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Calculo de formas de Hilbert de pesos
entero y medio entero

Introduccion

En esta tesis hemos trabajado en dos temas distintos relacionados con el cdlculo de formas mo-
dulares de Hilbert: el problema de calcular representantes para clases de ideales en dlgebras de cua-
terniones totalmente definidas, y el problema de calcular preimdgenes para el mapa de Shimura
en formas modulares de Hilbert. Aunque los dos temas pueden ser considerados por separado,
por lo cual hemos dividido esta tesis en dos capitulos, ambos estdn estrechamente relacionados: el
método que damos para calcular preimdgenes para el mapa de Shimura depende fuertemente de la
posibilidad de calcular representantes para clases de ideales.

Capitulo 1: Cilculo de representantes para clases de ideales en dlgebras de cuaterniones

La teoria de algebras de cuaterniones sobre cuerpos de ntimeros juega un rol central en varios
calculos relacionados con formas modulares. La idea de obtener formas modulares como series theta
asociadas a ciertos reticulos en dlgebras de cuaterniones se retrotrae a Hecke (ver [ I). Eichler y
otros (ver [ 11 11 ]) probaron que toda forma modular cuyo nivel no sea un cuadrado
puede ser obtenida como una combinacién lineal de estas series theta, usando como reticulos los ide-
ales para cierto orden en un &lgebra de cuaterniones definida. Como ideales equivalentes dan la
misma serie theta, para este propdsito alcanza con considerar clases de ideales. Pizer dio en [ ]
un algoritmo para calcular los érdenes de Eichler y sus clases de ideales, el cual consiste en pre-
calcular el nimero de clases del orden y luego empezar a calcular ideales (de una manera bastante
aleatoria) hasta que el ntimero de clases es alcanzado.

El calculo de formas modulares de Hilbert ha sido un tema de intensa investigacién en los tltimos
afios. Poder calcularlas es crucial para obtener evidencias numéricas para comprobar la veracidad de
ciertas construcciones de la Teoria de Ntimeros que son bien conocidas sobre los nimeros racionales
pero que son todavia conjeturales sobre otros cuerpos de niimeros, como la teoria de Eichler-Shimura.
Las clases de ideales para 6rdenes de Eichler en algebras de cuaterniones totalmente definidas so-
bre cuerpos de nimeros totalmente reales pueden ser utilizadas para calcular formas modulares de
Hilbert, como se explica en [ ] para formas modulares de Hilbert sobre Q[v/5] y en [ ] sobre
otros cuerpos cuadraticos reales, siguiendo las ideas de Pizer

Todos estos métodos requieren primero encontrar un orden apropiado en una tal dlgebra, y luego
calcular representantes para sus clases de ideales. El propoésito de nuestro trabajo es calcular ambas
cosas de una manera eficiente, y en un contexto general. Concretamente, dada un élgebra de cuater-
niones totalmente definida B sobre un cuerpo totalmente real F', damos un algoritmo para calcular
representantes para clases de ideales para cualquier orden de Bass en B.

Consideramos una vasta familia de 6rdenes, los érdenes de Bass. Ademaés de los bien conocidos
6rdenes de Eichler, esta familia incluye los 6rdenes de nivel p?"*! considerados por Pizer en [ 1,
los 6rdenes utilizados en | ] para calcular formas modulares de nivel p?, y los 6rdenes consid-
erados en | ] para calcular preimédgenes para tales formas bajo la correspondencia de Shimura.
El resto de los 6rdenes de Bass son incluidos por completitud.

Nuestro algoritmo, en contraste con los métodos a la Pizer, no requiere conocimientos sobre
namero de clases, evita el cdlculo aleatorio de ideales, y evita el uso repetido de la forma norma
para chequear equivalencia entre ideales, todo lo cual hace que el método sea eficiente.

Como la implementacion completa (en SAGE) de nuestro algoritmo esta atin bajo desarrollo, no
podemos hacer una comparacion sistemética a gran escala de tiempos de ejecucién; de todas ma-
neras, en [ ] hay un algoritmo, que puede ser considerado como un caso particular del nuestro,
que calcula representantes para clases de ideales para 6rdenes de nivel p? en el dlgebra sobre Q



ramificada exactamente en p y en infinito. Este algoritmo tiene un rendimiento mucho mejor que el
de MAGMA en algunos casos sencillos. Por ejemplo, al calcular representantes para clases de ideales
para un orden de discriminante 1032 en el algebra sobre (Q ramificada exactamente en 103 e infinito,
con una computadora Intel Core™2 CPU 6600 con 2 Gb de memoria RAM, MAGMA (V2.16-6) necesita
1254,96 segundos, mientras que las rutinas en PARI/GP (V2.5.0) tardan 0,00218 segundos.

Los resultados obtenidos en este capitulo fueron enviados y aceptados para su publicacién en la
revista Mathematics of Computation, en un trabajo conjunto con mi director de tesis, Ariel Pacetti. Ver

[PS13].

Capitulo 2: Preimdgenes para el mapa de Shimura en formas modulares de Hilbert

El mapa de Shimura es un mapa Hecke lineal entre formas modulares de peso medio entero y
formas modulares de peso entero, introducido en [ ] para formas modulares clédsicas y gene-
ralizado en | ] a formas modulares de Hilbert, asi como al contexto automorfo en trabajos de
Waldspurger, Flicker y otros. Calcular preimagenes para el mapa de Shimura comenz6 a ser un tema
de interés a partir de las férmulas dadas por Waldspurger, Kohnen-Zagier, Gross y otros, relacio-
nando los valores centrales de twists de la serie L asociada a una forma modular de peso entero
f con los coeficientes de una forma de peso medio entero g correspondiendo a f por el mapa de
Shimura (por ejemplo, ver [ ]). Estas férmulas fueron utilizadas por Tunnell en [ ] para re-
solver el clasico problema de los ntimeros congruentes. Fueron generalizadas para formas modulares
de Hilbert en [ Iyl ].

El problema de calcular preimdgenes para el mapa de Shimura para formas modulares cldsicas
ha sido considerado, por ejemplo, en [ Iyl ]. Nuestro método para calcular preimagenes
en el caso de formas modulares de Hilbert se basa en las ideas presentes en [ ], las cuales a su vez
generalizan el método de Gross. Las preimagenes son obtenidas considerando ciertas series theta
ternarias asociadas a ideales en algebras de cuaterniones. Especificamente, damos un mapa Hecke
lineal del espacio generado por las clases de ideales para un orden de discriminante ® en un &lgebra
de cuaterniones totalmente definida al espacio de formas modulares de Hilbert de peso paralelo 3/2
y nivel 49. Poder calcular estas clases de ideales, problema considerado en el Capitulo 1 de esta tesis,
es por lo tanto crucial para nuestro método.

La correspondencia entre clases de ideales en dlgebras de cuaterniones y formas modulares de
peso medio entero tiene su contraparte automorfa, que fue estudiada en [ ] sobre cuerpos de
nimeros cualesquiera, y en particular en el contexto de formas modulares de Hilbert. La ventaja
de nuestro método es que, siendo mds explicito, permite calcular efectivamente los coeficientes de
las formas modulares de Hilbert de peso medio entero, los cuales aparecen en las férmulas de tipo
Waldspurger.

Hasta donde sabemos, [ ] es el tnico resultado existente sobre cdlculos con coeficientes de
formas de Hilbert de peso medio entero. En este articulo el autor también sigue el método de Gross
para calcular estos coeficientes con el objetivo de probar una férmula de tipo Waldspurger, pero con
varias restricciones como trabajar con formas de nivel potencia de primo y sobre un cuerpo base con
namero de clases impar, y sin considerar los operadores de Hecke ni la correspondencia de Shimura.

Los resultados obtenidos en este capitulo fueron enviados para su publicacién, de la cual se puede
encontrar una versioén preliminar en [ ].
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Computing integral and half-integral
weight Hilbert modular forms

Introduction

In this thesis we have worked in two different subjects related to the computation of Hilbert
modular forms: the problem of computing ideal classes representatives in totally definite quaternion
algebras, and the problem of computing preimages for the Shimura map on Hilbert modular forms.
Though both subjects can be considered separately, and because of that we have split this work in
two chapters, they are closely related: the method we give for computing preimages for the Shimura
map relies heavily on the possibility of computing ideal classes representatives.

Chapter 1: Computing ideal classes representatives in quaternion algebras

The theory of quaternion algebras over number fields plays a central role in many computations
related to modular forms. The idea of obtaining modular forms as theta series attached to certain
lattices in quaternion algebras goes back to Hecke (see [ ]). Eichler and others (see [ 1,
[ 1 I ]) proved that every modular form whose level is not a square can be obtained as a
linear combination of such theta series, using as lattices the ideals for a certain order in a definite
quaternion algebra. Since equivalent ideals yield the same theta series, it suffices to consider ideal
classes. Pizer gavein [ ] an algorithm for computing the Eichler order and its ideal classes, which
consists in precomputing the class number of the order and then start computing ideals (in a rather
random way) until the class number is reached.

Computing Hilbert modular forms has been a subject of intense research during the last years.
Their knowledge is crucial for obtaining numerical evidence for certain constructions in number
theory that are well known over the rational numbers but still conjectural over other number fields,
such as the Eichler-Shimura theory. Ideal classes for Eichler orders in totally definite quaternion
algebras over totally real fields can be used to compute Hilbert modular forms, as explained in [ ]
for Hilbert modular forms over Q[v/5] and in [ ] over other real quadratic fields, following the
ideas of Pizer.

All these methods require first to find a suitable order in such an algebra, and then compute
representatives for its ideal classes. The purpose of our work is to compute both things in an efficient
way, and in a rather general setting. Concretely, given a totally definite algebra B over a totally field
F, we give an algorithm for computing ideal classes representatives for any Bass order in B.

We consider a broad family of orders, namely the Bass orders. Besides the well known Eichler
orders, this family includes the orders considered by Pizer in [ ], the orders used in [ ] for
computing modular forms of level p?, and the orders considered in [ ] for computing preimages
for such forms under the Shimura correspondence. The rest of the Bass orders are included for
completeness.

Our algorithm, in contrast with the methods a la Pizer, does not require any knowledge of class
numbers, avoids the random computings of ideals, and avoids the repeated usage of the norm form
for checking equivalences between ideals, thus making the method efficient.

Although in [ ] the authors, using a smart cohomological trick, manage to compute Hilbert
modular forms for any level using just maximal orders (which avoids computing representatives
for other orders), their approach can not be used for computing preimages for the Shimura map on
Hilbert modular forms of half-integral weight, subject that we consider in Chapter 2 of this thesis.

Since the full implentation (in SAGE) of our algorithm is still in progress, we can not make a sys-
tematic large scale comparision of running times; however, in [ ] there is an algorithm, which
can be considered as a special case of ours, that computes ideal classes representatives for orders
of discriminant p? in the algebra over Q ramified exactly at p and at infinity. This algorithm has a
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much better performance than MAGMA’s in some simple cases. For example, when computing ideal
representatives for an order of discriminant 103 in the algebra over Q ramified exactly at 103 and at
infinity, with an Intel Core™2 CPU 6600 with 2 Gb of RAM memory, MAGMA (V2.16-6) needs 1254,96
seconds, whereas the routines in PARI /GP (V2.5.0) take 0,00218 seconds.

The results obtained in this chapter were sent and accepted for their publication in the journal
Mathematics of Computation, in a joint work with my thesis advisor, Ariel Pacetti. See [ I

Chapter 2: Preimages for the Shimura map on Hilbert modular forms

The Shimura map is a Hecke linear map between half-integral weight modular forms and inte-
gral weight ones, introduced in [ ] in the classical setting and generalized in [ ] to Hilbert
modular forms, as well as to the automorphic setting by the work of Waldspurger, Flicker and others.
Computing preimages for the Shimura map became an interesting subject after the formulas given by
Waldspurger et al. relating the central values of twists of the L-series associated to an integral weight
modular form f with the coefficients of a half-integral weight form g mapping to f by the Shimura
map (for example, see [ ). These formulas were used by Tunnell in [ ] for solving the
classical congruent number problem. They were generalized to the Hilbert setting in [ ] and
[ 1.

The problem of computing preimages for the Shimura map in the classical setting has been con-
sidered, for example, in [ ] and [ ]. Our method for computing preimages in the Hilbert
setting relies in the ideas present in [ ], which in turn generalize the method of Gross. The
preimages are obtained by considering certain ternary theta series associated to ideals in quaternion
algebras. Specifically, we give a Hecke linear map from the space generated by the ideal classes of
an order of discriminant ® in a totally definite quaternion algebra to the space of Hilbert modular
forms of parallel weight 3/2 and level 4©. The problem of computing these ideal classes, considered
in Chapter 1 of this thesis, is thus crucial for our method.

The correspondence between ideal classes in quaternion algebras and half-integral weight mo-
dular forms has its automorphic counterpart, and was studied in [ ] over any number field,
and in particular in the Hilbert setting. The advantage of our method is that, being more explicit,
it allows to compute effectively the coefficients of the half-integral weight Hilbert modular forms,
which appear in Waldspurger’s type formulas.

As far as we know, [ ] is the unique existing result regarding computations with coefficients
of half-integral weight Hilbert modular forms. In this article the author also follows the method
of Gross for computing these coefficients to prove a Waldspurger’s type formula, but with several
restrictions such as working with level a power of a prime and odd class number of the base field,
and with no focus on Hecke operators nor the Shimura correspondence.

The results obtained in this chapter were sent for their publication; there is a preprint available at

[Si12].
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Chapter 1

Computing ideal classes representatives
in quaternion algebras

Summary

Let F' be a number field and let B be a quaternion algebra over F. When computing ideal classes
representatives, locally isomorphic orders in B can be regarded as equal, since two such orders have
a connecting ideal, and multiplication by this ideal gives a bijection between ideal classes represen-
tatives for both orders. Hence, it is natural to group locally isomorphic orders into genera. Our first
main result is the following theorem.

Theorem A. There is an algorithm that, given a Bass order R in B, computes Bass suborders of R of any
given genus.

In particular, Theorem A allows us to calculate any Bass order in any quaternion algebra, since
by [ ] we know how to obtain maximal orders in this general setting.

The second main result concerns the computation of left ideal classes representatives for Bass
orders, assuming that I is totally real and B is totally definite.

Theorem B. There is an algorithm that, given a Bass order R in B and a set of representatives S of left R-ideal
classes, computes left ideal classes representatives for Bass suborders of R of any given genus. Furthermore,
the set of norms of the computed ideals is the same as the set of norms of the ideals in S.

Hence, starting from a set of representatives for a maximal order (which can be obtained following
[ ]or [ ] in certain particular cases, and [ ] in the general setting), we can compute
representatives for any Bass order in B.

The algorithm is such that that the constructed ideals are contained in the given ones. This avoids,
in contrast with the methods a la Pizer (see, e.g., [ 1, [ 11 I), the repeated usage of
norm forms for checking equivalences between ideals (see [ , Proposition 1.18]). The details are
explained in Remark 1.3.20. We also avoid the randomness of those methods, by obtaining the classes
representatives from the sets of ideals W(I) (see Section 1.3).

In [ ] it was shown that Bass orders can be described locally in terms of certain ternary
quadratic forms. The strategy for proving Theorems A and B is to reduce the situation to the case of
considering maximal Bass suborders of R. This allows to construct both the desired suborder and its
ideal classes representatives in terms of local computations related to the forms in correspondence
with the orders. In this special case, we also give a method to compute the ideal classes representa-
tives by global means.

This chapter is organized as follows. In the first section we give the basic definitions that will be
used throughout this chapter, some of which will be used in Chapter 2 as well. In the second section
we prove Theorem A, first recalling the local description of Bass orders. The third section is devoted
to prove Theorem B. In the fourth section we present an example of our algorithm: we show how to



construct representatives of ideal classes for an Eichler order of discriminant (30) in the quaternion
algebra B over Q[v/5] ramified exactly at the two infinite places.

Throughout this chapter, in order to make the exposition clearer, we assume that no dyadic primes
occur in the discriminants of the orders considered. This case, with the extra assumption that 2 is inert
in I, is treated separately in the appendix.

1.1 Basic notions and notation

We start by recalling some basic definitions and properties of quaternion algebras that will be
used in this chapter. A concise exposition of the subject can be found in [ ], while a more
detailed exposition can be found in [ 11 ].

Let O be a Dedekind domain, and let F' denote its fraction field. Let p be a prime ideal of O. By
O, we denote the completion of O at p, and we denote completions of other objects in a similar way.
By v, we denote the p-adic valuation on F},. The residue field O, /pO, is denoted by Fy, and by 7, we
denote an element of O which is a local uniformizer of pO,.

We will be mainly interested in the case when O is the ring of integers of a number field, or the
completion of such a ring. In the latter case the completion subindexes become redundant, but it is
convenient to treat both cases simultaneously.

A quaternion algebra over F is a four dimensional, central and simple F-algebra with unity. Such
algebra has a natural F-linear involution = — Z, that induces the linear form (reduced) trace given
by Tr(z) = = + = and the quadratic form (reduced) norm given by N(x) = zz. The bilinear form
corresponding to the latter is given by (x,y) — Tr(zy). By the Skolem-Noether theorem, every
automorphism of a quaternion algebra is interior.

For every quaternion algebra B over F there exist a,b € F'* such that

B~ (lijk:i*=a,j*=bij=—ji=k),

We denote the quaternion algebra in the right hand side by (a,b) r.

Every quaternion algebra B over F' is either isomorphic to the algebra of 2 x 2 matrices over F,
or to a unique division algebra. In the first case we say that B is unramified, and in the second case
we say that B is ramified.

If F'is a number field, the number of places v (archimedean and non-archimedean) such that B,
is ramified is finite and even. This follows from the fact that the algebra (a,b)r is ramified at v if
and only if the Hilbert symbol (a,b), equals —1. Conversely, if S is set of places of F' of finite and
even order, there exists a quaternion algebra over F' ramified exactly at the places of S, unique up to
isomorphism.

Let B be a quaternion algebra over F. A lattice A in B is a finitely generated O-module A C B
such that the natural map A ® F — B is an isomorphism. Given a lattice A, its dual lattice AV is
defined by

A ={z € B:Tr(zA) C O}

An order is a lattice R which is also a subring with unity. Its (reduced) discriminant (also called level)
is the ideal d(R) C O whose square is the ideal generated by {det(Tr(z;z;)) : x1,...,24 € R}.
Given a lattice A, the set
Ri(A) ={zx e B:xzA CA}

is an order called the left order of A . The right order is defined and denoted in a similar way. We
define the inverse of A by
Al ={z € B:AzA C A}

We say that A is invertible if AA™1 = Rj(A) and A~'A = R,(A). An order R is called a Gorenstein
order if every lattice A such that R;(A) = R is invertible, and it is called a Bass order if every order
containing it is a Gorenstein order.

Given two lattices A D A’ in B, the index of A’ in A is the ideal [A : A’] C O generated by
{det() : ¢ € Endp(B), 6(A) C A'}.



Let R be an order in B. A left R-(invertible) ideal is an invertible lattice I such that R;(I) = R; in
particular, [ is an R-module. Two left R-ideals I and J are called equivalent if there exists x € B*
such that I = Jz. The set of equivalence classes is denoted by CI(R), and its size is called the class
number of R. A left R-ideal [ is called principal if it is equivalent to R, i.e., if there exists z € B> such
that I = Rx. A lattice [ is invertible if and only if I, is a principal R,-module for all p. In particular
every left R,-ideal is principal, and hence CI(R,) is trivial.

Let R, R be orders in B. By the Skolem-Noether theorem, R, ~ Ry if and only if there exists
zp € By such that z, Ry, = R}. We say that R and R’ are in the same genus if R, ~ R}, for all p.
This is equivalent to the existence of an ideal I connecting R and R/, i.e., such that R;(I) = R and
R, (I)=R.

Notation index
® p,q,...: prime ideals of O.
e A A',...: lattices in B.
e R R, ...:ordersin B.
R*!'={z€R:N(z) =1}

e [, J,...:invertible lattices in B.
e (ay,...,a,): the quadratic form Y"1 | a;a?
e diag(ai,...,ay): the diagonal matrix with a; as (4, 7) coefficient.

1.2 Constructing suborders

The aim of this section is to prove Theorem A. Its proof, together with a precise description of the
input of the algorithm, will be given at the end of the section, once we have developed the necessary
tools.

The problem can be reduced to compute maximal suborders of R in any given genus. The index of
a maximal suborder of a given order is known, according to [ , Corollary 1.11], which we recall
here.

Proposition 1.2.1. Let R be an order in B, and let R' be a maximal suborder of R. Then, there exists p such
that [R: R =porp?and pR C R

This proposition, together with the local to global correspondence of lattices in vector spaces over
F, implies that maximal suborders of a given order R can be obtained by describing the maximal
suborders of R, for every p.

Local Bass orders

From here on we assume that p 1 (2), and we fix § € O such that (g) =-1.

The correspondence between isomorphism classes of Gorenstein orders in quaternion algebras
over local fields and ternary quadratic forms was developed in [ ]. This correspondence was
explored further in [ ], where it is refined to describe Bass orders. We summarize here the
results we extract from this article.

Let R, be an order, and let £ = { fy, fi, f2, f3} be a basis of Rg as an Op-module satisfying
(1.2.2) Tr(fo) =1, Tr(f1) = Tr(f2) = Tr(f3) = 0.

Denote by Mg the Gram matrix of the norm form in the trace zero submodule of R, corresponding
to &, i.e.

Mg = (Te(fif)))1<; j<s-

3



To R, we associate the ternary quadratic form d - Mg, where d is any generator of d(R,).

Conversely, to an integral ternary quadratic form f over O, can be associated an order Cy(f) in
a quaternion algebra over Fj: the order and the algebra are given by the even part of the Clifford
algebras associated to f over O, and F, respectively.

By [ , Propositions 5.8 and 5.10], the maps R, — d - Mg and f — Cy(f) give a bijection
between isomorphism classes of Bass orders in quaternion algebras over F}, and the set of ternary
quadratic forms of Table 1.1, where we group forms into classes that will be treated in a unified way
when convenient.

] Class \ Form \ Parameters \ Hilbert Symbol ‘
Al (1,-1,7) s> 0 T
A2 <1,—6,7r§> s>1 (—1)°
B (1, 7y, €17p) €1 € {1,0} (;61
C (1,ermy, e2m) | €1,e2 € {1,6}, 5 > 2 (%>s <_T€2)

Table 1.1: Ternary quadratic forms in correspondence with local Bass orders.

In particular, every Bass order R induces a family (f;), of ternary quadratic forms, letting f, be
the form in Table 1.1 corresponding to R,. This family satisfies that f, = (1, -1, 1) for almost every
p, and is independent of the genus of R.

Equation (1.2.4) below implies that, given a form f = (1,qa,b), then the quaternion algebra
Co(f) ®o, Fy is a matrix algebra if and only if (a, b, ab) is isotropic, i.e., if and only if the Hilbert
symbol (%‘b) equals 1. The sign for each case is shown in Table 1.1.

The graphs in Figure 1.1 show how the isomorphism classes of Bass orders in quaternion algebras
over F}, are distributed. Each vertex represents an isomorphism class of Bass orders, and there is an
edge between two vertices if and only if there is an order R, corresponding to the top vertex, and an
order R; corresponding to the bottom vertex, such that R; is a maximal suborder of Ry; if f and g are
the corresponding forms from Table 1.1, we will say that g is beneath f. Note that these graphs reflect
the assertion of Proposition 1.2.1.

Division algebra Matrix algebra

Oy °

. p .

\ o p? o o / o

3 o / \ o« p? . / \ . o

o o« p? o . . o

. . o . . o
A2 C B C A2 C B C Al

Figure 1.1: Graph of isomorphism classes of local Bass orders, ordered by inclusion.

All the orders in the left graph lie in the division quaternion algebra, while all the orders in the
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right graph lie in the matrix algebra. Horizontally aligned vertices have the same discriminant, which
is indicated in the middle column. Vertically aligned vertices correspond to forms of the same class,
which is indicated in the bottom row. The orders of class Al are the so called local Eichler orders (see,
eg., [ , Section 2]), and the orders of class A2 in the division algebra are the orders of level p*"**
considered in [ ] (see also [ , Section 3]). Also in the division algebra, the orders of class
B are the orders of level p? considered in [ ], and the vertices of class C and discriminant p? are
represented by the orders O, O~ considered in [ ].

An order R in a quaternion algebra B is called an Eichler order if it is the intersection of two
maximal orders. This is equivalent to R, being of class Al for every unramified prime p, and R,
being a maximal order for every ramified prime p. If we write d(R) = mn with the primes dividing
m being exactly those ramified in B, the ideal n is called the level of R.

Definition. Let R, be a Bass order in correspondence with the form f = (1,a,b), and let B = {1, e1,e2,e3}
be a basis of Ry, as an Oy-module. We say that B is a good basis if the e; satisfy

e% = —ab, e% = —b, e% = —a,
(1.2.3) e1eo = —bes, ege3 = —eq, ese; = —aea,
ese1 = beg, eseq = eq, ei1ez = aes.
Every Bass order has a good basis (see [ , Section 4], and also [ 1), and in such basis the
norm form is given by
(1.2.4) N = (1,ab,b,a).

Example. For s > 0, let

ES:{<2 b) :a,b,c,de(’)p}.
me d

Then, the order E; C M(F}) is a Bass order of class Al and discriminant p°. Furthermore,

S0 an (D) e () em (0 %)

is a good basis for . In fact, it is straightforward to see that these elements satisfy the equations
(1.2.3) corresponding to f = <1, -1, 7r§>.

Note that F, 1 is a maximal suborder of F.
Example. Let K, = F,,(1/3) be the unique unramified quadratic extension of F,. For a € K, denote by
@ its conjugated in K,. Then D, = { (ngg
over F.

Let Ok, = O, + V50, be the ring of integers of K. For r > 0, let

Pori1 = {<ﬂ_;f15 WZB) ra, e OKp} .

Then, the order P, 1 C D, is a Bass order of class A2 and discriminant p?"*1. Furthermore,

), B €K, p} is the (unique) division quaternion algebra

e If there exists yu € O, such that u? = —1, then

1_(1 O) e_( 0 —u\/grr;> 6_( 0 mr{Q) e_(—\/g 0)
= 0o 1) 1= Mﬂﬂ_;-‘,—l 0 ) 2 = MW;+1 0 ) 3 = 0 \/g

is a good basis for P, 1.
e If such i does not exist, we may assume that § = —1. Using Hensel’s lemma, take 53y, 51 € O,

such that 82 + 87 = —1. Let 8 = 3o + B1V/6. Then,

_ r r _f
1=(5 1) a=(agn o) a=(agn T) w= (3" )

is a good basis for P, .



In fact, it is straightforward to see in each case that these elements satisfy the equations (1.2.3) corre-
sponding to f = (1, =4, 7).
Note that P, 3 is a maximal suborder of Po,1.

Let Ry be an order in correspondence with the form f = (1,a,b), and let & = { fo, f1, f2, f3} be a
basis of R, satisfying (1.2.2). Let e; = 4ab - f; fr, where (4, j, k) is an even permutation of (1, 2,3), and
denote £T = {1, ey, e2,e3}. Then £ is a basis of R, (see [ , Section 4]).

Proposition 1.2.5. With the notation as above, if £ is such that
(1.2.6) 2ab - Mg = diag(1,a,b),
then ET is a good basis of R,

For a proof see [ , Section 4].

Remark 1.2.7. Conversely, if B is a good basis of R, then Mpv satisfies (1.2.6), where given a basis
B = {eo,e1,e2,e3} of Ry, we denote by BY = {fo, f1, f2, f3} the basis of R,/ characterized by the
equations Tr(e; f;) = d;;.

Constructing maximal suborders, the local case.

Given an order R, corresponding to a form f from Table 1.1, we construct a representative for each
of the one or two isomorphism classes of maximal suborders of R, (see Figure 1.1). To do this, given a
good basis {1, e1, e2, e3} of R, and a form g from Table 1.1 beneath f, we give elements d;, ds, d3 € R,
satisfying the equations (1.2.3) corresponding to the form g. Then, the order Ry, = (1, d1, da, d3)p, isa
maximal suborder of R, in correspondence with the form g, for which {1, d;, d2, d3} is a good basis.

Using Hensel’s Lemma, take oo, a1, Bo, 51, p, v € O, satisfying:

e af —a? =m,.

o 35+ 57 =0.
e ;> = —1,when (_Tl) =1
o ¥ =—j,when (1) = —1.

Proposition 1.2.8. The elements dy, dz, d3 defined by Table 1.2 satisfy the equations (1.2.3) corresponding to
the form g.

Proof. In each case, it is easy to check that the d;’s satisfy the equations (1.2.3) corresponding to g,
using that the e;’s satisfy the equations corresponding to f. O

Though it is not needed in our algorithms, we now show that this construction is general, in the
sense that every maximal suborder of R, can be obtained by the previous procedure, if we start with
a suitable good basis of R,,.

Lemma 1.2.9. Let R, be a non-maximal Bass order. The number of Bass orders which are minimal with respect
to the property of containing Ry, properly is two if Ry, is of class A1, and one otherwise.

Proof. This is [ , Propositions 1.12 and 2.3]. O
Lemma 1.2.10. Let Ry, and Rg be isomorphic maximal suborders of Ry. Then, there exists x € By’ normaliz-

ing Ry such that xRjz~" = R,



] Form \ Form beneath \ Good basis for R{J

<1, —1,7r§> <1 —1 7TS+1> di = ape1 + agea,
do = aje1 + aper, ds = e3
<1’ -1, 1> <1’ 5 7T2> dy = 7Tp(ﬁlel - 5063)/
dy = mpez,d3 = Boer + Bies
<1, —1,7Tp> <1,7Tp,7l'p>, if (_Tl> =1 d1 = /Mi'peg,dg = uel,dg = €2
(1, my, 0my), if (%) =—1| dy = vmpes,dy = vey,d3 = e
<1, -0, 7r§> <1, -0, 7r§+2> di = mpe1,dy = mpea, d3 = e3
<1, —(5, 7Tp> <1,7Tp,(s7rp>, if (_Tl) =1 d1 = /,Lﬂ'peg,dz = [Lel,dg = €2
<1,7Tp,71'p>, if (_Tl) =—1 dy = V_17Tp€3,d2 = 1/‘161,
dg = €2
(1, mp, mp) <1,7rp,7rg> di = mpez,dy = e1,d3z = e3
<1,57rp,7rg> dq :Wp(—ﬁ1€2+5063),
dy = e1,ds = fPoez + Pies
<1,7Tp,57['p> <1,7Tp,57'('g> d1 :ﬂpeg,dg 261,d3:63
<1,57rp,57r2> dy = mpe3,dy = e1,d3 = e
< ) Tp, T, S> <1 Ty, T g+1> d1=7rp62,d2=el,d3=eg
<1 (57Tp, p> <1 (57rp,57r5+1> d1=(57rp62,d2:€1,d3:63
< 7rp,(57r > <1 7rp,57r§+1> d1 = 7Tp62,d2 = 61,d3 = €3.
(1,0my,0ms) | (1,0mp, w5 ") di = bmpeg, dy = 6 le
d3 = €3

Table 1.2: Construction of maximal suborders, in terms of good bases and ternary quadratic forms.

Proof. Since R, and R are isomorphic, there exists z € B, such that zRjz™! = R If xRz = R,,
we are done, and the previous lemma says that this is necessarlly the case when Rp is not of class Al,
since we have the inclusions Rg C asza:_l and Rg C Ry.

Then, we can assume that zR,z~! # R, and that R;J/ is of class A1 Hence R, and R, are also of
class Al (see Figure 1.1). We can then assume, without loss of generality, that R, = Es and R;J = Fsy1.

Consider the matrix y = (“g ' (1)), and let R, = yRpy~'. Then,

Rp = {( Wsilc Willb ) ca,b,c,d e Op}.

Since R}, C R,, we have that R, C xR,z~. Since we already had that R, C R, and R, C zR,z7",
the previous lemma implies that x]%px_l = Rp. In particular, zy normalizes R,. Then, since Rg =
(zy)(y~ ' Ryy)(xy)~!, we can assume that

L N o a 7pr ) X }

R, =y pr_{(”sc d ta,b,e,de Oy .
In this case, taking & = (ﬂgs [1)) we get that & normalizes R, and conjugates R, onto R; , which
completes the proof. O

Proposition 1.2.11. Let Ry, be an order in correspondence with the form f, and Ry, be a maximal suborder
of Ry in correspondence with the form g. Then, there exists a good basis {1,e1, ez, e3} of Ry such that the
elements dy, do, d3 given by Table 1.2 in terms of f and g define a good basis for R;J.

Proof. Let 1, €y, é2, €3 be any good basis of R,. In terms of f, g and the €;, consider the elements d;
defined by Table 1.2. Let Rg be the suborder of R, given by

R, = <1,d17d2,d3>0p
Since R, and Rg’ are isomorphic, by the previous lemma there exists x normalizing R, such that

1

:cR]’Jx_l = R;J/ . Then, letting e; = xé;x™" our goal is achieved. O



Quasi-good bases

So far, given an order R, we must obtain a good basis of it to compute its suborders. This involves
diagonalizing a ternary quadratic form over O,, which is not desirable from the computational point
of view. Nevertheless, as we will show in this subsection by introducing the notion of quasi-good
bases, this can be reduced to diagonalize the corresponding form modulo p™ for a certain small non-
negative integer n.

Definition. Let B = {1, e1, ea, e3} be a basis of Ry. We say that B is a quasi-good basis if there exists a good
basis B = {1, €1, €, €3} of Ry, satisfying

éi=e; mod (pR,) (1<i<3).

Proposition 1.2.12. Let B = {1,e1,e2,e3} be a quasi-good basis of an order R, in correspondence with a
form f, and let g be a form beneath f. Let dy,d2,ds be as in Table 1.2. Then,

Ry = (1,dy,da, d3)p,
is a maximal suborder of Ry in correspondence with the form g.

Proof. Let B= {1, €1, €2, €3} be a good basis of R, as in the definition above. In terms of these elements
and the form g, define elements cil, JQ, ds according to Table 1.2, and let A, = <1, dl, CZQ, J3>O . The

p

table shows that d; = d; mod (pRy) for every 1 < i < 3. Since pR, C A, we have that
= 11.do. d DR
A <1,d1,d2,d3>0p +pR, DR,
Then, it suffices to see that d(R)) = d(A,) to complete the proof.

Let e € {1,2} be such that [R, : A,] = p°. Following Table 1.2 case by case, it can be proved that
d(Ry) = p°d(Ry). Since d(A,) = p®d(Ry), we are done.

O
Remark 1.2.13. Let m = vp(d(R,)). The proof shows that, when constructing the d;’s, the elements
g, at, . .. in Table 1.2 need to be calculated only up to precision 7", since in that case the ideal

d(Ay) remains unchanged.
It shows also that {1,d;,ds,ds} needs not to be a quasi-good basis for R, since we only get

that d; = d; mod (pRy). Nevertheless, since pQRp C pRy, it is a quasi-good basis if the stronger
congruence &; = e¢; mod (p?R,) holds.

Proposition 1.2.12 shows that obtaining quasi-good bases is enough for our purpose of computing
suborders. In what follows we show how to obtain these bases.

Let f = (1, a,b) be the form in correspondence with the order Ry, and let £ = {fo, f1, f2, f3} be a
basis of R, satisfying (1.2.2). The existence of good bases implies that there exists C' € G L3(O,) such
that 2ab - C*M¢C = diag(1,a,b). Hence, 2ab - Mg € M3(O,) and det(Mg) = 8 !(ab)~2u? for some
u € Oy

Proposition 1.2.14. Let n = 2vy(a) + 1. Assume that & satisfies the following conditions.
(1) There exists b € O, such that
2ab - Mg = diag(1,a,b) mod (Mz(p"Oy)).
(2) det(Mg) =8 1(ab)~2

Then, £ is a quasi-good basis of Ry.

Remark 1.2.15. The congruence in (1) is the really relevant hypothesis. If this congruence is satisfied
and u € Oy is such that det(Mg) = 87!(ab)?u?, then the basis {fo, f1, f2,u™! f3} satisfies (1) and
also (2).



The proof of Proposition 1.2.14 is based on the following lifting lemma.

Lemma 1.2.16. Let r,m be non negative integers such that m > 2r, and let A € M3(O,) be a symmetric
matrix. Suppose that there exists C € G L3(O,) such that

CtAC = diag(c, 8,v) mod (M3(p™0Oy)),

with vy(«) = 0 and vy(B) = r. Then, there exists C' € GL3(0y) satisfying C' = C' mod (Mz(p™"Oy))
such that
C"AC' = diag(d/, 8',7") mod (M3(p™t10,)),

with o' = o mod (p™"Op) and ' = mod (p"Oy).
Proof. Write

o o Q
o Qo

C'AC = diag(a, B,7) + T (

~ O O

with a,b,..., f € Op. We claim that there exists a matrix Cy € GL3(O,) such that
o+ amy 0 dny
CHAC = ( —bmy B+ dm e'my" ),
—crmy —emy, Y+ f'my

with ¢/, d’, ¢/, f’ € O,. This can be shown by performing row operations on C* AC, using the diagonal
entries as pivots to first obtain zeroes at the (3,1),(2,1),(1,2) and (3,2) entries, and then obtain
—cmy, —emy and —bmy at the (3, 1), (3,2) and (2, 1) entries respectively.

Let C' = C'+ m," " "Cy. Then,

o 0 c’wgmﬂ"
CMAC = ( 0 g emm ) + M ACY.
C/ﬂ_gmfr 6/7Tgmir ’Y/

where @/ = a+amy + 21" " (a+any?) and ' = B+ d'n) + 21" " (B+d'm)"). Since 2(m —7) > m+1,
we are done. n

Proof of Proposition 1.2.14. Let r = wvp(a). By letting m — oo in the previous lemma, we get a matrix
C = (cij) € GL3(0y) satisfying C = I mod (M3(p"10,)) such that

2ab - C'MeC = diag(av, 8,7),

witha =1 mod (7T£+1

)and 8 =a mod (m;" ™). Using Hensel's lemma, take z1, 2 € O, satisfying

z; =1 mod (m; ™) such that a = 2? and 8 = z3a. Taking determinants we see that v = 23b, where
_ det(C)
T xixo T

Now let C = C - diag(z1, x2,r3)~'. Then C satisfies that

2ab - C'MeC = diag(1, a, b).

Let f; = 323 ¢jif;, where C' = (&), let fo = fo,and let € = {fo, f1, f2, f3}. Then €1 is a good basis

=1 d
of Ry, for (1.2.6) is verified by Mgz. The congruences satisfied by the x;’s and C imply that f; = f;
mod (pR,/) for 1 < i < 3. Hence &' is a quasi-good basis of R, since [ , Proposition 3.2] gives

that 4ab - Ry R) C R,. .



From local to global

Let A be a lattice in B, and let A;J C A, be a sublattice of index p®, where e is a non-negative
integer. Let A’ C B be the lattice given by

A/_{ACI lfq#pa
T A ifq=
" q=p.

Given a set of generators for A as an O-module and a set of generators for A, as an Op-module, how
can we construct a set of generators for A’ as an O-module?

Assume that A = (vy,v2,...,vp)» and that A; = (wy,ws,... 7wn>0p' For each i write w; =
> ; @ijvj, with a;; € Op. There exist elements b;; € O and ¢;; € 7,0y such that a;; = b;; + ¢;; (they
can be constructed, for example, by looking at the p-adic expansion of the a;;). Let w; = j bijv;.

Proposition 1.2.17. With the notation as above,

AN = peA—i- <u~11,’lf)2,. . .,wn>o.

Proof. Ttis enough to check that these two lattices coincide at all completions. Denote by A” the lattice
in the right hand side.

. i{q # p, then m, is a unit in Oy. So p®Aq = Aq, which implies that Aj = Aq+ (1, Wo, . . . ,wn>oq =
0-

e Since p°A, C A;j, we have that A;J’ C Ay; the reverse inclusion is deduced from the fact that
w; = w; mod (pCAy).

O]

Remark 1.2.18. Using the Hermite Normal Form algorithm (see [ , Chapter I]), for every lattice
in B we can compute a generating set over O with at most five elements. In particular, this can be
done for the sum describing A’, and we can assume that A is given in this way.

The algorithm

We are now ready to prove our first main result, which we recall here.

Theorem A. There is an algorithm that, given a Bass order R in B, computes Bass suborders of R of any
given genus.

Proof. 1t suffices to give an algorithm which computes maximal suborders of R in any given genus.
So we assume that we are given a prime p, the form f;, corresponding to R, and a form g, beneath
fp- The algorithm, which we describe below, will return a Bass order R' C R with Rﬁl = R, for all
q # p, and such that Ry, corresponds to g.

Algorithm 1.2.19.

Step 1. Use Proposition 1.2.14 to find a quasi-good basis for R,.

Step 2. Use Proposition 1.2.12 to construct a suborder R, C R, corresponding to the form gj.
Step 3. Use Proposition 1.2.17 to construct an order R’ such that

o ) ifaFp,
" \R, ifq=p.
P
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1.3 Computing ideal classes representatives for suborders

The aim of this section is to prove Theorem B. We start introducing some notation and definitions.

If R is an order in B, we denote by J(R) the set of left R-ideals and by CI(R) the set of equivalence
classes of left R-ideals. The equivalence class of an ideal I is denoted by [I]. The norm of an ideal I is
defined as the fractional ideal N (I) C F' generated by the elements N(z) as  runs over I.

Throughout this section, let R C R be orders in B.

Definition. For I € J(R), we define
R () ={J€3(R): RJ =1},

and we denote that set simply by V(1) when there is no possible confusion on which are the orders under
consideration.

This definition was introduced in [ ], and later used in [ ]. We will consider these sets
for orders in B as well as for their completions. Both cases can and will be treated in an unified way.

Remark 1.3.1. Identifying ideals with ideles, the set (1) is simply the preimage of I under the natural
map

~X .~ ~ ~
R \B* — R*\B”,
where ~ denotes tensor with Z over Z.

By [¥(1)] we denote the set of classes of elements of W([), i.e.
WD) =A{J]: J € ¥(I)}.
Note that if [I;] = [I2], then [V (1;)] = [V (12)].
Proposition 1.3.2. With the notation as above,
c(r)y= [ @]
[I]eCI(R)

Proof. This is straightforward using the idelic description of ¥(I), but we give a direct proof.

Let J € J(R'). Take I = RJ. Then it is clear that I € J(R) and J € ¥(I). This shows that the
union on the right hand side gives all of CI(R').

We now show that the union is disjoint. If there are J; € O£, (I;) for i = 1,2 such that [J;] = [J2],
then [I;] = [I2]. Indeed, let z € B* be such that J; = Jyz. Then,

[1 = RJ1 = RJQ.’L' = [Q.CC.
O

This proposition shows that the sets (/) can be used to give a system of representatives for
CI(R'), in terms of a system of representatives for CI(R). The next proposition shows that by con-
structing representatives for CI(R’) using these sets, we will not enlarge the norms of the R-ideals
that we start with.

Proposition 1.3.3. Let I € J(R), and let J € J(R') such that J C I. Then, J € Y(I) if and only if
N(I)=N(J).

Proof. Let q be a prime of O. Since J; C I we can write I; = Rqzq and Jq = Ryzgzq, with 24 € Ry.
Then, N(I;) = N(Jy) if and only if z; € Ry, which is equivalent to the equality Rq.J; = I;. These
local facts imply the global statement. O

Given I € J(R), we have an action of the group R, (I)* on ¥(I) by right multiplication, which
stabilizes the left R'-ideal classes.

11



Proposition 1.3.4. Let I € J(R), and let J € W(I). Then, the action of R, (I)* on [J] N U(I) is transitive
and the stabilizer of J is R,(J)*. In particular, #([J] N V(1)) = [R,(I)* : R(J)*].

Proof. To prove that the action is transitive, let J;, Jo € W(I) be such that [J;] = [J3]. If € B* is such
that J; = Joz, then z € R, (I)*, since I = RJ; = RJyx = Iz. The other two statements are clear. [

The corollary below, which follows immediately, can be used to get information about the class
numbers, as we will see in Section 1.4. It can also be used to check whether a set of non-equivalent
R'-ideals is already a full set of representatives for the R'-ideal classes.

Corollary 1.3.5. Let I € J(R). Then,

[J]e[¥(1)]

In what follows, we describe two different methods for computing the set ¥(/) for a given I €
J(R). The first one will rely on the action of the units described above, in the local setting, whereas
the second one will only involve global calculations.

Local method: The action by (R, )*\ R

We first remark that the set (R;,)*\ R, is not necessarily a group, since in general (R},)* is not a
normal subgroup of R;’.

Proposition 1.3.6. Let I, € J(Ry), say I, = Rpxy. Then, the map
(Rp) \B — (1)
ap = Ry(apay)
is bijective.
Proof. This map is the composition of the maps
(R;/J)X\RpX — U(Ry), U(Ry) — W(Iy).
p R;ap Jp = Jpp

Both maps are bijective. This is clear for the second map. For the first one, this follows by Proposi-
tion 1.3.4, since all Rp-ideals are equivalent. O

Proposition 1.3.7. Suppose that [R : R'] = p° for some e > 1. Let I € J(R). The map
WE (1) — i (1)
P
J = Jy
is bijective. In particular, #V%,(I) = [Ry : (Ry)™].

Proof. The fact that I; = J, for all g # p implies that the map is bijective. The equality follows from
Proposition 1.3.6. U

These propositions imply immediately the following result.
Corollary 1.3.8. Suppose that [R : R'] = p° for some e > 1. Let I € J(R), and write I, = Ryxy. If {oj} isa
system of representatives for (Ry)*\R,', then ¥ R.(I) ={J;}, where J; € 3J(R') is the ideal locally given by

NI RL ifa #p,
(ids {R;wp) ifa—p.

12



Remark 1.3.9. A method to construct a local generator at p of an ideal I is to consider the entry with
minimum valuation at p of the Gram matrix of a generating set {w;,...,wy,} for I over O, since
the norm is generated by an element with minimum valuation in such matrix. If this minimum is
attached in the entry (4, j), then a local generator is w; + w; if i # j, and w; if i = j.

Proposition 1.3.10. Assume that pR, C R;. Then, the natural map

¢ 1 (Ry) \Ry — (pRy\Ry) \(PRp\Rp) ™.
is bijective.
Proof. Consider the ring morphism ¢, : R, — pR,\R,. We claim that the induced group homomor-
phism ¢ : R, — (pRp\R,)* is surjective. Indeed, let [z] € (pR,\Ry)*. Then there exist y,z € R,
such that zy = 1+ 7pz. Then N(zy) =1 mod (m), and hence = € R, as claimed.

Compose ¢ with the map p that projects (pR,\ Ry)* onto the quotient set (pRy\ Ry)*\(pRp\Rp) ™.
Then p o ¢; is surjective, and passes to the quotient set (R;)*\R; to give a surjective map ¢ :
(R \Ry — (bRy\R))\(pRy\Ry)*.

We claim that ¢ is injective. Indeed, let z,y € R be such that ¢(z) = ¢(y). Then, since (R})* —
(pRy\Ry)™ is also an epimorphism, we have z € (R})* and w € Ry such that x = 2y + mw. Hence,
x = (z + mpuwy~ ')y, which shows that [z] = [y] € (R})*\R;, since mywy~! € pR, C R, and hence
z 4+ muwy ! e (Ry)*. O

By Proposition 1.2.1, this result shows that, in order to give a system of representatives for the
sets (R,)*\ R, when R| is a maximal suborder of Ry, it will be enough to do the calculations modulo
p.

Given a quasi-good basis B = {1,e1,e2,e3} of Ry, and assuming that R, is obtained from R, by
means of Algorithm 1.2.19, we proceed to give a system of representatives for the sets (R;)*\R;’, in
terms of the form g corresponding with R;,. The indexes [R; : (R;)*] are well known in the Eichler

case, and are computed in [ , Theorems 3.3 and 3.10] in the remaining cases, so it will suffice to
give in each case the correct number of non-equivalent units.
Let ¢ denote the order of the residue field Fy, and let {a1, a2, ...,as} € O, be a set of representa-

tives for I, such that a; = 1,a2 = —1 and a4 = 0. Let 6, o, 81 be as in Proposition 1.2.8. Finally, let
S={y€F, xFy:1—67 +73 # 0}, and for each € S lety € O, x O, be any lift of 7.

Proposition 1.3.11. With the previous notation and hypotheses, Table 1.3 gives a system of representatives
for (R},)* \R,'.

| Ry~class | Rj-class | [Ry : (R})*] | Representatives | Condition |

Al q+1 e, 1+ G(e1—ey) (1<i<q) d(Ry) =1

Al q 1+ 5(e1—e) (1<i<q) d(Ry) # 1
A2 qlg—1) | ez, 1+ (Bies — Boer) + 12e2 (€ S)
B qg—1 lyaj+e3 (3<i<gq)

A2 A2 g 1+ ae1 +ajes (1<4,5<q)
B qg+1 l,a; +e3 (1§Z§q)

B C ¢ 1,a; + e (1§z:§q—l) g7§<1,67rp,57rg>

Liai+es (1<i<qg-—1) g:<1,57rp,57rg>

C q Liai+e (1<i<qg-—1)

Table 1.3: The indexes [R; : (R})*], and representatives for (R,)*\Ry".

Proof. According to Proposition 1.3.10 we may assume that B is a good basis, and it suffices to calcu-
late a system of representatives for the set (pRy\ R})*\(pRy\ Ry) ™.

First notice that pR,\ R, is a [F-algebra that inherits naturally from B, a norm form N : pR,\ R, —
[, such that (pR,\Ry)* = {x € pR,\R, : N(x) # 0}. This allows us to easily check that all the given
representatives are indeed units, and also to give the needed description of (pR,\Ry)*.
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We will do the details in a single case, namely when R, has class A1 and R; has class B. The rest
of the cases can be treated similarly.

Let x = xo + x1€1 + x2e2 + x3e3 € pRy\Rp. In these coordinates we have that the norm form is
given by N(z) = x§ — z3 (see (1.2.4)), and that z € pR,\ R, if and only if z3 = 0. Hence, the elements
of the form a; + e3 belong to (pRy\Ry)*, if i > 3. They are not equivalent modulo (pR,\Ry)*, since if

(a; + e3)(xo + z1€1 + z2e2) = a;xo + (aiz1 + x2)er + (aiza + x1)es + zoes = a; + e3,

then o = 1and hence i = j. And they are not equivalent to 1, since they do notbelong to pR,\ R},. [

Global method: The colon lattice

Let I € J(R). We introduce an alternative method to calculate ¥(I), using global tools. Consider
the lattice
Ar={yeB:yI"' CR}.

It satisfies that A; = AgI. For simplicity, we will just consider A = Ag. Itis clear that A C R’ and
R C R.(A).

Lemma 1.3.12. The lattice A satisfies the following properties:
(1) pR C A, and hence [R : A] | p*.
(2) A C Jforall J € U(R).

Proof. The inclusion in (1) follows from the fact that pR C R’. The inclusion in (2) is clear if we
consider the completion at primes q # p, so we will look only at the completion at p. Let J € U(R),
and write J, = Ryu, with u, € Ry'. Then,

O]

Since pR, C Rl’J, we can consider R, / R;J as a Fy-vector space. When e = 2, we can go further.

Since in that case R), has class A2, the ring O, + V60, embeds into R}, and hence into R,. Then
we can consider R,/R), as a Ky-vector space, where K, is the quadratic extension of F, given by

Kp = (Op + V30,) /p(Op + V0p).
Lemma 1.3.13.
(1) If e =1, then dimy, (R, /R,,) = 1.
(2) If e = 2, then dimg, (R, /Ry) = 1.

Proof. It follows immediately from the fact that | R,/ R,| = ¢°.

Proposition 1.3.14. [R’ : A] = p®, and hence [R : A] = p*°. In particular, if e = 2 then A = pR.

Proof. It is enough to consider the completion at p. Then, we need to show that [R,,/Ay| = ¢°. Con-
sider the morphism (of additive groups)
Y : Ry, — End(R,/Ry)
a— (v a-v).
Its kernel is Ay. The induced morphism ¢ : R, /A, — End(R,/R}) is easily seen to be also a F,-vector
space (respectively K,-vector space) morphism when e = 1 (respectively e = 2). Note that since

1 & Ay, it is not the null morphism. Hence, the result follows from the previous lemma.
O
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Corollary 1.3.15. The set ¥([) is given by
U(I)={J:RI=IR(J)=R, A\, CJCI[I:J]=[J:A[]=p}

Proof. When I = R, the result follows immediately from Lemma 1.3.12 and Proposition 1.3.14. The
arguments used for the general case are entirely analogous.
O

In particular, to calculate W (/) (whose cardinality we already know by Proposition 1.3.7), we
can limit ourselves to calculate the lattices between A; and I with the indicated indexes, and then
determine which of them satisfy the first two equalities. Furthermore, the equality R;(.JJ) = R’ can be
replaced by the equality N(J) = N(I), which sometimes is easier to verify.

Remark 1.3.16. If e = 1, then [I : A;] = p?, and there are ¢ + 1 lattices between these two. We have

seen that the number of elements of ¥(/) is ¢ — 1, g or ¢ + 1. Hence, almost all lattices constructed
are needed. This makes this method effective.

Remark 1.3.17. In the case e = 2, we know that the elements in ¥(I) have a (O, + v/0O,)-module
structure. If we only consider lattices between A; and I which have this extra structure, there are
¢ + 1 such lattices. The order of ¥(I) is ¢> — q if R is the maximal order and R’ is of class A2, and
¢? if both orders are of class A2. Hence, except for the maximal order, this construction is effective as
well.

The algorithm

We now prove our second main result, which we first recall. We assume that F' is totally real and
B is totally definite (i.e., B ramifies at every infinite place of F).

Theorem B. There is an algorithm that, given a Bass order R in B and a set of representatives S of left R-ideal
classes, computes left ideal classes representatives for Bass suborders of R of any given genus. Furthermore,
the set of norms of the computed ideals is the same as the set of norms of the ideals in S.

Proof. 1t suffices to give an algorithm that works when considering maximal suborders of R. In
particular, we assume that we are given the same input as in Algorithm 1.2.19, plus the set S. The
algorithm will return a set S’ of representatives for left ideal classes representatives for the suborder

R’ obtained by Algorithm 1.2.19.

By Proposition 1.3.2, it suffices to give an algorithm which calculates, for each I € S, a set of
representatives S; for [¥(7)], and then return S’ = J;.4S7. Note that the set of norms of ideals is
preserved due to Proposition 1.3.3.

The hypothesis of F' being totally real and B being totally definite is used in Step 4.1, as we
explain below. The algorithm works as follows.

Algorithm 1.3.18.

Step 1. Using Proposition 1.3.11, compute a set of representatives for (R;)*\R;'.
Step 2. Using Remark 1.3.9, find a local generator for ..

Step 3. Using Corollary 1.3.8 and Proposition 1.2.17, compute the set ¥(I).

Step 4. Set T' = ¥(I) and set S} = 0.

Step 4.1. Pick J € T and compute the set [J] N ¥(I) by letting R, (J)*\R,(I)* act on J (see
Proposition 1.3.4).

Step 4.2. Set S = S7U{J}. If T\[J] = 0, return S7. Else, let ' = T'\[J] and go to Step 4.1.
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We do not have a general method for, given J € ¥(/), computing a system of representatives for
the (finite) set R, (J)*\R,(I)* needed in Step 4.1; otherwise, the algorithm would work without the
hypotheses on F' and B. Under these hypotheses, the set O*\R,.()* is finite and can be used as well
to compute [J] N ¥(I).

The finiteness of the set O™\ R,.(I)*, as well as a method to compute it, can be obtained consider-
ing the exact sequence
(1.3.19) 1 — {£1N\R, (1) — O\R,(I)* 25 (09)2\0%,
where O denotes the group of totally positive units of O. Assuming B totally definite, the quadratic
form Trp/goN : B — Qs positive definite, and hence the group R,(I)*! is finite and can be calcu-
lated using the Lenstra—Lenstra—Lovasz lattice basis reduction algorithm. Furthermore, its possible
group structures are known (see [ , Théoréeme 5]). The group (0*)?\O7 is always finite, and
equals the null group in many cases, such as for fields F having narrow class number equal to 1 (see

[ D

Remark 1.3.20. Since R,(J)* C R,(I)* for every J € ¥([), when iterating the algorithm we need to
apply the previous procedure to compute the sets O*\R,.(I)* only for the initial set of ideals.

Remark 1.3.21. We can compute ¥ (I) by the global method given in Corollary 1.3.15 instead of using
Steps 1, 2 and 3, although to our knowledge there is no advantage of one method over the other.

1.4 Example: The Consani-Scholten quintic

In this section we show how we can use our method to compute ideal classes representatives for
an Eichler order of discriminant (30) in the quaternion algebra ramified exactly at the two infinite
places of the real quadratic field F' = Q[v/5].

A similar example was considered in [ ] to give numerical evidence supporting the conjec-
tural modularity of the Galois representation attached to the third étale cohomology vector space of a
certain quintic threefold (see [ , Theorem 0.3] for details). In that article the algebra considered is
ramified also at (2) and (3), since the Galois representation associated to the quintic has semi-stable
reduction at those places. The representatives are constructed following the method of Pizer (see
[ 1), which involves seeking for ideals and checking for equivalence between the constructed
ones until the class number, which has to be precomputed or can be deduced during the computa-
tion using the mass formula, is reached. We consider instead the quaternion algebra ramified only at
the two infinite places, since in that case the maximal order has class number equal to 1, which makes
calculations simpler. We first make use of Theorem A to compute an Eichler order of discriminant
(30) and then we make use of Theorem B to compute its left ideal classes representatives. Most of the
computations were made with the aid of SAGE ([ D.

Denote by w = 1+—2‘/5 and let O = Z + Zw be the ring of integers of F'. Let B be the quaternion
algebra (—1,—1)p. It is unramified at all finite places p not dividing 2, since the Hilbert symbol
(—1,—1), equals 1 for such p, and it is ramified at the two infinite places. Since 2 is inert in the
extension F'/Q, by parity reasons B does not ramify at (2).

Warning. In order to make the notation lighter, throughout this section we sometimes omit paren-
theses when referring to principal ideals in O, e.g. when referring to the order R(2) defined below
and its completion R(2);. But we do use parentheses when referring to residue fields, e.g. to avoid
confusing F(y) with the finite field of order 2.

Constructing the orders

Starting with a maximal order in B as input, we compute an Eichler order in B of discriminant
(30). Considering the prime factorization of (30) in O, we iterate Algorithm 1.2.19 to construct a
chain of orders

R(1) D R(2) 2 R(6) 2 R(6V/5) D R(30),
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where R(M) denotes an order of discriminant 91.

The maximal order we use is the order given in [ , Chapter V], namely

R(1) = <1+w‘1i+wj wli+j+wk wi+w j+k i+wj+w_1k>
2 ’ 2 ’ 2 ’ 2 o
Discriminant (2)
In this first step we use Algorithm 1.2.19 referring to the Appendix, since we take p = (2).

Step 1. The order R(1) is in correspondence with the form f = H L (1). Using the basis for R(1)
given above, we get that

B={Li1+w li+w)), swit+w j+k),3(+wj+wk)}
is a basis for R(1)s. Its dual basis is
= {fo,wi— (1+w)k, 2 (1 +w)i—j—wk),3(— (1+2w)i+wj+ (14 3w)k)},

where fo = (1 —wi+ (1+w)k). Diagonalizing Mpv (as a ternary quadratic form), we see that letting

f1= % (2—|—w)z—]—(l—|—w)k‘),
fo= (1 +w)i—j+ (6+11w)k),
fa = 1(— (A7 + 88w)i + (11 + 26w)j + (43 + 32w)k),

the hypotheses of Proposition 1.5.7 are satisfied by € = { fo, f1, f2, f3}. Hence, letting

e1 = 5(— (232 + 384w) — (79 + 119w)i — (265 + 212w)j — (2 — 5w)k),
€2 = 35(268 + 444w + (6 — 3lw)i — (17 + 84w)j — (1 + w)k),
es = (13 + 24w — (7 + 12w)i — (10 + 21w)j) — k),

we get that Eh ={1,e1,e9,e3}isa quasi-good basis for R(1)s.

Step 2. We are descending from f = H L (1) to g = H L (2). To illustrate Proposition 1.2.11, we
show that we can construct a well-known order of discriminant (2). For this purpose, we conjugate
the quasi-good basis found above by z = e1+¢e3 (which belongs to R(1)J, by Table 1.8), thus obtaining
another quasi-good basis of R(1)s. Proposition 1.5.5 gives then that {1, ze1271,2 - zegr ™!, zegz ™1} is
a basis of R(2)s.

Step 3. Applying Proposition 1.2.17 to this basis, we obtain that
1+i+j+k
R(2) = <1,i,j, +Z+J+>
2 o

is an Eichler order of discriminant (2). Note that the given basis is a basis for the classical maximal
order in the quaternion algebra (—1, —1)q.

Discriminant (6)

Diagonalizing modulo 3 the quadratic form associated to {z € R(2)3" : Tr(z) = 0}, we obtain
using Proposition 1.2.14 that {1, (i + 7). %,2(i — j)} is a quasi-good basis for R(2)3.

We use Table 1.2 to descend from (1,—1,1) to (1,1, 3), using ap = 2,a; = —1 as parameters,
and we get that a basis for R(6)3 is given by {1, i+j—5% —3(i+4)+k26—j)}. Using Proposi-
tion 1.2.17, we get that

R(6) = <1,z' + 2k, 3k, 1+z+~7+k>
o
is an Eichler order of discriminant (6).
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Discriminant (61/5)

The basis £ = {f —i,—k - } of R(6) \@V satisfies the hypotheses of Proposition 1.2.14, but with

a stronger congruence in (1), namely mod (1/5)2. This implies that the basis for R(6+/5) /5 Obtained
below is a quasi-good basis (see Remark 1.2.13).

We apply Table 1.2 using ag = 2+ %, @y = —2 as parameters, thus obtaining that {1, —(1 + %)i +
2k,i — (2+ %)k, —2;} is basis for R(G\/g)\/g. Then Proposition 1.2.17 gives that

14i+j+7k
R(6V/5) = <1,i+2k,3\/5k,“+2‘7+7> .
O

is an Eichler order of discriminant (61/5).

Discriminant (30)

To construct R(30), we use the quasi-good basis obtained in the previous step and oy = %
%w a1 = —2 as parameters. The basis for R(30) s obtained in this way is {1,-(3 —l— 36w)z + (32 +

Bk, (32 + 2w)i — (2 + 3tw)k, —2j }. Applying Proposition 1.2.17, we obtaln that

14+i+j+7k
R(30):<1,z’+2k,15k,“+2‘7+7> .
O

is an Eichler order of discriminant (30).

Constructing the ideals

We now proceed to compute ideal classes representatives for R(30) iterating Algorithm 1.3.18,
and using the quasi-good bases obtained above.

Before starting, note that Equation (1.3.19) implies that only norm one global units need to be
considered when checking for equivalence of ideals in Step 4.1, since F' has narrow class number 1.

In[ , Théoreme 3.7] it is shown that R(1) has class number equal to one. It is also shown that
R(1)*! = E199, where Fjy is the binary icosahedral group. Explicitly, if we let

+1+i+j+k
Eyy = { 41,40, 4], ik%}
and u = (i +wj+w 'k)(1 +i+j + k), then

FEiog = {umx:0§m§4,xEEQ4}.

Using this explicit description we can avoid the use of LLL for computing R(1)*'!. Furthermore,
by Remark 1.3.20, this group contains all of the global units needed in our computations.

Discriminant (2)

The calculation of CI(R(2)) can be done without using the algorithm. Since |R(2)*'!| = 24 and
[R(1)5 : R(2)5] = 5 (see Table 1.8), Corollary 1.3.5 implies that [\Ilggg (R(l))} = [R(2)], from which
we conclude that R(2) has class number equal to 1 as well.
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Discriminant (6)
We now compute CI(R(6)), following Algorithm 1.3.18 closely. We have S = {R(2)} as input.

Step 1. To obtain a set of representatives for R(6); \R(2)3, we use {0, 1,2,w,2w,w + 1,w + 2,2w +
1, 2w + 2} as a set of representatives for F3).

Step 2. The ideal R(2)3 is trivially generated by 1, so there is no need to use Remark 1.3.9 in this case.
Steps 3 and 4. The set \I’g% (R(2)) has ten ideals, which we do not list for length reasons. The action

of R(2)*! on \Pg%(R(Z)) has two orbits, namely [/] and [J], where I = R(6) and J is the R(6)-ideal

corresponding to the fifth generator of R(6)3 \ R(2)5, which is given by
. . w o
J= <Z+(w—1)k,] — @+ Dk, 31+ S (3 =i —3k)>0.

This result agrees with Corollary 1.3.5, since |R,.(I)*!| = 6, |R,(J)*!| = 4 and [R(2)} : R(6)}] = 10.
Hence, the algorithm gives that CI(R(6)) = {[{], [J]}.

Discriminant (6+/5)

We compute CI(R(6+/5)) in the same way as before. We avoid writing down all the details but
give enough information so the reader can verify the computations easily.

e We take {0,1,2,3,4} as a set of representatives for IE‘( VB

e 1isalocal generator of J s, since J 5 = R(6) /.

e Denote ¥ E()z[)( ) ={hL,...,Is} and ¥ §6)\f)( ) = {J1,...,Js}, where the notation is such

that the n-th ideal corresponds to the n-th representative of R(6\/5)\X/5\R( )
labeling given in Table 1.3.

U5 following the

e The action of R,(I)*! on ¥ E )\f)( ) gives that [‘ng?ﬁ)) (I)} = {[I1], [14]}, and the action of
R,.(J)*! on \ngg)f)( ) gives that [ E?f (J )} = {[/1], [J2],[J3],[J5]} (see Table 1.4 for an
explicit description of these ideals).

Hence, we have that CI(R(6v/5)) = {[I1], [1], [Jl] [J2], [J3], [J5]}. This agrees with Corollary 1.3.5,
since we have that |R.(I1)*!| = |R.(I4)* R.(J1)Y = |R.(J3)%Y = 2, and |R.(J2)1| =
Ry (J5)H| = 4.

] Ideal \ Basis \ Ideal above ‘
I i+ 2k,3vV5k, 1, 5(L+i+ j+ Tk) s
I i+ 2k, 3v/5k, j + 14k, 5(1 + i + j + 19k)
J1 i+ (w—1)k,3v5k,j — (w+ Tk, (1 —i—j+ (18 + V5)k)
Jo +(w =1k, 3V5k, j — (w+ Dk, 3(1—i—j+ (6+VO)k) |
J3 i+ (= 1)k 3V5k,j— (w+ Dk, i1 —i+j+ (6 —V5)k)
Js |+ (w— 1)k, 3v5k, j — (w—5)k, 5(1 —i — j + v/5k)

Table 1.4: Representatives for CI(R(6v/5)).

Discriminant (30)
Finally, we compute CI(R(30)).

e The residue field is the same as before, so we take the same representatives for F (VB)*
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e The local generators at /5 for the ideals in CI(R(6v/5)) were constructed using Corollary 1.3.8.
They are 1, 1—4z+3k,1,1 4—1—2, 2—|—kand 1—i+2kfor Iy, 14, Ji, Jo, J3 and J5 respectively.
e Since R.(I1)*! = R, (1)t = R.(J1)*! = R,.(J3)%! = {&1}, we have that between the ideals

in \I/ggg)f)(ll), U 26‘)[) (I4),V Egg)ﬂ(h) and ¥ EG\)[)(J;;) there are no equivalences.

e The action of R,.(J2)*! on ‘Dggga)ﬁ)(h) gives that [ be)f)(JQ)] = {[J2,.1],[J222], [J2,3]} , and

the action of R,.(J5)*'! on ¥ Eg(\)( (J5) gives that [ Eg(\))[)(e]g,)} = {[J51],[J52], [J5,3]} (see Ta-
ble 1.5).
In particular, # CI(R(30)) =4 -5+ 6 = 26.
] Ideal \ Basis \ Ideal above ‘

Ill ’L+2k‘ 15]{?, ,2( +Z+]+7k§)

Iio z+2k,15k:j+2(1—|—3w)k,,2(1+i+j+(7—6\/5)k)
Ly | i+2k 15k, 5 — (1+ 3wk, 3(1+i+j+ (-8 + 3V5)k) I
Ly | i+ 2k 15k, 5 — (4 — 3w)k, (1+i+j+(8+3f)

Lis | i+ 2k 15k, — (T+6w)k, L(1+i+ 7+ (7+6V5)k
Iyq i+2k,15k,j+2(2—3w)k,2(1+z+g—(11+6f
Iio | i+ 2k, 15k, 5 — (7 +3w)k, 2 (1 +i+ 7+ (4 +3V5)k
Iiz | i+ 2k, 15k, 5+ (5+3w)k, S(1+i+ 7+ (1 — 6v5)k
Ing | i+ 2k, 15k, 5 +2(1 — 3w)k, 5(1 +i+ 5+ (19 + 65
Iis | i+ 2k 15k, j + 14k, (1 + i+ j + 19k)

Ji1 i+(2—5w)k,15k,j—|—5(1+w)k,%(l—|—z‘+j+(2—5\@)k)

\'—‘1\3\

\/\/

\_/

k)

~— —

1,

~—

k)

J12 + (2 — 5w)k, 15k, j + (2 — dw)k, (1 + i+ j + (17 + 4V5)k)
Ji3 + (2 — 5w)k, 15k, j + (2 — w)k, 3 (1+z+;—(13+2f)) Ji
Ji4 + (2 — 5w)k, 15k, j — (4 + Tw)k, %(1+z+j+(2+7\f) )

Ji5 + (2= bw)k,15k,j — (1 +7w)k,%( +i+j+(2+V5)k)

Jo1 + (2 — Bw)k, 15k, j + (5 — Tw)k, 5(L+ i+ j — (4 + 5V5)k)

Jo.2 + (2 = 5w)k, 15k, j + (5 — dw)k, (1 + i+ j + (11 + 4VB)k) | J2
Jos + (2 = 5w)k, 15k, j + 2(1 + w)k, 3 (1 + i+ j + (11 — 2V/5)k)

J31 + (2 — 5w)k, 15k, j — (4 — 5w)k, $(1 +14+ j — (10 + 5V/5)k)

J32 + (2 = 5w)k, 15k, j — (7T +4w)k, 3(1 — i+ j + (5 + 4V/5)k)

Tz | i+ (2= 5wk, 15k, 5 + (5 + 2wk, L (1 +i 45+ (5 —2VB)k) | J3
J3.4 + (2 — 5w)k, 15k, j + (2 — Tw)k, (1 +4 + j + (20 + 7V/5)k)

Js 5 + (2 — 5w)k, 15k, j + (1 + w)k, (1 + i+ j — (10 — V/5)k)

J5.1 + (2 — 5w)k, 15k, j + (2 + 5w)k, 5 (1 + i+ j + (8 — 5v/5)k)

Jso | i+ (2= 5wk, 15k, j — (1 +4w)k, L (1 +i 45+ (15 + 4VB)k) | J5
Js3 + (2 — 5w)k, 15k, j — 2(2 — w)k, 5(1 — i+ j — (6 — 3v/5)k)

Table 1.5: Representatives for CI(R(30)).

We end this section remarking that all the results obtained agree with Eichler’s mass formula
( , Corollaire V.2.3]), which we recall here.

Proposition 1.4.1. Let B be a totally ramified quaternion algebra, and let R C B be an Eichler of discriminant
d(R) = mn, where n is the level of R. Let I,...,1I, € J(R) be a set of representatives for the left R-ideals
equivalence classes, and let w; = [R(1;)* : O*].

> wi =2 (Cp(=1)] - h(F) - Nm) [J(N(p) = ) J[(N(p) + 1),
=1

plm pln

where d = [F : Q|, h(F) is the class number of F and (r is the Dedekind zeta function of F.
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1.5 Appendix: The case p = (2)

If p | (2) we can apply the same techniques used in the previous sections, but in this case local
Bass orders are described in terms of a different set of ternary quadratic forms. This set is described
in [ ] in the case p = (2), i.e. if 2 is inert in F'//Q, which is the case that we will consider in this
appendix. The remaining cases are more involved, and remain to be studied.

Consider the matrices
0 1 2 1
i=(10) 7=(12):

Given f, g quadratic forms, let f L g denote their orthogonal sum. According to [ , Propositions
5.8 and 5.12], isomorphism classes of Bass orders in quaternion algebras over F(,) are in one to one
correspondence with the forms f of Table 1.6. As in the case p { (2), orders of class Al are the so
called Eichler orders.

‘ Class ‘ Form ‘ Parameters ‘ Condition ‘ Algebra ‘
Al H L (2°) s>0 1
A2 J L (2%) s> 1 (—-1)°
B (1,1,012°) | s >0,6; € {1,3} 0o=1 -1

0L =3 1
C <1,6,(512S> s>1,0, € {1,3} 0h=1 (71)8
51 =3 (71)5-&-1
D (1,5,612°) | s>3,60€{1,3}| s =1 (—1)+!
=3 (—1)®
E (1,2,602°) | s>3,0,€{1,5} | =1 -1
0 =5 1
F (1,14,602°) | s > 4,6, € {1,5} | =1 1
0 =5 -1
G (1,10,622%) | s > 4,02 € {1,5} 0 =1 (71)5"'_1
0g =5 (-1)®

Table 1.6: Ternary quadratic forms in correspondence with local Bass orders, when p = (2).

In the right column of Table 1.6 we indicate with 1 or —1 whether the order Cy(f) belongs to
the matrix algebra or to the division algebra. As before, this depends on whether the norm form
associated to Cy( f) is isotropic or not. We omit the calculations.

Figure 1.2 shows how isomorphism classes of Bass orders in quaternion algebras over [, are
distributed.

The notion of good basis must be extended to include the non-diagonal forms of Table 1.6. As in
the previous section, we omit parentheses when denoting completions at (2) to make notation lighter.

Definition. Let Ry be a Bass order in correspondence with the form f = H L (2°) (respectively, with
f=dJ L(2%). Abasis B={1,e1,e2,e3} of Ry as an Oy-module is good if the e; satisfy

2
e; =0, erea = 2°(1 — e3), ese1 = 2%eg,
(1.5.1) e2 =0, ezes = 0, es3eg = €3,
€5 = es, eser = 0, €1€3 = €1.

Respectively, if the e; satisfy

e% = —2°, erea = 2°(1 —e3), eser = 2%eg,
(1.5.2) eg = -2° ege3 = —eq, eses = e1 + e,
e% =e3—1, ese] = —eg, eies = ej + es.

Note that in such bases the norm form is given by

A — 28 =H 1 (2°
(1.5.3) N(z) = {330 + zox3 T1%2, f (2%),

T3+ zow3 + 25 — 257130 + 252F + 2523, f=J L (2%).
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Figure 1.2: Graph of isomorphism classes of local Bass orders, ordered by inclusion, when p = (2).

Remark 1.5.4. We can extend Remark 1.2.7 to non-diagonal forms as follows. Let Ry be an order in
correspondence with f = H L (2°), and let B be a good basis of Ry. Then,

0 1 0
25 Mgy =10 0
0 0 2s+1

Respectively if Rj is in correspondence with f = J L (2°), then

21 0
23 Mgv=| 1 2 0
0 0 9s+1
In order to state the analogue of Proposition 1.2.8, using Hensel’s lemma take p1,...,us € O2
satisfying:

o i =17 o3u5 =13

03,u§:—5 oui:—lf)

o 3u2 =29 e 3u2 = —533.

Proposition 1.5.5. Let Ry be an order corresponding to a form f from Table 1.6, and let {1, e1,e2,e3} be a
good basis for Ry. Let g be a form beneath f, and let dy, do, d3 be as in Table 1.7.

Then, R, = (1,dy,ds,ds) o, 184 maximal suborder of Ry in correspondence with the form g, of which
{1,d1,ds2,ds} is a good basis.

Proof. All the cases can be easily checked. Many of them follow from Propositions 1.5.10, 1.5.11 and
1.5.12 below (see the proof of Proposition 1.5.13).
O
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Form | Form beneath | Good basis for R}

H 1 <1> J L <4> dy =2(p1 — 2e1 — 3eg — 2,&163),
do = 2(—p1 + 3e1 + 2e2 + 2u1e3),
d3 = —2 — preipies + Ses
H 1 <25> H 1 <2s+1> dl = 61,d2 = 262,d3 = €3
H 1 <2> <1, 1,3) dy = w1 —e1 + 2es — 2uqes,
do = =5+ 2uy1e1 + pres + 10es,
ds = p1 + 3e1 + ea — 2uze3
J L <25> J L <25+2> d1 = 261,d2 = 262,d3 = €3
J L <2> (17 17 1> d1 = 2 —e1+ 262 — 2#263,
dy = po — 2e1 + ea — 2pges,
d3 = —3 — ugey + pises + bes
<1,1,5129> <1,1,612S+1> di =e; —eg,dy =e1 +e9,d3 =e3
<1, 2, (5225> <1, 2,5325+1> d1 = 7262,(12 = 61,d3 = €3
<175,28> <1,5,3-25+1> di =e; —beg,dy = e +e9,d3 = e3
<1,6,28> <1,6,3 . 28+1> dl = —662,(12 = el,dg = €3
(1,10, 2°%) (1,10,5-2°F1) | dy = —10e2,ds = e1,d3 = e3
<1, 1,6> <1,6,6> d1 = 663,d2 = eg,dg = —€1
(1,1,2) (1,6,2) di = 2e1 + 6e3,do = eg,d3 = 2e3 — €1
<171,22> <1,5,3~23> d1 = e1 — Beg + 4des, dy = e1 + eg + 4deg,
d3 =e3 — €1
(1,14,6025) | (1,14,6025T1) | dy = ey — 14p1e,dy = piyer + e2,d3 = e3
<1,5,3-28> <1,5,28+1> d1 = e1 — duges, da = uger + ea,ds = es
(1,10,5-2%) | (1,10,25T1) di = —2e3,dy = te1,d3 = e3
(1,6,3-2%) | (1,6,2°T1) di = 2e1 — 2eq,dy = 3e1 + 2es,
d2 = %61 + 2@27d3 = €3
(1,6,3-2%) | (1,2,23) di = 2(—pges + 2e3),da = Feq,
d3 = ex + uges
(1,2,2%) (1,1,2%) di = —2e3 + 8e3,dy = e1,d3 = ez + be3
<1,2,5'23> <1,10,5~24> dy = —2uqeq + 40e3, do = e,
d3 = e + pge3
(1,6,3-2%) | (1,14,2%) di = 2(—pges + 4ez), dy = Feq,
d3 = ex + pzes
(1,6,2%) (1,2,5-23) d1 = 2(use1 — 3uses — 10e3),
dy = e1 + 2e9,d3 = e1 — 3eg + Hses
<176,23> <1,14,5‘24> d1 = 2(#561 —3/1,562 —6063),
do = e1 + 2e9,d3 = 3e1 — 9ea + uses

Table 1.7: Construction of maximal suborders, in terms of good bases and ternary quadratic forms,
when p = (2).

The notion of quasi-good basis remains unchanged, as well as the use of such bases for computing
suborders and representatives for the quotients (R5)”\ R; . We must show how to obtain quasi-good
bases in this setting.

Remark 1.5.6. Proposition 1.2.14 still holds for diagonal forms, setting n = 3vz(a) + 2 in order to be
able to use Hensel’s lemma in its proof.

Proposition 1.5.7. Let Ry be an order in correspondence with f = H L (2°). Let £ = {fo, f1, f2, f3} bea
basis of Ry satisfying (1.2.2). Assume that & satisfies the following conditions.

(1) There exists B € Oy such that

—2°. Mg = mod (M3(2305)).

O = O
S O =
w o o

(2) det(Mg) = 91-2s
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Let e; = —2° - f; fr, where (i, j, k) is an even permutation of (1,2,3). Then, ET = {1,e1,eq,¢e3} isa
quasi-good basis of Ry.

The following lifting lemma is needed in the proof of Proposition 1.5.7, which we omit, since it is
quite similar to the proof of Proposition 1.2.14.

Lemma 1.5.8. Let m be an integer such that m > 3, and let A € Ms(Os) be a symmetric matrix. Assume
that there exists C' € G L3(O3) such that

0 o O
C'AC = ( a 0 0 ) mod (M3(2™0,)),
0 0 g

with va(a) = 0.
Then, there exists C' € G L3(O2) satisfying C' = C mod (M3(2™103)) such that

0 o« 0
C"AC' = ( o 0 0 ) mod (M3(2™10,)),
o o p
with o’ = a mod (2™ 10y).

Proof. Write

0 o O a b c
CtAC:<a 0 0>+2m<b d e),
0 0 B c e f

with a, b, ..., f € Oy. We claim that there exists a matrix Cy € GL3(O2) such that

—a bV d2am
CéAC:( d —d e’2m>,

—2c —2¢ f

with o/, ¢,d', ¢, f' € Oy. This can be shown by performing row operations on C*AC, using the (1,2)
and (2, 1) entries as pivots to first obtain zeroes at the (1,1),(2,2), (3,1) and (3, 2) entries, and then
obtain —a, —d, —2c and —2e at the (1,1),(2,2), (3,1) and (3, 2) entries respectively.

Now let C' = C + 2™~ 1. Then,

0 o c/22m71
C"tAC = o 0 22l ) 4 22mDt AC.
6/22m71 6122m71 B/
where o = o+ 2™ YV + d'). Since 2(m — 1) > m + 1, we are done. O

For orders of class A2 we only state the corresponding analogue of Proposition 1.5.7.

Proposition 1.5.9. Let Ry be an order in correspondence with f = J L (2%). Let £ = { fo, f1, f2, f3} bea
basis of Ry satisfying (1.2.2). Assume that & satisfies the following conditions.

(1) There exists B € Oy such that

2°3. Mg = mod (M3(2305)).

O = O
o O =
w o O

(2) det(Mg) = 21725372,

Let e; = 2°3 - f; fx, where (i,3,k) is an even permutation of (1,2,3). Then, &1 = {1,e1,es,e3} isa
quasi-good basis of Ro.
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Finally, we proceed to give systems of representatives for the quotient sets (R})*\R; when R}
is a maximal suborder of R; obtained using Algorithm 1.2.19. We start stating three general results
which, though stated and used only when p = (2), hold without restrictions on p.

Let B = {1,e1,e2,e3} be a good basis for Ry. Let q be the order of the residue field F(,), and let
ar,az,...,aq € Oz be a set of representatives for F ).

Proposition 1.5.10. Suppose that Ry is in correspondence with the form f = (1,a,b), and let X\ € Os.
Assume that there exist g, oz € Og such that oz(% + aa§ =\ Let v = ag + ages, and let dy = vey,ds =
vey, d3 = €s3.

Then, Ry = (1,d1,ds, d3)e, is a suborder of Ry in correspondence with the form g = (1,a,\b), of
which {1,dy,ds,ds} is a good basis. Furthermore, if va(A\) = 1 and va(b) > 1, then RY is a maximal
suborder of Ry, the index of (R,)* in Ry is q, and a set of representatives for the set (R,)*\ R is given
by {1+ ajez:1<i<gq}

Proof. The first assertion is easily checked. We use Proposition 1.3.10 to prove the second asser-
tion. Since v2(b) > 1, by (1.2.4) the norm form on 2Ry\ Ry is given by N(z) = :1:3 + ax%. Hence,
|(2R2\R2)*| = ¢ - ¢*, where ¢ = #{(x0, x3) € F(2)2 : ;vg + ax% # 0}.

We have that
QRQ\RIQ = {.CE € 2R2\R2 1 Xo, X3 € F(g), (:L’l,:L'Q) cA- ]F(Q)Z},

where A = ( 50, 02). Since af + aa} = X and v2()\) = 1, this matrix has rank 1. Hence, |(2R2\R})*| =
¢ - ¢, which shows that [R] : (R})*] = ¢.
To see that the given units are not equivalent, take = € (2R2\ R5)*. Then, it is easy to see that

(14 ajer)r =z + (21 — ajzazs)er + (aizo + z2)ea + x3e3 = 1+ ajer

implies that i = j.

The next two results can be proved following the same ideas as the ones used above.

Proposition 1.5.11. Suppose that Ry is in correspondence with the form f = (1,a,b), and let p € Os.
Assume that there exist g, e € Og such that o3 + ba3 = p. Let v = ag + ages, and let di = vey,dy =
es,ds = ves.

Then, R, = (1,d1,d2,d3>o2 is a suborder of Ry in correspondence with the form g = (1, pa,b), of
which {1,dy,da,ds} is a good basis. Furthermore, if va(u) = 1 and va(b) > 1, then R) is a maximal
suborder of Ry, the index of (Ry)™ in RS is q, and a set of representatives for the set (Ry)*\ RS is given by
{1+ aje3:1<i<gq}

Proposition 1.5.12. Suppose that Ry is in correspondence with the form f = (1,a,b). Let a’,b/ € Os.
Assume that there exist ay, g, a3 € Oy such that aba? = b, and ac? + ba3 = d'. Let do = ajer,d3 =
ages + azes, d; = dsds.

Then, Ry = (1,d1, dz,ds) ¢, is a suborder of Ry in correspondence with the form g = (1,a’,b'), of which
{1,d1,da, ds} is a good basis. Furthermore, if va(b') = v2(b) + 1,v2(a) = va(a’) = 1 and ve(b) > 1, then R,
is a maximal suborder of Ry, the index of (RY,)* in RS is q, and a set of representatives for the set (R5)™\ R,
is given by {1+ ae3 : 1 <i < ¢}

Assume that the given system of representatives for F,) is such that a; = 1, and that a,—1 and q,
are the two solutions in IE‘(Q) of t> +t + 1 = 0, when g = 2° with even s.

Proposition 1.5.13. Let B = {1, ey, ez, e3} be a quasi-good basis of Ra, and assume that RY, is a maximal
suborder of Ry that has been built using Algorithm 1.2.19. Then, Table 1.8 gives the index of (RS)* in R and
a system of representatives for the quotient set.
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Ry~class | Rj-class | [R) : (Rh)™] | Representatives | Condition |

Al qg+1 e1+es, l+aes (1<i<yq) 5=0
q 1+aes (1<i<gq) s>1
Al A2 alg—1) (1+aiez)(er +ajes) (1<i,j<qg,a;#0) s odd
glg+1) (1 +ase2)(er +ajea) (1<4,5<gq,a;#0), s even
(1+ajer)(aj+e) (1<i<qq—2<j<q)
B qg—1 1+aes (1<i<gq)
A2 q2 1+ aeq + ajes (1 <i,5 < q)
A2 B qg—1 es, 1+aes (1<i1<qg—2) s even
qg+1 es, 1 +aes (1<i<gq) s odd
B ¢ ea, 1 +aes (1 <i<gq) s=0
B I+aey (1<i<q) s>1
C q T+aes (1<i<gq)
D q 1+aes (1<i<gq)
C q Liai+es (1<i<gq)
E lai+es (1<iX) 0 =1
C g 1,a; +e3 (1§Z§q) =
Lai+es (1<i<q) 01 =
F q -
lLai+es (1<i<yq) 0 =3
D D q lLiai+ex (1<i<ygq)
E E q lLiai+es (1<i<yq)
G q lLiai+es (1<i<gq)
F F q Liai+es (1<i<yq)
G G q Lai+es (1<i<yq)

Table 1.8: The indexes [R; : (R})*], and representatives for (R})*\ RS

Proof. As in the p { (2) case, by Proposition 1.3.10, we may assume that B is a good basis for Ry, as
well as we may perform all calculations modulo 2R;.

The cases Bto B, Cto C,Dto D, Eto E, F to F and G to G are covered by Proposition 1.5.10. The
case B to C is covered by Proposition 1.5.11.

To prove the case B to D, use Proposition 1.5.11 to descend from (1,1, 2%) to (1,5,2%), and Propo-
sition 1.5.10 to descend from this form to <1, 5,3 - 23>. A similar argument works for the other form
of class B.

The cases C to E (with 6; = 3), C to F (with §; = 3) and E to G are covered by Proposition 1.5.12.

Now we will prove the case from A2 to B. The remaining cases can be treated in a similar way,
with no further difficulties.

By (1.5.3), the norm form on 2R5\Rs is given by N(z) = x3 + zoz3 + x3. Hence, a standard
calculation shows that
¢t —¢*(2¢ —1), ifriseven,
¢t — ¢, if r is odd.

[(2R2\R2)™| = {

Sincedy = 1+4e1,dy = 1+e9 andds = 1+e1+egin 2R2\R2, we have that 2R2\R/2 = <1, €1, 62>]F<2) .
Hence |(2R2\R2)*| = ¢* — ¢°, and this proves the equality on [R5 : (R})*].

Now we need to find the right amount of non equivalent units. It is easily seen that the elements
in the set {1 + ajez : 1 < i < ¢} U {e3} are not mutually equivalent modulo (2R2\R2)*, and they are

all units, except for 1 + a,—1e3 and 1 + a4e3 when ¢ = 2° with even s.
O
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Chapter 2

Preimages for the Shimura map on Hilbert
modular forms

Summary

We start this chapter by recalling some basic facts about Hilbert modular forms, including their
correspondence with automorphic forms. Some good references for the theory of Hilbert modular
forms are Garrett’s book [ ] and Gebhardt’s dissertation [ ], and of course Shimura’s article
[ I.

In the second section, given a totally definite quaternion algebra B and an Eichler order R C B,
we define Hecke operators acting on the vector space M (R) generated by left ideal classes representa-
tives for R. We state the main properties of these operators showing that, away from the discriminant
of the order, they satisfy the same relations as the Hecke operators on Hilbert modular forms. We
recall a Jacquet-Langlands-type result that assures that, under certain hypotheses, for every Hilbert
modular newform there is a vector in M (R) having the same eigenvalues for the Hecke operators, if
we choose B and R appropriately.

In the third section we introduce half-integral weight Hilbert modular forms, following [ I
We state the main properties of the Hecke operators acting on them, and we recall Shimura’s theorem
giving a Hecke linear map from the space of Hilbert modular forms of parallel weight 3/2 to the space
of Hilbert modular forms of parallel weight 2.

In the fourth section we show how certain ternary theta series associated to the left ideal classes
of a given order R can be used to produce Hilbert modular forms of parallel weight 3/2. This cons-
truction actually gives a Hecke linear map from the space M (R) to the space of Hilbert modular
forms of parallel weight 3/2 (see Theorem 2.4.11).

In the fifth section we show how the results of the previous sections can be used to construct
preimages of the Shimura map, at least in the case where the level of the modular form is odd and
square-free. This is stated in Theorem 2.5.3, which is our main result. We also state a Waldspurger’s
type formula by Baruch and Mao, which relates the Fourier coefficients of the preimages and central
values of twisted L-functions.

In the final section we consider the space of Hilbert modular cusp forms over F' = @[\/5], with
level (6++/5) and parallel weight 2. This space is 1-dimensional, and it is spanned by a newform that
corresponds to an elliptic E curve over F. We apply our method to this cusp form to construct a pa-
rallel weight 3/2 modular form in Shimura correspondence with it, and compare its zero coefficients
with the ranks of imaginary quadratic twists of E.

We remark that though for simplicity we consider the Shimura correspondence in parallel weights
3/2 and 2, our techniques can be used for general weights, adding spherical polynomials to the
ternary theta series. This is work in progress.
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2.1 Hilbert modular forms

Let F be a totally real number field of degree d over Q, with different ideal 0. We let a denote the
set of all embeddings 7 : ' — R, and for £ € F' and 7 € a, we denote 7(§) = &,. We let

Ft={¢cF*:¢(, >0 Vreal,

the subgroup of totally positive elements of F'*.

We denote by F} the ring of adeles of F, and by F,* the group of ideles of F. We let F,, and F}
denote respectively the archimedean and the non-archimedean parts of Fj.

Let G denote the group scheme SLy and G the group scheme GLy, both over F. Also, let

GHF)={yeG(F):dety e FT}.
Let H denote the Poincaré upper-half plane. Then GL3 (R)? acts on H? component-wise, and

G*(F) also acts on H? via the natural embedding G*(F) < GLJ (R)2. If v € GLJ (R)?, with ~, =
(¢ 5r), welet j(v, z) denote the automorphy factor

i(v.2) = [[(er2r + dr).
TEA
Again, this also makes sense for v € G’*( ). Given a function g:H*—= Cand~ € CNT‘*(F), we denote

by gy the function given by (g|v)(z) = Ng/g(det7)j(7,2z) 2g(72).

Let ' € G*(F) be a congruence subgroup (we will consider only certain congruence subgroups
defined below, see [ , page 639] for a general definition). The space of Hilbert modular forms of
weight 2 (also called parallel weight 2) with respect to I', which we denote by Mx(T"), is the space of
holomorphic functions g : H* — C such that

e gly=g Vyel.
e If d =1, g(2) is holomorphic at the cusps.

The holomorphicity condition at the cusps is automatic for totally real fields other than Q. This is
the so called Koecher principle. See [ , Section 1.4] for a proof.

Let O be the ring of integers of F. We denote Or by O when there is no chance of confussion.
Given fractional ideals v, n, we will be mainly interested in the groups

={y=(2b) ¢ GH(F):a,de O,ber ™ cewm,detye 0*},
[[e,n] = G(F) N L[e,n).

Leter : F' x H® — C be the exponential function given by

er(€,z) = exp (2mi Z &rar).

TEA

For a fractional ideal a, let a* = a N F'*, and denote by a" its dual with respect to the trace form. If
g € M2(T[t,n]), since g(z + &) = g(z) for every £ € v~! (where we denote z + ¢ = (2, + &), € H?),
the form g has a Fourier series expansion

g(Z) - Z c({,g)ep(f,z).
ge((x=1)V)ru{o}

We say that g is cuspidal if ¢(0,g|y) = 0 for all v € G*(F). The subspace of such g is denoted by
Sa(I'[t,n]).

For a fractional ideal a, denote by [q] its class in the narrow class group CI™(F). Take by, ..., b, C
O representatives for CI™(F), which we fix from now on. Let ¢ be an integral ideal. The spaces of
Hilbert modular forms and Hilbert modular cusp forms of level ¢ are defined respectively by

@Mz [b1, <)), @Sz (b1, ¢]
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Since for any ¢ € F* the group I'[b, ¢] is conjugate over G (F) to the group I'[€b;, n], the spaces
Ma(c) and S2(¢), in certain sense, do not depend on the representatives b; chosen.

We now consider Hilbert modular forms from the automorphic point of view. Let t; € F{* be such
that the fractional ideal corresponding to ¢; is b;. Let O% = [, O;, where the subscript p as usual
denotes the completion at p, and let F} C F} denote the connected component of the identity. Right
from the definition of CI*(F) we get the decomposition

(2.1.1) Fy =] |F*t (FF x 0%).
=1

Strong approximation for G asserts that G(F) SLy(R)* is dense in G(Fy) (see [ ). This im-
plies that if K is an open, compact subgroup of G(F%), then the natural map

G(F)\G(Fs)/(GLS (R)* x K) — F*\F; /(F} x det(K))
is a bijection. This fact together with decomposition (2.1.1) gives the following theorem.

Theorem 2.1.2. Let K be an open, compact subgroup of G(Fy). If det(K) = O%, then

G(Fy) = |_| 2) (GLF (R)* x K).

Let Ko(c) C G(Ft) denote the open, compact subgroup given by

Ko(c) = { (28) € [ GL2(0y) : ¢y € cpw}.
p

It certainly satisfies that det(Ky(c)) = O*.

Definition. A map ¢ : G(F)) — C is a Hilbert automorphic form of weight 2 for Ko(c) if it satisfies
(H1) ¢(yz) = ¢(z) forall v € G(F).

(H.2) Consider the diagonal embedding Fy- — GL3 (R)2. Then, ¢(tzx) = ¢(x) forall t € F;f.

(H3) For 6 € B2, let r(0) = (5o ")) € SO5(R)®. Then,

P(ar(0)k) = e 2 Xreal7(z), Vr(h) € SOx(R)2, k € Ko(c).

(H.4) ¢is “slowly increasing”.

(H.5) Asa function of GL2(R)?, ¢ is smooth.

(H.6) ¢ is an eigenfunction of the Casimir operator A, with eigenvalue 0, for all T € a.
We say that ¢ is cuspidal if it also satisfies

(H.7) fFA/F o ((8Y)x) dy = 0 for almost every y € G(Fy).

Implicit in (H.2) and (H.3) lays the fact that we only consider forms with trivial character, which
are enough for our purposes. For a precise statement of (H.4) and (H.6), we refer to [ ] (Chapter
2 and sectior} C of ~Chapter 3); see also [ , Chapter 2]. We remark that if ¢ is cuspidal, then
6] € LA(F}GF)\G(ER)).

Denote i = (4,...,i) € H2 Then GLJ (R)? acts transitively on H?, with the stabilizer of i being
SO2(IR)®. Using this it is not hard to prove part of the following result (we refer to [ , Proposition
3.1]or ]| , Theorem 2.3.7]).
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Theorem 2.1.3. Let ¢ be a Hilbert automorphic form of weight 2 for Ko(c). Forl =1,...,rlet g : H* - C
be given by
91(2) = j(za, i)2¢ (((1) 8 ) xa) )
where x, € GLF (R) is any element satisfying xai = z. Then g, € Ma(T'[by, c]). Furthermore, g; is a cusp
form if ¢ is a cusp form.
Conversely, given g, € Ma(T'[by,¢]) for 1 = 1,...,r, using Theorem 2.1.2 define ¢ : G(Fy) — C by

10) (’y ((1) ,g ) xakro) = j(za, i)_zgl(xai), fory e G’(F),xa € GL;(R)a, ko € Ko(c).

Then ¢ is an automorphic Hilbert modular form of weight 2 for Ky(c). Furthermore, ¢ is a cusp form if every
g1 is a cusp form.

This theorem says there is a bijection between M3(¢) and the space of automorphic Hilbert mo-
dular forms for K(c). This isomorphism depends on the particular choice of representatives b;, but
the space of automorphic Hilbert modular forms for K(c¢) does not. In particular, if r = 1 we have
a bijection between Hilbert modular forms for T'[O, ¢| and automorphic Hilbert modular forms for
Ky(c), as in the rational case.

To every g € Ma(c) we can associate a “g-expansion” indexed by integral ideals. Letting (§9)
acton g, with e € OF = O* N F¥, it is easy to see that ¢(¢, g;) depends only on £O. Then given a
non-zero integral ideal m, we let

c(m,g) =c(&q), with§e b;“ such that m = {bl_l,

and this is well defined. These Fourier coefficients can be obtained in terms of the automorphic form
corresponding to g, and do not depend on the representatives b; chosen. In terms of these Fourier
coefficients we define the L-series associated to g, which is given by

L(g,s) = Y c(m,g)N(m)~".
mCO
The action of the Hecke operators 7}, on M2(c) is naturally defined in the adelic setting, for which
we refer to [ ]. This action is such that if g; € Ma(T[b;,c]), then T,(g;) € Ma(T[by,<]), where
I' is such that [pb;] = [by]. Note in particular that the Hecke operators do not preserve the spaces
M3(T[by, ¢]), which explains why we need to consider r-tuples as above. We give the description of
the action of the Hecke operators on Fourier coefficients (see [ , (2.20)]).

Proposition 2.1.4. Let g € Mx(c), and let p be a prime not dividing c. Then, for every integral ideal m

c(m, Tpg) = N(p)c(pm, g) + c(mp™', g),
where we set c(mp™1, g) = 0if p{m.

We denote by T the algebra generated by all of the Hecke operators, and by Ty the algebra ge-
nerated by the Hecke operators 7}, with p 1 ¢. The operators in T are self-adjoint with respect to the
Petersson inner product on S2(¢), which in the automorphic setting is given by the inner product of
L2(FYG(F)\G(Fa)). See [ , Proposition 2.4].

The old subspace of S2(c), which we define in the adelic setting, is the space generated by the
functions = — ¢(x (%1 9)), with ¢ an automorphic cusp form of level b with b | ¢,b # ¢, and t € F
such that the ideal corresponding to ¢ divides b~'c. This space is stable under the action of Ty, and
hence the same property holds for its orthogonal complement, which we denote by S3(¢). The
forms in S3°*(¢) which are eigenfunctions for all the operators in Ty are called newforms.

The following is the multiplicity one theorem for (Hilbert) automorphic forms, due to Miyake
(see [ D.

Theorem 2.1.5. Let g be a newform in S5 (c). If h € Sa(c) is an eigenfunction for all the operators in T,
with the same eigenvalues as g, then h is a multiple of g.

The space Mz(c) comes also equipped with Atkin-Lehner involutions W), defined for p | ¢. These
involutions commute, and they commute with the action of T as well. By Theorem 2.1.5, given a
new

newform g in S3(¢), for each p | ¢ we have that W,g = wyg with w, € {1, —1}. Furthermore, the
sign of the functional equation of the L-series associated to g equals (—1)9 [ Ly wp- Seel ,(2.48)].
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2.2 Quaternionic modular forms

We refer to Section 1.1 for the definitions and basic results concerning the arithmetic of quaternion
algebras.

Let B a totally definite quaternion algebra over F), i.e. B is such that B; = B ®p F; is a ramified
quaternion algebra over F; for every 7 € a. Let © be an integral ideal of F'. We fix an Eichler order
R C B of discriminant ©, and we recall that by J(R) we denote the set of invertible (i.e., locally
principal) left R-ideals.

Two ideals I, J € J(R) are equivalent if there exists + € B* such that I = Jx. We denote by [I]
the equivalence class of I under this relation. We fix I,..., 1, € J(R) representing the left ideals
equivalence classes.

The space of quaternionic modular forms for R is the vector space over C spanned by the ideal
classes [I1], ..., [I,], and is denoted by M (R). On M (R) we consider the inner product defined by

0, i # J,
[RT(Ii)X : OX]? =]
Here [R,(1;)* : O*] denotes the index of O* in R, (I;)*, which is finite due to (1.3.19).

Weleteg =30, m [I;] € M(R), and we denote by S(R) the orthogonal complement of Ceg
in M(R). Then S(R) = {v € M(R) : degv = 0}, where deg : M (R) — C is the linear map defined by
deg([Z;]) = 1. We call S(R) the space of quaternionic cusp forms.

(11 ) = #{e € O\B* - Lw = I} = {

Let m be a non-zero integral ideal. For I € J(R) denote
ta(I) ={J €I(R): J CI,[I:J]=m?},

where [ : J] denotes the index of J in I. We let T}, be the m-th Hecke operator acting on M (R),
defined by

J€Etm(I)
These definitions of quaternionic modular forms and Hecke operators agree with the definitions
given in [ ]

There is an action of the group of fractional ideals on J(R). Given a fractional ideal nand I € J(R),
we define n/ € J(R) as the R-ideal locally given by (nl), = Rp(x&p), if n and I are locally given by
n, = Opp, and I, = Ryx,, respectively. This induces an action of CI(F') on M (R), which commutes
with the action of the Hecke operators.

Lemma 2.2.1. Let 7, denote a local uniformizer at p. Let x, € My(Oy) with my | det(xy). Then,
#SLa(Op)\{yp € Ma(Oy) : det(yy) = mp, 2py, € Ma(Op)}

_ 1, zy & T Ma2(Op),

Proof. Letq = N(p),and let a1, ..., oy € O be representatives for the residual classes modulo p. Then

m 0 1 oy 1 a4
0 1)°\0 m/) " "7\0 m

is a system of representatives for the action of SLy2(O,) on {y, € M2(O,) : det(y,) = m,} by left
multiplication. The result follows from the fact that, given z, = (2 %) € M»(0,),

-1
T 0
Ty <Op 1) € My(Oy) <= mp | a,my | c,

-1
Ty <(1) 7?) € My(Op) <= my | b—aa,m | d— ac.
p
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The Hecke operators on M (R) satisfy the following equalities, which are also satisfied by the
Hecke operators on Hilbert modular forms (see [ , (2.12)]).

Proposition 2.2.2. Let m,n be integral ideals, and let p be a prime ideal such that p + ©. The Hecke operators
on M (R) satisfy:

(1) TwTy = To, if (m:n) = 1.
(2) Tpez2 = Typr Ty — N(p)pT k., for every k > 0.
(3) TuTy = Ty + N(P)pTonsp, if p | m.

Proof. We follow the same ideas as in [ , Proposition 1.3], where the result is proved in the case

F=0Q.

(1) Let I € J(R). If J € tn(L) with L € t,(I), then J € tmn(I). Moreover, since (m : n) = 1, for
every J € tymn(I) there exists a unique L € t,(I) such that J € ¢, (L), namely the ideal given by
Ly, =1, forp{nand L, = J, for p | n. Hence

Tan(I) = > > [J]=Tu(Tu(I),
Letn(I) JEtm(L)

which proves that Ty, = TinTh.

(2) Let J € 3(R). Given I € tyii2(J), write I = Jyzy, with z, € R,.(J,). Then we have a bijection
Ry(Jp) \yp € Ri(Jp) 1 vp(N(yp)) = 17%?/;1 € R (Jp)} = {K €ty(J) : I € tpera(K)},

assigning to each y, the ideal K given locally by K, = J; for q # p and K, = J,y,. Since p { D
we can identify R, (J,) with M>(0O,). By the previous lemma, these sets have one element if
xyp ¢ mpM>2(Op), and ¢ + 1 elements otherwise. Hence, we have a non-disjoint union

toer2(J) = | tpesr ().
Kety(J)

If I € ty2(J) is such that 2, = w2, with 2z, € My(Oy), then letting I’ = p~'I we have that
I' € t,i(J). Conversely, for each I' € t,:(J) we have that I = pI’ € t,+2(J). Using this, the
equality follows easily.

(3) This follows from (1) and (2).

O

The Hecke operators are normal with respect to (,), but not necessarily self-adjoint if CI(F') is
non trivial, as we see in Proposition 2.2.4 below.

Lemma 2.2.3. Let I,.J € J(R). Then, I € tn(J) if and only if mJ € ty(I).

Proof. Both statements are equivalent, so we will prove the “only if” statement. Let I € t,(J). We
prove that mJ € ¢, (I) by showing that this assertion holds in every completion.
Let p be a prime ideal. Take z, in R,(l,;) such that I, = Jyz,. Then, my = Oy,N(z,). Since
T, € R.(I,), we have that m,J, C J,z,%, C I,. Furthermore, [I, : myJ,] = [J, : JpZp] = my.
O

Proposition 2.2.4. The adjoint of Ty, with respect to () is m™1Ty,.
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Proof. Let I,J € 3(R). Then

(I, Tu([J])) = Y #{zr € O\B* : Iz =L} = #{z € O*\B* : Iz € t(J)}

Letn (J)
=#{x e O\B* :mJ € tu(Iz)} = #{x € O\B* :mJz ! € tn(I)}
= (Tw([1]), m{J]),
where the third equality follows by the previous lemma. This proves the assertion. O

Proposition 2.2.5. The spaces Ceq and S(R) are preserved by the action of the Hecke operators and by the
action of CI(F).

Proof. The action of CI(F') preserves both spaces, since this action permutes the classes [11],. .., [I;].
Consider the action of the Hecke operators on S(R). By Proposition 2.2.2, it suffices to prove that
T,(S(R)) € S(R) for every prime ideal p. Let p be a prime ideal. Given I € J(R), the set t,([) is in
bijection with the set
R\ {zp € Ry : OpN(xp) = pOy},

and hence #t,(I) = ¢ does not depend on I. Let v = )\ ; \;[I;] € M(R). Then

deg(pr»:fin( > 1) =c-deg(v),

=1 Jet,,([i)

which proves that 7, (v) is cuspidal if (and only if) v is cuspidal.
Finally, these facts together with Proposition 2.2.4 imply that e is a Hecke eigenvector.
O

Since the Hecke operators are commuting, normal operators, S(R) has a basis of simultaneous
eigenvectors for the whole Hecke algebra. However, since the operators T}, with p | © do not satisfy
the same relations as the Hecke operators on Hilbert modular forms, we will be interested only in
the algebra of operators T generated by the operators 7, with p { D.

The following result is a generalization of the solution to the basis problem studied by Eichler,
vastly generalized by Jacquet-Langlands. See for example [ , Proposition 2.12].

Theorem 2.2.6. Let B be a quaternion algebra, and let R be an Eichler order in B of discriminant ¢. Then
there is an injective map of To-modules S(R) — Sa(c), whose image contains all the newforms.

Remark 2.2.7. Let ¢ be an integral ideal. Since every quaternion algebra is ramified at an even number
of places, there exist a totally definite quaternion algebra B and an Eichler order R as in the theorem
above in the following cases:

e diseven.
e dis odd and there exists a prime p such that p||c.

In the first case we can take B to be the quaternion algebra ramified only at the archimedean places
(as in the example given in Section 1.4), whereas in the second case we can take B to be the quaternion
algebra ramified at the archimedean places and at p. Of course, other choices might be possible, as in
the example given in [ ].

In particular, such B and R exist if ¢ is square-free.

Remark 2.2.8. The conclusion from Theorem 2.2.6 that we need for our purposes is that, under certain
hypotheses, given a newform g € S3(c) there exists a quaternion algebra B and an Eichler order
R C B such that there exists a Ty-eigenvector v € S(R) with the same eigenvalues as g. A more
precise version of Theorem 2.2.6 claims that such v exists if and only if there exists an order R of
discriminant ¢ in a quaternion algebra B which is not ramified at those primes p for which the auto-
morphic representation associated to g belongs to the principal series at p. If the parity of the number
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of places at which the automorphic representation associated to g belongs to the principal series al-
lows so, such an order can be found within the family of Bass orders considered in Chapter 1. An
example in which the parity condition implies that such an order does not exist can be obtained
by taking g to be the cusp form corresponding to the elliptic curve 139A, since the corresponding
automorphic representation belongs to the principal series at p = 13.

2.3 Hilbert modular forms of half-integral weight

Classical modular forms of half-integral weight were introduced in [ ], which is manda-
tory reading as an introduction to the subject. In the Hilbert setting, they were also introduced by
Shimura, in [ ]. We follow this article closely, though omitting and avoiding many technical
details which are not relevant for our purposes.

As in the rational case, half-integral weight Hilbert modular forms are defined in terms of the
theta function given by

ZeF £°,2/2), ze€H.

£e0

By means of this theta function we introduce the factor of automorphy .J, which is given by

J(v,2) = (00((7;))> j(v,2) v€G(F),zeH.

This agrees with the factor of automorphy introduced (in a more technical way) by Shimura, after
[ , Lemma 4.3].

Let b C O be an ideal divisible by 4. Let 1) be a Hecke character of F' with conductor dividing b,
and denote by 1* the character on ideals prime to b induced by . For an integral ideal m we denote

m = Hp‘m Y. We also denote ¥q =[], V7.
Fory = (2%) € G(F) and f : H* — C, we let (f|)(2) = vo(a) ' J(v,2) " f(yz). A Hilbert
modular form of weight 3/2 = (3/2,...,3/2) (also called of parallel weight 3/2), level b and character
1, is an holomorphic function f on H? satisfying

fly=f VyeTr[27'0,b].

The space of such f is denoted by M3 /5(b, 7). It is trivial unless ¢a(—1) = (-1)%
This definition is slightly different from the definition used in the rational case, where the au-

3
tomorphy factor given by <9((72))> was used. However both definitions are equivalent. If /' = Q

and f € Mg/3(NZ,1), where ¢ is the Hecke character induced by the Dirichlet character ¥, then
f(2) = f(22) is a classical modular form of weight 3/2, level N and character ¢ - (=h).

In [ ] there are defined Hecke operators for square-free ideals m. Due to normalization is-
sues, here we denote by T}, the m-th Hecke operator of [ ] multiplied by N (m). These operators
satisfy that Ty, = Ty, for relatively prime ideals m,n. We warn the reader that, regardless of our
normalization, the notation for the Hilbert setting is not consistent with that of [ ] if p = pZ with
p a rational prime, then our operator 7, agrees with the operator 7, from [ I

The automorphic counterpart of half-integral weight Hilbert modular forms is more involved
than in the integral weight case, since the former correspond to functions on the metaplectic covering
of G(F}y). Note that working with unimodular matrices is enough as opposed to the integral weight

case. This is due to the fact that instead of using the matrix (0 72 ) for defining the action of 7, in the

metaplectic covering of G(F}), the unimodular matrix (1/67 P Wp) can be used, since these matrices
are conjugate.

In particular, using strong approximation over G(F)j) we get that an automorphic form of half-
integral weight corresponds to a single function on H?, instead of the r-tuple of functions that we
need to consider in the integral weight case.
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Given f € Mg/5(b, 7)), there is a Fourier series attached to each ideal class in F'. More precisely,
for every ¢ € F' and every fractional ideal m there is a complex number (£, m, f), such that

f(z) = Z A&, 0, fler(€,2/2) (the g-expansion at O),

EeF
and such that
(2.3.1) )\(ﬁbz,m, f)= NF/Q(b)wa(b))\({, bm, f) Vbe F*,
(2.3.2) A& m, f) =0, unlessé e (m™2)TU{0}.

See [ , Proposition 3.1]. We say that f is a cusp form if A(0,m, f|y) = 0 for every fractional ideal
m, for every v € G(F). The space of such f is denoted by Sg/5(b, ).

Note that (2.3.1) shows that there are actually | CI(F')| Fourier series attached to f. The description
of the Fourier coefficients A\(£, m, f) for non-principal m is done in the automorphic setting, which we
do not treat, but we can compute them explicitly in the case of forms given by theta series, which we
will consider below.

Definition. The Kohnen plus space M;r/z(b, V) is the subspace of those f € Mg /5(b, 1)) satisfying that
ME O, f) = 0 for every € € OF such that —¢ is not a square modulo 40. We denote S7,.,(b,) =

3/2
M?jr/2(b7¢) N S3/2(b, ).

This definition extends naturally the classical Kohnen plus space to the Hilbert setting. We will
see below in Remarks 2.5.2 and 2.5.5 that it has similar properties as those obtained in [ ] for
classical modular forms.

The action of the Hecke operators, which as in the classical setting is defined in terms of double
coclasses, can be described in terms of Fourier coefficients. See [ , Proposition 5.4] (and recall
our normalization).

Proposition 2.3.3. Let f € Mg /5(b, 1), and let p be a prime ideal such that p 1 b. Let m be a fractional ideal,
and take c, € F, such that Oyc, = my. Then,

A&, Ty(f) = N(AE pm, )+ () (SN E m, f) + o (p2INEp m, f),
where (;) denotes the quadratic residue symbol modulo p.

For n C O, we introduce a formal symbol M (n) such that M (nm) = M (n)M (m) for alln,m C O.
Then we can consider the ring of formal series in these symbols, indexed by integral ideals. These
turn into Dirichlet series when we specialize M (n) to N(n)™*, with s a complex variable. The fol-
lowing result, which is essentially [ , Theorems 6.1 and 6.2], is the generalization of the Shimura
correspondence for Hilbert modular forms. We assume for simplicity that 1 is a quadratic character,
since this will be the case in our setting.

Theorem 2.3.4. For each {& € O™ there is a linear map Shimg : Mg, 9(b,v) — Ma(b/2), characterized by
the following property. Write EO = q*v with q,x C O and v square-free, and let e¢ be the Hecke character
corresponding to F(\/€)/F. Let f € Mg3(b,v). Then (formally),

(23.5) ) c(m, Shimg(f))M(m) = (Z M q7m, f)M(m)) (Z(w*GZ)(m)N(m)lM(m)) :

mCO mCO mCO

This map is such that if f is a T-eigenform, then Shime(f) # 0 if and only if \(&,q7 L, f) # 0. In that case,
Shimg (f) is a T-eigenform, with the same system of eigenvalues as f.
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Actually, (2.3.5) is used to define the function Shim¢(f) in terms of a g-expansion, and the proof
of the theorem consists in using the criterion of Weil (see [ , Theorem 7]) to see that Shim(f) is
a Hilbert modular form with level and weight as above.

Though Theorem 2.3.4 claims that the Shimura map is T-linear when acting in eigenforms, this
does not imply the Hecke linearity in all of Msz/5(b, ), since this space does not necessarily have
a basis of T-eigenforms. Nevertheless, by looking at the Fourier coefficients we get the following
result.

Proposition 2.3.6. The Shimura map Shimg : Mg/o(b,v)) — M2(b/2) is To-linear.

Proof. Let f € M3/2(b,1)), and let p be a prime ideal with p { b. We must prove that c(m, Shim¢ (7, f))
= c(m, T, (Shim¢ f)) for every integral ideal m.
Using Proposition 2.1.4 and (2.3.5), we have that

c(m, Shimg(Tpf)) = N(p) D A(rq~'n, f)(ve,) (0™ pm)N(n ™ pm) !

njpm

+ ) A e, f) (W) ((np) T tm) N ((np) ")

nlp—im

On the other hand, using Proposition 2.3.3 and (2.3.5) we have that

c(m, Ty(Shime £)) = 3 (NOIAEa np, £) + 0" () ()& a7 "n, f)

njm

A (pa) 70, £) ) () (0™ m) N (n~hm)

02
where ¢, € Fy is such that Oyc, = q~'my. Notice that ¢f(p) = (57")
Since t is square-free, (2.3.2) implies that A(€, (pq) ~'n, f) = 0 unless p | n. Using this, it is tedious
but not hard to see that the equations above imply that both Fourier coefficients agree.

O

2.4 Ternary theta series

Theta series of totally definite ternary quadratic forms can be used to construct Hilbert modular
forms of weight 3/2, as we show in Proposition 2.4.4 below. Since the number of variables of these
quadratic forms is not even, they are not considered in the classical literature. Transformation for-
mulas in this (and much more) generality are studied in [ , Section 11] and in [ ]. We start
this section by recalling some results from [ ] that we need to prove Proposition 2.4.4. We first
need to introduce some notation.

Given a fractional ideal n, we denote

Talt] = {(24) € G(Fa)  ap € Op,by € (07,5 € (200)p,dp € Op Vi,

which agrees with the group D[207! : 2nd] - G, from [ ]. We denote by P the subscheme of G
ag b

cg dfg )

to refer to the coefficients of 5. For § € G(F'), we denote by ag the fractional ideal given locally by

(ag)p = (cp)dp " + dgO.

consisting of the upper triangular matrices. Given a 2 x 2 matrix 3, we use the notation 3 = (

Let S € M3(F) be a totally negative definite matrix. Consider the natural embedding of F3 in F}.
Given n € S(F?) (here we denote by S the Schwartz-Bruhat space of locally constant functions), we
consider the theta series attached to .S given by

g(zim) = Y n(&)er(£S¢",3).

EeF3
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Here we set u = 0 in the theta series g(z, u; n) introduced in [ I
Denote by ¢ the Hecke character corresponding to the quadratic extension F'(v/det S)/F, and let
f denote its conductor.

In [ , Proposition 2.4] there is defined an action of G(F) on S(F?), which is denoted by
(B,1) + Pn. In terms of this action we have the following transformation formula for g(z; 7).

Proposition 2.4.1. For every 3 € G(F') N P(Fp)T'4[0],

9(Bz:"n) = J(B,2)g(z;m).

Proof. This is [ , Proposition 11.4]. Note that since S is totally negative definite, the automorphy
factor Jg involved in that result is given by

JS(/Ba Z) = h(ﬁa Z) ’ |j(57 Z)P](Ba z)—3'
It satisfies that Jg = J, since by [ , (2.19b)] we have that j2 = h*. O
The following two results show how G(F) acts on S(F}) in certain cases.

Proposition 2.4.2. Given nn € S(F?), let M be an O-lattice in F3 such that n(z + u) = n(z) for every
u € M. Furthermore, let t,n, 3 be fractional ideals of F satisfying:

(1) xSzt € v for every x € F3 such that n(x) # 0.
(2) xSzt € n for every x € F3 such that Tr(zSy') € 07! for every y € M.
(3) n(za) = n(z) for every a € O such that a, — 1 € 3, for every p.

Leta=t"'NOand b =49 N3N4an4d tan=t. Then

n(x) = vy(dg)n(x(ag);) VB T2 00"t b],
where (ag); denotes the projection of ag to [, Fy*.
Proof. This is [ , Proposition 11.7].

Proposition 2.4.3. Given n € S(F{), there is an open subgroup U of T [f] such that if 3 € G(F)n (L %) U
with t € F{, then

“n(x) = Yal(ds)v* (dgag )N (ag)*?n(at)  Va e FY.
Proof. This is [ , Proposition 11.5]. O

We now apply these results to our setting. Let B be a totally definite quaternion algebra over F.
For z € B denote A(z) = Tr(z)? — 4N (), the discriminant of x. Let V = B/F, and for z € B denote
by [z] its class in V. Then A determines an integral, totally negative definite quadratic form on V.
For I € 3(R), we consider R, (I)/O as a lattice in V, which we denote by L;.

From here on, let 1 be the Hecke character corresponding to the quadratic extension F(v/—1)/F.
This quadratic character has conductor f dividing 40, and the corresponding ideal character satisfies
P*(p) = (*71) for p { 2. By local class field theory, 1 satisfies the equality 1,(—1) = (—1)%. Hence, the
space Mg /5(4D, ) is not trivially zero.

Proposition 2.4.4. Given I € J(R), let

Ir(z) = Y ep(—Al),

[I]EL[

).

[\GIRN

Then 95 € M;/2(4©, ). Furthermore, the Fourier coefficients of 91 are given by

ME a,97) =N(a) ™t #{[z] €a 'Ly —A(z) = ¢}
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Proof. Let {v1,v2,v3} be a basis of V, and let a1, as, a3 be fractional ideals such that L; = @?Zlaivi.
Through this basis we identify V with F3. Let S be the matrix of the quadratic form A with respect
to this basis. If B = (a,b), then the determinant of A with respect to the basis {[i], [j], [k]} equals
—(8ab)? (recall the notation from Section 1.1). This shows that det(S) = —1 € F*/(F*)2.

Let n € S(F?) be the characteristic function of M = a; @ ay ® az. Then the theta series g(z;7)
defined by S and 7 satisfies that

(24.5) g(zin) = Y n(©er(A(€),5) =9(2).

EeF3

The function 7 satisfies the hypotheses of Proposition 2.4.2, takingt = 3 = O, and n = 22D L.
The first two assertions are clear. To prove the last equality, take [z] € V such that [z]S[y]' € 27!
for every [y] € L;. Assume, without loss of generality, that Tr(z) = 0. Then, a simple calculation
shows that 2 Tr(zy) € 27! for every y € R,(I). Hence, by [ , Lemma 1.2.5], we have that
A([z]) = =N (22) € 02271,

Then Propositions 2.4.1 and 2.4.2 together with (2.4.5) give that

9r(82) = ¢ H(dg)J(8,2)9r(2) VB €T[270,4D].

Since ¢ is quadratic and its conductor f divides 49, we have that 1" Y(dg) = vunlag) for all B €

I'[2710,4D]. This proves that 9; € Mjz/5(4D, ). To see that it belong to the Kohnen plus space, note
that

A& 0,91) = #{[z] € L1 : —A(z) = ¢}

equals 0 if —¢ is not a square modulo 40.

We now consider the Fourier coefficients of ¥;. Given a fractional ideal a, take t € F{* such that
tO = a. Let B € G(F) be as in Proposition 2.4.3. Since 8 = (%) ¢ with ¢ € T4[f], we have that
ag =t"10 =a"l. Thenby | , (3.14c)] we have that

(2.4.6) VYal(dg)P* (dga) J (B, 87 2)01(87"2) = N(a) ™2 Y A& a,91)er(, 2/2).
EeF
On the other hand, by Propositions 2.4.1 and 2.4.3, we have that
(24.7) J(B,B712)01(87"2) = g(2:P ) = valdg)™ (dga) N (a) > > " n(€t)er(A($), 3)-
£eF3

Since the map ¢ — n(£t) equals 1 if £ € a~!L; and 0 otherwise, comparing (2.4.6) and (2.4.7) yields
the desired equality.
O

We now prove that this construction is Ty-linear. For this, we start with the following auxiliary
result.

Lemma 2.4.8. Let p be a prime ideal such that p 1 4D. Let [x] € p~1L;. Then,

1+ N(p), [z] € pL1,
#{Jety(I):[a] € Ly =1+ (B2), [l € L\ pLy,
Oorl, [a;] Gp_lL[\L[.

Proof. Note that given J € t,(I), we have that [z] € L; if and only if [x] € (L), since (L1)q = (L.)q
for every q # p. Since p { 4D we can identify R, (I), with M2(O,). Then, the set {J € t,(I) : [x] € L;}
is in bijection with the set

X = SL2(Op)\{yp € M2(Oy) : dety, = mp, Z/pl‘pyp_l € Fy + Mz(Oy)},
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letting to each such y, correspond the ideal J € J(R) given locally by

I
Jq —_ qs q 7é p?
Lyyy, q=7».

To compute the set X, we use the same system of representatives for the action of SLy(0,) in {y, €
M>(O,) : dety, = m,} as in Lemma 2.2.1. We start by considering the first two cases. Assume then
that 2 € R.(I). Write 2, = (2%) € M(O,). Then, we have that

-1
m, 0 my, 0

-1
1 « 1 « 2
<0 Wp) Ty (0 7rp> € Fy + My(Op) <= mp | —ca” + (d — a)a + b.

If 2, € Op + pM2(Oy), we see that X has 1 + N(p) elements. If z, ¢ O, + pM2(Op), let P = —cX? +

(d—a)X +b € kp[X]. Then P # 0, and its discriminant equals (d — a)? + 4bc = A(x,). Hence X has
1+ (%) elements.
Now consider the case when [z] € p~*L;\ L;. Assume then that myz, = (¢}) € M2(0y), and that

xy & Fy + M3(Oy). Then, we have that

1 2
T 0 Tp 0 7Tp | ¢,
-1 2 2
1 « 1 « 75 | —ca® + (d —a)a+ b,
2.4.10 € Fy+ My(Op) =< P
( : <0 Wp) i (0 WP) ’ 2(Op) {wp | (d—a) — 2ca.

Suppose that (2.4.9) holds, and that there exists « such that (2.4.10) holds. Then 7, | ¢,d — a,b,
thus contradicting the fact that x, ¢ F, + M>(O,). Finally, assume that there exist distinct oy, as
such that (2.4.10) holds. Then, substracting equations we see that m, | 2c. If 7, | ¢ we have that
Ty | d — a, b, which again is not possible. If 7, | 2, we have that 7, | d — a, and hence the polynomial
P defined above has null discriminant. This is a contradiction, since P has a7, ao as roots. Thus, we
have proved that X has at most one element, which completes the proof. O

For ¢ € F* U {0}, a fractional ideal a and I € J(R), denote
a(&,a,[1]) = #{[z] € a7 Ly : ~A(x) = £}
Let e € M(R) be given by

_ a(€.0.17)
cc= D, iy V-
[J]1€CU(R)

This agrees with our previous definition of ey.

Theorem 2.4.11. Given v € M(R), let

(2.4.12) 0W)(2) = > (ee,v)er (€, 2) =degv) + Y l(ee,v)er (&, 3).

£eO0+u{o} £eot

Then, 6(v) € M?jr/z(él@, Y), and 6(v) is cuspidal if and only if v is cuspidal. Furthermore, the map 6 is
To-linear.

Proof. First assume that v = [I], with I € J(R). Then 6([I]) = 9, which implies the first claim. To
prove the Hecke linearity, let p be a prime ideal not dividing 49. Let f = 6(7,([{])). Since

= > (X feel)en(e3),

E€O+U{0}  Jetp(I)

39



we have that

ME O, f)=#{(J,[z]) € I(R) x V : J e ty(I), [x] € Ly, —A(x) = &}

To compute the size of this set, we use Lemma 2.4.8, considering the following three possibilities
for those [z] € V for which there exists J € t,(/) such that [z] € L;, —A(z) = £. Note that since
pl C J C I for J € t,(I), then every such [z] belongs to p L5

e [z] € pL;. There are a(&,p1, [I]) such [z], and for each one there are 1+ N(p) ideals J as above.
Az

=)
) = 0, since if there exists [y] € pL; such that

e [z] € L;\pL;. Therearea(&, O, [I]) —a(§,
ideals J as above. Note that a(&,p~t, [I]
A([y]) = ¢, thenp | €.

e [z] € p1L; \ L;. There are a(¢,p, [I]) — a(&, O,[I]) such [z], and for each one there is just one
ideal J as above.

p~!, [I]) such [z], and for each one there are 1+ (
p

Adding up, using Propositions 2.3.3 and 2.4.4 we see that

ME O, f) =al&p™ " 1)) (1 + N(p)+
+ (al& O,11)) = a€p~ 1) (1 + (B42) ) +a(&,p. (1) — al&, 0, 1))
= N(p)a(&,p~", [1)) + a(&, 0, [1)(22) + a(&,p, [1])

= A& pL 00 + (5 (DA O, 91) + N(p)AE, b, 9r)
= )‘(57 0, TP<791))7

which proves that T, (6([I])) = 0(T,([1])).

Finally, let v € S(R). Then (2.4.12) shows that §(v) is cuspidal at infinity. Since for I,.J € J(R)
the lattices L and L are locally conjugated, we have that §(v) is a linear combination of theta series
corresponding to quadratic forms in the same genus. Hence, 6(v) is cuspidal. This is a classical result
by Siegel, generalized to the totally real field setting in [ I

O

2.5 Computing preimages

The main application of what we explained in the previous sections is to construct preimages of
the Shimura map. This is, given £ € O, and given a newform g of weight 2, to construct a form f of
weight 3/2 such that Shim¢(f) = g.

Let ¢ be an integral ideal, and suppose that B is a totally definite quaternion algebra having an
Eichler order R of discriminant ¢ (see Remark 2.2.7).

Proposition 2.5.1. Let v € S(R). Then, Shim¢(0(v)) is a cusp form.

Proof. We can assume that v is a Tp-eigenvector. Denote g = Shimg(6(v)). Then if for p t ¢ we let w,
denote the p-th eigenvalue of v, since the maps 6 and Shim, are Ty-linear, we have that 7,9 = wyg.
By the theory of Hilbert Eisenstein series, for which we refer to and borrow the notation from
[ Jand [ ], it suffices to prove that g is orthogonal to every Eisenstein series £ = Ey, y,.
Let p { c. We have that T,E = ¢(p, E)E (see [ , Proposition 3,3]). Then, the self-adjointness of
the Petersson inner product implies that

Wp<g,E> = C(va)<ng>'

This implies that (g, E) = 0, since by [ ] we have that |w,| < 2N (p)™/', whereas by the definition
of F (see [ , Proposition 3.1]) we have that |¢(p, E)| > N(p) — 1.

We finish by remarking that though in [ ] the authors consider weights k > 3, the results we
used are still valid in weight 2 when F' # Q. The case F' = Q follows by the same arguments, taking
special care with the definition of the Eisenstein series of weight 2 (see [ 1. O
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We have then the following diagram of Ty-linear maps:

S(R)C >~ S2(¢) -
\
£ Shimg
S;r/z(élc, V)

The commutativity of this diagram is considered in Theorem 2.5.3 below.

Remark 2.5.2. According to Theorem 2.3.4, the map Shim¢ in principle divides the level by 2, and
hence for v € S(R), the form Shim¢(6(v)) would have level 2¢ instead of the level ¢ claimed in the
diagram. In the classical setting, when ¢ is odd and square-free, (a small part of) the theory of Kohnen
asserts that when applied to forms in the Kohnen plus space, the Shimura map divides the level by
4. In the setting of Hilbert modular forms, the theory of the Kohnen plus space is currently under
development by Hiraga and Ikeda. The case when ¢ = O has been achieved in | ], and the general
(odd, square-free) case is expected to be developed soon.

We summarize this discussion in the next theorem, which is the main result of this chapter.

Theorem 2.5.3. Let g € S3°“(c) be a newform, and let v, € S(R) be a Ty-eigenvector with the same
eigenvalues as g. Let g = Shim¢(0(vy)). If g has level ¢, then g is a multiple of g.

Proof. First, note that such v, exists (and is unique) due to Theorem 2.2.6. Since the operators ¢ and
Shim are To-linear, then the cusp form § has the same eigenvalues as g, and then by Theorem 2.1.5 g
is a multiple of g. O

Remark 2.5.4. It could happen that g is the zero cusp form. Nevertheless, for odd and square-free ¢,
the theory of the Kohnen space under development by Hiraga and Ikeda asserts that:

e A linear combination of the maps Shim¢ is an isomorphism between the new subspace of
Sy /2 (4¢,v) and S5 (c) (which in particular implies that there exists £ such that Shim¢ (6(vy)) #
0).

e If §(vy) is not zero, then O(v,) is a newform mapping to a non-zero multiple of g under this
isomorphism, by a strong multiplicity one result in S /2 (4c, ).

Remark 2.5.5. We expect g to have level ¢. Since we know that in the worst case it has level 2¢, then
it must be a linear combination of g(z) and ¢(2z). In any given example, this combination can be
found in terms of Fourier coefficients, and we can verify that § has actually level ¢ by seeing that the
coefficient corresponding to g(2z) is null.

The main issue is then to know whether there exists a quaternion algebra B and an Eichler order
R such that 6(vy) # 0. We assume from now on that ¢ is odd and square-free.

The following conjecture is just a naive generalization to the Hilbert setting of the result due to
Bocherer and Schulze-Pillot for classical modular forms of odd and square-free level (see [ ,
page 378]).

Conjecture 2.5.6. The form 0(vg) is non zero if and only if L(g, 1) # 0 and the quaternion algebra B ramifies
exactly at the archimedean primes and at all primes p dividing ¢ where the Atkin-Lehner involution W, acts
on g with eigenvalue w, = —1.

Note that if L(g, 1) # 0, the functional equation safisied by L(g, s) implies that (—1)¢ [Ty wp =1.
Then an algebra B as in the conjecture exists, and it is unique up to isomorphism.

Definition. Let £ € OF, and let K = F(\/=&). We say that —¢ is a fundamental discriminant if O has
relative discriminant EOr over Op, and there exists ( € Op such that

O = Op + C% V_g(f)F_
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The following result from [ ] is useful for finding fundamental discriminants.

Proposition 2.5.7. Suppose that the relative discriminant of K over F' is {Op. If every prime of F dividing
2 splits over K, then —¢ is a fundamental discriminant.

The relation between Fourier coefficients and central values of twisted L-series is given by the

following theorem, which was proved for classical forms in [ , page 378] and in a more general
setting for Hilbert modular forms in [ , Theorem 4.3], generalizing Waldspurger’s results over
Q.

Theorem 2.5.8. Let g € S5 (c,?) be a newform such that f = 0(v,) € S;/2(4c,w) is non-zero. Let

¢ € OF be such that —¢ is a fundamental discriminant. Let e¢ be the Hecke character corresponding to

F(V=€)/F. Then
(2.5.9) IME, 0, )P = kL(g, e, 1) [ [ (c(p, 9) — ec(p)),

ple
where k is a non-zero constant, and L(g, e¢, s) is the twist of the L-series of g by ec.

In particular, under the above assumptions, this conjecture states that L(g, es, 1) = 0 if and only
if M(&,0, f) = 0, if £ is such that the product over p | ¢ in the right hand side of (2.5.9) is non-zero.
This sort of results are important for obtaining (under the Birch and Swinnerton-Dyer conjecture)
information about the rank of twists of elliptic curves, as in the congruent number problem. We give
an example of this in the next section.

2.6 An example

We let ' = Q(v/5), which has trivial narrow class group. Denote w = 1+T\/§ We let E be the
elliptic curve over F given by

E: y2+:ry—|—wy::133—(1+w)w2.

This curve has prime conductor, equal to ¢ = (5 + 2w), and satisfies that L(E,1) # 0. The space
Ms>(c) has dimension 2, and it is generated by an Eisenstein series and a newform g which corre-
sponds to E. Its first eigenvalues are given in [ |; we only state that ¢(c,g) = —1. According
to Conjecture 2.5.6, we choose B to be the unramified totally definite algebra over F, i.e. the algebra
B = (—1,—1)F considered in Section 1.4. If R is an Eichler order of discriminant ¢ in B, then Theorem
2.2.6 asserts that there exists v € S(R) which is an eigenvector for T with the same eigenvalues as g.

Using the algorithm introduced in Chapter 1, with the aid of SAGE ([ 1), we obtain the desired
order, which is given by

R:<1—(w+1)j—(w+10)k i —wj+ —(w+21)k

2 ’ 2 a]_5k7 (5w—3)k>

o

This order has class number equal to 2, and hence there is no need to compute the Hecke operators
in this example, since S(R) is 1-dimensional. A set of representatives for the set of R-ideal classes is
given by R and the ideal I given by

I:<1—(w+1)j—(w+38)k i —wj+ —(w+49)k

5 , 5 ,J + 3k, (5w—3)k:>

o
We have that v = [R] — [I] is an eigenvector for the whole Hecke algebra, since deg(v) = 0.

Let f = 6(v). We consider Ly and L; as lattices of dimension 6 over Z, and use LLL on the
integral, positive definite quadratic form Trg/q o(—A) to compute the Fourier coefficients A(§, O, f),
with Tr/g(€) < 100 and —¢ a fundamental discriminant. We find that there are non-zero coefficients,
thus verifying Conjecture 2.5.6. The zero coefficients split into two families, which we consider below.
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e The trivial zeros are the ones such that A\(¢,O0,0([R])) = A&, O,0([I])) = 0. For this zeros
Theorem 2.5.8 is easy to verify. The local-global principle for quadratic forms implies that the
non existence of points x € Lr U L with —A(z) = £ is equivallent to the equality e¢(¢) = —1,
so in this case both sides of (2.5.9) vanish trivially.

e The non-trivial zeros are the ones such that \(£,O,0([R])) = A, O,0([I])) # 0. For these
zeros, we have that e;(c) = 1, and hence by (2.5.9) that L(g,e¢,1) = 0. The non-trivial zeros
with Trg/g(§) < 100 are

35 4 8w, 39 + 15w, 47 — 9w, 51 — bw, 62 — 2Tw.

For these ¢, the Birch and Swinnerton-Dyer conjecture predicts that the rank of the quadratic
twist of ¥ by —¢ should be positive (and even, because the sign of the functional equation
equals 1). We verified using 2-descent that all these curves have rank equal to 2.
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Epilogue

We consider the classical diophantine problem of deciding whether a positive, square-free integer
n is the area of a right triangle with rational sides. This problem was partially solved by Tunnell in
[ ]. The full solution must wait for the Birch and Swinnerton-Dyer conjecture to be proved.

Let F' = Q. Let E be the elliptic curve over Q given by
E: y*=2°—uz.

This curve, which is the curve 32A2 in Cremona’s notation, is up to isogeny the unique elliptic curve
of conductor 32, and has complex multiplication by Z[i]. This is the curve related to the congruent
number problem: a positive integer n is a congruent number if and only if the twisted curve

E®n: y2:x3—n2x
has positive rank. See [ ] for a comprehensive introduction to this problem.
The space S(I'y(32)) is one dimensional, and hence it is spanned by the normalized newform g
corresponding to E. Its g-expansion is

QZQ*Q(JE)*3q9+6q13+2q17*q25*10(]29*2q37+10q4l+6q45*7q49+14q53*10q61+0(q64).

Since the automorphic representation corresponding to g is supercuspidal at 2, by Remark 2.2.8 if
B is a quaternion algebra over Q and R C B is an order of discriminant 32, then there exists a
To-eigenvector v € S(R) with the same eigenvalues as g.

We consider the Hamilton quaternion algebra B = (—1, —1)g, which is ramified exactly at 2 and
at infinity. Using the algorithms developed in Chapter 1 (from where we borrow some notation), we
construct a Bass order of discriminant 32 in B and compute its ideal classes representatives. For this
purpose, we consider a chain of orders

R(2) 2 R(16) D R(32)

with discriminants 2, 16 and 32 respectively, which belong to the class A2 at p = 2.
We start with the well known maximal order given by

L
R(2) = <1,i,j, +Z+3+k‘> .
2 z

This order has class number equal to one (see [ , Theorem 1.12]). We have that R(2)*'! = Ey,
where E», is the binary tetrahedral group given by

+l1titjtk

Eyy = { 1,40, 4, +k, %}

Calculations with this order are rather easy, since we do not need to use quasi-good bases: by simple

inspection we find that {1,j — k, i — 7, W} is a good basis for R(2)s.
The order R(16) obtained is given by
1+i4+5+k
R(16) = <z Y4k —2) + 2k, 2k, “j;‘7+> .
zZ
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Since |R(6)*| = 6, by Corollary 1.3.5 we see that R(16) has class number equal to one as well.
The order R(32) obtained is given by

)

i
R(32) = <¢+j 4k, —4j + 4k, 4k, ““*’“>
Z

and its ideal classes representatives are given by Cl(R(32)) = {[R(32)], [/]}, where

1—3i+5j+3k
I:<i—j—9k,4j+20k,4k, St 5j+3 > .
Z

2

In particular S(R(32)) is one dimensional, and it is generated by v = [R(32)] — []. Hence, visa
To-eigenvector with the same eigenvalues as g. Though we do not consider them in this thesis, we
mention that the quaternary theta series associated to v, which is given by

E : eQmN(:v)z 2 :62MN

xE€R(32) zel

satisfies that © = —6g.
Letting f = 6(v), we get that

f — 2(q3 7q11 _ q19 _ 2q35 +3q43 +2q51 +q59 _ q67 7q75 +q83 _ 2q91 Jrq99 +O(q100)).

Then, by Theorem 2.5.3 f maps to (a multiple of) g by the Shimura map. Note that f lies in the
Kohnen plus space, while the forms used in the main theorem of [ ] do not.

Since the level of f is even (and not square-free), we can not apply Theorem 2.5.8 to relate the
coefficients of f with the central values of the twists of L(E, s). So we need to go back to the original
work of Waldspurger (see [ 1), from where we extract the following result.

Theorem. Let ) denote the quadratic character (=1). Let f € S3/(128,1)) mapping to g by the Shimura
map. Then for square-free ny,no € N such that ny/ns € (Q5 )2,

a2, L(E & na, 1)(ny fnz) (na/m) /2 = a2, L(E @ ni, 1).

Then using that L(E ® 3, 1) # 0, by the theorem of Coates-Wiles we get that 3, 11, 18, 35,43,51, ...
are not congruent numbers.

By repeating this procedurg using an order of discriminant 32 which belongs to the class B at
p = 2, we obtain that the form f € S3/5(128,1) whose g-expansion is
fz 2q + ¢ —4¢"7 = 3¢% + 4¢P + ¢ + 457 +4¢7 — 3% — 4> — 4% + O(qloo))

also maps to g by the Shimura map (thus showing the lack of multiplicity one in the Kohnen plus
space with level 128). Then using that L(E,1) # 0, by the theorem of Coates-Wiles we get that
17,33,57,73,89,97, ... are not congruent numbers, while if the Birch and Swinnerton-Dyer conjec-
ture holds, then 41 and 65 are congruent numbers.
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