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Abstract. For a topological group G it is possible to obtain its univer-
sal von Neumann algebra W ∗(G) as a set of “fields” over the category
of representations of G. This idea was first developped by John Ernest
in [1]. Here we propose several improvements to the original construc-
tion. We point out that G doesn’t have to be locally compact or second
countable and analyze the functorial aspects: W ∗ turns out to be a
functor from the category of topological groups to that of von Neumann
algebras. It is left adjoint of U , the functor which assigns to each al-
gebra its unitary group with the σ-weak topology (this adjunction was
previously proved by Martin Wanvik for a different description of the
functor W ∗). We include a section on the analogous construction for
C∗-algebras instead of groups, mainly as an auxiliary tool. For a locally
compact group, G is a topological subspace of W ∗(G). We study the
closure of G for it gives a compactification. This leads us to a paradox
(4.4).

Conventions. “Representation” will mean:
• For a group G: a weakly continuous unitary representation on a Hilbert

space, i.e. a weakly continuous group homomorphism G→ U(H).
• For a von Neumann algebra M : a unit preserving ∗-algebra morphism

M → B(H) continuous for the σ-weak topologies.
• For a C∗-algebra A: a nondegenerate ∗-algebra morphism A→ B(H).
Consistently, the σ-weak (or weak-*) topology will be the standard topol-

ogy for a von Neumann algebra. Thus, morphisms in the category of von
Neumann algebras will be those continuous for this topology (and unit pre-
serving). “Von Neumann algebra” and “W ∗-algebra” are taken as synonyms,
meaning a C∗-algebra with predual.

1. Universal W ∗-algebra for general topological groups

The universal von Neumann algebra W ∗(G) of a locally compact second
countable Hausdorff group is a very big algebra containing L1(G), C∗(G),

M(G) (1) as “immerse” subalgebras and G as a subgroup of its unitary
group. G and W ∗(G) have the same representations, and W ∗(G) is equal
to C∗(G)∗∗, the double dual of the full group C∗-algebra. All this has been
done by John Ernest in [1]. The same procedure can be applied to every
topological group though some properties might be lost. For example, the
canonical application G→W ∗(G) won’t be injective. The importance of

1M(G) is the algebra of all complex valued finite regular measures on G.
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removing such hypothesis for us is that it allows to take the W ∗-algebra of
U(M)(2), the unitary group of a von Neumann algebra M , so we can prove
that W ∗ is a left adjoint functor for U .

Let us start with the definition of W ∗(G).

1.1. Definition. For a topological group G, let cyc(G) be the category of
cyclic representations of G (just one for each equivalence class) with the
usual morphisms: bounded linear interwining operators. We call “field”

over cyc(G) a function T assigning to each π ∈ cyc(G), G
π−→ U(Hπ), an

element T (π) ∈ B(Hπ) in a bounded and coherent with morphisms way.

Explicitely: sup
π
||T (π)|| <∞, and if Hπ1

S−→ Hπ2 is a morphism of represen-

tations (Sπ1(a) = π2(a)S) then ST (π1) = T (π2)S. In other words, fields
are just bounded endomorphisms of the forgetful functor cyc(G)→ H, where
H is the category of Hilbert spaces.

It is easy to see that W ∗(G) is a C∗-algebra with product and involution
defined pointwise and the norm is ||T || = sup

π
||T (π)||.

1.2. Proposition. W ∗(G) is a von Neumann algebra.

Proof. Take the Hilbert

H =
⊕

π∈cyc(G)

Hπ , W ∗(G)
Π−→ B(H) , Π(T ) =

⊕
π∈cyc(G)

T (π)

Π is clearly a faithful representation. Let us see that the image is strongly
closed. Assume Π(Tµ)→ S for the sot. If α ∈ Hπ, Π(Tµ)α = Tµ(π)α→ Sα,
then Sα ∈ Hπ. This means S =

⊕
Sπ. Putting T (π) = Sπ, it follows easily

that T is a field and Π(T ) = S. �

1.3. Proposition. If T is a field over cyc(G), T (π) belongs to the von
Neumann algebra generated by π(G) for every π ∈ cyc(G).

Proof. An operator S ∈ π(G)′ is an endomorphism of π, so it commutes with
T (π) because of compatibility with morphisms. Therefore, T (π) ∈ π(G)′′.

�

1.4. Proposition. A field over cyc(G) can be uniquely defined over any
representation of G in a compatible way with morphisms. In other words,
replacing cyc(G) by a category of representations rep(G) ⊃ cyc(G) contain-
ing all of the interwiners between its objects, the set of fields remains the
same.

2The set of unitaries U(M) with the σ-weak topology is a Hausdorff topological group.
The product U(M)× U(M)→ U(M) is continuous: consider a faithful representation of
M . The strong topology coincides with the weak and σ-weak in U(M). Composition is
jointly continuous for the strong topology over bounded sets, while the “inverse” applica-
tion is the involution ∗, continuous for the weak topology.
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Proof. Clearly, a field over rep(G) can be restricted to a field over cyc(G).
Now let T be a field over cyc(G), and (π,H) ∈ rep(G). π can be expressed as
a direct sum of cyclic representations, so we define T (π) as the direct product
of the operators associated to these subrepresentations. This definition is
correct because of the following. Assume we have two decompositions into
cyclic subrepresentations: H =

⊕
Ai =

⊕
Bj . Consider Pi and Qj the

orthogonal projections to the subspaces Ai and Bj . We have the following

morphisms of cyclic representations, Bj
Pi|Bj−−−→ Ai. Compatibility of T says

T (Ai)Pi|Bj = Pi|BjT (Bj) (we abuse harmlessly identifying the subspace
with the subrepresentation).∑

i

T (Ai)Pi = (
∑
i

T (Ai)Pi)(
∑
j

Qj) =
∑
i,j

T (Ai)PiQj =

=
∑
i,j

PiT (Bj)Qj =
∑
j

T (Bj)Qj

The sums converge strongly. It is valid to interchange the order of
summation because composition of operators is jointly continuous for the
strong topology when restricted to bounded sets. This proves that T is well
defined.

The extended field is clearly bounded. To see compatibility, take a mor-

phism between π1 and π2, H1
S−→ H2, and any vector α ∈ H1. Now

take decompositions of these representations as sum of cyclic subrepre-
sentations, containing the cyclic representations generated by α and S(α)
respectively. Because of the original compatibility in cyc(G), we have
ST (π1)(α) = T (π2)S(α). �

1.5. Observation. Consider Π, the faithful representation from proposition
1.2, and ΠG =

⊕
π∈cyc(G) π the representation of G acting on the same

Hilbert as Π, H =
⊕

π∈cyc(G)Hπ. For T ∈ W ∗(G) we have T (ΠG) = Π(T ).

This is can be easily checked for α ∈ Hπ because of compatibility with the
inclusion morphism Hπ ↪→ H.

1.6. Proposition. There exists a canonical continuous function

G
∧−→W ∗(G). The elements ĝ are unitaries and generate W ∗(G) as a

von Neumann algebra.

Proof. ĝ(π) := π(g) defines a unitary field. Next we show continuity. All the
weak topologies in a von Neumann algebra coincide on the unitary group.
gµ → g implies Π(ĝµ)α = π(gµ)α → π(g)α for α ∈ Hπ (because π is
continuous), and this is easily generalized for all α ∈ H. Now we’ll see

Π(W ∗(G)) = Π(Ĝ)′′. Let T ∈W ∗(G). If S ∈ Π(Ĝ)′, it is an endomorphism
of ΠG. Compatibility says:

ST (ΠG) = T (ΠG)S

SΠ(T ) = Π(T )S
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proving Π(T ) ∈ Π(Ĝ)′′ and therefore Π(W ∗(G)) ⊂ Π(Ĝ)′′. The other inclu-
sion holds because the bicommutant is the smallest von Neumann algebra
containing Π(Ĝ). �

1.7. Proposition. Let M be a von Neumann algebra and G
f−→ U(M) a

continuous morphism of groups. There exists a unique morphism of W ∗-

algebras W ∗(G)
f̃−→M such that the triangle commutes.

W ∗(G)
∃!f̃ // M

G

∧
OO

f

77nnnnnnnnnnnnnnn

Proof. Uniqueness is clear, since G generates W ∗(G) as a W ∗-algebra. Let
us prove existence. We first consider the case M = B(H) (H is any Hilbert
space). f is a representation. According to proposition 1.4, we can define

f̃(T ) = T (f). Thus defined, f̃ clearly preserves the operations of sum,
product and involution. We must prove that it is continuous for the σ-weak
topologies. In order to do so, take an element of the predual of B(H). We
write it as tr(A(−)), where A is trace class.

W ∗(G)
f̃ //

))SSSSSSSSSSSSSSSSSS B(H)
tr(A(−))

""EEEEEEEE

G

OO

f

99tttttttttt
C

If we show that tr(Af̃(−)) is in the predual of W ∗(G) (i.e: it is a normal
functional) we are done. But this follows at once if we faithfully represent
W ∗(G) on the Hilbert

(
⊕

π∈cyc(G)

Hπ)⊕H

where an element T ∈ W ∗(G) acts on each Hπ and H according to T (π)
and T (f) respectively. Just like in 1.2, this representation is faithful and
the image is strongly closed.

If we now have a general W ∗-algebra M , we can take a faithful represen-

tation M
j
↪→ B(H) and extend j ◦ f to j̃ ◦ f . The argument in 1.3 applied

to j ◦ f proves that j̃ ◦ f(T ) belongs to the von Neumann algebra generated

by f(G), so j̃ ◦ f(T ) ∈M .



5

W ∗(G)
f̃ //

j̃◦f

))
M

� � j // B(H)

G

OO
f

77nnnnnnnnnnnnnnn
j◦f

44iiiiiiiiiiiiiiiiiiiiiii

�

1.8. Observation. From previous proposition it follows that the category
of representations of G coincides with the category of representations of
W ∗(G).

1.9. Corollary. W ∗ is a functor from the category of groups to that of von
Neumann algebras and it is a left adjoint for the functor U which assigns
the unitary group to each algebra.

Proof. Functoriality is a direct consequence of the previous proposition
applied to:

W ∗(G)
f̃ // W ∗(K)

G

OO

f // K

OO

Composition is preserved thanks to uniqueness.
The adjunction W ∗ a U also follows immediately. A morphism

G → U(M) induces W ∗(G) → M , and a morphism W ∗(G) → M
can be restricted to G → U(M) composing with the canonical map
G→W ∗(G). Again uniqueness allows us to prove that these correspon-

dences [W ∗(G),M ] // [G,U(M)]oo are mutually inverse, and natural in

both variables. �

1.10. Observation. If π is a representation of G and α, β ∈ Hπ, the linear
function

W ∗(G)→ C
T 7−→ 〈T (π)α, β〉

is continuous. This is because it is continuous for the wot through a faithful
representation of W ∗(G) containing π, which is achieved just like in the
proof of 1.7.

Comparison with [1]. Our definition of field presents some differences with
the one from [1]. In the first place, Ernest works with representations on a
fixed big enough Hilbert space. We prefer to work with a category because
it allows a neater formulation. As proposition 1.4 shows, it is enough to con-
sider cyclic representations only. For the notion of compatibility required
for fields, Ernest assumes compatibility with direct sums and (implicitly)
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unitary equivalences. We next show that it is actually enough to require
just compatibility with those morphisms of representations which are par-
tial isometries. Then it is left to the reader the verification that Ernest’s
condition is stronger (thus equivalent).

1.11. Proposition. Let T be an object that assigns to each π ∈ cyc(G) a
bounded operator on Hπ in a compatible way with morphisms of representa-
tions that are partial isometries. Then T is compatible with every morphism.

Proof. Given an arbitrary interwiner S, let S = UP be its polar decom-
positionon. P = (S∗S)1/2 is a morphism of representations and the partial

isometry U is a morphism as well (U maps (S∗S)1/2y to Sy and the orthogo-
nal complement to 0). Therefore, T is compatible with U by hypothesis and
it only remains to prove that T is compatible with any positive morphism
P . Taking r > 0 small enough, rP has its spectrum inside [0, 2π). eirP is a
unitary equivalence, so it is compatible (commutes) with T . But rP is the
logarithm of eirP , so rP also commutes with T . �

2. Enveloping W ∗-algebra of a C∗-algebra

Starting with a C∗-algebra A it is possible to imitate the same procedure
and obtain good results. [5]

2.1. Definition. Let cyc(A) be the category of cyclic representations of A.
As in the case for groups, a field T over cyc(A) is a function which assigns
to each π ∈ cyc(A) a bounded operator T (π) ∈ B(Hπ) in a bounded and
compatible with morphisms way.

Fields over cyc(A) form a von Neumann algebra that we call AF . The
proof of this fact is completely analogous to the one for W ∗(G), i.e., showing
that the representation Π made with the sum of all cyclic representations
of A gives a faithful representation whose image is strongly closed. A is a

subalgebra of AF through the canonical map A
∧
↪→ AF , â(π) = π(a). The

analogous to 1.4 is valid with same proof.

2.2. Proposition. AF is the enveloping von Neumann algebra of the C∗-
algebra A.

Proof. Let ΠU =
⊕

ϕ∈S(A) πϕ be the universal representation of A. S(A)

is the set of states and A
πϕy Hϕ are the GNS representations. For

AF , consider the natural faithful representation AF
Π̃y
⊕

ϕ∈S(A)Hϕ. Let

T ∈ AF . Compatibility with the inclusion interwiner Hϕ0 ↪→
⊕
Hϕ implies

Π̃(T )α = T (ΠU )α for α ∈ Hϕ0 . Then Π̃(T ) = T (ΠU ). Now we can prove

Π̃(AF ) = ΠU (A)′′. Let T ∈ AF . If S ∈ ΠU (A)′, it is an endomorphism of
ΠU . Compatibility says:

ST (ΠU ) = T (ΠU )S
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SΠ̃(T ) = Π̃(T )S

which means Π̃(T ) ∈ ΠU (A)′′ and therefore Π̃(AF ) ⊂ ΠU (A)′′. The other in-
clusion holds because the bicommutant is the smallest von Neumann algebra
containing ΠU (A). �

The enveloping von Neumann algebra of A is equal to the bidual A∗∗ ([4],
theorem 1.17.2) with Arens multiplication (see [3] for the definition of this
product).

Also mimicking the proof for the case of groups we obtain (−)F a O,

where C∗ O←W∗ is the forgetful functor.

3. Locally compact Hausdorff groups

If G is a locally compact Hausdorff group, it is known that its category
of representations is isomorphic to the category of representations of its
universal C∗-algebra C∗(G). From this fact it can be easily deduced that
the respective categories of cyclic representations are isomorphic as well.
Therefore, if A = C∗(G), AF coincides with W ∗(G).

As cyclic representations of G separate points, the canonical map
G→W ∗(G) is injective. Besides this inclusion is topological, as we now

proceed to show.(3)

3.1. Lemma. For a locally compact Hausdorff group G, the topology of G is
the initial topology with respect to the family of positive type functions.

Proof. Let τp be the topology generated by the positive type functions.
Every element in τp is an open set of G. So it is enough to prove that
for every x ∈ G, U open set of G containing x, there exists an open set
W ∈ τp such that x ∈ W ⊂ U . First we assume x = 1. Let V be an open
set of G with compact closure such that V 2 ⊂ U y V −1 = V . The function
χV ∗ χV is continuous, positive type, it annihilates outside U and takes the
value |V | > 0 on 1. With this function it is easy to find a W as required. If
we now take any x ∈ G, we can translate it to 1. A translation of a function
of positive type is a linear combination of positive type functions, as the
following calculation shows:

〈π(g−1x)ξ, ξ〉 = 〈π(x)ξ, π(g)ξ〉 = 〈π(x)α, β〉

= 1/4

(
〈π(x)(α+ β), α+ β〉 − 〈π(x)(α− β), α− β〉+

+i〈π(x)(α+ iβ), α+ iβ〉 − i〈π(x)(α− iβ), α− iβ〉
)

where α = ξ y β = π(g)ξ. �

3.2. Proposition. Let G be a locally compact Hausdorff group. G is a

topological subspace of W ∗(G) through the canonical inclusion G
∧
↪→W ∗(G).

3This is done in [1] but we include it here for the sake of completeness.
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Proof. The σ-weak topology of W ∗(G) is, by definition, initial with respect
to C∗(G)∗. Since C∗(G)∗ is linearly generated by the positive functionals
([4] proposition 1.17.1), these suffice to generate the topology. The topolog-

ical inclusion Ĝ ↪→W ∗(G) is of course initial, so if we compose it with those
positive functionals we have an initial family that is equal to the class of all
positive type functions. Let’s check this. For a ϕ ∈ C∗(G)∗, 0 6= ϕ ≥ 0,
there is a representation π̃ of W ∗(G) such that ϕ = 〈π̃(−)ξ, ξ〉. The restric-
tion to G is the positive type function f associated to the representation
π = π̃ ◦ ∧. Conversely, for a positive type function f 6= 0 over G, there
is an associated representation whose extention to W ∗(G) gives a positive
ϕ ∈ C∗(G)∗ extending f .

Now the result follows from previous lemma. �

4. Closure of G inside W ∗(G)

In W ∗(G) balls are compact because of Banach-Alaoglu’s theorem. They
are closed too because W ∗(G) is Hausdorff. Since G is contained in the
unit ball, its closure is a compactification of G that we want to understand.
Compactifications can be classified according to the algebra of bounded
continuous functions G → C extendible to G. The inclusion G ↪→ W ∗(G)
extends every representation of G, so at least G extends every function of
positive type.

The category cyc(G) isn’t closed by tensor products. For this reason,
we will now consider the fields T ∈ W ∗(G) over the category rep(G) of
representations whose dimensions are bounded by an infinite cardinal big
enough to contain all the cyclic representations. Thus, rep(G) is closed by
tensor products.

4.1. Definition. Let

G⊗ = {T ∈W ∗(G) \ {0}/T (π1 ⊗ π2) = T (π1)⊗ T (π2) ∀π1, π2 ∈ rep(G)}
Clearly, G⊗ contains G.

4.2. Proposition. Elements in G⊗ are unitary.

Proof. Let T ∈ G⊗. If 1 is the trivial representation, we might think
T (1) ∈ C. Since T (1) = T (1 ⊗ 1) = T (1) ⊗ T (1) = T (1)2, T (1) equals 0
or 1. If T (1) = 0 then T (π) = T (π ⊗ 1) = T (π) ⊗ T (1) = 0, so T = 0,
absurd. We then have T (1) = 1.

Consider the interwiner π ⊗ π ε−→ 1 (4) given by x⊗ y 7→< x, y >. Since
T (π ⊗ π) = T (π)⊗ T (π), compatibility with morphisms gives:

< T (π)(x), T (π)(y) >=< x, y >

From here we can easily conclude T (π)
∗
T (π) = IdH . But this last equality

holds for any element of G⊗ and any representation. Therefore we can

4π is the conjugate representation of π. It is defined by π(g)(x) = π(g)(x) for x ∈ H,
the conjugate Hilbert space of H.
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choose T ∗ and π, leading to: T (π)T (π)∗ = IdH . Conjugating we have:

T (π)T (π)
∗

= IdH . So T (π) is invertible. This allows to define the field

T−1(π) = T (π)−1 = T (π)
∗

which is compatible with morphisms because T

is, and it is bounded because ||T (π)−1|| = ||T (π)
∗|| = ||T (π)||, from where

also follows ||T || = ||T−1||. Under this conditions, an argument of Ernest in
[1] shows that T is unitary:

1 = ||TT−1|| ≤ ||T ||.||T−1|| = ||T ||2

implies ||T || ≥ 1. On the other hand, if ||T || > 1 then

||T (π⊗n)|| = ||T (π)⊗n|| ≥ ||T (π)||n

wouldn’t be bounded for some π such that ||T (π)|| > 1. Thus, ||T || =
||T−1|| = 1. For operators on a Hilbert space this implies T unitary. Just

as a commentary, observe that T (π) = T (π). �

Notice that G⊗ is contained in the unit ball.

4.3. Proposition. G⊗ is closed and therefore compact. Besides it is closed
for the product, so it is a subgroup of U(W ∗(G)).

Proof. Let Tµ ∈ G⊗ be a convergent net, Tµ → T . Let π1 and π2 be two
representations of G.

〈T (π1 ⊗ π2)x⊗ y, w ⊗ z〉 = lim
µ
〈Tµ(π1 ⊗ π2)x⊗ y, w ⊗ z〉 =

= lim
µ
〈Tµ(π1)⊗ Tµ(π2)x⊗ y, w ⊗ z〉 = lim

µ
〈Tµ(π1)x,w〉〈Tµ(π2)y, z〉 =

= 〈T (π1)x,w〉〈T (π2)y, z〉 = 〈T (π1)⊗ T (π2)x⊗ y, w ⊗ z〉

This shows T (π1 ⊗ π2) = T (π1) ⊗ T (π2). Besides T 6= 0, because
1 = 〈Tµ(1)1, 1〉 → 〈T (1)1, 1〉, so T (1) = 1. Then, T ∈ G⊗.

The other claim is clear. �

Tannaka’s theorem [6] [2] affirms that it is possible to recover a com-
pact group from its category of representations. More specifically, the
original group is equal to the group of unitary tensor preserving fields.
Tatsuuma’s theorem ([7], proposition 2) generalizes this result for locally
compact groups.

4.4. Paradox. Applying Tatsuuma’s duality theorem we get G = G⊗, so
G is compact. We can reach to a contradiction even without Tatsuuma’s
duality theorem. We have the following chain of subgroups of U(W ∗(G)):

G ⊂ G ⊂ G⊗ ⊂ U(W ∗(G))

Since every representation of G extends to a representation of W ∗(G),
and this can be subsequently restricted to G, we deduce that every repre-
sentation of G extends uniquely to a representation of G. Even more, the
categories of representations of G and G are isomorphic. But representations
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of compact groups are different from representations of noncompact groups.
For example, for certain noncompact groups there are infinite dimensional
irreducible representations.
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