Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
0	0	00	00	0

A general limit lifting theorem for 2-dimensional monad theory (but don't let the long title scare you!)

Martin Szyld University of Buenos Aires - CONICET, Argentina

CT 2017 @ UBC, Vancouver, Canada

うして ふゆう ふほう ふほう ふしつ

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
•	0	00	00	0

K is a category, T is a monad on K $(K \xrightarrow{T} K, id \stackrel{i}{\Rightarrow} T, T^2 \stackrel{m}{\Rightarrow} T)$

 $U \text{ creates } \lim F \equiv \text{we can give } \lim F \text{ a}$ T-algebra structure such that it is $\lim \overline{F}$ (we *lift* the limit of F along U)

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
•	0	00	00	0

K~ is a category, $T~\text{is a monad on}~K~~(K~\xrightarrow{T}K~,~id \xrightarrow{i}T,~T^2 \xrightarrow{m}T)$

 $U \text{ creates } \lim F \equiv \text{we can give } \lim F \text{ a}$ T-algebra structure such that it is $\lim \overline{F}$ (we *lift* the limit of F along U)

Previous results

• (from the \mathcal{V} -enriched case) T-Alg $\xrightarrow{U} K$ creates all limits.

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
•	0	00	00	0

 \mathcal{K} is a 2-category, T is a 2-monad on $\mathcal{K} (\mathcal{K} \xrightarrow{T} \mathcal{K}, id \stackrel{i}{\Rightarrow} T, T^2 \stackrel{m}{\Rightarrow} T)$

 $U \text{ creates } \lim F \equiv \text{we can give } \lim F \text{ a}$ T-algebra structure such that it is $\lim \overline{F}$ (we *lift* the limit of F along U)

Previous results

• (from the \mathcal{V} -enriched case) T-Alg $\xrightarrow{U} K$ creates all limits.

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
•	0	00	00	0

 \mathcal{K} is a 2-category, T is a 2-monad on $\mathcal{K} (\mathcal{K} \xrightarrow{T} \mathcal{K}, id \stackrel{i}{\Rightarrow} T, T^2 \stackrel{m}{\Rightarrow} T)$

 $U \text{ creates } \lim F \equiv \text{we can give } \lim F \text{ a}$ T-algebra structure such that it is $\lim \overline{F}$ (we *lift* the limit of F along U)

The subindex (s, p, ℓ) indicates (strict, pseudo, lax) algebra morphisms

Previous results

• (from the \mathcal{V} -enriched case) T-Alg $\xrightarrow{U} K$ creates all limits.

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
•	0	00	00	0

 \mathcal{K} is a 2-category, T is a 2-monad on $\mathcal{K} (\mathcal{K} \xrightarrow{T} \mathcal{K}, id \stackrel{i}{\Rightarrow} T, T^2 \stackrel{m}{\Rightarrow} T)$

 $U \text{ creates } \lim F \equiv \text{we can give } \lim F \text{ a}$ T-algebra structure such that it is $\lim \overline{F}$ (we *lift* the limit of F along U)

The subindex (s, p, ℓ) indicates (strict, pseudo, lax) algebra morphisms

Previous results

• (from the \mathcal{V} -enriched case) T- $Alg_s \xrightarrow{U} \mathcal{K}$ creates all limits.

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
•	0	00	00	0

 \mathcal{K} is a 2-category, T is a 2-monad on $\mathcal{K} (\mathcal{K} \xrightarrow{T} \mathcal{K}, id \stackrel{i}{\Rightarrow} T, T^2 \stackrel{m}{\Rightarrow} T)$

The subindex (s, p, ℓ) indicates (strict, pseudo, lax) algebra morphisms

Previous results

- (from the \mathcal{V} -enriched case) T-Alg_s $\xrightarrow{U} \mathcal{K}$ creates all limits.
- **2** T- $Alg_p \xrightarrow{U} \mathcal{K}$ creates lax and pseudolimits [BKP,89].

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
•	0	00	00	0

 \mathcal{K} is a 2-category, T is a 2-monad on $\mathcal{K} (\mathcal{K} \xrightarrow{T} \mathcal{K}, id \stackrel{i}{\Rightarrow} T, T^2 \stackrel{m}{\Rightarrow} T)$

 $U \text{ creates } \lim F \equiv \text{we can give } \lim F \text{ a}$ T-algebra structure such that it is $\lim \overline{F}$ (we lift the limit of F along U)

The subindex (s, p, ℓ) indicates (strict, pseudo, lax) algebra morphisms

Previous results

- (from the \mathcal{V} -enriched case) T- $Alg_s \xrightarrow{U} \mathcal{K}$ creates all limits.
- **2** T- $Alg_p \xrightarrow{U} \mathcal{K}$ creates lax and pseudolimits [BKP,89].
- $T Alg_{\ell} \xrightarrow{U} \mathcal{K} \text{ creates oplax limits [Lack, 05]}.$

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
•	0	00	00	0

 \mathcal{K} is a 2-category, T is a 2-monad on $\mathcal{K} (\mathcal{K} \xrightarrow{T} \mathcal{K}, id \stackrel{i}{\Rightarrow} T, T^2 \stackrel{m}{\Rightarrow} T)$

 $U \text{ creates } \lim F \equiv \text{we can give } \lim F \text{ a}$ T-algebra structure such that it is $\lim \overline{F}$ (we *lift* the limit of F along U)

The subindex (s, p, ℓ) indicates (strict, pseudo, lax) algebra morphisms

Previous results

- (from the \mathcal{V} -enriched case) T- $Alg_s \xrightarrow{U} \mathcal{K}$ creates all limits.
- **2** T- $Alg_p \xrightarrow{U} \mathcal{K}$ creates lax and pseudolimits [BKP,89].
- $T Alg_{\ell} \xrightarrow{U} \mathcal{K} \text{ creates oplax limits [Lack, 05]}.$

Note: All these limits are *weighted*, and the projections of the limit are always strict morphisms.

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
•	0	00	00	0

 $\mathcal{K} \text{ is a 2-category, } T \text{ is a 2-monad on } \mathcal{K} (\mathcal{K} \xrightarrow{T} \mathcal{K}, \textit{id} \stackrel{i}{\Rightarrow} T, T^2 \stackrel{m}{\Rightarrow} T)$

 $U \text{ creates } \lim F \equiv \text{we can give } \lim F \text{ a}$ T-algebra structure such that it is $\lim \overline{F}$ (we *lift* the limit of F along U)

The subindex (s, p, ℓ) indicates (strict, pseudo, lax) algebra morphisms

Previous results

- (from the \mathcal{V} -enriched case) T- $Alg_s \xrightarrow{U} \mathcal{K}$ creates all limits.
- **2** T- $Alg_p \xrightarrow{U} \mathcal{K}$ creates lax and pseudolimits [BKP,89].
- $T-Alg_{\ell} \xrightarrow{U} \mathcal{K} \text{ creates oplax limits [Lack, 05]}.$

Note: All these limits are *weighted*, and the projections of the limit are always strict morphisms.

We will present a theorem which unifies and generalizes these results.

	Limit lifting results O	Unifying morphisms ●	Unifying limits 00	Our result 00	References O	
<u> </u>	1 • 0					

A lax morphism $A \xrightarrow{f} B$ between T-algebras has a structural 2-cell

• lax (ℓ) morphism: \overline{f} any 2-cell.

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
O	●	00	00	O
 1:f				

A lax morphism $A \xrightarrow{f} B$ between T-algebras has a structural 2-cell

- lax (ℓ) morphism: \overline{f} any 2-cell.
- 2 pseudo (p) morphism: \overline{f} invertible.

	Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
	O	●	00	00	O
)	a ana biana a f				

A lax morphism $A \xrightarrow{f} B$ between T-algebras has a structural 2-cell

- lax (ℓ) morphism: \overline{f} any 2-cell.
- **2** pseudo (p) morphism: \overline{f} invertible.
- **③** strict (s) morphism: \overline{f} an identity.

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
O	●	00	00	O
 1:f				

A lax morphism $A \xrightarrow{f} B$ between T-algebras has a structural 2-cell

Fix a family Ω of 2-cells of \mathcal{K} . f is a Ω -morphism if $\overline{f} \in \Omega$.

	Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
	O	●	00	00	O
<u> </u>	1 •	7 1 1			

A lax morphism $A \xrightarrow{f} B$ between T-algebras has a structural 2-cell

Fix a family Ω of 2-cells of \mathcal{K} . f is a Ω -morphism if $\overline{f} \in \Omega$.

Considering $\Omega_{\ell} = 2$ -cells(\mathcal{K}), $\Omega_p = \{$ invertible 2-cells $\}$, $\Omega_s = \{$ identities $\}$, we recover the three cases above.

We fix \mathcal{A}, \mathcal{B} 2-categories, $\Sigma \subseteq \operatorname{Arrows}(\mathcal{A}), \Omega \subseteq 2\text{-cells}(\mathcal{B})$

ション ふゆ マ キャット マックシン

A general notion of weighted limit. The conical case (Gray,1974)

We fix \mathcal{A}, \mathcal{B} 2-categories, $\Sigma \subseteq \operatorname{Arrows}(\mathcal{A}), \Omega \subseteq 2\text{-cells}(\mathcal{B})$

•
$$\sigma$$
- ω -natural transformation: $\mathcal{A} \xrightarrow[G]{\theta \downarrow}{G} \mathcal{B}, \theta$ is a lax natural
 $FA \xrightarrow[G]{\theta_A} GA$
transformation $Ff \downarrow \qquad \forall \theta_f \qquad \qquad \downarrow Gf$ such that θ_f is in Ω when f is in Σ .
 $FB \xrightarrow[\theta_B]{} GB$

ション ふゆ マ キャット マックシン

A general notion of weighted limit. The conical case (Gray,1974)

We fix \mathcal{A}, \mathcal{B} 2-categories, $\Sigma \subseteq \operatorname{Arrows}(\mathcal{A}), \Omega \subseteq 2\text{-cells}(\mathcal{B})$

•
$$\sigma$$
- ω -natural transformation: $\mathcal{A} \xrightarrow[G]{\theta \downarrow}{\theta \downarrow} \mathcal{B}, \theta$ is a lax natural
 $FA \xrightarrow[G]{\theta_A} GA$
transformation $Ff \downarrow \qquad \forall \theta_f \qquad \qquad \downarrow Gf$ such that θ_f is in Ω when f is in Σ .
 $FB \xrightarrow[\theta_B]{\theta_B} GB$

• σ - ω -cone (for F, with vertex $E \in \mathcal{B}$): is a σ - ω -natural $\mathcal{A} \xrightarrow[]{\theta \downarrow} \mathcal{B}$,

i.e.
$$E \xrightarrow{\theta_A} FA \\ \downarrow \theta_f \\ \downarrow Ff \\ FB \\ \downarrow FF \\ \downarrow F$$

 ΔE

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
0	0	0•	00	0

 \bullet $\sigma\text{-}\omega\text{-limit:}$ is the universal $\sigma\text{-}\omega\text{-}\mathrm{cone,}$ in the sense that the following is an isomorphism

 $\mathcal{B}(E,L) \xrightarrow{\pi_*} \sigma\text{-}\omega\text{-}\mathrm{Cones}(E,F)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
0	0	0•	00	0

• σ - ω -limit: is the universal σ - ω -cone, in the sense that the following is an isomorphism

 $\mathcal{B}(E,L) \xrightarrow{\pi_*} \sigma\text{-}\omega\text{-}\mathrm{Cones}(E,F)$

うして ふゆう ふほう ふほう ふしつ

On objects:

 $\varphi \longleftrightarrow \theta$

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
0	0	0•	00	0

• σ - ω -limit: is the universal σ - ω -cone, in the sense that the following is an isomorphism

 $\mathcal{B}(E,L) \xrightarrow{\pi_*} \sigma \text{-}\omega \text{-} \text{Cones}(E,F)$

うして ふゆう ふほう ふほう ふしつ

On objects: $\varphi \longleftrightarrow \theta$

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
0	0	0•	00	0

• σ - ω -limit: is the universal σ - ω -cone, in the sense that the following is an isomorphism

 $\mathcal{B}(E,L) \xrightarrow{\pi_*} \sigma\text{-}\omega\text{-}\mathrm{Cones}(E,F)$

うして ふゆう ふほう ふほう ふしつ

On objects: $\varphi \longleftrightarrow \theta$

• We have the dual notion of σ - ω -opnatural, yielding σ - ω -oplimits, where the direction of the 2-cells is reversed.

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
0	0	0•	00	0

 \bullet $\sigma\text{-}\omega\text{-limit:}$ is the universal $\sigma\text{-}\omega\text{-}\mathrm{cone,}$ in the sense that the following is an isomorphism

 $\mathcal{B}(E,L) \xrightarrow{\pi_*} \sigma\text{-}\omega\text{-}\mathrm{Cones}(E,F)$

うして ふゆう ふほう ふほう ふしつ

On objects: $\varphi \longleftrightarrow \theta$

• We have the dual notion of σ - ω -opnatural, yielding σ - ω -oplimits, where the direction of the 2-cells is reversed.

• The notions of lax, pseudo and strict limits are recovered with particular choices of Ω (and Σ).

	Limit lifting results O	Unifying morphism O	s Unifying limits 00	Our result	References O
Our	limit lifting	theorem (finding the h	ypothes	es)

We consider $\Sigma \subseteq \operatorname{Arrows}(\mathcal{A}), \Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. The σ - ω -limits are always taken with respect to Σ and Ω .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

We consider $\Sigma \subseteq \operatorname{Arrows}(\mathcal{A}), \Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. The σ - ω -limits are always taken with respect to Σ and Ω .

Can we give $L = \sigma \cdot \omega \cdot \lim F$ a structure of algebra such that the projections are strict morphisms?

うして ふゆう ふほう ふほう ふしつ

always taken with respect to Σ and Ω .

Can we give $L = \sigma \cdot \omega \cdot \lim F$ a structure of algebra such that the projections are strict morphisms?

・ロン ・雪と ・ヨと

consider $\Sigma \subseteq \operatorname{Arrows}(\mathcal{A}), \Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. The σ -dimits are always taken with respect to Σ and Ω .

Can we give $L = \sigma \cdot \omega \cdot \lim F$ a structure of algebra such that the projections are strict morphisms?

We need the 2-cells θ_f yielding a σ - ω -cone:

 $\theta_f \in \Omega$ if $f \in \Sigma$:

We consider $\Sigma \subseteq \operatorname{Arrows}(\mathcal{A}), \Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. The σ - ω -limits are always taken with respect to Σ and Ω .

Can we give $L = \sigma \cdot \omega \cdot \lim F$ a structure of algebra such that the projections are strict morphisms?

We need the 2-cells θ_f yielding a σ - ω -cone:

ション ふゆ マ キャット マックシン

 $\theta_f \in \Omega$ if $f \in \Sigma$:

always taken with respect to Σ and Ω .

Can we give $L = \sigma \cdot \omega$ -oplim *F* a structure of algebra such that the projections are strict morphisms?

We need the 2-cells θ_f yielding a σ - ω -opcone:

T- $Alg^{\Omega'}$

F

We consider $\Sigma \subseteq \operatorname{Arrows}(\mathcal{A}), \Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. The σ - ω -limits are always taken with respect to Σ and Ω .

Can we give $L = \sigma \cdot \omega$ -oplim *F* a structure of algebra such that the projections are strict morphisms?

We need the 2-cells θ_f yielding a σ - ω -opcone:

うして ふゆう ふほう ふほう ふしつ

 $\theta_f \in \Omega$ if $f \in \Sigma$: $T(\Omega) \subseteq \Omega$

We consider $\Sigma \subseteq \operatorname{Arrows}(\mathcal{A}), \Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. The σ - ω -limits are always taken with respect to Σ and Ω .

Can we give $L = \sigma \cdot \omega$ -oplim *F* a structure of algebra such that the projections are strict morphisms?

We need the 2-cells θ_f yielding a σ - ω -opcone:

うして ふゆう ふほう ふほう ふしつ

 $\theta_f \in \Omega$ if $f \in \Sigma$: $T(\Omega) \subseteq \Omega$, $\Omega' \subseteq \Omega$

always taken with respect to Σ and Ω .

Can we give $L = \sigma - \omega$ -oplim F a structure of algebra such that the projections are strict morphisms?

We need the 2-cells θ_f yielding a σ - ω -opcone:

うして ふゆう ふほう ふほう ふしつ

 $\theta_f \in \Omega \text{ if } f \in \Sigma: \ T(\Omega) \subseteq \Omega, \ \Omega' \subseteq \Omega \Rightarrow TL \stackrel{\ell}{\longrightarrow} L.$

always taken with respect to Σ and Ω .

Can we give $L = \sigma - \omega$ -oplim F a structure of algebra such that the projections are strict morphisms?

We need the 2-cells θ_f yielding a σ - ω -opcone:

 $\theta_f \in \Omega \text{ if } f \in \Sigma: \ T(\Omega) \subseteq \Omega, \ \Omega' \subseteq \Omega \Rightarrow TL \stackrel{\ell}{\longrightarrow} L.$

The limit L is Ω' -compatible \Rightarrow (TL, ℓ) is the desired lifted limit.

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
O	O	00	O●	O
 1:	the energy (mm	on only stat	ad)	

Our limit lifting theorem (properly stated)

Theorem: Let $\Sigma \subseteq \operatorname{Arrows}(\mathcal{A}), \Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Assume $T(\Omega) \subseteq \Omega$ and $\Omega' \subseteq \Omega$. Then $T\text{-}Alg^{\Omega'} \xrightarrow{U} \mathcal{K}$ creates Ω' -compatible $\sigma\text{-}\omega\text{-}oplimits$.

the proof follows the ideas of the previous slide

	Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
	O	O	00	O●	O
<u> </u>	1 1.0.	.1	. 1	1)	

Our limit lifting theorem (properly stated)

Theorem: Let $\Sigma \subseteq \operatorname{Arrows}(\mathcal{A}), \Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Assume $T(\Omega) \subseteq \Omega$ and $\Omega' \subseteq \Omega$. Then $T\text{-}Alg^{\Omega'} \xrightarrow{U} \mathcal{K}$ creates Ω' -compatible $\sigma\text{-}\omega\text{-oplimits}$.

the proof follows the ideas of the previous slide

We deduce the result for weighted σ - ω -limits, by showing that they can be expressed as conical σ - ω -limits.

	Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
	O	O	00	O●	O
<u> </u>	1 1.0.	.1	. 1	1)	

Our limit lifting theorem (properly stated)

Theorem: Let $\Sigma \subseteq \operatorname{Arrows}(\mathcal{A}), \Omega, \Omega' \subseteq 2\text{-cells}(\mathcal{K})$. Assume $T(\Omega) \subseteq \Omega$ and $\Omega' \subseteq \Omega$. Then $T\text{-}Alg^{\Omega'} \xrightarrow{U} \mathcal{K}$ creates Ω' -compatible $\sigma\text{-}\omega\text{-oplimits}$.

the proof follows the ideas of the previous slide

We deduce the result for weighted σ - ω -limits, by showing that they can be expressed as conical σ - ω -limits.

The case $\Omega, \Omega' \in {\Omega_{\ell}, \Omega_p, \Omega_s}$

 $T(\Omega) \subseteq \Omega \checkmark, \Omega'$ -compatible \checkmark

- (with $\Omega = \Omega' = \Omega_s$) *T*-Alg_s $\xrightarrow{U} \mathcal{K}$ creates all (strict) limits.
- (with Ω = Ω' = Ω_p) T-Alg_p → K creates σ-limits (thus in particular lax and pseudolimits).
- (with $\Omega = \Omega' = \Omega_\ell$) *T*-Alg_{ℓ} \xrightarrow{U} \mathcal{K} creates oplax limits.

Limit lifting results	Unifying morphisms	Unifying limits	Our result	References
0	0	00	00	•

Thank you for your attention!

References

[BKP,89] Blackwell R., Kelly G. M., Power A.J., Two-dimensional monad theory, JPAA 59.

[Gray,74] Gray J. W., Formal category theory: adjointness for 2-categories, Springer LNM 391.

[Lack,05] Lack S., Limits for lax morphisms, ACS 13.

A general limit lifting theorem for 2-dimensional monad theory is available as arXiv:1702.03303.

ション ふゆ マ キャット マックシン