
Advanced Nonlinear Studies 11 (2011), 201-220

Periodic Solutions of Systems
with Singularities of Repulsive Type

Pablo Amster∗

Departamento de Matemática
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Abstract

Motivated by the classical Coulomb central motion model, we study the existence of T -
periodic solutions for the nonlinear second order system of singular ordinary differential
equations u′′ + g(u) = p(t). Using topological degree methods, we prove that when the
nonlinearity g : RN\{0} → RN is continuous, repulsive at the origin and bounded at infinity,
if an appropriate Nirenberg type condition holds then either the problem has a classical
solution, or else there exists a family of solutions of perturbed problems that converge
uniformly and weakly in H1 to some limit function u. Furthermore, under appropriate
conditions we prove that u is a classical solution.
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1 Introduction
As a motivation for our work, let us firstly recall the T -periodic perturbed central motion problem{

u′′ ∓ u
|u|3 = p(t) t ∈ R

u(t + T ) = u(t) t ∈ R (1.1)

where u : R → R3. We shall assume that the perturbation p has null average, that means that
p := 1

T

∫ T
0 p(t)dt = 0, and that p is T−periodic, namely p(t + T ) = p(t). The ∓ sign leads to two

essentially different physical problems; we shall focus on the ‘−’ sign, which corresponds to the
repulsive case. This is the case of the electrostatic Coulomb central motion problem with a charge
being repelled by the source.

With this problem in mind, we study the more general problem for a function u : R→ RN ,{
u′′ + g(u) = p(t) t ∈ R
u(t + T ) = u(t) t ∈ R (1.2)

where p ∈ C(R,RN) is T -periodic, p = 0, and g ∈ C(RN\{0},RN) has a repulsive type singularity at
u = 0. By this, we mean that ⟨g(u), u⟩ < 0 when u is near the origin (see Definition 2.2).

There exists a vast bibliography on this kind of dynamical systems. Lazer and Solimini [11]
have considered the scalar case N = 1, with g(u) → −∞ as u → 0, and

∫ 1
0 g(t)dt = −∞. Using a

result proved by Lazer in [10], it is shown that a necessary and sufficient condition for the existence
of a weak solution when g < 0 and p ∈ L1([0,T ]), is that p < 0.

In [16], Solimini studied the case g = ∇G, where the potential G has at zero a singularity of
repulsive type: for example, the electrostatic potential between two charges of the same sign. More
precisely, it is assumed that G ∈ C1(RN\{0}) satisfies lim|u|→0 G(u) = +∞ and ∇G is strictly repulsive
at the origin, namely:

lim sup
u→0

⟨
g(u),

u
|u|

⟩
< 0.

Under the additional hypothesis

∃ δ > 0 such that, if
∣∣∣∣∣ u
|u| −

v
|v|

∣∣∣∣∣ < δ, then ⟨g(u), v⟩ < 0 (1.3)

the existence is shown of a constant η > 0 such that if ∥p∥∞ < η and p = 0, then the problem has no
classical solution. This includes the case of the repulsive central motion, where G(u) = 1

|u| .
In the same work, the existence of a solution for p , 0 under weaker assumptions is proved.

Also, it is remarked that if ∥p∥∞ is large enough, then condition p = 0 does not imply that the
problem is unsolvable. This is different from what happens in the case N = 1, in which u cannot
turn around zero; thus, if the repulsive condition g(u)u < 0 is assumed for all u , 0, then the
condition p , 0 is necessary.

In a recent paper, Fonda and Toader [6] made an exhaustive analysis on radially symmetric
Keplerian-like systems u′′ + h(t, |u|)u = 0, where h : R × (0,+∞) → R is T -periodic in t. Using
a topological degree approach, the existence of classical T -periodic solutions is studied. This work
provides also an excellent survey of the known results on the subject. It is focused in the attractive
case, in which the main difficulty consists in avoiding collisions. It is also remarked that, for the
repulsive case, the difficulty relies in the case p = 0.
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In [18], Zhang employed topological techniques in order to study the T -periodic problem for the
system

u′′ + (∇F(u))′ + ∇G(u) = p(t).

When F ≡ 0, the problem has variational structure and, as mentioned, the repulsive case was
studied in [16]. The attractive case with p ≡ 0 and N = 2 was solved by Gordon [7], using critical
point theory and imposing a strong force condition on G in order to get compactness properties for
the involved functionals. Roughly speaking, this condition means that the potential G behaves as 1

|u|γ
near the origin, with γ ≥ 2; thus, it is not satisfied by the Keplerian potential.

The same assumption is made in [5] for the repulsive case. In the recent works [17] and [4],
the strong force condition is removed for the equation u′′ + a(t)u + g(t, u) = p(t), provided that the
associated linear operator satisfies an anti-maximum principle.

In order to study the general problem (1.2), we shall proceed in two steps. Firstly, we introduce
the approximated problem {

u′′ + gε(u) = p(t) t ∈ R
u(t + T ) = u(t) t ∈ R, (1.4)

where gε is a continuous (nonsingular) perturbation of g, and obtain sufficient conditions for the
existence of a family of solutions {uε}. Secondly, we study the convergence of particular sequences
{uεn } as εn → 0, and some properties of the limit function u. If u . 0, then it shall be defined as a
generalized solution of the problem (see Definition 2.1). In some cases, we shall consider specific
choices of gε, for instance

gε(u) =


g(u) |u| ≥ ε

ρε(|u|)g
(
ε u
|u|

)
0 < |u| < ε

0 u = 0,
(1.5)

where ρε : [0, ε] → [0,+∞) is continuous and satisfies ρε(0) = 0, ρε(ε) = 1 (more details shall be
given in section 2).

For the first step, we extend a well-known result by Nirenberg [13], which in this context can be
stated as follows:

Theorem 1.1 Let p ∈ C(R,RN) be T-periodic such that p = 0, and let g ∈ C(RN ,RN) be bounded.
Then problem (1.2) has a solution, provided that:

(N1) The radial limits gv := limr→+∞ g(rv) exist uniformly for v ∈ S N−1 and gv , 0 ∀v ∈ S N−1.

(N2) There exists a constant R0 > 0 such that deg(Φr) , 0 for r ≥ R0, where Φr : S N−1 → S N−1 is
given by Φr(v) := g(rv)

|g(rv)| .

Our result is based on two previous extensions of Theorem 1.1. On the one hand, a result
by Ortega and Ward [14], originally in the context of partial differential equations, where (N1) is
replaced by the following condition, that allows g to vanish at infinity:

(H1) The radial limits limr→+∞Φr(v) exist uniformly for v ∈ S N−1.
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On the other hand, a result by Amster and De Nápoli [2], for a ϕ-laplacian operator, in which the
asymptotic condition (N1) is weakened to:

(F1) There exists a family {(U j,w j)} j=1,...,K , with U j open subsets of S N−1 and w j ∈ S N−1 such that
{U j} covers S N−1, the upper limit

lim sup
r→+∞

⟨g(ru),w j⟩ := S j(u)

is uniform for u ∈ U j, and S j(u) < 0.

Remark 1.1 (N2) is equivalent to the original condition deg(Φ) , 0 in [13] and [14], where Φ :
S N−1 → S N−1 is given by Φ(v) := gv

|gv | in the first case, and by Φ(v) := limr→+∞Φr(v) in the second
case. However, (N2) makes sense also when the weaker assumption (F1) is assumed, for which
radial limits for g or g

|g| do not necessarily exist.
It is worth mentioning that (N2) can be also expressed in terms of the Brouwer degree of g,

namely:

(N′2) There exists a constant R0 > 0 such that deg(g, Br(0), 0) , 0 for r ≥ R0.

Indeed, the equivalence between (N2) and (N′2) is clear from the following identity, valid for any
continuous mapping f : B1(0)→ RN such that f does not vanish on S N−1:

deg( f , B1(0), 0) = deg(ϕ),

where ϕ : S N−1 → S N−1 is given by ϕ(v) := f (v)
| f (v)| .

However, in our context, the form (N2) is preferable since our results shall be applied for a
singular g, for which the Brouwer degree in (N′2) is not defined.

In the present work we state a further extension, which will be proved in section 3. For conve-
nience, the boundedness condition on the (nonsingular) g shall be equivalently expressed as:

(B) lim sup|u|→∞ |g(u)| < ∞.

Moreover, it shall be seen that (B) may be replaced by

(B′) lim sup|u|→∞⟨g(u), u⟩ < ∞.

In particular, if lim inf |u|→∞ |g(u)| > 0, then condition (B′) says that

lim inf
|u|→∞

A(u) ≥ π

2
,

where A(u) denotes the angle between g(u) and u. Our result for the nonsingular case reads:

Theorem 1.2 Let p ∈ C(R,RN) be T-periodic such that p = 0, and let g ∈ C(RN ,RN) satisfy (B) or
(B′). Then problem (1.2) has a solution, provided that (N2) and (P1) hold, with:
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(P1) There exists a family F = {(U j,w j)} j=1,...,K where {U j} j=1,...,K is an open cover of S N−1 and
w j ∈ S N−1, such that for some R j > 0 and j = 1, . . . ,K:

⟨g(ru),w j⟩ < 0 ∀r > R j ∀u ∈ U j.

Remark 1.2 It is easily seen that (P1) generalizes (F1), since the upper limits may vanish, or may
not be uniform as r → +∞. For example, it is clear that (1.3) implies (P1). More generally, it
suffices to assume that (1.3) holds, but only when |u| and |v| are large.

On the other hand, following the ideas in [15] it is seen that (P1) can be replaced by the following
condition, of geometric nature:

(P′1) There exists an open cover {U j} j=1,...,K of S N−1 such that for some R j > 0 and j = 1, . . . ,K:

0 < co
(
g
(
C j

))
,

where co(A) denotes the convex hull of A ⊂ RN , and C j :=
∪

r>R j
rU j.

Indeed, from the geometric version of the Hahn-Banach theorem, for any compact subset C ⊂ C j

we deduce the existence of a vector w j such that ⟨g(u),w j⟩ < 0 for every u ∈ C and, as we shall see,
this suffices for obtaining a priori bounds for the equation.

With Theorem 1.2 in mind, we proceed to the second step. Our main existence results can be
stated as follows:

Theorem 1.3 Let p ∈ C(R,RN) be T-periodic such that p = 0, and let g ∈ C(RN\{0},RN) be
repulsive at the origin. Further, assume that g satisfies (B) or (B′), and that conditions (P1) and
(N2) hold. Then either (1.2) has a classical solution, or else for any choice of gε as in (1.5) there
exists a sequence un of solutions of problem (1.4) and εn → 0 that converges uniformly and weakly
in H1.

Theorem 1.4 Let p ∈ C(R,RN) be T-periodic such that p = 0, and assume that g ∈ C(RN\{0},RN)
is repulsive at the origin and satisfies (B) or (B′). Further, assume that condition (P1) holds, and
that

∥p∥∞ + sup
|u|=r̃

⟨
g(u),

u
|u|

⟩
< 0

for some r̃ > 0. If also

(P2) There exists a constant R0 > 0 such that deg(Φr) , (−1)N for r ≥ R0,

then either (1.2) has a classical solution, or a generalized solution u such that ∥u∥∞ ≥ r̃. Moreover,
if g is strictly repulsive at the origin (see Definition 2.2), then the boundary of the set of zeros of u is
finite, and if g = ∇G with limu→0 G(u) = +∞, then (1.2) has a classical solution.

The work is organized as follows. In the next section we study the singular problem (1.2),
and prove our main existence results and some auxiliary lemmas, making use of Theorem 1.2. As
mentioned, this result concerns the nonsingular case, and it is independent of the results in the next
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section. Although it might have some interest on its own, it does not constitute the main topic of
this work: for this reason, we postpone its proof for section 3. Moreover, we state a corollary under
more explicit assumptions, which generalize the well-known Landesman-Lazer conditions for the
scalar case (see Theorem 3.1). Also, we show an example of a system satisfying the conditions of
Theorem 1.2 but neither those of Nirenberg [13], nor those of [14] and [2].

2 Singular repulsive problems
Throughout the rest of the paper we shall always assume that p ∈ C(R,RN) is T -periodic, and p = 0.

In order to present our results, let us start making some simple comments on the central motion
repulsive problem stated in the introduction:{

u′′ − u
|u|3 = p(t) t ∈ R

u(t + T ) = u(t) t ∈ R.
Here, the first difficulty arises on the fact that g is singular at 0; a reasonable way to overcome it

consists in considering, for ε > 0, the function gε(u) = − u
ε+|u|3 and then studying the convergence of

the solutions uε of the perturbed systems (1.4).
The second difficulty relies on the fact that gε vanishes at infinity; however, in this case the

existence of at least one solution uε of (1.4) for each ε > 0 follows as an immediate consequence of
the results in [14]. Indeed, as

⟨gε(u), u⟩ =
⟨
− u
ε + |u|3 , u

⟩
= − |u|2

ε + |u|3 < 0

for u , 0, it follows that conditions (B′) and (N2) are trivially satisfied. Moreover, for every w ∈ S N−1

define Uw = {u ∈ S N−1 : ⟨u,w⟩ > 0}. Then {Uw} covers S N−1, and clearly ⟨g(ru),w⟩ < 0 for u ∈ Uw

and r > 0. From the compactness of S N−1, condition (P1) is satisfied. Thus, we may pass to the next
step. The following computations provide some information concerning the behavior of the family
{uε} as ε→ 0:

Multiplying (1.4) by uε − uε, the facts that ⟨gε(u), u⟩ ≤ 0 and p = 0 imply that

∥u′ε∥L2 ≤ C, ∥uε − uε∥∞ ≤ C

where the constant C does not depend on ε. On the other hand, it is easy to prove that {uε} is also
bounded. Indeed, integrating the equation we obtain∫ T

0

uε
ε + |uε|3

dt = 0,

and we deduce that

−
∫ T

0

uε
ε + |uε|3

dt =
∫ T

0

uε − uε
ε + |uε|3

dt.

Now, taking norm in RN :

|uε|
∫ T

0

1
ε + |uε|3

dt ≤ ∥uε − uε∥∞
∫ T

0

1
ε + |uε|3

dt.
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Thus, |uε| ≤ C. Hence, for every sequence εn → 0 we may choose a solution un := uεn and from the
previous bounds there exists a subsequence (still denoted {un}) and a function u such that un → u
uniformly and weakly in H1. Moreover, it is easily seen that if u , 0 over an open interval I, then
u′′ − u

|u|3 = p in I, in the classical sense.
So, our last problem concerns the study of the set of zeros of the limit function u. As we shall

prove for a more general case, the boundary of the zero set {t ∈ [0,T ] : u(t) = 0} is finite. However,
in the central motion problem it can be seen, further, that if u . 0 then the zero set is empty, i. e. u
is a classical solution.

A detailed proof of the preceding remarks will be done below, for the general case (1.2).
In order to define the perturbed problem (1.4) in an appropriate way, let us firstly observe that

the ‘natural’ extension of the previous situation would consist in considering

gε(u) =
{ |u|

ε|g(u)|+|u|g(u) u , 0
0 u = 0.

(2.1)

Nevertheless, there are other possible choices of gε such as the ones defined by (1.5). In particular,
for the central motion problem, taking ρε(s) = s

ε
it simply reduces to gε(u) = − u

(max{|u|,ε})3 . For the
moment, we shall prove some general properties that hold for any approximation that is ‘admissible’,
in the sense that gε → g uniformly over compact subsets of RN\{0} as ε→ 0.

According to the previous comments, we shall also define the concept of generalized solution:

Definition 2.1 A function u ∈ H1
per(R,R

N) is said to be a generalized solution of (1.2) if u . 0,
and for some admissible choice of gε there exists a sequence εn → 0 and uεn a solution of (1.4) for
ε = εn such that uεn → u uniformly and weakly in H1.

Remark 2.1 For convenience, in the previous situation we shall denote un := uεn gn := gεn .

Remark 2.2 When g = ∇G, a different concept of solution (called collision solution) is introduced
in [3] (see also [1]). As we shall prove (see lemma 2.3 below), under the assumption that G(u)→ +∞
as u → 0, both generalized and collision solutions are in fact classical. Conversely, taking gε as in
(1.5), it is obvious that classical solutions are also generalized solutions.

Before establishing the main results of this section, we shall prove some lemmas concerning the
properties of those functions defined as the limit of a sequence of perturbed problems.

Lemma 2.1 Let un and u be defined as before, and assume that u , 0 over an open interval I. Then
u satisfies

u′′ + g(u) = p(t) ∀ t ∈ I

in the classical sense.

Proof. Let ϕ ∈ C∞0 (I), then ∫
I
⟨u′′n + gn(un), ϕ⟩dt =

∫
I
⟨p, ϕ⟩dt.

Integrating by parts
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−
∫

I
⟨u′n, ϕ′⟩dt +

∫
I
⟨gn(un), ϕ⟩dt =

∫
I
⟨p, ϕ⟩dt,

and from the weak convergence in H1, we deduce that∫
I
⟨u′n, ϕ′⟩dt →

∫
I
⟨u′, ϕ′⟩dt.

Thus, it suffices to check that ∫
I
⟨gn(un), ϕ⟩dt →

∫
I
⟨g(u), ϕ⟩dt.

As un → u uniformly on I, we may assume that there exist M, c > 0 with M ≥ |un| ≥ c > 0 on
the support of ϕ. Moreover, as gn → g uniformly on {c ≤ |u| ≤ M} ⊂ RN\{0}, it follows that∣∣∣∣ ∫

I
⟨gn(un) − g(u), ϕ⟩dt

∣∣∣∣ ≤∫
I
|⟨gn(un) − g(un), ϕ⟩|dt +

∫
I
|⟨g(un) − g(u), ϕ⟩|dt → 0.

This proves that u is a weak solution, and the result follows from standard regularity arguments. �

From now on, we shall always consider nonlinearities with singularities of repulsive type at the
origin, namely:

Definition 2.2 g : RN\{0} → RN is said to be repulsive at the origin if, for some κ > 0

⟨g(u), u⟩ < 0 for 0 < |u| < κ. (2.2)

If, furthermore

lim sup
u→0

⟨
g(u),

u
|u|

⟩
:= −c < 0, (2.3)

then g shall be called strictly repulsive at the origin.

As mentioned, condition (2.3) is the same as in [16] for the case g = ∇G. It is observed that
it does not imply the strong force condition: in particular, for any value of γ > −1 the singularity
g(u) = −u

|u|γ+2 is strictly repulsive, with c = +∞. In such a situation, it can be proved that the boundary
of the set of zeros of the limit function u is discrete; more generally:

Lemma 2.2 Let un and u be defined as before, and assume that g is strictly repulsive at the origin.
Then the boundary of the set {t ∈ [0,T ] : u(t) = 0} is finite, provided that ∥p∥∞ < c, with c ∈ (0,+∞]
as in (2.3).

Proof. Suppose u(t0) = 0, and fix µ > 0 such that ∥p∥∞ +
⟨
g(u), u

|u|

⟩
< 0 for 0 < |u| < µ.

Next, fix δ > 0 such that |u(t)| < µ for t ∈ (t0 − δ, t0 + δ), and suppose for example that u does
not vanish in (a, b) for some non-trivial interval [a, b] ⊂ [t0, t0 + δ). By Lemma 2.1 u is a classical
solution of the equation u′′ = p − g(u) in (a, b). Moreover, if ϕ(t) = |u(t)|2 then on (a, b) we have:

ϕ′′ = 2⟨u′′, u⟩ + 2|u′|2 ≥ 2⟨p − g(u), u⟩ =
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2[⟨p, u⟩ − ⟨g(u), u⟩] ≥ −2|u|
[
∥p∥∞ +

⟨
g(u),

u
|u|

⟩]
> 0.

Thus, ϕ cannot vanish both on a and b, and it follows that either u does not vanish on (t0, t0 + δ) or
u ≡ 0 on [t0, t1] for some t1 > t0. The same conclusion holds for (t0 − δ, t0], and the result follows
from the compactness of [0,T ]. �

The following result improves Lemma 2.2 for the variational case studied in [16]. However, we
do not make use of the variational structure of the problem: more generally, it may be assumed that
g = ∇G only near the origin.

Lemma 2.3 Assume there exists a neighborhood U of the origin and a function G ∈ C1(U\{0},R)
such that g = ∇G on U\{0}. Further, assume that lim|u|→0 G(u) = +∞. Then every generalized
solution of (1.2) is classical.

Proof. Let u be a generalized solution, and suppose that u vanishes at some point. Fix t̃ such that
u(t̃) , 0, and define t1 = inf{t > t̃ : u(t) = 0}. Next, fix a value t0 ∈ (t̃, t1) such that u(t) ∈ U\{0} and
G(u(t)) > 0 for t ∈ [t0, t1). As u is a classical solution of the equation on [t0, t1), multiplying by u′

we deduce, for t ∈ [t0, t1) that

|u′(t)|2
2
+G(u(t)) =

|u′(t0)|2
2

+G(u(t0)) +
∫ t

t0
⟨p(s), u′(s)⟩ ds. (2.4)

As G(u(t)) > 0, for any t̃1 ∈ (t0, t1) and t ∈ [t0, t̃1] we obtain:

|u′(t)|2
2
≤ A + B∥u′|[t0,t̃1]∥∞

where the constants A := |u
′(t0)|2

2 + G(u(t0)) and B := (t1 − t0)∥p∥∞ do not depend on the choice of
t̃1. This implies that u′(t) is bounded on [t0, t1), and taking limit as t → t−1 in (2.4) a contradiction
yields. �

Remark 2.3 It is worth noticing that in this context the repulsive condition (2.2) implies that G(u)
increases when u moves on rays that point towards the origin. However, this specific condition
was not necessary in the preceding result, which only uses the fact that G(0) = +∞, since it is not
required for the proof of Lemma 2.1.

Taking into account the previous comments on the central motion problem, we are able to estab-
lish an existence result for the particular radial case g(u) = h(|u|)u:

Theorem 2.1 Let g(u) = h(|u|)u, with h : (0,+∞)→ ( −∞, 0) continuous, and let

gε(u) =
h(|u|)u

1 − εh(|u|) .

Then there exists a sequence {un} of solutions of (1.4) with εn → 0 that converges uniformly and
weakly in H1 to some limit function u. Furthermore, if lim supr→0+ rh(r) + ∥p∥∞ < 0, then the set
∂{t ∈ [0,T ] : u(t) = 0} is finite, and if

∫ 1
0 sh(s)ds = −∞, then either u ≡ 0 or u is a classical solution.
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Proof. As in the particular case of the central motion problem, existence of solutions of (1.4) follows
from Theorem 1.2 with condition (B′). Moreover, a bound for ∥u′ε∥L2 is also obtained as before and,
again, the fact that

∫ T
0 gε(uε)dt = 0 implies that

−
∫ T

0

h(|uε|)uε
1 − εh(|uε|)

dt =
∫ T

0

h(|uε|)(uε − uε)
1 − εh(|uε|)

dt.

Thus, a bound for uε is also obtained and the conclusion follows from Arzelá-Ascoli theorem and
the Banach-Alaoglu Theorem.

Moreover, if
⟨
g(u), u

|u|

⟩
= h(r)r < −∥p∥∞ for |u| = r small, then Lemma 2.2 applies. Finally, as

g = ∇G, with G(u) = f (|u|) for f (σ) :=
∫ σ

1 sh(s)ds, Lemma 2.3 applies. �

Example 2.1 The following elementary example shows that the assumption
lim|u|→0 G(u) = +∞ in Lemma 2.3 is sharp. Let us consider the equation

u′′ =
u
|u|γ+2 + p, (2.5)

which corresponds to the potential

G(u) =
{ 1

γ|u|γ if γ , 0
− log |u| if γ = 0.

If γ > −1, the equation is singular, although for γ ∈ (−1, 0) the potential is continuous up to 0.
For simplicity, let us consider the case N = 1, and p = χ[ T

2 ,T ] − χ[0, T
2 ) (note that although p is

only piecewise continuous, Lemma 2.3 still applies). As p = 0, then there are no classical solutions.
Moreover, if we set gε as

gε(u) = − |u|
γ−2u

(ε + |u|γ)2 ,

then from the energy conservation law

u′2ε
2
= Eε − uε −

1
γ(ε + |uε|γ)

, 0 < t <
T
2
.

A standard computation proves that if T is sufficiently large, then there exist Mε > 0 and vε a positive
solution of the equation over (0, T

2 ) such that vε(0) = vε( T
2 ) = 0, with energy Eε = Mε +

1
γ(ε+Mγ

ε ) and
∥vε∥∞ = vε( T

4 ) = Mε.
We obtain a periodic solution of the perturbed problem by reflection, namely:

uε(t) =
{

vε(t) if 0 ≤ t ≤ T
2

−vε(t − T
2 ) if T

2 < t ≤ T.

In particular, for ε = 0 we obtain a solution u of the problem with a collision at t = T
2 . Furthermore,

it is easily checked that uε → u; thus, u is a generalized but non-classical solution.
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Remark 2.4 Lemma 2.3 can be regarded as an alternative, in the following way: for g satisfying the
assumption, if a sequence uεn of solutions of (1.4) for ε = εn → 0 converges uniformly and weakly
in H1 to some function u, then either u ≡ 0, or u is a classical solution of the problem.

It is worth noticing that both situations may occur: for instance, we may consider again equation
(2.5), now with γ ≥ 0. If p ≡ 0, then there are no generalized solutions (since they should be
classical): in some sense, this is expectable since if gε is given as in (2.1) or (1.5), then uε ≡ 0
is the unique solution of the perturbed problem. On the other hand, for N = 2 we may consider
the case in which p(t) = −λ(cos (ωt), sin (ωt)) with ω = 2π

T , and the circular solution given by
u(t) = r(cos (ωt), sin (ωt)), where λ = rω2 + 1

rγ+1 . After a simple computation, we conclude that the

problem has classical solutions for λ ≥ (γ + 2)
(

ω2

(γ+1)

) γ+1
γ+2 .

Following the ideas in [16], for the preceding case (2.5) with γ ≥ 0 a non-existence result holds
when ∥p∥∞ is small. It is interesting to observe that this result can be extended for the L1-norm: if
∥p∥L1 ≤ η for some η sufficiently small, then the problem admits no classical solutions.

For simplicity, we shall consider only the case γ = 1 and prove that η ≥
(

16
T

)1/3
. On the other

hand, as we always have circular solutions for any λ ≥ 3
(

2π2

T 2

)2/3
(and any N ≥ 2), we also know

that η ≤ 3
(

4π4

T

)1/3
.

In order to obtain the previously mentioned explicit lower bound for η, let us assume that u is a
classical solution, and fix t0 such that |u(t0)| = ∥u∥∞. Multiplying the equation by u and integrating,
it follows that

∥u′∥2L2 = −
∫ T

0

(
1
|u| + ⟨p, u⟩

)
dt ≤ − T

∥u∥∞
+ ∥p∥L1∥u∥∞,

and in particular, as u is non-constant,

∥p∥L1 >
T
∥u∥2∞

.

Also, for the j-th coordinate of u we have:

u j(t) − u j(t0) =
∫ t

t0
u′j(s)ds ≤

∫ T

0
(u′j)

+(s)ds =
1
2
∥u′j∥L1 ≤ T 1/2

2
∥u′j∥L2 ,

and an analogous inequality follows using (u′j)
−. Then

∥u − u(t0)∥2∞ ≤
T
4
∥u′∥2L2 ≤

T
4

(
∥p∥L1∥u∥∞ −

T
∥u∥∞

)
and in particular

|u(t)| ≥ |u(t0)| −
[
T
4

(
∥p∥L1∥u∥∞ −

T
∥u∥∞

)]1/2

.

Thus,

⟨u(t), u(t0)⟩ = 1
2

(
|u(t)|2 + |u(t0)|2 − |u(t) − u(t0)|2

)
≥

≥ ∥u∥∞
∥u∥∞ − [

T
4

(
∥p∥L1∥u∥∞ −

T
∥u∥∞

)]1/2 .
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If ∥p∥3L1 ≤ 16
T , we deduce that ∥p∥2L1 ≤ 16

T 2
T
∥p∥L1

<
(

4
T ∥u∥∞

)2
. Hence T

4 ∥p∥L1∥u∥∞ < ∥u∥2∞, and we
conclude that ⟨u(t), u(t0)⟩ > 0 for every t.

Finally, integrating the equation we obtain

0 =
⟨
u(t0),

∫ T

0
u′′(t) dt

⟩
=

∫ T

0

1
|u(t)|3 ⟨u(t0), u(t)⟩ dt > 0,

a contradiction.

Remark 2.5 It might be worth observing that the geometric idea behind the last proof is that for any
w ∈ RN\{0} the range of a classical solution of the problem cannot be contained in the half-space
Hw := {u : ⟨u,w⟩ > 0}.

Together with the preceding results, the previous computations imply that, for the central motion
case, if ∥p∥L1 ≤

(
16
T

)1/3
then there exist sequences of solutions of the perturbed problems (1.4)

with gε(u) = − u
ε+|u|3 that converge uniformly to 0. However, it is worth to observe that this fact is

immediate if we do not impose restrictions on the choice of gε. Indeed, we may recall that for any
λ > 0, the unique T -periodic solution of the linear problem u′′ − λ2u = p is given by

u(t) =
∫ T

0
G(t, s)p(s)ds,

where G is the Green function defined by

G(t, s) =
− cosh

(
λ
(

T
2 − |t − s|

))
2λ sinh

(
λ T

2

) .

A simple computation shows, moreover, that ∥G(t, ·)∥L1 = 1
λ2 . Thus, if µ : R+ → R+ is any con-

tinuous function satisfying εµ(ε) → +∞ as ε → 0, then we may define, using Tietze’s theorem, a
function gε ∈ C(RN ,RN) such that

gε(u) =
{

g(u) if |u| ≥ 2ε
−µ(ε)u if |u| ≤ ε.

Then, for every ε > 0 with εµ(ε) > ∥p∥∞, the unique solution of the linear problem u′′ − µ(ε)u = p
satisfies:

|u(t)| ≤ ∥p∥∞
µ(ε)

< ε,

and hence it solves (1.4).
The rest of the section is devoted to the particular case in which gε is defined by (1.5) for some

ρε. The reason of this specific choice is that, unlike the case of Theorem 2.1, the existence of a priori
bounds for uε cannot be established for a general nonlinearity g. Note also that, if g(u) = h(|u|)u,
then the ‘linear’ cutoff function defined by ρε(s) = s

ε
in (1.5) would lead to the previous situation,

with µ = −h, and the conclusions in our existence results would become trivial. However, we do not
need to impose any restriction on the function ρ(ε) := ρε.
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Theorem 2.2 Let g : RN\{0} → RN be continuous, and assume that (2.2) holds. Further, assume
that g satisfies (B) or (B′). Then either problem (1.2) has a classical solution, or else for every
sequence {un} of solutions of (1.4) with εn → 0 and gn := gεn as in (1.5), there exists a subsequence
that converges uniformly and weakly in H1.

Proof. If the problem has a classical solution, then there is nothing to prove. Next, assume that (1.4)
admits no classical solutions, and let un be a T -periodic solution of

u′′n + gn(un) = p.

Multiplying by un − un and integrating:∫ T

0
⟨u′′n , un − un⟩dt +

∫ T

0
⟨gn(un), un − un⟩dt =

∫ T

0
⟨p(t), un − un⟩dt,

and hence

−
∫ T

0
|u′n|2dt +

∫ T

0
⟨gn(un), un − un⟩dt =

∫ T

0
⟨p(t), un − un⟩dt.

Then we have:

∥u′n∥2L2 ≤ ∥p∥L2∥un − un∥L2 +

∫ T

0
⟨gn(un), un − un⟩dt. (2.6)

If (B) holds, then we may split the last term in two terms as:∫
{|un |>κ}

⟨gn(un), un − un⟩dt +
∫
{|un |≤κ}

⟨gn(un), un − un⟩dt,

with κ as in (2.2).
For the first term, we use the definition of gn: gn(u) = g(u) if |u| > εn. We may assume that

εn < κ, and hence:∣∣∣∣ ∫
{|un |>κ}

⟨gn(un), un − un⟩dt
∣∣∣∣ ≤ ∫

{|un |>κ}
|g(un)||un − un|dt ≤ C∥un − un∥L2 .

On the other hand, the remaining term can be written as:∫
{|un |≤κ}

⟨gn(un), un⟩dt −
⟨∫
{|un |≤κ}

gn(un)dt, un

⟩
.

From the repulsive condition (2.2), the first term is non-positive; moreover, as gn(un) = 0 we deduce:∫
{|un |≤κ}

gn(un)dt = −
∫
{|un |>κ}

gn(un)dt. Hence,∫
{|un |≤κ}

⟨gn(un), un − un⟩dt ≤ |un|
∫
{|un |>κ}

|gn(un)|dt.

Again, the integral in the right-hand side term is bounded, because gn may be replaced by g. Gath-
ering all together:

∥u′n∥2L2 ≤ C1∥un − un∥L2 +C2|un|.

Finally, using Wirtinger’s inequality we get:
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∥u′n∥L2 ≤ C|un|
1
2 , ∥un − un∥∞ ≤ C|un|

1
2 .

Now, we can state that {un} is bounded. If this was not the case, we would have, for some value
of n, that |un|

1
2 > C + 1 ≥ εn. Then

|un(t)| ≥ |un| − ∥un − un∥∞ ≥ |un| −C|un|
1
2 > C + 1.

Thus, un is a solution of the original problem, a contradiction.
If, instead, we assume that (B′) holds, then from the fact that gn(un) = 0 we deduce that the last

term of (2.6) is bounded, and a bound for ∥u′n∥L2 and ∥un − un∥∞ yields. As before, this implies that
{un} is also bounded. Hence, there is a subsequence (still denoted {un}) and a function u ∈ H1 such
that un → u uniformly and weakly in H1. �

In the previous proof, note that the bounds for ∥un∥H1 do not depend on the choice of ρε. This is
the reason why Theorem 1.3, with ρ arbitrarily chosen, follows as an immediate consequence of the
preceding results:

Proof of Theorem 1.3:
Given 0 < εn → 0 then either gn ∈ C(RN ,RN) is bounded or satisfies (B′) for each n. Theorem

1.2 guarantees the existence of a sequence {un} of classical solutions of problem (1.4). Finally,
Theorem 2.2 is applied. �

The last part of this section is devoted to Theorem 1.4, which assumes a different asymptotic
condition on g. In order to understand its meaning, let us firstly observe that if

∥p∥∞ + sup
|u|=ε

⟨
gε(u),

u
|u|

⟩
≤ 0 (2.7)

then a Hartman type condition (see [8]) holds, and the existence of a solution uε of (1.4) with
∥uε∥∞ ≤ ε is deduced. In particular, if g satisfies (2.3) with c > ∥p∥∞, then condition (2.7) holds
strictly when ε is small and, again, there exists a sequence of solutions of (1.4) that converges to 0.
However, in this case we may take advantage of the fact that deg(Φε) = (−1)N , and replace condition
(N2) by (P2), namely that deg(ΦR) , (−1)N for R sufficiently large. Indeed, if we consider now the
Brouwer degree of gε, from the excision property it follows that

deg(gε, BR(0)\Bε(0), 0) = deg(ΦR) − deg(Φε) , 0.

Thus, Mawhin’s continuation theorem [12] implies the existence of a second solution uε of (1.4)
such that ∥uε∥∞ > ε, provided that the homotopy does not vanish when ∥u∥∞ = ε or ∥u∥∞ = R. More
generally, if we assume only that (2.7) holds strictly for some fixed r̃, then we are able to prove
Theorem 1.4.

Proof of Theorem 1.4:
From Theorem 2.2, it suffices to show that for each ε ≤ r̃ problem (1.4) has a solution uε such that

∥uε∥∞ > r̃. To this end, we may follow the general outline of the proof of Theorem 1.2 (which will
be presented in the next section), but now taking the domainΩ = {u ∈ C([0,T ],RN) : r̃ < ∥u∥∞ < R}.
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The proof of the fact that u′′ , λ(p − gε(u)) for any T -periodic function u with ∥u∥∞ = R ≫ 0 and
λ ∈ (0, 1] follows as in the proof of Theorem 1.2. On the other hand, if u is T -periodic and satisfies

u′′ = λ(p − gε(u))

with ∥u∥∞ = r̃, then consider ϕ(t) := |u(t)|2 and t0 a maximum of ϕ. Hence |u(t0)| = r̃, and

0 ≥ ϕ′′(t0) ≥ −2λr
[
∥p∥∞ +

⟨
g(u(t0)),

u(t0)
|u(t0)|

⟩]
> 0,

a contradiction. Finally, from the remarks previous to this proof we deduce that the Brouwer degree
deg(g,Ω ∩ RN , 0) , 0, and the conclusion follows. �

Example 2.2 If there exist v ∈ S N−1 and r0 > 0 such that g(u) ∈ Hv for |u| ≥ r0, where Hv is the
half-space defined as before, then condition (P1) is satisfied taking w = −v and F = {(S N−1,w)}.
Moreover, it is also clear that deg(ΦR) = 0 for R ≥ r0: hence, if g satisfies (B) or (B′) and (2.3), the
existence of a generalized solution follows for any p continuous and T -periodic such that p = 0 and
∥p∥∞ < c.

More generally, if g satisfies (B) or (B′), (P1) and (2.3) with ∥p∥∞ < c, then it suffices to assume
that g(u) , λv for |u| ≥ r0 and λ ≥ 0.

Remark 2.6 Under the assumptions of Theorem 2.2, if (P1) and (P2) are satisfied, and g is sequen-
tially strongly repulsive at the origin, namely

sup
|u|=rn

⟨
g(u),

u
|u|

⟩
→ −∞

for some rn → 0, then existence of a generalized solution holds for any p continuous and T -periodic
such that p = 0.

Remark 2.7 It is interesting to observe that condition (1.3) implies that deg(Φr) = (−1)N for all
values of r; thus, Theorem 1.4 does not apply to this case. This is consistent with the non-existence
result obtained in [16]. On the other hand, condition (P1) is still satisfied if (1.3) is reversed, namely:

∃ δ, r0 > 0 : if |u|, |v| ≥ r0 and
∣∣∣∣∣ u
|u| −

v
|v|

∣∣∣∣∣ < δ, then ⟨g(u), v⟩ > 0. (2.8)

In some sense, (2.8) says that g is repulsive at ∞, and that it cannot rotate too fast. We have
already used the fact that repulsiveness at the origin implies that the Brouwer degree of gε over
small balls is (−1)N ; on the other hand, repulsiveness at ∞ implies that its degree over large balls is
1. Hence, if the assumptions of Theorem 2.2 are satisfied and g is (sequentially) strongly repulsive at
the origin and (2.8) holds, then there exist generalized solutions for any p continuous and T -periodic
such that p = 0, provided that N is odd.

In particular, for the radial case we have:

Corollary 2.1 let N be odd, p as before, and let g be given by

g(u) = φ(|u|)ψ
(

u
|u|

)
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with ψ : S N−1 → S N−1 continuous, φ : R+ → R continuous and bounded from below, and

⟨ψ(v), v⟩ < 0 ∀v ∈ S N−1,

lim
r→0+

φ(r) = +∞, φ(r) < 0 if r > r0

for some r0 > 0.
Then, for any p, either (1.2) has a classical solution, or a generalized solution u. Moreover, the

boundary of the set of zeros of u is finite. For the case ψ(v) = −v, if furthermore
∫ 1

0 φ(s)ds = +∞,
then (1.2) has a classical solution.

Proof. Condition (B) is clear. Moreover, as ψ is continuous, for each u ∈ S N−1 there exists an open
neighborhood U ⊂ S N−1 of u such that :

⟨ψ(w), u⟩ < 0 ∀w ∈ U.

Then taking wu = −u, for r > r0 and w ∈ U we obtain:

⟨g(rw),wu⟩ = |φ(r)|⟨ψ(w), u⟩ < 0.

From the compactness of S N−1, condition (P1) is satisfied.
Finally, define the homotopy H : RN\{0} × [0, 1] → RN given by H(u, λ) = λg(u) + (1 − λ)u.

Then, for |u| = R > r0,

⟨H(u, λ), u⟩ = λ⟨g(u), u⟩ + (1 − λ)R2 > 0.

By the homotopy invariance of the degree, we conclude that

deg(ΦR) = deg(Id) = 1 , (−1)N .

Hence, condition (P2) is then also satisfied, and the conclusion follows from Theorem 1.4. �

3 A general theorem for the non-singular case
Proof of Theorem 1.2:

It suffices to verify that the hypotheses of Mawhin’s Continuation Theorem [12] are satisfied over
the domain Ω = {u ∈ C([0,T ],RN) : ∥u∥∞ < R}. As (N2) holds, we know that deg(g, BR(0), 0) , 0
for large values of R. Thus, we only need to prove that for λ ∈ (0, 1], the problem

u′′ = λ(p(t) − g(u)) (3.1)

does not have a T -periodic solution on ∂BR(0) ⊂ C([0,T ],RN), for some R large enough.
Assume firstly that (B) holds, and let us suppose that problem (3.1) has an unbounded sequence

of solutions; namely, there exist λn ∈ (0, 1] and T -periodic functions un such that ∥un∥∞ → ∞ and

u′′n (t) = λn(p(t) − g(un(t)).
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Taking average on both sides, it follows that∫ T

0
g(un(t))dt = 0. (3.2)

On the other hand, from the boundedness of g we obtain:

∥u′n∥∞ ≤ T∥u′′n ∥∞ ≤ T (∥p∥∞ + ∥g∥∞) = M.

Hence, un − un is bounded; in particular, as ∥un∥∞ → ∞, we conclude that |un| → ∞ and rn(t) :=
|un(t)| ≥ |un| − ∥un − un∥∞ → ∞ uniformly.

Next, define

zn(t) =
un(t)
|un(t)| ∈ S N−1.

Passing to a subsequence, we may assume that un
|un | converges to some u ∈ S N−1, and hence zn → u ∈

S N−1 uniformly. From (P1), u ∈ U j for some j = 1, . . . ,K.
Also, fix n0 such that if rn(t) > r0 then zn(t) ∈ U j for all n ≥ n0 and all t ∈ [0,T ]. For n ≥ n0, we

deduce that

⟨g(rn(t)zn(t)),w j⟩ < 0

for all t ∈ [0,T ]. Hence

0 =
⟨∫ T

0
g(un(t))dt,w j

⟩
=

∫ T

0
⟨g(un(t)),w j⟩dt

=

∫ T

0

⟨
g(rn(t)zn(t)),w j

⟩
dt < 0 for n ≥ n0,

a contradiction.
Finally, if condition (B′) holds instead of (B), then multiplying the equality u′′n = λn(p − g(un))

by un − un and using the fact that g(un) = 0 we deduce:

∥u′n∥2L2 ≤ ∥p∥L2∥un − un∥L2 + λ

∫ T

0
⟨g(un), un⟩dt ≤ T

2π
∥p∥L2∥u′n∥L2 + kT.

Hence, ∥u′n∥L2 is bounded which, in turn, ∥un − un∥∞ is bounded, and the rest of the proof follows as
before. �

Remark 3.1 Under an appropriate Nagumo type condition, a more general result may be obtained
for g = g(t, u, u′).

Perhaps it is hard to see the improvement in the previous technical hypothesis (P1). The crucial point
is that we can guarantee existence of solutions in the absence of radial limits for g or even for g

|g| . To
visualize this fact, let us consider the following Landesman-Lazer type condition [9], motivated by
an analogous result in [2]:
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(P′1) Let {ei}Ni=1, {w j}Nj=1 ⊂ S N−1 be two bases of RN , and assume there exists s0 > 0 such that

⟨g(x − sei),wi⟩ > 0 > ⟨g(x + sei),wi⟩ ∀ s ≥ s0

for all x ∈ span{e j : j , i} and 1 ≤ i ≤ N.

Remark 3.2 It is easy to see that condition (P′1) implies (P1). Indeed, let u ∈ S N−1, u = x + αei,
with x ∈ span{e j : j , i}, α , 0. Now, fix δ < |α| and consider ũ = x̃ + α̃ei ∈ U := Bδ(u) ∩ S N−1. If
α > 0, then as sx̃ ∈ span{e j : j , i} we obtain:

⟨g(sũ),wi⟩ = ⟨g(sx̃ + sα̃ei),wi⟩ < 0 for sα̃ ≥ s0.

In the same way, for α < 0:

⟨g(sũ),−wi⟩ = −⟨g(sx̃ − s|α̃|ei),wi⟩ < 0 for s|α̃| ≥ s0.

As |α̃| > α − δ, both inequalities hold for ũ ∈ U when s ≥ s0
α−δ . The result follows now from the

compactness of S N−1.

Theorem 3.1 Let g ∈ C(RN ,RN) satisfy (B) or (B′), and let p ∈ C(RN ,RN) be T-periodic with
p = 0. If condition (P′1) is satisfied, then problem (1.2) has at least one solution.

Proof. From the previous remark, we only need to prove (N2). Without loss of generality we may
assume that {wi} = {ei}Ni=1 is the canonical basis. From (P′1), there exists s0 such that if s ≥ s0, then

gi(x − sei) > 0 > gi(x + sei) ∀x ∈ span{e j : j , i}, i = 1, . . . ,N

Let R ≥ s0, and consider the cube CR := [−R,R]N and the homotopy h(λ, u) := λg(u) − (1 − λ)u.
Suppose there exists u ∈ ∂CR such that h(λ, u) = 0 for some λ ∈ [0, 1]: for example u = x+Rei with
x ∈ span{e j : j , i}. Then, looking at the i−th coordinate:

λgi(x + Rei) = (1 − λ)R.

From (P′1), the left hand-side term is negative, unless λ = 0, a contradiction. An analogous
argument can be used in the case u = x − Rei. We then conclude that for any R ≥ s0:

deg(g,CR, 0) = deg(−Id,CR, 0) , 0.

This is obviously equivalent to (N2), and so all the assumptions of Theorem 1.2 are fulfilled.

Example 3.1 Let N = 2 and g given by

g(x, y) =
(

1 + x + r(y)
1 + x2 ,

1 + y
1 + y2

(
1 +

sin x
1 + |y|

))
where r : R→ R is continuous and bounded.

Taking e1 = (1, 0) = −w1; e2 = (0, 1) = −w2:

⟨g(s, y),w1⟩ = −
1 + s + r(y)

1 + s2 < 0 ∀s > ∥r∥∞ − 1 (∀y)
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⟨g(−s, y),w1⟩ =
s − 1 − r(y)

1 + s2 > 0 ∀s > ∥r∥∞ + 1 (∀y)

and

⟨g(x, s),w2⟩ = −
1 + s
1 + s2

(
1 +

sin x
1 + s

)
< 0 ∀s > 0 (∀x)

⟨g(x,−s),w2⟩ =
s − 1
1 + s2

(
1 +

sin x
1 + s

)
> 0 ∀s > 1 (∀x).

Thus, g verifies (P′1), although it does not verify the assumptions of Ortega and Ward [14]. Indeed,
the radial limits for g

|g| do not necessarily exist. For example, let us consider the direction (1, 0) ∈ S 1:
then, (sx, sy) = (s, 0) and

g(s, 0) =
(

1 + s + r(0)
1 + s2 , 1 + sin s

)
;

|g(s, 0)| =

√(
1 + s + r(0)

1 + s2

)2

+ (1 + sin s)2.

Let s = 4k−1
2 π, k ∈ N, γ 4k−1

2
=

g( 4k−1
2 π,0)

|g( 4k−1
2 π,0)| . Here, sin ( 4k−1

2 π) = −1, then

γ 4k−1
2
= (1, 0) for k large enough.

Now, let s = kπ, k ∈ N, γk =
g(kπ,0)
|g(kπ,0)| . As sin (kπ) = 0,

γk → (0, 1) as k → ∞.

This shows that the limit of g(s,0)
|g(s,0)| as s → +∞ does not exist. Note also that this example does

not satisfy the assumptions in [2], because g vanishes as |x| and |y| tend to∞.
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