V,} be a collection of subspaces which satisfies Definition
2.3.5andD a set of vectors fronh J; V; that is minimal with the property that its span
containg J; V;. Then for eachf € 7 there exists\ c D with #A < k such that

IIf — Z agdll5 < p, for some scalaray.
geA

In [MT82] Megiddo and Tamir showed that it is NP-complete to decidetiér a set
¥ of mpoints inR? can be covered bllines. This implies that the problem of finding a
union a subspaces that best explains a data set is NP-Cerspkat in the planar case.

The algorithm from ACMO8] described in the previous section involves the calcula-
tion of optimal bundles, which depends on finding an optiméddspace for a data set.
Recall that the solution to the cake- 1 is given by the SVD of a matrix (see Eckart-
Young's Theorem). The running time of the SVD method for ariraM € RNM is
O(min{mN?, Nn?}) (for further details se€l[B97]). Thus the implementation of the algo-
rithm can be very expensiveM is very large.

In the following section we study techniques of dimensiatuetion to avoid the ex-
pensiveness of the algorithm described above. These tpagmican also be used in a
wide variety of situations and are not limited to this part&r application.

2.4 Dimensionality reduction

The problem of finding the optimal union of subspaces that imeglels a given set of
data7 when the dimension of the ambient sp&ces large is computationally expensive.
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When the dimensiok of the subspaces is considerably smaller thant is natural to
map the data onto a lower-dimensional subspace, solve aciatesl problem in the lower
dimensional space and map the solution back into the otigpece. Specifically, given
the data sefF = {fy,..., f,} € RN which is (, k, p)-sparse and a matrik € R™N, with

r << N, find the optimal partition of the projected dafad := A(F) = {Af,,...,Af} C
R", and use this partition to find an approximate solution todpigmal model forf .

24.1 Theidealcase =0

In this section we will assume that the data= {fi,..., f,} € RV is (I, k)-sparse, i.e.,

there exist subspaces of dimension at m&stuch that# lies in the union of these sub-
spaces. For this ideal case, we will show that we can always/ez the optimal solution
to the original problem from the optimal solution to the desh in the low dimensional

space as long as the low dimensional space has dimensidn

We will begin with the proof that for any matrik € R™N, the projected data” = A(¥)
is (I, k)-sparse iIrR".

Lemma 2.4.1.Assume the dat@& = {fy,..., f.,} € RN is (I, k)-sparse and let A& R™N,
ThenF’ .= A(F) = {Afy,...,Af} CR"is(l,k)-sparse.
Proof. LetV?,...,V? be optimal spaces fof. Since
dim(AVY) < dim(V®) <k Vi<ic<l,
and

F' C _UA(ViO)’

it follows thatB := {A(V?),..., A(V)} is an optimal bundle foF” ande(¥”, B) = 0.
O
LetF = {fy,..., fn) € RN be (,k)-sparse and\ € R™N. By Lemma2.4.1, ¥ is (I, k)-

sparse. Thus, there exists an optimal parti®a {S4,...,S} for 7 in IL({1,...,m}),
such that

TQUW,
i=1

whereW, := spanAfj};cs; and dimfM) < k. Note thatfW, ..., W} is an optimal bundle
for 7.

We can define the bundBs = {V4,...,V,} by
Vi = spanifijlies, V1<ic<l (2.5)
SinceS e II;({1, ..., m}), we have that

i=1
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Thus, the bundlés will be optimal for 7 if dim(V;) < k, Y1 < i < |. The above
discussion suggests the following definition:

Definition 2.4.2. Let ¥ = {fy,..., fn} € RN be (,k)-sparse. We will call a matriA ¢
R™N admissiblefor  if for every optimal partitionS for 77, the bundleBs defined by
(2.5) is optimal for¥ .

The next proposition states that almost&alk R™N are admissible fof .
The Lebesgue measure of a Bet R% will be denoted byE|.

Proposition 2.4.3. Assume the dat& = {f;,..., f,} € RNis (I, k)-sparse and let r> k.
Then, almost all A& R™N are admissible fofF.

Proof. If a matrix A € R™N is not admissible, there exists an optimal partitta I, for
¥ such that the bundIBs = {V4, ..., V;} is not optimal forf .

Let Dy be the set of all the subspacésn RN of dimension bigger thak, such that
V = sparifj}jeswithS c {1,...,m}.

Thus, we have that the set of all the matrice®6f which are not admissible fof is
contained in the set

U (AeR"N : dim(A(V)) < K.

VeDy
Note that the seDy is finite, since there are finitely many subset$.of. ., m}. There-
fore, the proof of the proposition is complete by showind fhaa fixed subspacé c RN,
such that dim¥) > k, it is true that

A€ RN : dim(A(V)) < k}| = 0. (2.6)

Let thenV be a subspace such that difi(= t > k. Given{vy,...,V} a basis forv,
by abuse of notation, we continue to wriefor the matrix inRN* with vectorsv; as
columns. Thus, proving2(6) is equivalent to proving that

{AeR™N : rank(AV) < k}| = 0. (2.7)

As min{r, t} > k, the sefA € R™N : rank(AV) < k} is included in
{AeR™N : det(V*A*AV) = 0}. (2.8)

Since dety/*A*AV) is a non-trivial polynomial in the x N coeficients ofA, the set2.8)
has Lebesgue measure zero. Henzg) follows.
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2.4.2 The non-ideal casp > 0

Even if a set of data is drawn from a union of subspaces, irtipeait is often corrupted

by noise. Thus, in general> 0, and our goal is to estimate the error produced when we
solve the associated problem in the lower dimensional spademap the solution back
into the original space.

Intuitively, if A € R™N is an arbitrary matrix, the st = AF will preserve the original
sparsity only if the matriXA does not change the geometry of the data in an essential way.
One can think that in thigleal case, since the data is sparse, it actually lies in an union of
low dimensional subspaces (which is a very thin set in theiamispace).

However, when the data is not O-sparse, but grgparse witho > 0, the optimal
subspaces plus the data do not lie in a thin set. This is the afstacle in order to obtain
an analogous result as in the ideal case.

Far from having the result that fatmost anymatrix A the geometry of the data will be
preserved, we have the Johnson-Lindenstrauss (JL) ledingd][ that guaranties - for a
given data set - the existence afie Lipschitz mapping which approximately preserves
the relative distances between the data points.

Several proofs of the JL lemma have been made in the past ye&a of our interest
the proof of an improved version of the JL lemma given Acfi03 that uses random
matrices which verify a concentration inequality. In whaltdws we will announce this
concentration inequality. The aim of this chapter is to iigsé random matrices to obtain
positive results for the problem of optimal union of subsgsait thep > 0 case.

Let (Q, Pr) be a probability measure space. Givgd € N, a random matriyd,, € R™N
is a matrix with entriesA,)i; = a ;(w), where{a ;} are independent and identically
distributed random variables for everyli <r and 1< j < N.

Givenx € RY, we write||x|| for the£? norm of x in RY.

Definition 2.4.4. We say that a random matri&, € R™N satisfies the concentration
inequality if for every O< ¢ < 1, there existg; = co(¢) > 0 (independent of, N) such
that for anyx € RN,

PA(1- )lIXI” < IAXP < (1+&)IX) = 1 267 (2.9)

Such matrices are easy to come by as the next propositionsspan03. We will
denote byN/(0, 2) the Normal distribution with mean 0 and variance

Proposition 2.4.5.Let A, € R™N be a random matrix whose entries are chosen in-
dependently from eitheiN'(0, ¢) or {7,7} Bernoulli. Then A satisfies 2.9) with
82 83
Cle)=5-%-
To prove the proposition from above iA¢h03, the author showed that for amye RN,

the expectation of the random varialjk, x||? is ||X||>. Then, it was proved that for any
x € RN the random variablgA,,x||? is strongly concentrated about its expected value.
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In what follows we will state and prove a simpler version aé thiL lemma included
in [Ach03. This lemma states that any set of points from a high-dinuerad Euclidean
space can be embedded into a lower dimensional space witféering great distortion.

Here and subsequently, thaion boundwill refer to the property which states that for
any finite or countable set of events, the probability thé¢ast one of the events happens
is no greater than the sum of the probabilities of the indigidevents. That is, for a
countable set of even{8,}i, it holds that

Pr(U Bi) < Z Pr(B).
i i
This property follows from the fact that a probability megesis o-sub-additive.

Lemma 2.4.6.LetF = {fi,..., f,) be a set of points iRN and let0 < ¢ < 1. If
r > 24¢2In(m), there exists a matrix & R™N such that

L-e)lfi- fiIP<IAf-AfIP<@+o)lfi- fiI> V1i<i,j<m (2.10)

Proof. Let A, € R™N be a random matrix with entries having any one of the two idistr
butions from Propositio2.4.5

Using the union bound property, we have that

P((L-&)lIf - fiIP < IA(f = F)IP < L+ &lfi - P V1<ij<m)
1 Pr([IIAL(f = IP = IIf = fI?| = &llfi — > for some 1<, j < m)
1- > PrJlALCh = {IP = IIfi = 1P| = &llf - 1)

1<i,j<m

1- ) 26

1<i,j<m

\%

\%

= 1-m(m-21)e".

> 2. If r > 24¢72In(m), it follows that
1-m(m- 1) > 0, thus 2.10 is verified with positive probability.

O

In this section we will use random matric@g satisfying €.9) to produce the lower
dimensional data sk’ = A,F, with the aim of recovering with high probability an
optimal partition forF using the optimal partition of .

Below we will state the main results &ubsection 2.4.and we will give their proofs
in Section 2.5

Note that by Lemm&.4.1, if ¥ = {fi,..., fn} € RV is (I, k 0)-sparse, thel\, 7 is
(I, k, 0)-sparse for allv € Q. The following proposition is a generalization of Lemma
2.4.1to the case wher€ is (I, k, p)-sparse withp > 0.
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Proposition 2.4.7. Assume the dat& = {f;,..., f.} € RNis (I, k, p)-sparse withp > 0.
If A, € R™N is a random matrix which satisfieg.9), then A7 is (I, k, (1 + £)p)-sparse
with probability at leastlL — 2me ',

Hence if the data is mapped with a random matrix which sasigfie concentration
inequality, then with high probability, the sparsity of ttransformed data is close to
the sparsity of the original data. Further, as the followtimgorem shows, we obtain an
estimation for the error betwee&h and the bundle generated by the optimal partition for
F'=A,F.

Note that, given a constant > 0, the scaled data¥ = {afy,..., af,} satisfies that
e(a¥, B) = o’e(F, B) for any bundleB. So, an optimal bundle foF is optimal foraF,
and vice versa. Therefore, we can assume that thefdata{f,, ..., f,} is normalized
that is, the matrixM € RN™ which has the vectorsfy, .. ., f,} as columns has unitary
Frobenius norm. Recall that the Frobenius norm of a matrik RN™ is defined by

N m
IMIP = " > M2, (2.12)
i=1 j=1
whereM,; ; are the cofficients ofM.
Theorem 2.4.8.LetF = {f;,..., fn} € RN be a normalized data set afii< ¢ < 1.

Assume that Ac R™N is a random matrix satisfyin2(9) andS, is an optimal partition
for¥ = A,F inR". If B, is a bundle generated by the partiti&) and the dataF in
RN as in Definition2.3.3 then with probability exceedinh— (2n? + 4m)e ", we have

eF,B,) < (1+&)eg(F) + ey, (2.12)

where ¢ = (I(d — k))¥2 and d= rank(F).

Finally, we can use this theorem to show that the set of nestrvhich arey-admissible
(see definition below) is large.

The following definition generalizes Definitiéh4.2to thep-sparse setting, with > 0.
Definition 2.4.9. AssumeF = {fy,..., fn) € RV is (I, k,p)-sparse and let & n < 1. We

will say that a matrixA € R™N is n-admissiblefor # if for any optimal partitionS for
F' = AF inR', the bundleBs generated b and¥ in RN, satisfies

e(7:, Bs) Sp +7.

We have the following generalization of Propositidd.3 which provides an estimate
on the size of the set gfadmissible matrices.

Corollary 2.4.10. LetF = {f,..., fn} € RN be a normalized data set ard< n < 1.
Assume that A€ R™N is a random matrix which satisfies proper8.9) for e = n (1 +
VI(d=K))™L. Then A, isp-admissible for with probability at leastl— (2n? +4m)e "),
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Proof. Using the fact thaey(¥) < &(F,{0}) = ||IF]> = 1, we conclude from Theo-
rem2.4.8that

Pr(e(F. B,) < &(F) + &(1+¢1)) 2 1 - coe7"®), (2.13)
wherec; = (I(d - K))Y2, d = rank(F), andc, = 2n? + 4m. That is,

PH(e(F. B,) < &(F) +17) = 1 - (27 + 4m)e™ 0,

O

As a consequence of the previous corollary, we have a bounkeodimension of the
lower dimensional space to obtain a bundle which producesran atn-distance of the
minimal error with high probability.

Now, using thaty(e) > j—zz for random matrices with gaussian or Bernoulli entries (see

Proposition2.4.5, from Theoren?.4.8we obtain the following corollary.

Corollary 2.4.11. Letn, 6 € (0, 1), be given. Assume that,A& R™N is a random matrix
whose entries are as in Propositi@m.5

Then for every r satisfying,

> 12(1+ \/Iz(d - Kk))? n (2n12 + 4m)
n 0

with probability at leastl — § we have that

&7, Bu) < &(F) +1.

We want to remark here that the resultsSofbsection 2.4.are valid for any probability
distribution that satisfies the concentration inequakt@) The bound on the error is still
valid for p = 0. However in that case we were able to obtain sharp resufisiiisection
2.4.1

2.5 Proofs

In this section we give the proofs f@ubsection 2.4.2

2.5.1 Background and supporting results

Before proving the results of the previous section we needraeknown theorems, lem-
mas, and propositions below.

Given M € R™™ a symmetric matrix, le;(M) > (M) > --- > An(M) be its
eigenvalues andi(M) > s(M) > --- > s(M) > 0 be its singular values.
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Recall that the Frobenius norm defined !1(1) satisfies that
m
IMIP = > M2 =) (M),
1<i,j<m i=1
whereM,; ; are the cofficients ofM.

Theorem 2.5.1.[Bha97 Theorem 111.4.1]
Let A B € R™™ be symmetric matrices. Then for any choice of inditesi; < i, <
e <ig<m,

k k
D,(A) - 4,(B) < > 4(A- B).
=1 =1

Corollary 2.5.2. Let A B € R™™ be symmetric matrices. Assume k and d are two integers
which satisfy0 < k < d < m, then

d
| 7 (i - 4(B)| < (@ - KA - Bl

j=k+1

Proof. SinceA- B is symmetric, it follows that for each4 j < mthere exists K i; <m
such that
14j(A-B)I = s;(A-B).

From this and Theorerd.5.1we have
d

D A -4B) < ZA(A B)<Zs(A B)
j=k+1 1
J ; k d-k
< s,(A—B)<(d—k)1/2 S{(A - B)
j=1 =1
< (d-KYIA-BI.

O

Remark2.5.3 Note that the bound of the previous corollary is sharp. lddegA € R™M
be the diagonal matrix with cdigcientsa; = 2 for 1 < i < d, anda; = 0 otherwise. Let
B € R™™ be the diagonal matrix with céigcientsb; = 2 for 1 < i < k, b = 1 for
k+1<i<d,andb; = 0 otherwise. Thus,

}Z(A(A) A(B))} }Z(z 1)} d—k.

j=k+1 j=k+1

Further||A — B|| = (d — k)*/?, and therefore

d
| > (im - 4(B)| = (@ - K*IA- Bl

j=k+1
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The next lemma was stated iA[06], but we will give its proof since it shows an
important property satisfied by matrices verifying the cantcation inequality.

Lemma 2.5.4.[AV0] Suppose that A€ R™N is a random matrix which satisfie2.9)
and uv e RN, then
[Ku, v = (AU, AuV)| < gllulllIvi],

with probability at leastl — 4e"%.
Proof. It suffices to show that fon, v € RN such thatju|| = ||v|| = 1 we have that

Ku, v) = (Auu, AuV)| < &,

with probability at least 1 4e™".

Applying (2.9) to the vectorsi+v andu—v we obtain with probability at least-14e™"%
that
(1-&)lu— V2 < [|Au—-W[? < @A+ &)lu— v

and
(L-&)llu+ VI < AU+ V)IZ < (1 +&)llu+ VP

Thus,

AL (U + V)IP = [|A,(U = V)|
(L= elu+ V> - (1 -g)lu—v?
Au, vy — 2&(|ull® + [IVI?)

4u, V) — 4e.

AALU, AuY)

v 1

The other inequality follows similarly.
m

The following proposition was proved iishr0§, but we include its proof for the sake
of completeness.

Proposition 2.5.5.Let A, € R™Nbe a random matrix which satisfie®.9) and let M €
RNM be a matrix. Then, we have

IM*M = M*As A, M| < M|,
with probability at leastl — 2(m? + m)e™".

Proof. SetY, j(w) = (MM - M*A; A,M);; = (fi, fj) — (A, fi, A, fj). By LemmaZ2.5.4
with probability at least + 4e" we have that

Yij(w)l < ellfilllI il (2.14)

Note that if .14 holds for all 1<i < j < m, then
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IM*M = MAAMIZ = ) Y j(w)?

1<i,j<m

< & IR = M.

1<i,j<m

Thus, by the union bound, we obtain

P{IM*M - M*A; AM]| < &]M]?)
> PAIY, () < &l filllfill Y1<i<j<m)
>1-Yigcjemde® =1~ 2(m? + m)e ",

2.5.2 New results and proof of Theoren?.4.8

Given a set of vectorg = {fy, ..., f} € RN letE(F, Cy) be as in 2.2), that is
Eo(F,Ck) = Inf{E(F,V) : Vis a subspace with dird( < k},
where&(F,V) = YT, d?(f,, V). For simplicity of notation, we will writeSy(7, Cy) as

Ek(F).

AssumeM e RNMis the matrix with columng™ = {fy, ..., f,). If d := rank(M), recall
that Theoren®.2.2(Eckart-Young) states that

d
EF) = D (MM, (2.15)

j=k+1
wherel;(M*M) > --- > 13(M*M) > 0 are the positive eigenvalues M.

Lemma 2.5.6.Assume that Mc RN™ and Ae R™N are arbitrary matrices. Let & RN*®
be a submatrix of M. If d= rank(M) is such thaD < k < d, then

IEK(S) — E(AS)| < (d - K)"?|IS*S — S"A'AS],

whereS c RN is the set formed by the columns of S.

Proof. Let dg := rank@S). We have rankkS) < ds. If ds < k, the result is trivial.
Otherwise by 2.15 and Corollary2.5.2 we obtain

ds
‘ > i(578) - 4(S'AA9)
j=k+1
(ds — K)¥?|S*S — S*A*AS].

1E(S) — E(AS)

IA
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As S is a submatrix oM, we have thatds — k)*/? < (d - k)¥/2, which proves the lemma.
O

Recall thatey(F) is the optimal value for the dat&, andey(A,F) is the optimal value
for the datar” = A,F (see R.4)). A relation between these two values is given by the
following lemma.

Lemma 2.5.7.LetF = {f;,....f,) CRVand0 < & < 1. If A, € R™N is a random
matrix which satisfies2(9), then with probability exceedinh— 2me ', we have

&(AF) < (1+ &)eo(F).

Proof. LetV ¢ RN be a subspace. Using.Q) and the union bound, with probability at
least 1- 2me " we have that

E(ALT,ALY)

DURATLAN) < DT IA - AP R)IP
i=1 i=1

IA

(1+2) D Ifi = Puil? = (1+ &)E(F, V),

wherePy, is the orthogonal projection onio.

Assume thal = {S,, ..., S|} is an optimal partition fof¥ and{Vy, ..., V,}is an optimal
bundle forF. Let#; = {fj}jcs,. From what has been proved above and the union bound,
with probability exceeding + Z!=1 2me " = 1 - 2me ', it holds

| |
(AF) < D EATLAN) < (1+8) ) EFi V) = (L+ s)eo(F).
i=1 i=1

Proof of Propositior2.4.7. This is a direct consequence of Lem&&.7. O

Proof of Theoren2.4.8 Let S, = (S},...,S)} and 7} = {fj}jes,. SinceB, =
{Vi,...,V!}is generated bys, and 7, it follows that&E(F., V) = E(F)). And as
S, is an optimal partition foA, 7 in R", we have thal|_, (A7, = eo(A.F).

Let m, = #(S!) andM! e RN™. be the matrices which havéj},.s as columns.
Using Lemma2.5.6 Lemma2.5.7, and Propositior2.5.5 with high probability it holds
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that

e(¢’ B(U)

IA

| |
D EFLVY) = ) ELTL)
i=1 i=1

IA

| |
DL EATFL) + (d=K)M2 Y IME M, - MEALA, M|
i=1 i=1

IA

|
eo(AF) + (1(d — K)Y2( IMEsME, - Mis AL AMLIP)
i=1

(1+&)ey(F) + (I(d - k))172|||v|*|v| — M*A" A M|
(1 + &)ey(F) + &(l(d — K)V2,

IA A

whereM € RN*M is the unitary Frobenius norm matrix which has the vect®ys . ., fi}
as columns.

The right side of 2.12 follows from Propositior2.5.5 Lemma2.5.7, and the fact that

Pr(e(T, Bu)) < (1 + 8)60(77) + 8(| (d _ k))l/z)
Pl'(||M*M — M*A" A M| < e andey(A,F) < (1 + 8)60(7:))
1- (2(m2 +m)e"® + 2me’) =1 - (2m2 + 4m)e".

\%

%
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Sampling in a union of frame generated
subspaces

3.1 Introduction

In the previous chapter we have studied the problem of findingion of subspaces that
best explains a data set. Our goal in this chapter is to stuelysampling process for
signals which lie in this kind of models.

We will begin by describing the problem of sampling in a unadrsubspaces. Assume
‘H is a separable Hilbert space aj\d },.r are closed subspacesh, with I" an arbitrary
index set. LetX be the union of subspaces defined as

X = UVy.
yell
Suppose now that a signals extracted fronX and we take some measurements of that
signal. These measurements can be thought of as the resiit application of a series
of functionals{y;}ic; to our signalx. The problem is then to reconstruct the signal using
only the measurements;(X)}ic; and some description of the subspace&’in

Assume the series of functionals define an oper#ttersampling operator
ALH - (1), AX:= {gi(¥hier.

From the Riesz’s representation theoredof9(, there exists a unique set of vectors
Y := {¢i}iar, SUch that
AX =X ¥ ier-

The sampling problem consists of reconstructing a signat X using the data
{{X, ¥ilie. The first thing required is that the signals are uniqueleeined by the
data. That is, the sampling operatdrshould be one-to-one aki. Another important
property that is usually required for a sampling operasostability. That is, the existence
of two constants & a < 8 < +oo such that

2 2 2
allXe = Xally; < 1A% = AXellzgy < BlIXa — Xally, V¥ X1, X2 € XL



36 Sampling in a union of frame generated subspaces

This is crucial to bound the error of reconstruction in nagyations.

Under some hypothesis on the structure of the subspacesyd.ba [LD08] found
necessary and flicient conditions oW in order for the sampling operatérto be one-
to-one and stable when restricted to the union of the sulespacThese conditions were
obtained in two settings. In the euclidean space and?{Y). In this latter case the
subspaces considered were finitely generated shift-envespaces.

There are two technical aspects in the approach of Lu and &taektrict the applica-
bility of their results in the shift-invariant space casdeTirst one is due to the fact that
the conditions are obtained in terms of Riesz bases of aassbf the SISs involved, and
it is well known that not every SIS has a Riesz basis of traeslésee Exampl.5.17).
The second one is that the approach is based upon the sumrgftereeof the SISs in
the union. The conditions on the sampling operator are tiesireed using fiberization
technigues on that sum. This requires that the sum of eaclico$tibspaces is a closed
subspace, which is not true in general.

In this chapter we obtain the conditions for the samplingrafme to be one-to-one
and stable in terms dfamesof translates of the SISs instead of orthonormal basis. This
extends the previous results to arbitrary SISs and in pdaticemoves the restrictions
mentioned above.

We will obtain necessary and féicient conditions for the stability of the sampling
operatorA in a union of arbitrary SISs. We will show that, without theasption of the
closedness of the sum of every two of the SISs in the union ameoaly obtain sfiicient
conditions for the injectivity ofA.

Onthe other side, i€hapter 4using known results from the theory of SISs, we will ob-
tain necessary and8icient conditions for the closedness of the sum of two shifafiant
spaces. Using this, we will determine families of subspaceg/hich the conditions for
injectivity are necessary andf&igient.

This chapter is organized in the following wagection 3.Zontains some preliminary
results that will be used throughout. 8ection 3.3we set the problem of sampling in
a union of subspaces in the general context of an abstraseiispace. We also give
injectivity and stability conditions for the sampling opéor, within this general setting.
The case of finite-dimensional subspaces is studi&kution 3.4 Finally in Section 3.5
we analyze the problem for the Hilbert spdc€RY) and sampling in a union of finitely
generated shift-invariant spaces.

3.2 Preliminaries

Let us define here an operator which will be useful to devetgpsampling theory in a
union of subspaces.

Definition 3.2.1. Assumel, J are countable index sets. Suppose= {X;}jc; andY :=
{yi}icl are Bessel sequences in a separable Hilbert shladest By andBy be the analysis
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operators (see Definitioh 2.9 associated tX andY respectively. Theross-correlation
operator is defined by

Gxy : 3(J) — (1), Gxy = ByB;. (3.1)
Identifying Gy y with its matrix representation, we write

(Gxv)ij = {X,Yy VYjedViel.

In this chapter we will need the following corollary whichasonsequence of Proposi-
tion 1.2.13 Its proof is straightforward using that the frame operatios Parseval frame
is the identity operator.

Corollary 3.2.2. If X = {Xj}je; is a Parseval frame for a closed subspace \Hofand B¢
is the analysis operator associated to X, then the orthogprogection ofH onto V is

Py =BiBx:H - H, Pvh=> (hx)x.

jed

3.3 The sampling operator

Let H be a separable Hilbert space ahd H an arbitrary set. GiveW = {yi}ic; a Bessel
sequence irH, the sampling problem consists of reconstructing a si§reaV using the
data{(f, ¥i)}ic;. We first require that the signals are uniquely determinethbylata. That
is, if we define thesampling operatoby

At H - (1),  Af = (¥, (3.2)

we requireA to be one-to-one oW. The set¥ will be called theSampling set

Note that the sampling operataris the analysis operator (see Definitibr2.9 for the
sequencé.

Another important property that is usually required for mplng operator, is stability.
This is crucial to bound the error of reconstruction in nagyations.

The stable sampling condition was first proposedlanf 7 for the case whew is the
Paley-Wiener space. It was then generalized_In(8] to the case whek is a union of
subspaces.

Definition 3.3.1. A sampling operatoA is calledstableonV if there exist two constants
0 < a < B < +oo0 such that

2 2 2
alix = Xell2, < 1A% = Axels) < Blixe = %allZ, VX% € V.

WhenV is a closed subspace, the injectivity and the stability caaxpressed in terms
of conditions orP,¥, whereP,, is the orthogonal projection ¢f ontoV.
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Proposition 3.3.2.Let H be a Hilbert space, \C H a closed subspace an¥l = {yi}ic
a Bessel sequencef. If A is the sampling operator associated¥pthen we have

i) The operator A ione-to-oneon V if and only if{Pyiyilic) is complete in 'V, that is
V= Spaﬁpvwi}iel-

i) The operator A isstableon V with constanta andg if and only if {Pyyilic is a
frame for V with constants andg.

Proof. The proof ofi) is straightforward using that if € V then

(f, Pui)y = (Pv f, i) = (F, ).
Forii) note that for allf € V
AfIZ, = D KEunP = > KPvEuP = > KF, Puyn)P.
iel iel iel
O

Remark3.3.3 Given a closed subspag&éin a Hilbert space/, a sequence of vectors
{Witiee € H is called anouter frame for V if {Pyyi}ic is a frame forV. The notion
of outer frame was introduced IMCMO04]. See also FWO01] and [LO04] for related
definitions. Using this terminology, part ii) of Propositi8.3.2says that the sampling
operatorA is stable if and only ify;} is an outer frame fov.

In what follows we will extend one-to-one and stability cdrahs for the operatoA,
to the case of a union of subspaces instead of a single sudhspac
If {V,},er are closed subspaces®f, with I an arbitrary index set. Let

X = UVy.

yell
We want to study conditions 0 so that the sampling operatérdefined by 8.2) is
one-to-one and stable ot
This study continues the one initiated by Lu and R®Q8] in which they translated
the conditions orX into conditions on the subspaces defined by

Vyo =V, +Vy={X+Yy: XeV,,yeVy. (3.3)

Working with the subspaceas, , instead ofX, allows to exploit lineal properties &.

They proved the following proposition, we will include hate proof for the sake of
completeness.

Proposition 3.3.4.[LD08] With the above notation we have,

i) The operator A is one-to-one oXiif and only if A is one-to-one on every, Mwith
v,0 €l
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i) The operator A is stable foX with stability boundsr and g, if and only if A is
stable for \ , with stability boundsy andg for all y,6 €T, i.e.

X7, < IAXIZ ) < BIXIZ, ¥ X€VypVy,0€T.

Proof. We first prove part i). Assume thatis one-to-one oX. Giveny,6 €T, V, is a
subspace. Thus, for proving the injectivitydbnV,,, it suffices to show that fox e V, 4,
Ax = 0 impliesx = 0.

Sincex € V, 4, there existx; € V, andx, € V, such thatx = x; + X;. HenceAx;, =
A(—Xp) for xq, Xo € X. Thereforex; = —Xp, SOX = X1 + X = 0.

Suppose now thak is one-to-one on every, , with y, 0 € I'. Let X3, X, € X such that
Axa = AX%. There existy,0 € I" such thatx; € V, andx; € V,. So,A(X — %) = 0 and
X1 — X2 € V, 4. Hencex; — X; = 0, which implies thak; = x,.

Using the same arguments from above the proof of ii) folloaslg.

O

The sum of two closed infinite-dimensional subspaces of bddilspace is not neces-
sarily closed (see Exampte4.9. Furthermore, the injectivity of an operator on a sub-
space does not imply the injectivity on its closure. So, wertat apply Propositio3.3.2
to the subspaceg, ,. However, we can obtain a fiicient condition for the injectivity.

Proposition 3.3.5. If {Pv%elﬂi}ig is complete On_/%g for everyy, 0 € I, then A is one-to-
one onX.

When the subspaces of the famiW, 4}, cr are all closed, the condition in Proposition
3.3.5 will be also necessary for the injectivity &fon X. So, a natural question will be,
when the sum of two closed subspaces of a Hilbert space isctltsChapter 4ve study
this problem in several situations.

In the case of the stability, Propositi@m3.2can be applied since, by the boundedness
of A, we have the following.

Proposition 3.3.6.Let V be a subspace @f, the operator A is stable for V with constants
a andg if and only if it is stable folV with constants andp.

As a consequence of this, using Propositi8r&2and part ii) of Propositio.3.4 we
have

Proposition 3.3.7. A is stable forX with constantsr andg if and only if{vawi}iel is a
frame forv%g for everyy, 6 € T with the same constanasand,3.

3.4 Union of finite-dimensional subspaces

In this section we will first obtain conditions on the sequefyg}ic, for the sampling op-
erator to be one-to-one on a union of finite-dimensional gabss. We will then analyze
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the stability requirements. We are interested in exprgsiase conditions in terms of
the generators of the sum of every two subspaces of the union.

3.4.1 The one-to-one condition for the sampling operator

LetH be a Hilbert spacel = {¢i}ic; a Bessel sequencet, andA the sampling operator
associated t& as in 3.2).

Let V be a finite-dimensional subspace®fand® = {Qﬁj}rjn:l a finite frame forV.
(Recall that a finite set of vectors from a finite-dimensianabspace is a frame for that
subspace if and only if it spans it, see Remark.12)

The cross-correlation operator associate®Vtand ® (see 8.1)) in this case can be
written as,
Gq)’\{/ . Cm - fz(l), Gq)’\{/ = ABZ),
whereB;, : C" — H is the synthesis operator associatedto
The next theorem gives necessary anflisgent conditions on the cross-correlation
operator for the sampling operator to be one-to-on¥ on

Theorem 3.4.1.Let ¥ = {yi}i be a Bessel sequence f&f, V a finite-dimensional
subspace off and® = {;}7.; a frame for VThen the following are equivalent:

i) ¥ provides a one-to-one sampling operator an V
i) kerGow) = ker(By).
i) dim(rangeGe.y)) = dim(V).
Proof. The proof is straightforward using that the range of the afpeBj, is V. O

Remark3.4.2 Note that the conditions in Theore®m.1do not depend on the particular
chosen frame. That is, if there exists a framéor V, such that dim(rang€p ) =
dim(V), then dim(rangegg ,)) = dim(V), for any frame® for V.

Now we will apply the previous theorem for the case of a unibsutspaces.

Let {V,},er be a collection of finite-dimensional subspacesHofwith I' an arbitrary
index set. Define,
X = UVy.

yell
As before, seV,, ==V, + V,.
We obtain the following result which extends the resultliD(8] to the case that the
subspaces in the union are described by frames.

Theorem 3.4.3.Let¥ = {yi}ic) be a Bessel sequence fbf and for everyy,0 € T, let
®, 4 be a frame for Y,, the following are equivalent:
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1) ¥ provides a one-to-one sampling operator&n

i) dim(rangeGo,,v)) = dim(V,,) for all y,6 € T".

Note that ifl is a finite set, the problem of testing the injectivity Afon X reduces
to check that the rank of the cross-correlation matriceegtel to the dimension of the
subspacey, ;.

In this case a lower bound for the cardinality of the sampéagcan be established.
This is stated in the following corollary froniP08]. We include a proof of the result
based on Theorei®.4.3

Corollary 3.4.4. If the operator A is one-to-one oXiand | is finite, then

# > sup(dim(V,.,)).

y,0el’

Proof. Sincel is finite, we have that rang8, ,v) € C*. Thus, using part ii) of Theorem
3.4.3 we obtain that

dim(V, ) = dim(rangeGo,,v)) < #l, Vy,0€T.

3.4.2 The stability condition for the sampling operator

We are now interested in studying conditions for stabilityh@ sampling operator. These
conditions will be set in terms of the cross-correlationrapar. We will consider Parseval
frames to obtain simpler conditions.

Given Hilbert space% and £ and a bounded linear operafor: KX — L, we denote
by o(T) the set
o(T) = o(T*T).

Theorem 3.4.5.Let ¥ = {yi}ic be a Bessel sequence f&f, V a finite-dimensional
subspace ot and® a Parseval frame for V.

The sequenc® provides a stable sampling operator for V with constantandg if
and only if

i) dim(rangeGo y)) = dim(V) and
i) 0%(Gow) C {0} U [, A].

Proof. LetW : H — £?(1), be the analysis operator associated{&. For x € H, the
equation,
Wx={{X, Pvitier = ({PvX, ¥idtier = APyX,

shows thatV = AP.
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Since® is a Parseval frame fdr, by Propositior8.2.2 Py = BB, then,

Gpv\y = WW = APV PV/A\>k = APVA* = AB?D BQ)A* = G‘I’,‘?GEJ,T' (34)

Let us assume first thdtis stable forV. Item i) follows from Theoren8.4.1 Now we
prove ii).

SinceV is closed V is finite dimensional) then Propositiéh3.2gives thatPyV¥ :=
{Pviilicl is a frame forV with constantsr andg. Using Theoreni.3.4 we have,

o (Gpyw) € {0} U [, B].

So, by 38.4),
O'(Gpvly) = O'(G(b’\yG:i)’\y) c {O} U [Q,ﬁ].

Finally, since (seeud91)

it follows that
0?*(Gow) € {0} U [a,Al.

Suppose now that i) and ii) hold. Recall that A is stable\fawith stability boundsy, 8
if and only if PyY := {Pyyilic IS a frame forV with frame bounds, 3.

By Theorem3.4.], condition i) implies that the sampling operator is onest@ onV.
Therefore, using Propositidh3.2 PyV¥ = {Pyyilic) IS complete inv.

ThatPyV¥ = {Pyyilic is a frame sequence is straightforward by B.4) and Theorem
1.34 O

Remark3.4.6 As in the case of injectivity, we note that the condition @aftslity does not
depend on the chosen Parseval frame. That means, if cangitmd ii) in the previous
theorem hold for a Parseval frarbefor V, then they hold for any Parseval frardor V.

Theorem3.4.5applied to the union of subspaces gives:

Theorem 3.4.7.Let¥ = {yi}ic) be a set of sampling vectors and for every € T, let
®, » be a Parseval frame for ).

The sequenc® provides a stable sampling operator fa&rwith constantsy andg if
and only if

i) dim(rangeGe,,v)) = dim(V, ) for all y,6 € I"and
i) 0%Go,,w) C{0}U[a,p] forally,0eT.

For examples and existence of sequengesghich verify the conditions of injectivity
or stability in a union of finite-dimensional subspaces, eferthe reader tagD09] and
[LDO3].
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3.5 Sampling in a union of finitely generated shift-
invariant spaces

In this section we will consider the case of the Hilbert sp&te= L2(RY) and finitely
generated shift-invariant spaces (FSISs). That is, westuidly sampling in a union of
FSISs.

3.5.1 Sampling from a union of FSISs

Our aim is to study the sampling problem for the case in whiehsignal belongs to the
set,

x:=Jv, (3.5)

yell

whereV, are FSISs of 2(RY).

In this setting, since our subspaces are shift-invariarg,natural and also convenient
that the sampling set will be the set of shifts from a fixedextibn of functions ir.2(RY),
that is, the sampling operator will be given by a sequencatefier translates of certain
functions.

GivenV¥ := {yi}ie such thatE(¥P) is a Bessel sequence id(RY), we define the sam-
pling operator associated E('V) as
A LPRY) — Az x 1), Af = (f, tahidhic kez- (3.6)

As we showed irSection 3.3he conditions on the sampling operator to be one-to-one
and stable in a union of subspaces can be established in @ééomg-to-one and stability
conditions on the sum of every two of the subspaces from tienun

However the condition that we have for the sampling operettdde one-to-one on a
subspace, requires that the subspace is closed (Propdsizia).

Since the sum of two FSISs is not necessarily a closed subsibecconditions should
be imposed on the closure of the sum.

Conditions that guarantee that the sum of two FSISs is clasedescribed i€hapter
4,

In what follows we will consider, for eacp, 6 € T, the subspaces,
V,:=V, +V, (3.7)

The following proposition states that the closure of the sfitwo SISs is a SIS generated
by the union of the generators of the two spaces. Its prodfasgghtforward.

Proposition 3.5.1.Let® and®’ be sets in E(RY), then

V(@) + V(@) = V(O U D).
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In particular, if V and Vare FSISs, theW + V’ is an FSIS and

len(V + V') < len(V) + len(V’).

Now, as a consequence of Propositibb.1, for eachy,6 € T, VM is an FSIS. Then,
by Theoreml.4.4 we can choose, for eagh6 € I', afinite set

(Dy,& = {SO}/’Q } :n:yf

of L2(RY) functions such that,

V‘y,9 = V((I)')/,O)a

andE(®, ) forms a Parseval frame f&%g.

3.5.2 The one-to-one condition

We now study the conditions that the sampling set must gatisérder for the operator
A defined by 8.6) to be one-to-one oAX.

Given a shift-invariant spacé, the orthogonal projection on¥, denoted byP,,, com-
mutes with integer translates (see Propositich3. Then, part i) of Propositio.3.2
can be rewritten as,

Proposition 3.5.2.Given a shift-invariant space W, = {¢i}ic; such that E¥) is a Bessel
sequence in {(RY) and A the sampling operator associated tOHE Then the following
are equivalent.

I) The sampling operator A is one-to-one on V

i) E(PvY) = {tiPv¥ilici keze IS cOmplete in V, that is = SpanE(Py V).

SinceE(¥) is a Bessel sequence i3(RY), by Theoreml.5.8we have thatry(w)}ic
is a Bessel sequencef(Z9) for a.ew € [0, 1)?, so we can define (up to a set of measure
zero), forw € [0, 1)4, the sampling operator related to the fibers:

Aw) : 32 — (1),

with
A(w)(c) = (¢, i (w))ial- (3.8)

That is, for a fixedw € [0, 1)?, we consider the problem of sampling from a union of
subspaces in afiierent setting. The Hilbert spaceff§zY), the sequences of the sampling
set are{Tyi(w)}ier, and the subspaces in the union &jgw), y € T.

Since the subspacg‘s,,e are FSISs, the fiber spacé;gg(w) are finite-dimensional. So,
the results ofSection 3.4can be applied, and conditions on the fibers can be obtained in
order for the operatafi(w) to be one-to-one.
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We are now going to show that given a finitely generated siwntiriant spacé/, the
operatorA is one-to-one otV if and only if for almost everyw € [0, 1), the operator
A(w) is one-to-one on the corresponding fiber spakds) associated t&. Once this is
accomplished, we can apply the known conditions for theatperA(w).

Given{tyyp j}’j“zlkezd a Bessel sequence ig(RY), we have the synthesis operator related

to the fibers, that is

B (w) : C" — 229, By(w)(Crs. .., Cn) = Z Citpj(w). (3.9)
=1
Note thatB(w) is the synthesis operator associated to ther®t), that isB; (w) =
B oo
T0(w)

And we will have the cross-correlation operator associtigte fibers
Gow(w) :C" - (1), Gow(w) = A(w)By(w),

(Gox(W))ij = (tej(w). Wi(w)) Y1<j<miel (3.10)

Again we should remark thgt, v (w) is the cross-correlation operator associatedli(v)
and‘r‘P(w), that isgq)’q/(a)) = Gﬂb(w),‘r‘{/(w)-

Theorem 3.5.3.Let ¥ = {¢}ic; be such that BP) is a Bessel sequence id(RY), V an
FSIS generated by a finite s&f and A the sampling operator associated tGM, then
the following are equivalent:

1) ¥ provides a one-to-one sampling operator for V
i) kerGow(w)) = ker(B;,(w)) for a.e.w € [0, 1)°.
iii) dim(rangeGo y(w))) = dimy(w) for a.e.w € [0, 1)°.
For the proof of Theorer3.5.3we need the following.

Lemma 3.5.4.Let V be an FSISV = {¥i}i such that E¥) is a Bessel sequence in
L%(RY), and A the sampling operator associated tOME Then A is one-to-one on V if
and only ifA(w) is one-to-one onJw) for a.e.w € [0, 1)°.

Proof. Since V is a SIS, by Propositidh5.2 A is one-to-one oW if and only if
V = SparE(Py ). (3.11)
By Propositionl.5.3 equation 8.11) is equivalent to
Jv(w) = spair(Pyyi)(w) :i €1} fora.e.w € [0, 1) (3.12)

So, we have proved thétis one-to-one oV if and only if (3.12) holds.
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On the other side, givew € [0,1)?, and using Propositio.3.2 for the sampling
operatorA(w) and the spacé = (%(Z%), we have thatA(w) is one-to-one oy (w) if
and only if

Jv(w) = SpanPy, @) (t¥i(w)) -1 € 1}.

Then, using Propositioh.5.4 we conclude that3;12 holds if and only ifA(w) is one-
to-one ondy(w), for a.e.w € [0, 1)¢, which completes the proof of the lemma.

Proof of Theoren8.5.3 Since® is a set of generators fof, we have that for a.ew €
[0,1), 7®(w) is a set of generators fd(w).

Now, for a.e. w € [0,1)? we can apply Theorer.4.1 for the sampling operator
A(w) and the finite-dimentional subspa&gw) to obtain the equivalence of the following
propositions:

a) A(w) is one-to-one oy (w).

b) kerGow(w)) = kerBy(w)).

¢) dim(rangegGs v(w))) = dim(Jv(w)) = dimy(w).

From here the proof follows using Lemmn3eb.4

Note that with the previous theorem we have conditiong¥ftw be one-to-one oW, 4,
and since

V%g = Vy + V9 - vy’g,

we obtain the following corollary.

Corollary 3.5.5. Let E(¥) be a Bessel sequence iﬁ(Rd_) for some set of function¥.
For everyy,0 €T, let®, 4, be a finite set of generators ff, 4. If for eachy,6 €T,

dim(rangeGo, ,w(w))) = dimy_(w) fora.e.w € [0,1)",
then A is one-to-one oN.

Remark3.5.6 It is important to note that the injectivity &k onV, , does not imply the
injectivity on V%g, thus, we have only obtainedffigient conditions forA to be one-to-
one. This is not a problem in general, because as we will sgeinext section, stability
implies injectivity in the case of the sampling operator atability is a common and
needed assumption in most sampling applications.
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3.5.3 The stability condition

As a consequence of Propositi8r8.6 we will obtain necessary andféigient conditions
for the stability ofA.

As in the previous subsection, using that the orthogongption onto a SIS commutes
with integer translates, we have the following version afg@rsition3.3.2

Proposition 3.5.7.Given V a SIS of {(RY), ¥ = {i}ia such that B¥) is a Bessel se-
quence in B(RY) and A the sampling operator associated tOME Then the following
are equivalent:

i) The sampling operator A is stable for V with constamisndp.

i) E(PyWY) is a frame for V with constants andg.

Now we are able to state the stability theorem. We will useoierator related to the
fibers, defined by3.9), (3.9) and @3.10.

Theorem 3.5.8.Let ¥ = {¢i}ic) be such that B¥) is a Bessel sequence fof(RY) and
A the sampling operator associated t¢45. Let V be an FSIS, an® a finite set of
functions such that @) forms a Parseval frame for.V

Then EW¥) provides a stable sampling operator for V if and only if

) dim(rangeGo w(w))) = dimy(w) for a.e.w € [0,1)? and
i) There exist constan@ < a < 8 < oo such that

cA(Gow(w)) C {0} U[a,B] fora.e.w e [0, 1)

Proof. @ is a Parseval frame fof, so, by Theorem.5.9 we have that for a.ev € [0, 1)¢,
t®(w) is a Parseval frame fak (w). Sincely(w) is a finite-dimensional space 61(ZY),
Theorem3.4.5holds forA(w).

So, we only have to prove that A is stable fémwith constantsr andg if and only if
A(w) is stable fordy (w) with constantsr andg.

By Proposition3.5.7, the stability ofA in V is equivalent td&e(P,¥) being a frame for
V with constantsr ands. By Theoreml.5.9 this is equivalent to

{T(Pvyi)(w)}ier

being a frame fody (w) with constantsr andg for a.e.w € [0, 1)°.
On the other hand, given € [0, 1)¢, the operatotA(w) is stable fordy(w), if and only
if
{P3 () (@¥i(w)) il
is a frame fordy (w) with constantsr andg.
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The proof can be finished now using first Propositioh.4 i.e.
T(Pwi)(w) = Py ()(t¥i(w)) fora.e.w €0, 1),
and then Theorer@.4.5 O

Now we apply Theorer3.5.8and Propositior3.3.6to obtain the following.

Theorem 3.5.9.Let¥ = {y}i; such that ECI_’) is a Bessel sequence fot(RY), and for
everyy,f e I' letd, , be a Parseval frame fov, ,. Then E'¥) provides a stable sampling
operator forX if and only if

i) dim(rangeGo . w(w))) = dimv%e(w) fora.e.w €[0,1), Vy,0 €T and
i) There exist constan@ < @ < 8 < oo such that

O'Z(Qq)w\y(w)) c{0}U[a,B] fora.e.we[0,1) Vy,0€T.

Finally, as in L DO08], we obtain a lower bound for the amount of samples. In ceitra
to the previous section, we only find bounds for stable opesat\e can not say anything
about one-to-one operators since we only obtainéitsent conditions for the injectivity.

Proposition 3.5.10.If the operator A is stable fak and | is finite, then

# > sup(len(V, ).

v,0el’

Proof. Sincel is finite, it holds that rang€ly,,w(w))) € C* for a.e.w € [0,1)". Hence,
by Theoren.5.9 we have that

dimv%g(w) = dim(rangeGo, ,v(w))) < # fora.e.w € [0, 19, Vy,0 €.
This shows that, given, 0 € T,
ess-supdimy (w) : w €[0,1)) <#.

The proof of the proposition follows using Theordn®.7.

|

We would like to note that based in our results, it is possiblstate conditions for
the injectivity and stability for the sampling operator iruaion of SISs which are not
necessarily finitely-generated. For this, condition ififdeorem3.5.3should be replaced
by condition ii).



4

Closedness of the sum of two shift-invariant
spaces

4.1 Introduction

In the previous chapter we obtained necessary afittsunt conditions for the stability
of the sampling operatoh in a union of arbitrary FSISs. We showed that, without the
assumption of the closedness of the sum of every two of th8g$-Blthe union, we could
only obtain sificient conditions for the injectivity oA. An interesting problem that arises
as a consequence of this restriction is under which comdittbe sum of two SISs is a
closed subspace.

For two closed subspacésandV of an arbitrary Hilbert space{, the conditions on
the closedness of the sum of these two spaces is given in tdrthe angle between the
subspaces. In what follows we will define the notion of Dixmaad Friedrichs angle
between subspaces. We refer the readeDtp] for details and proofs.

Throughout this chapter, we will use the symlﬁlpjl|V to denote the restriction of the
orthogonal projectiof®y to the subspac¥.
The orthogonal complement &NV in U will be denoted by

UeV:=UnUnV)".
Definition 4.1.1. Let U andV be closed subspacesf.

a) Theminimal anglebetweerlJ andV (or Dixmier anglg is the angle in [07] whose
cosine is

Co[U, V] 1= supgiu, V)| : ue U,ve Vul <1,|v| < 1}.

b) TheanglebetweerlJ andV (or Friedrichs anglg is the angle in [07] whose cosine
5
c[U,V] :=supglu,v)| : ue UseV,ve Ve U and|jul| < 1,|v|| < 1}.
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We have the following results concerning both notions oflemgetween subspaces.

Proposition 4.1.2.Let U and V be closed subspaces6f

i) Co[U. V] = [IPy llop-
i) U,V] =c[UeV,VeU].

As we have stated before, the Friedrichs angle is closedya@lwith the closedness of
the sum of two closed subspaces.

Proposition 4.1.3.Let U and V be closed subspacestéf Then U+ V is closed if and
onlyifc[U,V] < 1.

In [KKLO6] Kim et al. presented a formula for the Dixmier angle between closed
subspaced),V of a Hilbert spaceH. This formula is given in terms of the operator
norm of an operator formed by the composition of the Gramaantsthe cross-correlation
operator of two sequenc&sandY which are frames fo andV respectively. They then
use this formula to obtain necessary andfisient conditions for the closedness of the
sum of two SISs ii.2(RY).

Following the ideas froml{KLOG6], in this chapter we will first give a formula for the
calculation of the Friedrichs angle between two closed patsd), V of a Hilbert space
H. Then, we will use it to obtain necessary andhisient conditions for the closedness
of the sum of two SISs in?(RY). The advantage of using the Friedrichs angle between
subspaces instead of the Dixmier angle is that the conditmrthe closedness of the sum
of two subspaces are computationally simpler than the aoes [KKLO6].

Using these results, we will show that it is possible to datee families of subspaces
on which the conditions for injectivity of the sampling optar in the union of subspaces
are necessary andfsigient.

This chapter is organized as follows. $ection 4.2ve state some preliminary results
that will be used throughout. IBection 4.3ve use the notion of Friedrichs angle between
subspaces to obtain necessary antigant conditions for the closedness of the sum of
two closed subspaces of a Hilbert space. We also obtain aifarfor the calculation of
the Friedrichs angle between two closed subspaces. Fimafgction 4.4ve provide an
expression for the Friedrichs angle between two SISs. Usiisgwe give necessary and
suficient conditions for the sum of two SISs to be closed.

4.2 Preliminary results

In this section we will introduce the pseudo-inverse of aarapor (seeChr03 for more
details).

Definition 4.2.1. Let H and be separable Hilbert spaces, ahd H — K a bounded
linear operator with closed range.



4.2 Preliminary results 51

We denote byl *, thepseudo-inversef T (or Moore-Penrose inverse) which is defined
as follows. LetR(T) be the closed range af andT : ker(T)* — R(T) the restriction
of T to ker(T)*. SinceT is injective on ker{)*, it follows thatT is bijective and has a
bounded inversg 1 : R(T) — ker(T)".

The pseudo-inverse oF is defined as the unique extensidh of T-! to a bounded
operator oK with the property ke ") = R(T)*.

The pseudo-inverse satisfies the following properties.

Proposition 4.2.2.LetH and‘X be separable Hilbert spaces, and 7H — K a bounded
linear operator with closed range. If'Tis the pseudo-inverse of T, then

) TT" = PranggT)-
i)y (TH = (T)".
i)y (T*T)" = T7(T*)".
iv) If T is a positive semi-definite operator, thehi§ also positive semi-definite.

We will need in this chapter the notion of shift-preserviqgators and range operator
(see Bow0( for more details).

Definition 4.2.3. Let V be a SIS. A bounded linear operafbr: V — L2(RY) is shift-
preservingf Tt = t, T for all k € Z9, wheret, is the translation b.

Definition 4.2.4. AssumeV is a SIS ofL.2(RY) with range function),. A range operator
on Jy is a mapping

Q:[0,1)? - {bounded operators defined on closed subspac&gzs)},

so that the domain dP(w) equalsly(w) for a.e.w € [0, 1)°.

Q is measurable itw — Q(w)P;, () is weakly operator measurable, i.ew +—
(Q(w)P3, )@, by is a measurable scalar function for each € ¢2(Z).

The following theorem states that there is a correspondbateeen shift-preserving
operators and range operators.

Theorem 4.2.5.Assume V is a SIS of(RY) and J, is its range function. For every shift
preserving operator T: V — L2(RY) there exists a measurable range operator Q gn J
such that

(T H)(w) = Qw)(tf(w)) fora.e.we[0,1) feV.

The correspondence between T and Q is one-to-one.

Moreover, we have

I Tllop = €5S-SUflQ(w)llop : w € [0, 1)%).
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4.3 A formula for the Friedrichs angle

Recall that from Proposition.1.3we have that the sum of two closed subspades of
a Hilbert spaceH is closed if and only if the Friedrichs angle satisfies tjat V] < 1.

In this section we would like to obtain an easier way of calting the Friedrichs angle
between subspaces. This is achieved in the following timeevkich expresses this angle
in terms of the operator norm of certain operators assatiatéames.

The proof of the theorem was given iK{L06, Theorem 2.1], but we will include it
here for the sake of completeness.

Theorem 4.3.1.Let U and V be closed subspaces?df Suppose that X and’>are
countable subsets @i which are frames for WbV and Ve U respectively. Then,

1 1
c[U, V] = I[(Gf,)2Gxx(G)lops
where G, and Gy are the Gramian operators and,G is the cross-correlation operator.

Proof. Using part ii) of Propositiom.1.2it suffices to show that folJ andV closed
subspaces of{ it holds that

ColU, V] = G) 2Gxx (GL) Zllop,

whereX andX’ are countable subsets ®f which are frames fo andV respectively.

From Propositiori.2.10Gx andGy have closed ranges, thus, their pseudo-inverses are
well-defined.

LetP := PV|u' From Propositior.2.2we have that
P =PyPy = PPy = (B} B}) BxB; = Bl Bx BB} = Bl GxxBy.

Then, using part i) of Propositioh1.2and Propositiod.2.2 we obtain

U VI = o[V, U2 = [IPI2, = [IPP"llop = IIB}, Gxx By BiGi xBiillop
= IBf,Gxx (BxBx) G x Byt llop = 1B, Gx x'Gy G x By llop
= 1B}, Gxx (G A(G))"*Gix B llop = 1B, Gxx (GI) 2113,
= |I(G})Y2G} By B, Gxx (GL)2llop

= (GG %G} Cxx (G})?llop

= [I(G})*Gxx (G})/*(G})*Gxx (G})llop

= [IG})?Gxx (G) 2112

where we have used thi T*||op = [IT Tllop = ||T||§p for a bounded operatdr.
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4.4 Closedness of the sum of two shift-invariant sub-
spaces

As it was stated in Propositich 1.3 the closedness of the sum of two subspaces depends
on the Friedrichs angle between them. In this section, weigeoan expression for
the Friedrichs angle between two SISs in terms of the Grasnidirihe generators. In
[KKLO6] Kim et al found a similar expression for the Dixmier anglévaeen two SISs.

The main theorem of this part gives necessary afidicgent conditions for the sum of
two SISs to be closed. We first state the theorem and then wh tiqip result to obtain
a more general version of CorollaBy5.5from Chapter 3 The proof of the theorem will
be given at the end of the section.

Theorem 4.4.1.Let U and V be SISs of(RY). Suppose thab, @’ are sets of functions
in L2(RY) such that for a.ew € [0, 1), 7®(w) and 7®’(w) are frames for Jov(w) and
Jveu (w) respectively. Then, W V is closed if and only if

c[U, V] = ess-supll(Go ()") 2600 (0)(Go(w))illop : @€ [0,1) <1 (4.1)

Note that, ifV = V(®) is an FSIS, we have thatd(w) is a frame fordy(w) for a.e.
w € [0,1), even thouglE(®) is not a frame fol (see Remark.5.10. Thus, ifU and
V are FSISs, conditiord(1) can be checked on any set of generators of the subspaces
U eV andV e U. Atthe end of the section we give an example in which we comthe
Friedrichs angle between two FSISs.

When the set of function® is finite and #@) = m, for a fixedw € [0, 1) the Gramian
matrix Go(w) € C™™M is Hermitian positive semidefinite. Thus, we have that

Go(w) = U(w)D(w)U" (w),
whereU(w) is a unitary matrix and(w) = diag1(w), ..., Am(w)} with 23(w) > --- >

Am(w) = 0 the eigenvalues of the Gramian matrix.

In [RS9] it was proved that the eigenvalugs> - - - > A, and the entries of the matrix
U are measurable functions.

In this case we have that the pseudo-inverse of the Gramitnxraad the square root
of the pseudo-inverse are

Go(®)' = U()D()'U () and Go(w)')? = U(w)(D(w)")iU"(w),

whereD(w)" = diag1(w) ™, . . ., Agw)(@) ™4, 0, ..., 0} andd(w) = rank[Ge (w)].

In the next theorem we show that imposing certain restnstin the angle between the
subspaces, we obtain necessary atiicsent conditions for the injectivity of the sampling
operator in a union of subspaces. This gives a more compdesson of Corollary3.5.5
from Chapter 3
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Theorem 4.4.2.Let¥ = {y;}ic, be such that EV) is a Bessel sequence id(RY) and let
{V,},er be FSISs of {(RY). Suppose conditior(1) is satisfied for every pair of subspaces
Vy, Vg with Y, Oel.

If ©, , is a finite set of generators for,Y = V, + V,, the following are equivalent:

i) ¥ provides a one-to-one sampling operator for

ii) dim(rangeGs ,¥(w))) = dimy ,(w) fora.e.w € [0, 1), Vy,0eT.

Proof. Since condition 4.1) is satisfied for every, 6 € T, it holds that the subspaces
V,s =V, +V, are FSISs. The proof of the theorem follows applying TheogeB3to
these subspaces.

|

In what follows we will give some lemmas which will be needed the proof of The-
orem4.4.1 The results in these lemmas are interesting by themselves.

The first lemma uses the notion of range function introduoddéfinition1.5.2
Lemma 4.4.3.Given U and V SISs of(RY). Then the range function
R:[0,1)! — {closed subspaces ¢f(Z%)}, R(w) = Jy(w) N Iy (w),

is measurable.

Proof. Recall that the measurability &is equivalent tav — Pj,()n,w) DEING Measur-
able.

It is known (see YN50]) that givenM andN closed subspaces of a separable Hilbert
spaceH, for eachx € H,

Pmen(X) = nirpw(PM Pn)"(X).
Note that if we have two measurable functions
Qu, Q,: [0,1)? — {orthogonal projections it?(Z%)},

then the mapy — Qi(w)Q2(w) is measurable. For, Ig be an arbitrary measurable
function from [Q 1)¢ into £2(Z9). Then

Q1(w)Q2(w)(F (w)) = Qu(w)(Qz(w)(F (w))).

By Definition 1.5.2 the measurability ofQ,(w) implies the vector measurability of
Qo(w)(F(w)). SinceQ,(w) is measurable): (w)Qz(w)(F(w)) is measurable. What shows
thatw — Q1 (w)Q2(w) is measurable.

As a consequence, it holds that for amg N the mapw — (P, )P w)" IS measur-
able, that is, for each € (3(Z%, w — (P3P w)"(@) is measurable. From here the
proof follows using that,

Pas@niv@(@ = M (Ps@)Pay)"(@).
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With the previous lemma we obtain the following propertyloé fiber spaces.

Lemma 4.4.4.Let U and V be SISs of(RY). Then,
Juev(w) = Ju(w) e Jy(w) fora.e.w e [0,1)".
Proof. We will first prove that
Jurv(w) = Ju() N Iy(w) fora.e.w e [0,1). (4.2)
Let R be the measurable range function defined in LemMmal Since
UnV={fel?RY : rf(w) € Rw) for a.e.w € [0, 1)%},

it follows thatR is the range function associated to the shift-invariantgphn V, thus
(4.2 holds.

Using @.2), the proof of the proposition is straightforward as
(Iv(w)* = v.(w) fora.e.w €][0,1),
for any shift-invariant space of L2(RY). ]

The next lemma follows the ideas frorBE04]. It states that the angle between two
shift-invariant spaces is the essential supremum of thieatgtween the fiber spaces.

Lemma 4.4.5.Let U and V be SISs of(RY). Then,
c[U, V] = ess-sufc[Jy(w), v(w)] : w €[0,1)%).
Proof. Given f € V, by PropositioriL..5.4 we have for a.ew € [0, 1)%,
7(Py |Vf)(w) = 7(PyPv f)(w) = Py )Py (7f(w)) = Py, (w)|JV(w)(Tf(w))-

By Theoremd4.2.5this shows thaPJU(w)|Jv(w) is the range operator corresponding to the
shift-preserving operatd? |V in the shift-invariant spacé. What implies that

1Pyl llop = €8S-SURIIP3, w5, llop * @ € [0, 1)) (4.3)

Using @.3), Propositio.1.2and Lemmat.4.4 we obtain

cU.V] = clUeV.VeU] = [Pyayl|,.,llop

= €58-SURIIPy ()], ollon * @ € [0, 1))

= €58-SURIIP3(w)ou ()] wpos @llor © @ € [0:1)%)

= ess-sufico[Ju(w) © Jv(w), I(w) e Jy(w)] : w € [0,1)%
= ess-sufc[Jy(w), v(w)] : w €[0,1)%.



56 Closedness of the sum of two shift-invariant spaces

With the above results, we are able to prove the main theofdimsosection.

Proof of Theorend.4.1 By Lemma4.4.4 it follows thatt®(w) andr®’(w) are frames
for Jy(w) © Jv(w) andJy(w) & Jy(w) respectively, for a.ew € [0, 1)°.

Thus, using Theorem.3.1, we obtain
A Ju(@), W(@)] = (Ga(@) ) Go.0r ()Ga(w))zllop forae.we [0, 1)
Hence, by Lemmd.4.5
c[U, V] = ess-Sufill(Gar (@) )2 G0 (@)(Ga(@) )ellop : w € [0,1).  (4.4)
The proof of the theorem follows frond (4) and Propositiord.1.3 O
Next we provide an example of two shift-invariant spaces seh&um is not closed. In
order to prove that, we compute the Friedrichs angle betweesubspaces.
Example 4.4.6.Let ¢, € L?(R) be given by
cos(zw) f0<w<1
p1(w) =<sin(Zrw) fl<w<?2
0 otherwise

andy,, 3 € LA(R) satisfying thatpa(w) = yps)(w) and@z(w) = xz4(w). DefineU =

V(p1, ¢2, ¢3)-
Consider nowpo, ¢4 € L%(R), such thatpo(w) = xjo.1)(w) and ga(w) = X5, p(w), set

V= V(‘pO? ‘)04)
We will prove thatU + V is not closed using Theorem4.1

Let {8}k be the standard basis f6t(Z). Then,r¢:(w) = cos(Ziw)ey + Sin(2rw)ey,

TPo(w) = &, TP3(w) = €3, TYo(w) = €, TYs(w) = 83)([0’%)(0)) + ez)([%’l)(w). So, we have
that for a.ew € [0, 1),

Ju(w) & Jy(w) = spanter(w), Tes(w)} and Jy(w) 6 Jy(w) = spanteg(w)},

where gs(w) = X[z,g)(w) +)([%’4)(w). Thus, by Lemmal.4.4 it follows thatU e V =
V(1. s) andV e U = V(go).

Let ® := {¢1, s} andd’ := {yo}, then
Go@) =1 Gu()=(5 ) and Gus(w) = (cos@a).)

Therefore

cU,V] = ess-sufll(Gu(®)'):Gow(@)(Gol(w))illop : w € [0, 1)}

ess-suf| cos(Zrw)| : w e [0,1)} = 1.

Hence, by Theorem.4.1, U + V is not closed.
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Extra invariance of shift-invariant spaces

5.1 Introduction

In Chapter 2we have studied the problem of finding an FM§that best approximates
a finite set of functions¥ = {f;,..., f,} € L?(RY). Suppose now that we want to ap-
proximate a delayed version of the dé&fa That is, we would like to approximate the set
t, 7 = {t,f1,...,t,fm} for somea € RY. If the optimal FSISV, for # is invariant under
the translation inx (i.e for any f € Vo, t,f € Vp), then we will prove in the following
proposition that/, is also optimal for the data sgtF.

Proposition 5.1.1.LetF = {fy,..., fn} € L2(RY) anda € RY. AssumeLy is the class of
FSISs of length at most k ang ¥ an optimal FSIS fofF in the sense that

&(F. Vo) = Inf &(F. V),

where€ is as in Definition2.2.1 If Vy is invariant under the translation iry, then \4 is
an optimal FSIS for the corrupted datgf.

Proof. Due to thex-invariance ofVy, we have that

DUl = Py il = > It fi — Py, filP
i=1 i=1

m
DIt fi = Pyt il = E(t.F, Vo)
i=1

8(7:’ VO)

For a givenV € £y, using the preceding and thét7, V) = E(t,F,t,V), we obtain

ELF,V) = EF,t,V)
> &(F, Vo) = 8T, Vo).

Thus,
E(t, 7, Vo) = inf E(t,F,V).
VeLy
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The previous proposition shows that an FSIS which is optimal and has extra-
invariancee € RY, is also optimal for the corrupted datg#. This fact motivates an
important and interesting question regarding SISs whigristher they have the property
to be invariant under translations other than integers.

In this chapter we will be interested in characterizing ti&s3hat are not only invariant
under integer translations, but are also invariant underesparticular set of translations
of RY.

A limit case is when the space is invariant under translatimneverye € RY. In this
case the space is callgdnslation invariant One example of a translation invariant space

is the Paley-Wiener space of functions that are bandlimﬁe{d%, %] defined by

1)

Recall thatPW is a principal shift-invariant space generated by the fioncsinct). This
space is translation invariant sincefife PW ande € R, we have that supp(f) =
supp€ i f) = supp(f), thust, f € PWfor everya € R.

PW = {f e L2(R) : supp(f) c

In the same way it is easy to prove that for a measurablE seRY, the spaces
{f € LARY) : supp@f) c E}, (5.1)

are translation invariant. As a matter of fact, Wiener'sotteen (see liel64], [Sri64])
proves that any closed translation invariant subspace$(gf) if of the form (5.1).

On the other hand, there exist SISs that are only invariadéuimteger translates. To
see this, consider for example the principal shift-invairsppace generated by the indicator
functionyo 1)

V(xp.1) = Spantxp.) : K€ Z}.
It is easy to see that this space is only invariant under ertegnslates.

Let us now define, for a given SN C L2(RY), theinvariance sefssociated t¥ as
M:={xeR%:t,feV, VfeV).

So, for the Paley-Wiener space we have tdat R and for the PSIS/(x(o1)), it follows
thatM = Z.

One question that naturally arises is, for a given 8I18f L2(RY), how is the structure
of the invariance sa¥l.

In [ACHKM10] Aldroubi et al. showed that iV is a shift-invariant space, then its
invariance setis a closed additive subgroup &fcontainingZ. As a consequence, since
every additive subgroup @ is either discrete or dense, there are only two possilslitie
left for the extra invariance. That is, eith¥ris invariant under translations by the group
(1/n)z, for some positive integer (and not invariant under any bigger subgroup) or it
is translation invariant. They found fékrent characterizations in terms of the Fourier
transform, of when a shift invariant space igr{iZ-invariant.
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The problem that we solve in this chapter is if the charazéions of extra invariance
that hold on the line are still valid in several variables. iAgshe one-dimensional case
we will prove that the invariance sbt associated to a SIS &f(RY) is a closed subgroup
of RY (see PropositioB.2.1). The main diference here with the one dimensional case, is
that there are subgroups Bf that are neither discrete nor dense. So, it is no direct that
all the characterizations given IACHKM10] are still valid in several variables.

We will find necessary and flicient conditions for a SIS to be invariant under a closed
additive subgroupM c RY containingZd. In addition our results show the existence of
shift-invariant spaces that aexactly Minvariant for every closed subgroug < R¢
containingZd. By ‘exactly M-invariant’ we mean that they are not invariant under any
other subgroup containingl. We apply our results to obtain estimates on the size of the
support of the Fourier transform of the generators of thespa

The chapter is organized in the following wayection 5.%tudies the structure of the
invariance set. We review the structure of closed additiusgsoups ofRY in Section
5.3. In Section 5.4we extend some results, known for shift-invariant space&’into
M-invariant spaces wheM is a closed subgroup & containingz®. The necessary and
suficient conditions for theM-invariance of shift-invariant spaces are stated and grove
in Section 5.5Finally, Section 5.&ontains some applications of our results.

5.2 The structure of the invariance set

For a shift-invariant spacé c L?(RY), we define the invariance set as
M:={xeR%: t,feV, VfeV). (5.2)
If ® is a set of generators f4, it is easy to check that

M={xeR%: tyweV, Ypecd).

Our aim in this section is to study the structure of theMet

Proposition 5.2.1.Let V be a SIS of A(RY) and let M be defined as i(2). Then M is
an additive closed subgroup Bff containingz®.

For the proof of this proposition we will need the followingnhma. Recall that an
additive semigroup is a non-empty set with an associatidéiad operation.

Lemma 5.2.2.Let H be a closed semigroupBf containingz?, then H is a group.

Proof. Let 7 be the quotient map froR? onto T = RY/Z9. SinceH is a semigroup
containingz?, we have thaH + Z¢ = H, thus

7Y n(H)) = Uh+Zd =H+7%=H.
heH
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This shows thatr(H) is closed irT' and therefore compact.

By [HR63 Theorem 9.16], we have that a compact semigroupids necessarily a
group, thusr(H) is a group and consequentlyis a group.

Proof of Propositiorb.2.1 SinceV is a SIS,Z9 ¢ M.
We now show thaM is closed. Let, € RY and{X,}nen € M, such that i, X, = Xo.
Then
lim ||ty f —ty, fl| = 0.
n—oo
Thereforet,, f € V. ButV is closed, say,f € V.

It is easy to check thatl is a semigroup oRY, hence we conclude from Lemnda2.2
thatM is a group.

|

Since the invariance set of a SIS is a closed subgro®d,abur aim in what follows is
to give some characterizations concerning closed subgroiiy'.

5.3 Closed subgroups oR“

Throughout this section we describe the additive closedsulps ofRY containingzd.
We first study closed subgroupskft in general.

When two group$s; andG, are isomorphic we will writgs; ~ G,. Here and subse-
guently all the vector subspaces will be real.

5.3.1 General case

We will state in this section, some basic definitions and prosgs of closed subgroups
of RY, for a detailed treatment and proofs we refer the readeddoT4.

Definition 5.3.1. Given M a subgroup oR¢, therangeof M, denoted byr (M), is the
dimension of the subspace generatedvbgs a real vector space.

It is known that every closed subgroup®f is either discrete or contains a subspace
of at least dimension one (sedu74 Proposition 3]).

Definition 5.3.2. Given M a closed subgroup dt%, there exists a subspasewhose
dimension is the largest of the dimensions of all the subespaontained iM. We will
denote byd(M) the dimension o¥. Note thatd(M) can be zero and € d(M) < r(M) <
d.
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The next theorem establishes that every closed subgroRp isfthe direct sum of a
subspace and a discrete group.

Theorem 5.3.3.Let M be a closed subgroup Bf such that (M) = r andd(M) = p. Let
V be the subspace contained in M as in DefinitoB.2 There exists a basisl, . . ., Ug}
for RY such thatf{uy, ..., u,} € M and{u,..., Uy} is a basis for V. Furthermore,

p r

M:{Ztiui+2njuj :tieR,njeZ}.
i=1 j=p+1

Corollary 5.3.4. If M is a closed subgroup @ such thatr (M) = r andd(M) = p, then

M~ RPxZP.

5.3.2 Closed subgroups dkY containing Z¢

We are interested in closed subgroup&btontainingz®. For their understanding, the
notion of dual group is important.

Definition 5.3.5. Let M be a subgroup dkY. Consider the set
M*:={xeR%: (xmeZ VYmeM}.
ThenM* is a subgroup oR called thedual groupof M. In particular, £%)* = Z9.

Now we will list some properties of the dual group.

Proposition 5.3.6.Let M, N be subgroups d&°.
i) M*is a closed subgroup @.
i) IfN € M, then M C N*.
iii) If M is closed, therr(M*) = d — d(M) andd(M*) = d - r(M).
iv) (M*)* =M.

Let H be a subgroup ot with r(H) = g, we will say that a sefvy,...,vg} C His a
basisfor H if for every x € H there exist uniqu&, ... ., ky € Z such that

x:gql:kivi.
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Note that{vy, ..., vy} € Z%is a basis foz® if and only if the determinant of the matrix
Awhich has{vy, ..., vy} as columnsis 1 or1.

GivenB = {vy, ..., Vy} a basis fofz4, we will call B= (Wi, ..., Wy} adual basigor Bif
(vi,wpy =6 forall1<i, j<d.

If we denote byﬂthe matrix with columngwy, .. ., wq}, the relation betweeB andB
can be expressed in terms of matriced\as (A*)~, whereA" is the transpose k.

The closed subgroupd of RY containingz?, can be described with the help of the dual
relations. Sinc&d ¢ M, we have thaM* c Z9. So, we need first the characterization of
the subgroups dfd. This is stated in the following theorem which is proved@o{i81].

Theorem 5.3.7.Let H be a subgroup ofd with r(H) = q, then there exist a basis
(Wi, ..., Wy} for Z¢ and unique integers.a. ..,8q satisfying a1 = 0(mod. &) for all

1 <i <q-1 suchthatiayws,...,aqWg} is a basis for H. The integers,a..,a, are
calledinvariant factors

Remarks.3.8 Under the assumptions of the above theorem we obtain

ZYH ~ Zgy X ... X Lo, X 2976,

We are now able to characterize the closed subgroup$ obntainingz?. The proof
of the following theorem can be found iB§u74), but we include it here for the sake of
completeness.

Theorem 5.3.9.Let M c RY. The following conditions are equivalent:

i) M is a closed subgroup @& containingz® andd(M) = d - q.

i) There exist a basigvy, ..., vy} for Z¢ and integers a...,9q satisfying a1 =
0(mod. @ forall 1 <i < qg- 1, such that

g d
M :{Zk.évm Z tivj : k € Zt; GR}.
i=1

j=0+1
Furthermore, the integers q and.a. ., aq are uniquely determined by M.

Proof. Suppose i) is true. Sincg® ¢ M andd(M) = d — g, we have thaM* c Z% and
r(M*) = g. By Theorem5.3.7, there exist invariant factom, . .., ag and{w, ..., Wy} a
basis forz® such thafa,wi, . . ., agWg} is a basis foM*.

Let{vy,...,Vvq} be the dual basis fdw, ..., Wy}.

SinceM is closed, it follows from item iv) of Propositiob.3.6thatM = (M*)*. So,
me M if and only if
mawp)ezZ V1<j<aq (5.3)

As {vi,...,Vq} is a basis, given € RY, there existi; € R such thatu = Zid=1 uv;. Thus, by
(5.3,ue Mifandonlyifua e Zforall1<i <q.
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We finally obtain thati € M if and only if there exisk; € Z andu; € R such that

The proof of the other implication is straightforward.

The integers) anday, . .., aq are uniquely determined byl sinceq = d — d(M) and
ay, ..., aq are the invariant factors of*.

As a consequence of the proof given above we obtain the folpwaorollary.

Corollary 5.3.10. Let Z ¢ M c RY be a closed subgroup with(M) = d - q. If
{vi,...,vg}and &, ..., aq are as in Theorerd.3.9 then

q
M* = {Zniaiwi LN eZ},
i=1
where{ws, ..., Wy} is the dual basis ofvy, .. ., vg}.

Example 5.3.11.Assume thatl = 3. If M = 2Zx Z xR, thenv; = (1,1,0),\, = (3,2,0)
andvs = (0, 0, 1) verify the conditions of Theore.3.9with the invariant factorg; = 1
anda; = 6. On the other hand;, = (1,1,0),v, = (3,2,1) andv; = (0,0, 1) verify the
same conditions. This shows that the basis in Thedr&h®is not unique.

Remark5.3.12 If {v;,...,vg} anday,...,aq are as in Theorerb.3.9 let us define the
linear transformatiof as

T:RISRY TE)=v VY1<ic<d.
ThenT is an invertible transformation that satisfies
1 1
M=T(=Zx---x —ZxR¥9).
a dq

If {wa,...,wq} is the dual basis fofvy, ..., vy}, the inverse of the adjoint of is defined
by
(TY RS R, (T @) =w Vi<i<d.

By Corollary5.3.1Q it is true that

M* = (T*) H@Z x - - - X agZ x {0}°79).
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5.4 The structure of principal M-invariant spaces

Throughout this sectiom will be a closed subgroup & containingz® andM* its dual
group defined as in the previous section.

Here and subsequently fare RY, we will write the exponential functiog (> as
€ (w).

For a set of function® c LA([RY), we write® = {f : f € @}.
Definition 5.4.1. We will say that a closed subspa¢ef L(RY) is M-invariantif t,f € V
forallme M andf € V.

Given® c L?(RY), the M-invariant space generated hyis

Vu(®) =Span(tmy : me M, ¢ € ®}).

If ® = {p} we write Viy(¢) and we say that\(¢) is a principalM-invariant space. For
simplicity of notation, wherM = Z4, we writeV(yp) instead oVza(y).

Principal SISs have been completely characterized BO$BDR94 (see also
[dBDVR94],[RS9]) as follows.

Theorem 5.4.2.Let f € L?(R?) be given. If ge V(f), then there exists &’-periodic
functionn such tha@g = nf.

Conversely, if is a Z9%-periodic function such thagf € L2(RY), then the function g
defined byg = nf belongs to \f).

The aim of this section is to generalize the previous thedrethe M-invariant case.
In case thaM is discrete, Theorerb.4.2follows easily by rescaling. Thefiiiculty arises
whenM is not discrete.

Theorem 5.4.3.Let f € L2(R") and M a closed subgroup & containingZ®. If g €
Vu(f), then there exists an Mperiodic functiory such tha@g = f.

Conversely, if7 is an M*-periodic function such thatf e L2(RY), then the function g
defined byg = nf belongs to \(f).

Theoremb.4.3was proved inBDR94 for the lattice case. We adapt their arguments
to this more general case.

We will first need some definitions and properties.

By Remark5.3.12 there exists a linear transformatidn: RY — RY such thatM =
T(ailZ XX éz xRI-9) andM* = (T*) HaZ x - - - x 3gZ x {0}9-9), whereq = d — d(M).

We will denote byD the section of the quotiei®?/M* defined as

D= (T)0,a) x - - - x [0, 8g) x R*). (5.4)
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Therefore{D + m*}wem- forms a partition ofRY.
Given f,g e L2(RY) we define

[f.0l(w) = ), f(w+nm)glw+m),

mreM*

wherew € D. Note that, ad, g € L2(R%) we have that{, g] € LY(D), since

Z f@ y f(w)g(w) dw

Z ff(w+m)g(w+m*)dw

meM*

f[f 0l(w) dw. (5.5)

fR ()o@ de

From this, it follows that iff € L2(RY), then{f(w + M)}yrem- € 2(M*) a.e.w € D.
The Cauchy-Schwarz inequality #3(M*), gives the following a.e. pointwise estimate

[f. 9l <[f. fllg.d] (5.6)

for everyf, g e L2(RY).

Given anM*-periodic functiorny and f, g € L2(RY) such that;f € L2(RY), it is easy to
check that
[7f.d] =nlf.g] (5.7)

The following lemma is an extension to general subgroufis aff a result which holds
for the discrete case.

Lemma 5.4.4.Let f € L?>(RY), M a closed subgroup @& containingz® and D defined
asin 6.4). Then,

Vu(F)* = {ge L2RY) : [f,T)(w) =0 a.e.w € D).

Proof. Since the span of the sé,f : m € M} is dense inVy(f), we have thag €
Vu(f)* if and only if (g, e,f) = 0 for allm e M. As e, is M*-periodic, using%.5 and
(5.7), we obtain thag € Vy(f)* if and only if

fD en(@)[ . 8(w) dw = 0, (5.8)

forallme M.

At this point, what is left to show is that i5(8) holds then E’g‘j(w) =0aeweD.
For this, taking into account thaf [g] € L(D), it is enough to prove that i € L}(D)
and [ he, = 0 forallme M thenh = 0 a.ew € D.
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We will prove the preceding property for the cage= Z9 x R%9. The general case
will follow from a change of variables using the descript@rM and® given in Remark
5.3.12and 6.4).

Suppose novivl = Z9 x R%-9, thenD = [0, 1) x R™9. Takeh € LY(D), such that
ff h(x, y)e &% dxdy=0 VkeZ% teR¥, (5.9)
[0,1)dxRM-a

Givenk e Z9, definea(y) := |

0,130 X, y)eZx dxfor a.e.y € R%9. It follows from (5.9)
that ’

f a(y)eZWdy=0 VteRIT, (5.10)
Rd-9

Sinceh € LY(D), by Fubini’s Theoremg, € L([0,1)%). Thus, using%.10), ax(y) = 0
a.e.y e R%9. Thatis

L N h(x, y)e 2™ dx =0 (5.11)

for a.e.y € R%9. Define nowsy(x) := h(x,y). By (5.11), for a.e.y € R%9 we have that
By(X) = 0 for a.e.x € [0,1)4. Thereforeh(x,y) = 0 a.e. &Y) € [0,1)% x R%9 and this
completes the proof. O

Now we will give a formula for the orthogonal projection ontg(f).

Lemma 5.4.5.Let P be the orthogonal projection ontgV{f). Then, for each ¢ L2(RY),
we havePg = n4 f, whereng is the M'-periodic function defined by

_[[@ f/IE. T onEf + M
"o otherwise

and E is the sefw € D : [f, f](w) # O}

Proof. Let P be the orthogonal projection oni,(f). SincePg = Pg, it is enough to
show thatPg = 74f.

We first want to prove thaﬁgre L2(RY). Combining 6.5), (5.6) and 6.7)

f 1T = f ngPLF. ] < f 6.9 = gl
Rd D D

and sog;,f € L2(RY). Define the linear map
Q: L*(RY) — L*RY), QF=nyf,

which is well defined and has norm not greater than one. Wegwalle thatQ = P.

Takeg € Vu(f)™ = (Vm(f)*)". Then Lemmab.4.4gives thaty, = 0, henceQg = O.
ThereforeQ = P on Vi (f) .
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On the other hand, oB; + M*,
Nty = [emf, T/, Tl =6n Yme M.
Sincef = 0 outside ofEs + M*, we have thaQ(t;ff) = emF As Qs linear and bounded,
and the set spdtf : me M} is dense iy (f), Q = P on Vi (¥).
O
Proof of Theoren®.4.3 Suppose thag € Vi (f), thenFlg = g, whereP is the orthogonal
projection ontoVyy(f). Hence, by Lemm&.4.5Q = 7,f.

Conversely, |fnf e L?(RY) andy is an M*-periodic function, themw, the inverse trans-
form of 5 is also inL2(RY) and satisfies, byg(7), thaty, = [1f, f1/[, f] = nonE;+ M.

On the other hand, since supip)(_ E: + M*, we have thatygf = nf.
So,Pg = ngf\: nf =7. ConsequentlyPg = g, and hence € Vy (f).

5.5 Characterization of the extra invariance

GivenM a closed subgroup @& containingz®, our goal is to characterize when a SIS V
is anM-invariant space. For this, we will construct a partit{@y},., of RY, where each
B, will be an M*-periodic.

LetQ be a measurable section of the quotikitzd. ThenQ tilesR® by Z4 translations,
that is
RY = U Q+k (5.12)

Now, for eactk € Z¢, consider Q + k) + M*. Although these sets aM*-periodic, they
are not a partition oRY. So, we need to choose a subsebf 79 such that ifo, o’ € N
ando + M* = ¢’ + M*, theno = ¢’. ThusN should be a section of the quotieft/M*.

Giveno € N we define

B, =Q+0+M = U(Q+o-)+m*. (5.13)

mreM*
Note that, in the notation @dubsection 5.3,2ve can choose the se®sand N as:
= (T*)"*([0, 1)), (5.14)

and
N =(T9(0,...,ag — 1} x...x1{0,..., 84— 1} x 279, (5.15)
whereT is as in Remarls.3.12anday, . . ., aq are the invariant factors dil.
Below we give three basic examples of the construction optrétion{B,},cx -
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Example 5.5.1.
(1) LetM = 1Z C R, thenM* = nZ. We choose = [0,1) andN = {0,...,n— 1},
Giveno € {0,...,n—- 1}, we have

B,= | J(0.1)+o)+m = Jloo+1)+nj

mfenz jez

Figure5.1illustrates the partition fon = 4. In the picture, the black dots represent the
setN. The setB; is the one which appears in gray.

I
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™

Figure 5.1:Partition of the real line foM = 3Z.

(2) LetM = 3Z x R, thenM* = 2Z x {0}. We choosé = [0, 1)?, andN = {0,1} X Z.
So, the set8; ;) are

Bij = ) (10, 17 + (i, )) + (2K, 0)

keZ

where (, j) € N. See Figuré.2, where the setBg), B11) and B 1y are represented
by the squares painted in light gray, gray and dark gray ctsedy. As in the previous
figure, the selV is represented by the black dots.

3
°

0
-2 .
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

2

1

Figure 5.2:Partition of the plane foM = 3Z x R.

(3) LetM = {k3vs +tv, : k € Z andt € R}, wherev; = (1,0) andv, = (-1,1). Then,
{v1, o} satisfy conditions in Theore.3.9 By Corollary5.3.1Q M* = {k3w; : k € Z},
wherew; = (1,1) andw; = (0, 1).

The set€) and N can be chosen in terms of andw, as

Q={tw; +sw: t,se[0,1)}
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and
N ={aw + kw, : a€{0,1,2}, ke Z}.

This is illustrated in Figur®.3. In this case the seBq), B0y and B ) correspond to
the light gray, gray and dark gray regions respectively. Agdin, the black dots represent
the setV.

: I

: 4 M

Figure 5.3:Partition forM = {k3(1,0) + t(-1,1) : ke Z andt € R}.

Once the partitiofB, }, is set, for eacla- € N, we define the subspaces

U, = {f e L2RY : F = yp,§ with ge V). (5.16)

5.5.1 Characterization of the extra invariance in terms of sbspaces

The main theorem of this section characterizesNhawvariance ofV in terms of the
subspacebl,. (see b.16)).

Theorem 5.5.2.1f V c L2(RY) is a SIS and M is a closed subgroupRSf containingZ¢,
then the following are equivalent.

1) V is M-invariant.
i) U, CcVforalloeN.

Moreover, in case any of the above holds, we have that V isrthegonal direct sum

v-Bu.

geN
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Below we state a lemma which will be necessary to prove Tma&ré.2

Lemma5.5.3.Let V be a SIS ana € N. Assume that the subspacg tefined in $.16
satisfies Y € V. Then, U is a closed subspace which is M-invariant and in particular
isa SIS.

Proof. Let us first prove thatl, is closed. Suppose thét € U, and f; — f in L2(RY).
SinceU,, ¢ V andV is closed,f must be inV. Further,

1T = 15 = 11(F; — Pwe I3+ 1(F — Fveeld = 1T, — Fxa, I3 + 1 Txee iz

Since the left-hand side converges to zero, we must haverﬂ@t: 0a.e.weRY,
andf; — fyg, in L2(RY). Then,f = fys,. Consequentlyf € U, soU, is closed.

NowAwe show thatJ,, is M-invariant. Givenm € M andf € U, we will prove that
enf € U,. Sincef € U, there existg € V such thatf = yg g. Hence,

enf = en(re,8) = xa, (en0). (5.17)
If we can find az9-periodic functiont,, verifying
en(w) = tm(w) a.ew € B, (5.18)

then, we can rewritex(17) as
ernf = XBO' (fm@,
By Theoremb.4.2, ¢, € V(g) € V and sognf € U,.
Let us now define the functiofy,. Note that, since,, is M*-periodic,

enlw+o)=ey(w+o+mM) aewe, VYm e M. (5.19)

For eaclk € 79, set
Iw+kK) =en(w+0) aewel. (5.20)
It is clear thatt,, is Z9-periodic and combinings(19 with (5.20), we obtain 6.18).
Note that, sinc&? c M, theZ%-invariance ol,. is a consequence of tid-invariance.

O

Proof of Theoren®.5.2 i) = ii): Fix o € N andf € U,. Thenf = xs,g for someg € V.
Sinceys, is anM*-periodic function, by Theorerb.4.3 we have thaf € Vy(g) €V, as
we wanted to prove.

i) =1): Suppose that), C V for all & € N. Note that Lemm&.5.3implies thatU,,
Is M-invariant, and we also have that the subspa&eare mutually orthogonal since the
setsB,, are disjoint.
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Take f € V. Then, since{B,},cy is a partition ofRY, we can decomposé as
f = Yoen T2 wheref? is such thatf = fyg . This implies thatf e EB%N U, and
consequentlyy is the orthogonal direct sum

v-@u.

ogeN

As eachU,, is M-invariant, so isV. O

5.5.2 Characterization of the extra invariance in terms of fbers

The aim of this section is to express the conditions of Thadsé.2in terms of fibers.
We will also give a useful characterization of tMeinvariance for an FSIS in terms of
the Gramian.

If feL?(RY) ando € N, let f~ denote the function defined by

?; = f}(B(r-

Let P, be the orthogonal projection on8&),, where

S, = {f € LA(RY) : suppf) c B,}. (5.21)

Therefore
fo =P, f and U, =P,(V)={f7: f eV} (5.22)

Remark5.5.4 In Lemmab5.5.3we have proved that the spadéds are closed if they are
included inV, but it is important to observe that if this hypothesis is satisfied, they
might not be closed (see Examplé.5. More precisely, iV, W are two closed subspaces
of a Hilbert spacé, thenP\y(V) is a closed subspace %f if and only if V+W+" is closed
(see Peu9y). So, as a consequence 6tZ2), in the notation ofChapter 4U, will be a
closed subspace if and only if the Friedrichs angle satisfésS_] < 1.

We include below an example of a S¥Sand a grougM for which the subspadd,, is
not closed.

Example 5.5.5.LetV = V(¢) whereyp = X[-1.1)- Consider the discrete grolp = %Z. If
Bo = [0, 1)+2Z, we will prove that the subspatk = {f € L3(R) : f = x8,0, With g e V}
is not closed.

Using the remarlf\from above, it is enough to show tistS;] = 1, whereS; = S; =
{f e L2(R) : supp(f) < B;} andB; =[0,1) + 2Z + 1.

From Lemma4.4.5 we have that[V, S;] = ess-sufdc[Jy(w), Js,(w)] : w € [0, 1)}.

Note thatly(w) = spante(w)} andJs, (w) = Spafeyj.1}jez. S0, v (w) N Js,(w) = {0}.

Therefore,

c[Iv(w), Js, (w)] = suplsincw + 2j + 1)|.
ez
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Then, we obtain that,

c[V,S1] = ess-sur{ suplsincw + 2j + 1) : w € [0, 1)} =1

JEZ
Thus,Uy is not closed.

As we have proved above, the subspadgsmight not be closed, so we will need a
generalization of the concepts of fiber space and dimensiuctibn of SISs (se8ection
1.4.7) to this spaces.

Note that although the domain of a range function from Definif..5.2was [Q 1)¢, it
is easy to prove that the same analysis fr@nj/0( holds for any measurable section
of the quotieniRY/Zd,

LetV be a SIS andJ,. be defined as in5(16). If ® a countable subset &f(RY) such
thatV = V(®), then forw € Q we define the subspacg,, (w) as
Ju,(w) = spafre’(w) : ¢ € O}. (5.23)

Note that wherJ,, is closed, it is a SIS, so the subspdgg (w) is the fiber spacéy, (w)
defined in Propositiod.5.3

Remarks.5.6 The fibers
797 (w) = {xe, (@ + Kp(w + K)}ieze
can be described in a simple way as

. o(w+kK ifkeo+ M
N A LG .
0 otherwise

Therefore, ifo # o/, Ju, (w) is orthogonal tQ7y,_, (w) for a.e.w € Q.

Theorem 5.5.7.Let V be a SIS generated by a countabledet L2(RY). The following
statements are equivalent.

i) Vis M-invariant.

i) 797 (w) € v(w) a.e.weQforall p € ®ando € N.

Proof. i) =ii): By Theorem5.5.2 U, C V for anyo € N. Using this and%.22), for a
giveng € @, we have thap” € V, sot¢” (w) € Jv(w).

i) =i): Fix o € N, we will prove thatU, ¢ V. Let f € U,, we will show that
7f(w) € Jy(w) for a.e.w € Q.

Forallg € @, 1¢7(w) € Jv(w) a.e. w € Q, so, it follows thatTy, (w) € Jv(w) a.e.
w € Q. Thus, itis enough to prove that (w) € Jy, (w) for a.e.w € Q.

Sincef € U,, there existg € V such thatf = ¢°.
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The subspac8,, defined in 6.21) is a SIS, so by Propositiah5.4 we obtain
7f(w) = 797 (w) = 7(P;9)(w) = Py, () (T9(w)), (5.24)
whereJ, (w) is the fiber space associated3gp.
Sinceg € V, we have thatg(w) € Jy(w) = Spaity(w) : ¢ € ®}. So,
7f(w) = P3,)(79(w)) € Py, w)(SParitte(w) : ¢ € ©}).
The proof follows using that
Py, (SPafite(w) : ¢ € @) C Spaity’(w) : ¢ € O} = Ju,(w).

O

Now we give a slightly simpler characterization Mfinvariance for the finitely gener-
ated case.

For w € Q by abuse of notation, we will write dig)(w) for the dimension of the
subspacegfy, (w).

Theorem 5.5.8.1f V is an FSIS generated W, then the following statements are equiv-
alent.

i) V is M-invariant.
i) Foralmost everyw € Q, dimy(w) = Y en dimy, (w).

lii) For almost everyw € Q, rank|Ge(w)] = 3 epn rank[Gor (w)],
whered®? = {¢” . ¢ € ®}.
Proof. i) =ii): By Lemmab5.5.3and Theorenb.5.2 U, is a SIS for eaclr € N and
V = &,cv U,. Then, ii) follows from Proposition.5.5
i) =1): Giveng € @, for w € Q we have that
o) = ) 16" (w).
ogeN

Then,r¢(w) € &,y Ju, (w) for a.e.w € Q. Note that the orthogonality of the subspaces
Ju, (w) is a consequence of Rem&sls.6

Sinceldy(w) = Spanty(w) : ¢ € @}, it follows that
Jv(w) € cr%vju”(w)'

Using ii), we obtain thatly (w) = &,cy Ju, (w). This implies thatrg” (w) € Jv(w) for
allo € N, ¢ € ®. The proof follows as a consequence of Theofem?.

The equivalence between ii) and iii) follows from PropasitiL.3.5
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5.6 Applications of the extra invariance characteriza-
tions

In this section we present two applications of the resukemibefore. First, we will
estimate the size of the supports of the Fourier transforinliseogenerators of an FSIS
which is alsoM-invariant. Finally, giverM a closed subgroup @& containingz?, we
will construct a shift-invariant spacé which is exactlyM-invariant. That isV will not
be invariant under any other closed subgroup contaiMng

Theorem 5.6.1.Let V be an FSIS generated y, . . ., ¢/}, and define
Ei={weQ ::dimy(w)=j}, j=0,...,¢L

If V is M-invariant and?’ is any measurable section &f /M*, then

14
tye D' : @y) # 0l < ) JIEI<¢,

j=0

foreachh=1,...,¢.

Proof. The measurability of the seks; follows from the results of HelsorHel64], e.g.,
see BKO6] for an argument of this type.

Fix anyh € {0,..., ¢}. Note that, as a consequence of Renafk§ if Jy_(w) = {0},
thengn(w + o + M) = 0 for allm* € M*.

On the other hand, SINGR + o + M} sen rem- IS @ partition ofRY, if w € Q ando € N
are fixed, there exists a uniqug, , € M* such that + o+ ny,, , € 0.

So,
loceN phlw+o+m, ) #0lC{oeN : dimy, () # O}

Therefore

IA

#o e N : dimy, () O}

< > dimy, (w)

ogeN

Ho e N @ gn(w + 0o +m, ) # 0}

A

Consequently, by Fubini’s Theorem,

YeD : GM 0l = ) llweQ: Fiw+o+,,) 0l
geN

= H(w,0) € QXN @ gn(w + o +my, ) # O}
= f#{o-eN D on(w + o +m, ) # 0 dw
Q
¢
< | dimy(w)dw= JIEj| < €.
fg; v(w) ZH il

j=0
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O

WhenM is not discrete, the previous theorem shows that, desptéattt that?)’ has
infinite measure, the support @f in O’ has finite measure.

On the other hand, iM is discrete, the measure 6f is equal to the measure of the
section?D given by 6.4). That is

D' =Dl =a;...aq,
whereay, ..., a4 are the invariant factors. Thus,af...ay — ¢ > 0, it follows that
HyeD :on(y) =0} >a;...aqg— L. (5.25)
As a consequence of Theorén®.1we obtain the following corollary.

Corollary 5.6.2. Lety € L(RY) be given. If the SIS () is M-invariant for some closed
subgroup M ofR? such thatzZ? ¢ M, theny must vanish on a set of infinite Lebesgue
measure.

Proof. Let D be the measurable sectionkf/M* defined in 6.4). Then,

RY = U D + v,

meM
thus
yeRY: @) =0l= ) liye D+m' : §(y)=0)l
meM*
If M is discrete, byg.25, we have
yeR 1 @) =0z ) (DI-1)= +oo. (5.26)
mreM*

The last equality is due to the fact thdt is infinite and D] > 1 (sinceM # Z9).

If M is not discrete, by Theorem.6.1, [{y € D+ m* : p(y) = 0}] = +oo0, hence
y e R? : @(y) = 0}) = +oo. O

Another consequence of Theorént.1is the following.
Corollary 5.6.3. If ¢ € L2(RY) and V(¢) is R%-invariant, then

Isuppb)| < 1.

Proof. The proof is straightforward applying Theorén6.1for M = RY.
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The converse of the previous corollary is not true. To se® ¢binsider the function
¢ € L2(RY) such thatp = Xpo.-1x0.8) + Xy If V= V() wereR%-invariant, by
Theorenb.5.8 we would have that ran§],(w)] = 3 jcze rank[G,i(w)] for a.e.w € [0, 1)°,

with ¢l = X(o.1y+j@- However, forw € [0,1)* x [0, 3) we obtain that ranif,(w)] = 1
and ranki,o(w)] = 1 = rank[G,«(w)], with g = (0,...,0,1). Thus,V can not be
RY%invariant.

The following remark states that the converse of Corol&ag.3is true if we impose
some conditions on the generagor

Remark5.6.4 Letp € L2(RY) such that supg,) = [0, 1)%. If |supp®)| < 1, thenV/(yp) is
RY%-invariant.

Proof. Using the decomposition from the previous section, for gaetz® = N we have
the fibersre!(w) = g(w + j)ej, where{e;} is the canonical basis fd#(Z%).

By Theorem5.5.8 V(yp) is Ri-invariant if and only if for almost everw € [0, 1)°,
rank|G,(w)] = X jeze rank|G,i(w)]. Since suppg,) = [0, 1)%, we have that rang,(w)] =
1 for almost every € [0, 1).

As G,i(w) = [p(w + j)I?, we obtain that

1 if Gw+]j)#0

rank[G,i(w)] = {O i Slw+ )= 0

Thus,V(p) is Ri-invariant if and only if for almost everyw < [0, 1)! there exists one
and only ongj € Z9 such tha(w + j) # 0.

For a giverw € [0, 1)¢, the existence of suchjac 79 is a consequence of the fact that
suppg,) = [0, 1)%. To prove the uniqueness, we will show that for Z9, the sets

Nj = {w €[0,1)" : Gl + ) # 0} = (supp) N ([0, 1) + })) - |

satisfy thafN; N N;| = O for alli # j.
Since suppf,) = Ujeze Nj, we obtain

1 = |suppG¢)|:\uNji32|Ni|
_ Z Isupp®) mJZtZo, 1)’ +J§|
_ ;JG (supp®) n (0. 1)+ )
- |sJZZ;p(5)| <1

Thus,

JSLIRDILT

jezd jezd
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So,INi N N;| = 0 for alli # j. ThereforeV(y) is R%invariant.

O

Observe that by Remark5.14 if ¢ € L2(RY) satisfies thaft : k € Z%) is a Riesz
basis forV(y), then suppg,) = [0,1)°. So, as a consequence of the previous remark, if
¢ € L2(RY) is such thaft,p : k € Z9% is a Riesz basis fov(¢) and|supp()| < 1, then
V() is Ri-invariant.

5.6.1 Exactinvariance

Given M be a closed subgroup &, we will say that a subspaaé c L?(RY) is exactly
M-invariant if it is an M-invariant space thatmotinvariant under any vector outsidé.

Note that due to of Propositidn2.1, an M-invariant space is exacti-invariant if and
only if it is not invariant under any closed subgroMp containingM.

Itis known that on the real line, the SIS generated by a fongtiwith compact support
can only be invariant under integer translations. Thattigg exactlyZ-invariant. The
following proposition extends this result RS'.

Proposition 5.6.5. If a nonzero functiory € L2(RY) has compact support, then() is
exactlyzd-invariant.

Proof. The proof is a straightforward consequence of Corol@af;2

O

Note that the compactness of the suppokp &f L2(RY) is not a necessary condition for
the exactlyz%-invariance ofV(¢). To see this, consider the functigre L?(RY) such that
@ = xpo.2p- Since suppk) = [0, 2)4, it follows thaty is not compactly supported.

We claim thatV := V(p) is exactlyZ®-invariant. On the contrary, assume thais
M-invariant for some closed subgroipof R? such thaz ¢ M.

For 1< j < dlete; € RY be the canonical vectors. Sinzé ¢ M, it follows that
M* ¢ Z%. Thus there exists & j < d such thag; ¢ M*.

We have thagj # 0 in N = Z9/M*. Let¢®, ¢® be the functions defined by
W=y Bon[0,2)¢ and‘;e\" = XBgn[0,2s

whereB, = [0,1)% + o + M* foro e N.

Since [Q1)* € By N [0,2)" and [Q1)" + & € B N [0,2)7, it follows that p(w) =
¢%(w +€) = 1 forallw € [0,1)%. Thus,

rank[Go(w)] = 1 = rank[G,« (w)], for w € [0, 1)".

On the other hand, rangg,(w)] = 1 for w € [0, 1)%. So, by Theoren®.5.8 V can not be
M-invariant.
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The next theorem shows the existence of SISs that are exdethyariant for every
closed subgroup of RY containingzd.

Theorem 5.6.6.For each closed subgroup M &€ containingZ?, there exists a shift-
invariant space of #(RY) which is exactly M-invariant.

Proof. Let M be a subgroup aR® containingZ®. We will construct a principal shift-
invariant space that is exacti-invariant.

Suppose that @ N and takep € L?(RY) satisfying supgk) = By, whereBy is defined
asin 6.13. LetV = V(p).

Then,Uy = V andU,, = {0} for o € N, o # 0. So, as a consequence of Theotemm 2
it follows thatV is M-invariant.

Now, if M’ is a closed subgroup such thdt & M’, we will show thatV can not be
M’-invariant.

SinceM ¢ M’, (M’)* ¢ M*. Consider a sectiof of the quotientM*/(M’)* containing
the origin. Then, the set given by

N ={c+h:oceN,heH),

is a section ofZ9/(M’)* and O N.

If {B},en- is the partition defined in5(13 associated td/’, for eacho € N it holds
that{B’__ }n is a partition ofB,, since

o+h

B,=Q+o+M =[JQ+o+h+ (M) = JB, (5.27)
heH heH

We will show now that; ¢ V, whereU| is the subspace defined i6.16 for M’. Let
g € L?(RY) such tha@ = ¢xe,- Theng € U;. Moreover, since supp] = By, by (5.27),
g=+0.

Suppose thag € V, theng = ¢ wheren is aZ%-periodic function. SinceM ¢ M/,
there exist$ € H such thah # 0. By (5.27), g vanishes irB;. Then, thez?-periodicity
of n implies thaty(y) = 0 a.e.y € RY%. Sog = 0, which is a contradiction.

This shows thaly ¢ V. ThereforeV is notM’-invariant.

5.7 Extension to LCA groups

We would like to remark here that the characterizations efexkira invariance for shift-
invariant spaces are still valid for the general contextoally compact abelian (LCA)
groups (seeACP104). This is important in order to obtain general conditiohattcan

be applied to dterent cases, as for example the case of the classic groupsasube

d-dimensional toruY, the discrete group?, and the finite groufy.
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Although in [ACP104 we developed all the necessary theory to the complete under
standing of the problem, we will not include here all the t=ssabtained in that paper
since we would need a lot of notation and technical aspecishvere not congruent with
the general line of these thesis. However, in this secti@wwll give a brief description
of the problem for the LCA context and the general resultaioled for this case.

AssumeG is an LCA group anK is a closed subgroup @. Fory € G let us denote
by t, the translation operator acting @3(G). That is,t,f(x) = f(x—y) for x € G and
f € L2(G). A closed subspac¥ of L?(G) satisfying that, f € V for everyf € V and
everyk € K is calledK-invariant. In the case th& is RY andK is Z° the subspac¥ is
the classical shift-invariant space. The structure ofdlsgmces for the context of general
LCA groups has been studied iKT08, CP1(Q. Independently of their mathematical
interest, they are very important in applications. Thewpmte models for many problems
in signal and image processing.

In [ACP104 we study necessary andfBaient conditions in order that af-invariant
spaceV c L%(G) is M-invariant, whered C G is a countable uniform lattice arM is any
closed subgroup d& satisfying thatH € M C G. As a consequence of our results we
proved that for each closed subgroMpof G containing the latticél, there exists ai-
invariant spacé&/ that is exactlyM-invariant. That isyV is not invariant under any other
subgroupM’ containingM. We also obtained estimates on the support of the Fourier
transform of the generators of theinvariant space, related to i-invariance.
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