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Abstract. We propose a new algorithm for the computation of the mini-
mal associated primes of an ideal. In [1] we have introduced modifications
to an algorithm for the computation of the radical by Krick and Logar
([2]) (based on ideas by Gianni, Trager and Zacharias ([3])), that made
it more efficient. In this work, we show how these same modifications can
be applied to the algorithm for the computation of the minimal associ-
ated primes proposed in [3]. We explain the algorithm, our modifications
and show some benchmarks that confirm that the new algorithm is more
efficient than the original one.
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1 Introduction

Solving systems of polynomial equations is a main task in Computer Algebra,
although the precise meaning of what is an acceptable solution depends on the
context. In this work, we interpret it as finding the minimal associated primes
of the ideal generated by the polynomials. Geometrically, this is equivalent to
decompose the set of solutions into its irreducible components.

A common technique is to reduce the problem to the zero dimensional case.
In a paper by Gianni, Trager and Zacharias they use this technique, combined
with the splitting tool I = (I : h∞)∩ 〈I, hm〉 for some specific polynomial h and
integer m. This splitting introduces a number of redundant components that are
not part of the original ideal.

Their ideas can be used to compute the primary decomposition, the radical
and the minimal associated primes. In [2], the authors use these ideas to compute
the radical of an ideal. In [1] we propose some modifications to that algorithm.
We use the reduction to the zero dimensional case, but we avoid working with the
ideal 〈I, hm〉 using instead saturations with respect to appropriate polynomials.
As a result, when the ideal has components of different dimensions, our algorithm
is usually more efficient.

In the present work we show how the same modifications can be applied to
the computation of the minimal associated primes of an ideal. We make a brief
description of GTZ algorithm, we introduce our modifications and we show some
time comparisons using an implementation in Singular [4].
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2 Preliminaries

We note Vk(I) for the vanishing set of I in kn and k̄ for the algebraic closure
of k. An ideal is called zero dimensional if Vk̄(I) has only a finite number of
points. This is equivalent to saying that it contains polynomials pure in each
variable. If I is zero-dimensional, we say that a variable xi separate the points
of I if the results of evaluating the polynomial xi in each of the points of Vk̄(I)
are all different.

Following the ideas in [3], the computation of the minimal associated primes
of a general ideal can be reduced to the zero dimensional case. For the computa-
tion of the minimal associated primes of a zero dimensional ideals, the following
algorithm, also based in an algorithm proposed in [3], can be used.

Proposition 1 Let 〈g〉 = I ∩k[xn] and g = gm1
1 . . . gmt

t , the factorization. Then

I = ∩t
i=1〈I, gmi

i 〉.

If xn separate points, then

– 〈I, gmi
i 〉 is primary

–
√
〈I, gmi

i 〉 = 〈I, gi〉, and these are the minimal associated primes.

In [5] [Criterion 4.2.4], an algorithm is given for checking if xn separates
variables, by looking at the shape that the ideals 〈I, gmi

i 〉 must have in that
case.

If xn does not separate variables, a random coordinate change must be per-
formed. If k is infinite a suitable coordinate change always exist.

In [3], the authors use the splitting tool I = (I : h∞) ∩ 〈I, h〉 (for h such
that I : h = I : h2). They find h such that the minimal associated primes of
I : h can be obtained by reduction to the zero-dimensional case and the ones
corresponding to 〈I, h〉 can be obtained by induction.

When taking 〈I, h〉 there appear redundant components (that is, components
that were not part of the original ideal) that slow down the algorithm perfor-
mance.

In the algorithm that we proposed in [1] for computing the radical of an ideal,
we avoided using 〈I, h〉 and instead we used repeatedly the saturation I : h∞ for
appropriate h. This leaded in some cases to a more efficient algorithm.

The same ideas can be used for computing the minimal associated primes of
an ideal, obtaining the following algorithm

Algorithm 2 minAssPrimes(I)
Input: I ⊂ k[x]
Output: P1, . . . , Pt, the minimal assocciated primes of I.

1. P̃ ← 〈1〉 (P̃ will be the intersection of the minimal associated primes already
obtained).

2. Repeat
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(a) Look for g ∈ P̃ r
√

I. To find it, search over the generators of P̃ and
check if they are in

√
I.

(b) If there does not exist such g, it means that P̃ ⊂
√

I. Since we always
have

√
I ⊂ P̃ , we conclude that P̃ =

√
I. Exit the cycle.

(c) If there exists g ∈ P̃ r
√

I, this means that there exists at least one
minimal prime P associated to I such that g 6∈ P .
J ← I : g∞.

(d) Reduction to the zero-dimensional case:
Take a maximal independent set u with respect to J and compute P ′

1, . . . ,
P ′

s, the minimal associated primes of the zero-dimensional ideal Jk(u)[xr
u].

(e) Contract the ideals P ′
i ⊂ k(u)[x r u] to Pi ⊂ k[x], 1 ≤ i ≤ s.

(f) P̃ ← P̃ ∩ P1 ∩ · · · ∩ Ps.
(g) P ← P ∪ {P1, . . . , Ps}.

3. output = P, the minimal associated primes of I.

The correctness and termination of the algorithm can be proven in exactly
the same way as in [1].

Remark 1. As in [1], in this algorithm there is no redundancy. All the ideals that
we add to P are minimal prime ideals associated to I.

As an example, we apply the algorithm to the ideal

I = 〈y + z, xz2w, x2z2〉 ⊂ Q[x, y, z, w].

In the first iteration, we take g := 1 and J := I : 1∞ = I. We find that u = {x, w}
is a maximal independent set with respect to J . Making the reduction step, we
obtain that the only minimal associated primes of J(u)[x r u] is 〈y, z〉, which
contracted to k[x] is P1 = 〈y, z〉. We take P̃ := P1 and P := {P1}.

In the second iteration, we look for g ∈ P̃ such that g 6∈
√

I. We obtain
that z 6∈

√
I and compute J = I : z∞ = 〈y + z, xw, x2〉. Now u = {z, w} is a

maximal independent set with respect to J . The only minimal associated prime
of Jk(u)[x r u] is 〈y + z, x〉, which contracted to k[x] gives P1 = 〈y + z, x〉. We
take P̃ := 〈y, z〉 ∩ 〈y + z, x〉 = 〈y + z, xz〉 and P = {〈y, z〉, 〈y + z, x〉}.

If we search for g ∈ P̃ such that g 6∈
√

I, we obtain that y + z and xz are
both in

√
I. Therefore, the algorithm terminates. We obtain that the minimal

associated primes of I are 〈y, z〉 and 〈y + z, xz〉.
We now apply GTZ algorithm ([3]) to the same ideal, to compare it with

ours. We start with I = 〈y + z, x z2w, x2z2〉. The first step is the same, we
obtain P1 = 〈y, z〉 P̃ := P1 and P = {P1}.

The next step is different. We look for h such that I = (I(u)[xru]∩ k[x])∩
〈I, h〉. We can take h = xz. Now,

√
I = 〈y, z〉 ∩

√
〈I, xz〉. So it remains to

compute the minimal associated primes of 〈I, xz〉. Carrying on the algorithm,
we get that they are 〈y + z, x〉 and 〈w, y, z〉.

The last prime is not a minimal associated prime of I (not even an associated
prime of I). It is a new component that appeared when we added xz to I.
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This is a situation that repeats often in the examples. The polynomials that
the algorithm adds to I make it more and more complex. The polynomials added
are usually large, since they are the product of coefficients of polynomials in a
Gröbner basis and the size of the Gröbner basis of the new ideal can increase
drastically.

This does not happen in our proposed algorithm. We compute instead the
saturation with respect to polynomials that are usually simple, and this satu-
ration does not increase the complexity of the ideal since it only takes some
components away from it. No new components can appear.

3 Performance evaluation

In this section, we apply the proposed algorithm to several examples given in
[6], [7] and other ideals and evaluate its performance. (We only consider those
ideals that are not zero dimensional.) We implemented the algorithm in Singular
([4]). Our routine uses the subroutine for the reduction to the zero dimensional
case that is already implemented in the library primdec [8] for the computa-
tion of the Minimal Associated primes by Gianni-Trager-Zacharias algorithm.
We compare the times obtained by our algorithm with the algorithms imple-
mented in primdec: Gianni-Trager-Zacharias ([3]) and via Characteristic Sets
(proc minAssChar).

We created some new examples where the differences are more significant,
which we detail below.
p1 = a+ c+ d+ e+ f + g +h+ j− 1, p2 = −b+ c+ e+ g + j, q1 = 59ad+59ah+
59dh− 705d− 1199h, q2 = −54acf − 54adf + a + d, q3 = adfg + a + d
I1 = 〈p1, p2〉 ∩ 〈q1, q2, q3〉 (polynomials taken from DGP25 and DGP28)
p1 = x2 + y2 + z2 − t2, p2 = xy + z2 − 1, q1 = w2xy + w2xz + w2z2, q2 =
tx2y + x2yz + x2z2, q3 = twy2 + ty2z + y2z2, q4 = t2wx + t2wz + t2z2

I2 = 〈p1, p2〉 ∩ 〈q2, q3, q4〉, I3 = 〈p1, p2〉 ∩ 〈q1, q3, q4〉 (polynomials taken from
DGP31 and DGP32)

The results are shown in Table 1. All the computations are done over Q. The
ordering of the monomials is always the degree reverse lexicographical ordering
with the underlying ordering of the alphabet.

The codes for the examples in the firsts columns are the ones given in [6] and
[7]. ”Dim” indicates the dimension of the ideal; ”Prim. comps.”, the total number
of primary components; ”Min. ass.”, the number of minimal associated primes;
”Emb. comps.”, the number of embedded components and ”Equidim?” if the
ideal is equidimensional. The last three columns show the timings. GTZ is the
algorithm of Gianni, Trager and Zacharias ([3]) and Char is an algorithm using
characteristic sets implemented in Singular. Timing is measured in hundredths
of seconds. The entry * means that after one day of computations, the algorithm
did not terminate.

In the implementation of GTZ in Singular, the original ideal is first decom-
posed using factorizing Gröbner bases algorithm and then the minimal associated
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Table 1. Timing results

Source Code Dim Prim.
comps

Min.
ass.

Emb.
comps

Equidim? this
paper

GTZ Char

DGP 1 3 4 4 0 Yes 39 37 1037

DGP 2 3 16 15 1 No 57 40 86

DGP 3 2 11 4 7 No 6 4 2

DGP 4 6 4 3 1 No 18 17 14

DGP 7 3 6 6 0 Yes 26 20 76

DGP 14 1 8 2 6 No 9 7 5

DGP 20 4 2 1 1 No 15 14 3185

DGP 21 9 9 1 8 No 3 2 1

DGP 22 2 9 7 2 No 33 25 370

DGP 23 2 18 12 6 No 91 71 22750

DGP 24 8 6 5 1 No 14 9 12

DGP 25 5 7 5 2 No 101 81 1615

DGP 27 4 3 3 0 Yes 13 9 11

DGP 28 7 2 2 0 Yes 30 27 18

DGP 29 2 12 1 11 No 4 2 9

DGP 30 1 14 14 0 Yes 283 259 12145

DGP 31 1 1 1 0 Yes 10 10 3

DGP 32 2 17 8 9 No 21 15 34

DGP 33 2 3 3 0 No 10 8 5

CCT M 5 3 3 0 No 58 48 2268

CCT 83 5 3 3 0 No 133 603 98

CCT O 2 5 5 0 Yes 26 209 3

New 1 9 4 4 0 No 281 * 2383

New 2 3 11 8 3 No 120 * 32065

New 3 3 11 8 3 No 69 * 27088

primes of each component are computed. We do the same decomposition in our
algorithm.

We see that for time consuming computations, our proposed algorithm is
always faster than GTZ algorithm.
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