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The subindex (s, p, ) indicates (strict, pseudo, lax) algebra morphismsJ

Previous results

@ (from the V-enriched case) T-Alg; Y, K creates all limits.
Q@ T-Alg, Y, K creates lax and pseudolimits [BKP,89).
@ T-Alg, -5 K creates oplax limits [Lack,05].

Note: All these limits are weighted, and the projections of the limit
are always strict morphisms.
We will present a theorem which unifies and generalizes these results.
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Ty _
TA——TB Q@ lax (¢) morphism: f any 2-cell.
al V7 Jb @ pseudo (p) morphism: f invertible.

A - B @ strict (s) morphism: f an identity.

Fix a family Q of 2-cells of K. f is a Q-morphism if f € Q.

)

Considering Q, = 2-cells(K), Q, = {invertible 2-cells},
Q, = {identities}, we recover the three cases above.
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is an isomorphism
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On objects: p——0
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TA
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I,
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e We have the dual notion of o-w-opnatural, yielding o-w-oplimits,
where the direction of the 2-cells is reversed.

e The notions of lax, pseudo and strict limits are recovered with
particular choices of Q (and X).
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Can we give L = o-w-oplimF a structure of algebra
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The limit L is ' -compatible = (T'L,{) is the desired lifted limit.
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Theorem: Let ¥ C Arrows(A), Q, ) C 2-cells(K). Assume T(Q2) C Q2
and Q' C Q. Then T -Ang/ Y K creates Q/ -compatible o-w-oplimits.

the proof follows the ideas of the previous slide

We deduce the result for weighted o-w-limits, by showing that they
can be expressed as conical o-w-limits. J

The case Q, Q" € {Qy, Q,, Qs }

T(Q) C Q v, Q-compatible v/
Q (with Q =Q' = Q,) T-Alg, Y, K creates all (strict) limits.

@ (with Q = Q' = Q) T-Alg, -2 K creates o-limits (thus in
particular lax and pseudolimits).

Q (with Q =Q = Q) T-Alg, Y, K creates oplax limits.
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