The homotopy relation in a category with weak equivalences

Martin Szyld

University of Buenos Aires - CONICET, Argentina

CT 2018 @ UAç, Ponta Delgada, Portugal

Model (bi)categories:

a structure $(\mathcal{C}, \mathcal{F}, c o \mathcal{F}, \mathcal{W})$, with \mathcal{C} a (bi) category, and

families of arrows of \mathcal{C} satisfying some axioms.

Model (bi)categories:

a structure $(\mathcal{C}, \mathcal{F}, c o \mathcal{F}, \mathcal{W})$, with \mathcal{C} a (bi)category, and

A taste of the axioms:
. \qquad

and

Model (bi)categories:

a structure $(\mathcal{C}, \mathcal{F}, c o \mathcal{F}, \mathcal{W})$, with \mathcal{C} a (bi)category, and

A taste of the axioms:
. \qquad

and

Model (bi)categories:

a structure $(\mathcal{C}, \mathcal{F}, c o \mathcal{F}, \mathcal{W})$, with \mathcal{C} a (bi)category, and
\mathcal{F}
\longrightarrow.

families of arrows of \mathcal{C}
satisfying some axioms.

A taste of the axioms:

.

and

Model (bi)categories:

a structure $(\mathcal{C}, \mathcal{F}, c o \mathcal{F}, \mathcal{W})$, with \mathcal{C} a (bi)category, and
\mathcal{F}
\longrightarrow.

families of arrows of \mathcal{C}
satisfying some axioms.

A taste of the axioms:

.

and

Model (bi)categories:

a structure $(\mathcal{C}, \mathcal{F}, c o \mathcal{F}, \mathcal{W})$, with \mathcal{C} a (bi) category, and
\mathcal{F}
\longrightarrow.

families of arrows of \mathcal{C}
satisfying some axioms.

A taste of the axioms:

and

$\operatorname{Ho}(\mathcal{C})=\mathcal{C}\left[\mathcal{W}^{-1}\right]$ admits a construction "quotienting by homotopy".

Our original problem: homotopy in a model bicategory

We ${ }^{1}$ seek a construction of the homotopy bicategory $\mathcal{H o}(\mathcal{C})$:

- Objects and arrows are those of $\mathcal{C}_{f c}(0 \longrightarrow X \longrightarrow 1)$.
- 2-cells: classes $[H]$ of "homotopies" by an eq. relation.

Our original problem: homotopy in a model bicategory

We ${ }^{1}$ seek a construction of the homotopy bicategory $\mathcal{H o}(\mathcal{C})$:

- Objects and arrows are those of $\mathcal{C}_{f c}(0 \longleftrightarrow X \longrightarrow 1)$.
- 2-cells: classes $[H]$ of "homotopies" by an eq. relation.

Simultaneous requirements

- Vertical composition
- Horizontal composition \} compatible with the eq. relation
- (Non invertible) 2-cell \mapsto homotopy
${ }^{1}$ together with E. Descotte and E. Dubuc.

Our original problem: homotopy in a model bicategory

We ${ }^{1}$ seek a construction of the homotopy bicategory $\mathcal{H o}(\mathcal{C})$:

- Objects and arrows are those of $\mathcal{C}_{f c}(0 \longleftrightarrow X \longrightarrow 1)$.
- 2-cells: classes $[H]$ of "homotopies" by an eq. relation.

Simultaneous requirements

- Vertical composition
- Horizontal composition \} compatible with the eq. relation
- (Non invertible) 2-cell \mapsto homotopy

Considering Quillen's notion \rightsquigarrow an obstacle

$f \stackrel{\ell}{\sim} g$ if and only if there is a diagram in which σ is a weak equivalence (and $A \amalg A \xrightarrow{\partial_{0}+\partial_{1}} A \times I$ is a cofibration)

[^0]
Our original problem: homotopy in a model bicategory

We ${ }^{1}$ seek a construction of the homotopy bicategory $\mathcal{H o}(\mathcal{C})$:

- Objects and arrows are those of $\mathcal{C}_{f c}(0 \longleftrightarrow X \longrightarrow 1)$.
- 2-cells: classes $[H]$ of "homotopies" by an eq. relation.

Simultaneous requirements

- Vertical composition
- Horizontal composition \} compatible with the eq. relation
- (Non invertible) 2-cell \mapsto homotopy

Considering Quillen's notion \rightsquigarrow an obstacle

$$
f \stackrel{\ell}{\sim} g \Rightarrow j f \stackrel{\ell}{\sim} j g
$$

${ }^{1}$ together with E. Descotte and E. Dubuc.

Our original problem: homotopy in a model bicategory

We ${ }^{1}$ seek a construction of the homotopy bicategory $\mathcal{H o}(\mathcal{C})$:

- Objects and arrows are those of $\mathcal{C}_{f c}(0 \longleftrightarrow X \longrightarrow 1)$.
- 2-cells: classes $[H]$ of "homotopies" by an eq. relation.

Simultaneous requirements

- Vertical composition
- Horizontal composition \} compatible with the eq. relation
- (Non invertible) 2-cell \mapsto homotopy

Considering Quillen's notion \rightsquigarrow an obstacle

$$
\begin{gathered}
f \stackrel{\ell}{\sim} g \Rightarrow j f \stackrel{\ell}{\sim} j g \\
f \stackrel{\ell}{\sim} g \Rightarrow f j \stackrel{\ell}{\sim} g j:
\end{gathered}
$$

Our original problem: homotopy in a model bicategory

We ${ }^{1}$ seek a construction of the homotopy bicategory $\mathcal{H o}(\mathcal{C})$:

- Objects and arrows are those of $\mathcal{C}_{f c}(0 \longleftrightarrow X \longrightarrow 1)$.
- 2-cells: classes $[H]$ of "homotopies" by an eq. relation.

Simultaneous requirements

- Vertical composition
- Horizontal composition \} compatible with the eq. relation
- (Non invertible) 2-cell \mapsto homotopy

Considering Quillen's notion \rightsquigarrow an obstacle

$$
\begin{aligned}
& f \stackrel{\ell}{\sim} g \Rightarrow j f \stackrel{\ell}{\sim} j g \checkmark \\
& f \stackrel{\ell}{\sim} g \Rightarrow f j \stackrel{\ell}{\sim} g j: \\
& f \\
& \sim \\
& \sim
\end{aligned} \Rightarrow f \stackrel{r}{\sim} g \Rightarrow f j \stackrel{r}{\sim} g j \Rightarrow f j \stackrel{\ell}{\sim} g j
$$

${ }^{1}$ together with E. Descotte and E. Dubuc.

Homotopy in a category with weak equivalences

Quote from [DHKS] book

Many model category arguments are a mix of arguments which only involve weak equivalences and arguments which also involve cofibrations and/or fibrations and as these two kinds of arguments have different flavors, the resulting mix often looks rather mysterious.

Homotopy in a category with weak equivalences

Quote from [DHKS] book

Many model category arguments are a mix of arguments which only involve weak equivalences and arguments which also involve cofibrations and/or fibrations and as these two kinds of arguments have different flavors, the resulting mix often looks rather mysterious.
\rightsquigarrow Section 1: model categories,
Section 2: categories with weak equivalences $(\mathcal{C}, \mathcal{W})$.
Section 1: $\operatorname{Ho}\left(\mathcal{C}_{f c}\right)=\mathcal{C}_{f c} / \sim$, with $\sim=\stackrel{\ell}{\sim}=\stackrel{r}{\sim} \quad$ "long and technical"

Homotopy in a category with weak equivalences

Quote from [DHKS] book

Many model category arguments are a mix of arguments which only involve weak equivalences and arguments which also involve cofibrations and/or fibrations and as these two kinds of arguments have different flavors, the resulting mix often looks rather mysterious.
\rightsquigarrow Section 1: model categories,
Section 2: categories with weak equivalences $(\mathcal{C}, \mathcal{W})$.
Section 1: $\operatorname{Ho}\left(\mathcal{C}_{f c}\right)=\mathcal{C}_{f c} / \sim$, with $\sim=\stackrel{\ell}{\sim}=\stackrel{r}{\sim} \quad$ "long and technical"

Considering $\sim_{\mathcal{W}}$ for $(\mathcal{C}, \mathcal{W})$ simplifies and clarifies this argument

Homotopy in a category with weak equivalences

Quote from [DHKS] book

Many model category arguments are a mix of arguments which only involve weak equivalences and arguments which also involve cofibrations and/or fibrations and as these two kinds of arguments have different flavors, the resulting mix often looks rather mysterious.
\rightsquigarrow Section 1: model categories,
Section 2: categories with weak equivalences $(\mathcal{C}, \mathcal{W})$.
Section 1: $\operatorname{Ho}\left(\mathcal{C}_{f c}\right)=\mathcal{C}_{f c} / \sim$, with $\sim=\stackrel{\ell}{\sim}=\stackrel{r}{\sim} \quad$ "long and technical"

Considering $\sim \mathcal{W}$ for $(\mathcal{C}, \mathcal{W})$ simplifies and clarifies this argument
(1) Condition for $(\mathcal{C}, \mathcal{W})$ under which $\operatorname{Ho}(\mathcal{C})=\mathcal{C} / \sim_{\mathcal{W}}$

Homotopy in a category with weak equivalences

Quote from [DHKS] book

Many model category arguments are a mix of arguments which only involve weak equivalences and arguments which also involve cofibrations and/or fibrations and as these two kinds of arguments have different flavors, the resulting mix often looks rather mysterious.
\rightsquigarrow Section 1: model categories,
Section 2: categories with weak equivalences $(\mathcal{C}, \mathcal{W})$.
Section 1: $\operatorname{Ho}\left(\mathcal{C}_{f c}\right)=\mathcal{C}_{f c} / \sim$, with $\sim=\stackrel{\ell}{\sim}=\stackrel{r}{\sim} \quad$ "long and technical"

Considering $\sim \mathcal{W}$ for $(\mathcal{C}, \mathcal{W})$ simplifies and clarifies this argument
(1) Condition for $(\mathcal{C}, \mathcal{W})$ under which $\operatorname{Ho}(\mathcal{C})=\mathcal{C} / \sim_{\mathcal{W}}$
(2) Explicit construction of $\sim_{\mathcal{W}}$, similar to $\stackrel{\ell}{\sim}$

Homotopy in a category with weak equivalences

Quote from [DHKS] book

Many model category arguments are a mix of arguments which only involve weak equivalences and arguments which also involve cofibrations and/or fibrations and as these two kinds of arguments have different flavors, the resulting mix often looks rather mysterious.
\rightsquigarrow Section 1: model categories,
Section 2: categories with weak equivalences $(\mathcal{C}, \mathcal{W})$.
Section 1: $\operatorname{Ho}\left(\mathcal{C}_{f c}\right)=\mathcal{C}_{f c} / \sim$, with $\sim=\stackrel{\ell}{\sim}=\stackrel{r}{\sim} \quad$ "long and technical"

Considering $\sim_{\mathcal{W}}$ for $(\mathcal{C}, \mathcal{W})$ simplifies and clarifies this argument
(1) Condition for $(\mathcal{C}, \mathcal{W})$ under which $\operatorname{Ho}(\mathcal{C})=\mathcal{C} / \sim_{\mathcal{W}}$
(2) Explicit construction of $\sim_{\mathcal{W}}$, similar to $\stackrel{\ell}{\sim}$
(3) For \mathcal{C} model: $\left(\mathcal{C}_{f c}, \mathcal{W}\right)$ satisfies this condition, and $\sim_{\mathcal{W}}=\stackrel{\ell}{\sim}$
$R=\left(R_{A B}\right), R_{A B}$ relation in $\mathcal{C}(A, B) . \mathcal{C} / R=\mathcal{C} / \sim$, where \sim is the least congruence that contains R.

If $\mathcal{C} / \sim=\operatorname{Ho}(\mathcal{C})$, then \sim has to be $\sim_{\mathcal{W}}$:
$f \sim_{\mathcal{W}} g$ if and only if $\gamma f=\gamma g$.
The relation $\sim_{\mathcal{W}}$ depends only on \mathcal{W}.
$R=\left(R_{A B}\right), R_{A B}$ relation in $\mathcal{C}(A, B) . \mathcal{C} / R=\mathcal{C} / \sim$, where \sim is the least congruence that contains R.

$$
\begin{gathered}
\text { If } \mathcal{C} / \sim=\operatorname{Ho}(\mathcal{C}), \text { then } \sim \text { has to be } \sim_{\mathcal{W}}: \\
f \sim_{\mathcal{W}} g \text { if and only if } \gamma f=\gamma g .
\end{gathered}
$$

The relation $\sim_{\mathcal{W}}$ depends only on \mathcal{W}.

$\mathcal{C} / R=\operatorname{Ho}(\mathcal{C})$ if and only if
(1) $\mathcal{W} \subseteq \omega R$ and $R \subseteq \sim_{\mathcal{W}}$

Fix \mathcal{W}. Then $\mathcal{C} / \sim_{\mathcal{W}}=\operatorname{Ho}(\mathcal{C})$ if and only if (2) $\mathcal{W} \subseteq \omega \sim_{\mathcal{W}}$.

The Whitehead condition

ωR is the family of R-equivalences (arrows that admit an R-inverse). (2) $\mathcal{W} \subseteq \omega \sim_{\mathcal{W}}$: any w.e. is a homotopical equivalence. We say that such a $(\mathcal{C}, \mathcal{W})$ is Whitehead.

The Whitehead condition

ωR is the family of R-equivalences (arrows that admit an R-inverse). (2) $\mathcal{W} \subseteq \omega \sim_{\mathcal{W}}$: any w.e. is a homotopical equivalence. We say that such a $(\mathcal{C}, \mathcal{W})$ is Whitehead.

An arrow splits if it is a retraction or a section $(\cdot \underset{s}{\stackrel{r}{\longleftrightarrow}} \cdot, r s=i d)$ $(\mathcal{C}, \mathcal{W})$ is split-generated if any w.e. is a composition of split w.e.

The Whitehead condition

ωR is the family of R-equivalences (arrows that admit an R-inverse). (2) $\mathcal{W} \subseteq \omega \sim_{\mathcal{W}}$: any w.e. is a homotopical equivalence.

We say that such a $(\mathcal{C}, \mathcal{W})$ is Whitehead.

An arrow splits if it is a retraction or a section $(\cdot \underset{s}{\stackrel{r}{\longleftrightarrow}} \cdot, r s=i d)$ $(\mathcal{C}, \mathcal{W})$ is split-generated if any w.e. is a composition of split w.e.

Toy examples

(1. $\xrightarrow{\sim f}$.

The Whitehead condition

ωR is the family of R-equivalences (arrows that admit an R-inverse). (2) $\mathcal{W} \subseteq \omega \sim_{\mathcal{W}}$: any w.e. is a homotopical equivalence.

We say that such a $(\mathcal{C}, \mathcal{W})$ is Whitehead.

An arrow splits if it is a retraction or a section $(\cdot \underset{s}{\stackrel{r}{\longleftrightarrow}} \cdot, r s=i d)$ $(\mathcal{C}, \mathcal{W})$ is split-generated if any w.e. is a composition of split w.e.

Toy examples

(1) $\xrightarrow{\sim f}$ is not Whitehead.

The Whitehead condition

ωR is the family of R-equivalences (arrows that admit an R-inverse). (2) $\mathcal{W} \subseteq \omega \sim_{\mathcal{W}}$: any w.e. is a homotopical equivalence.

We say that such a $(\mathcal{C}, \mathcal{W})$ is Whitehead.

An arrow splits if it is a retraction or a section $(\cdot \underset{s}{\stackrel{r}{\longleftrightarrow}} \cdot, r s=i d)$ $(\mathcal{C}, \mathcal{W})$ is split-generated if any w.e. is a composition of split w.e.

Toy examples

(1) $\xrightarrow{\sim}$ f is not Whitehead.
(2) ${ }^{a} G \cdot \stackrel{\sim}{\underset{g}{\rightleftarrows}} \cdot \bigcirc b, g f=a, f g=b,\left(a^{2}=a, b^{2}=b\right)$

The Whitehead condition

ωR is the family of R-equivalences (arrows that admit an R-inverse). (2) $\mathcal{W} \subseteq \omega \sim_{\mathcal{W}}$: any w.e. is a homotopical equivalence.

We say that such a $(\mathcal{C}, \mathcal{W})$ is Whitehead.

An arrow splits if it is a retraction or a section $(\cdot \underset{s}{\stackrel{r}{\longleftrightarrow}} \cdot, r s=i d)$ $(\mathcal{C}, \mathcal{W})$ is split-generated if any w.e. is a composition of split w.e.

Toy examples

(1) $\xrightarrow{\sim f}$. is not Whitehead.
(2) ${ }_{a} \subset \cdot \frac{\sim f}{\underset{g}{\rightleftarrows}} \cdot \bigcirc b, g f=a, f g=b,\left(a^{2}=a, b^{2}=b\right)$ is

Whitehead and not split-generated.

The Whitehead condition in model categories

Prop: Split-generated \Rightarrow Whitehead.
Proof: Because split w.e. are homotopical equivalences:

The Whitehead condition in model categories

Prop: Split-generated \Rightarrow Whitehead.
Proof: Because split w.e. are homotopical equivalences:
$r s=i d \Rightarrow \gamma(r s)=\gamma(i d)$, i.e. $r s \sim_{\mathcal{W}} i d$.

The Whitehead condition in model categories

Prop: Split-generated \Rightarrow Whitehead.
Proof: Because split w.e. are homotopical equivalences:
$r s=i d \Rightarrow \gamma(r s)=\gamma(i d)$, i.e. $r s \sim_{\mathcal{W}}$ id.
$r s r=r \Rightarrow \gamma(r) \gamma(s r)=\gamma(r) \Rightarrow \gamma(s r)=\gamma(i d)$, i.e. $s r \sim_{\mathcal{W}} i d$.

The Whitehead condition in model categories

Prop: Split-generated \Rightarrow Whitehead.
Proof: Because split w.e. are homotopical equivalences:

$$
\begin{aligned}
& r s=i d \Rightarrow \gamma(r s)=\gamma(i d), \text { i.e. } r s \sim_{\mathcal{W}} i d . \\
& r s r=r \Rightarrow \gamma(r) \gamma(s r)=\gamma(r) \Rightarrow \gamma(s r)=\gamma(i d), \text { i.e. } s r \sim_{\mathcal{W}} i d .
\end{aligned}
$$

When \mathcal{C} is a model category

- $\left(\mathcal{C}_{f c}, \mathcal{W}\right)$ is split-generated (any w.e. is a section followed by a retraction, both w.e.)

The Whitehead condition in model categories

Prop: Split-generated \Rightarrow Whitehead.
Proof: Because split w.e. are homotopical equivalences:

$$
\begin{aligned}
& r s=i d \Rightarrow \gamma(r s)=\gamma(i d), \text { i.e. } r s \sim_{\mathcal{W}} i d . \\
& r s r=r \Rightarrow \gamma(r) \gamma(s r)=\gamma(r) \Rightarrow \gamma(s r)=\gamma(i d), \text { i.e. } s r \sim_{\mathcal{W}} i d .
\end{aligned}
$$

When \mathcal{C} is a model category

- $\left(\mathcal{C}_{f c}, \mathcal{W}\right)$ is split-generated (any w.e. is a section followed by a retraction, both w.e.)
- It follows $\mathcal{C}_{f c} / \sim_{\mathcal{W}}=\operatorname{Ho}\left(\mathcal{C}_{f c}\right)$.

The Whitehead condition in model categories

Prop: Split-generated \Rightarrow Whitehead.
Proof: Because split w.e. are homotopical equivalences:

$$
\begin{aligned}
& r s=i d \Rightarrow \gamma(r s)=\gamma(i d), \text { i.e. } r s \sim_{\mathcal{W}} \text { id. } \\
& r s r=r \Rightarrow \gamma(r) \gamma(s r)=\gamma(r) \Rightarrow \gamma(s r)=\gamma(i d), \text { i.e. } s r \sim_{\mathcal{W}} i d .
\end{aligned}
$$

When \mathcal{C} is a model category

- $\left(\mathcal{C}_{f c}, \mathcal{W}\right)$ is split-generated (any w.e. is a section followed by a retraction, both w.e.)
- It follows $\mathcal{C}_{f c} / \sim_{\mathcal{W}}=\operatorname{Ho}\left(\mathcal{C}_{f c}\right)$.
- Recall that $\sim_{\mathcal{W}}$ is the only possible congruence such that this equality holds.

The congruence $\sim_{\mathcal{W}}$ can be constructed from different R satisfying (1)

The congruence $\sim_{\mathcal{W}}$ can be constructed from different R satisfying (1)
Whitehead Split-gen. Model $R \subseteq \sim \mathcal{W}$
$f R_{\ell} g$ if and only if $\cdot \xrightarrow[g]{\stackrel{f}{\longrightarrow}} \cdot \xrightarrow[w]{\sim} \cdot(w f=w g, w$ w.e. $)$

The congruence $\sim_{\mathcal{W}}$ can be constructed from different R satisfying (1)
Whitehead Split-gen. Model $R \subseteq \sim \mathcal{W}$
$f R_{\ell} g$ if and only if $\cdot \xrightarrow[g]{\stackrel{f}{\longrightarrow}} \cdot \xrightarrow[w]{\sim} \cdot(w f=w g, w$ w.e. $)$

- $R_{\ell} \subseteq \sim_{\mathcal{W}}$

The congruence $\sim_{\mathcal{W}}$ can be constructed from different R satisfying (1)
Whitehead Split-gen. Model $R \subseteq \sim_{\mathcal{W}}$
$f R_{\ell} g$ if and only if $\cdot \xrightarrow[g]{f} \cdot \xrightarrow[w]{\sim} \cdot(w f=w g, w$ w.e. $)$

- $R_{\ell} \subseteq \sim_{\mathcal{W}}$
- R_{ℓ} inverts split w.e. $\left\{\begin{array}{l}r s=i d \Rightarrow r s R_{\ell} i d \\ r s r=r \Rightarrow s r R_{\ell} i d\end{array}\right.$

A construction of $\sim_{\mathcal{W}}$ from R_{ℓ}

First we close R_{ℓ} by composition, then by transitivity.

R_{ℓ}^{c} is a relaxed version of $\stackrel{\ell}{\sim}$ in which
$A \xrightarrow{i d} A$ can be any arrow a.

A construction of $\sim_{\mathcal{W}}$ from R_{ℓ}

First we close R_{ℓ} by composition, then by transitivity.

R_{ℓ}^{c} is a relaxed version of $\stackrel{\ell}{\sim}$ in which
$A \xrightarrow{i d} A$ can be any arrow a.
$f \sim_{\mathcal{W}} g$ if and only if $f R_{\ell}^{c} f_{1} R_{\ell}^{c} \ldots f_{n} R_{\ell}^{c} g$.

A construction of $\sim_{\mathcal{W}}$ from R_{ℓ}

First we close R_{ℓ} by composition, then by transitivity.

R_{ℓ}^{c} is a relaxed version of ${ }^{\ell}$ in which $A \xrightarrow{i d} A$ can be any arrow a. $f \sim_{\mathcal{W}} g$ if and only if $f R_{\ell}^{c} f_{1} R_{\ell}^{c} \ldots f_{n} R_{\ell}^{c} g$.

In dimension 2

"homotopy respect to the w.e." behaves better for forming the 2-cells of $\mathcal{H o}(\mathcal{C})$.

The case of model categories

Prop: If $f R_{\ell}^{c} g$ then for any cylinder object,

The case of model categories

Prop: If $f R_{\ell}^{c} g$ then for any cylinder object,

Proof: in 2 steps. Step 1: In $f R_{\ell}^{c} g$ we may assume w a fibration

The case of model categories

Prop: If $f R_{\ell}^{c} g$ then for any cylinder object,

Proof: in 2 steps. Step 1: In $f R_{\ell}^{c} g$ we may assume w a fibration

Step 2:

The case of model categories

Prop: If $f R_{\ell}^{c} g$ then for any cylinder object,

Consequences:

(1) $R_{\ell}^{c}=\stackrel{\ell}{\sim}=\sim_{\mathcal{W}}$, in particular we recover $\mathcal{C}_{f c} / \stackrel{\ell}{\sim}=\operatorname{Ho}\left(\mathcal{C}_{f c}\right)$.

The case of model categories

Prop: If $f R_{\ell}^{c} g$ then for any cylinder object,

Consequences:

(1) $R_{\ell}^{c}=\stackrel{\ell}{\sim}=\sim_{\mathcal{W}}$, in particular we recover $\mathcal{C}_{f c} / \stackrel{\ell}{\sim}=\operatorname{Ho}\left(\mathcal{C}_{f c}\right)$.
(2) New proofs of $\stackrel{\ell}{\sim}=\stackrel{r}{\sim}$ and of transitivity, both follow from:

Further Results

- Fibrant-cofibrant replacement in this context.
- Analysis of the saturated condition in this case. Corollary: any model category is saturated.

Further Results

- Fibrant-cofibrant replacement in this context.
- Analysis of the saturated condition in this case. Corollary: any model category is saturated.

References

- [DHKS]: Dwyer, Hirschhorn, Kan, Smith, Homotopy Limit Functors on Model Categories and Homotopical Categories.
- Results presented in this talk: The homotopy relation in a category with weak equivalences, arXiv.
- 2-dimensional case: talks by Dubuc and Descotte, also in arXiv.

Further Results

- Fibrant-cofibrant replacement in this context.
- Analysis of the saturated condition in this case. Corollary: any model category is saturated.

References

- [DHKS]: Dwyer, Hirschhorn, Kan, Smith, Homotopy Limit Functors on Model Categories and Homotopical Categories.
- Results presented in this talk: The homotopy relation in a category with weak equivalences, arXiv.
- 2-dimensional case: talks by Dubuc and Descotte, also in arXiv.

Thank you!

[^0]: ${ }^{1}$ together with E. Descotte and E. Dubuc.

