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Main aim
We discuss continuous population models starting from ODEs and passing
by PDEs and arriving in nonlocal models. In this first class we will talk
about the single species models. In the second one we will go from single
species to two talking about systems.
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Continuous growth population

Let N(t) be the population at time t. We can set its rate as

dN

dt
= births � deaths +migration

introducing a kind of conservation equation for the population.

These models are of relevance to laboratory studies, and also to identify
phenomena which can influence the population dynamics.
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Without migration and setting birth and death proporcional to N, we get the
unrealistic approach due to Malthus in 1789.

dN

dt
= a N � b N ) N(t) = N0 e

(a�b)t

where a, b > 0 and N(0) = N0 is the population at t = 0.

If a > b, the populations grows exponentially.

If a < b, it is annihilated.
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But, according to United Nations estimates, from 17th to 21st centuries, it is
perhaps less unrealistic.
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It can be noticed exponential growth from 1900.2

In 2017, the estimated annual growth rate was 1.1%.

2Here, we got a growth rate of 1.4%.
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A self-limiting process called logistic growth was proposed by Verhulst
(1838, 1845) in population models:

dN

dt
= r N

✓
1 � N

K

◆
; r, K > 0.

a) Here the per capita birth rate depends on N:

r

✓
1 � N

K

◆
.

b) K is the carrying capacity of the environment which is set by the
available sustaining resources.

Notice that K determines the size of the stable steady while r is a measure
of the rate at which it is reached.
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1 If N(0) = N0 > 0 the solution is

N(t) =
N0 K e

r t

K + N0 (er t � 1)
! K as t!1.

See the graph of N for some values of N0.

N

t

2 Here, the phase space of the system.

0 K
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In general, we can consider a single population governed by

dN

dt
= f (N).

f (N) is a typical nonlinear function;

the equilibrium solutions N
⇤ are solutions of f (N) = 0;

N
⇤ is stable if f

0(N⇤) < 0, and unstable as f
0(N⇤) > 0.

f(N)

N
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Insect outbreak model

In 1978 Ludwig et al. proposed the following equation to model budworm
population

dN

dt
= rB N (1 � N/KB) � p(N).

rB is the linear birth rate, and KB the carrying capacity set by density
of foliage available.

p(N) represents predation.

Nc0 N

p(N)
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The original Ludwig et al. model:

dN

dt
= rB N (1 � N/KB) � B N

2

A2 + N2

which can be rewritten as
du

d⌧
= r u

 
1 � u

q

!
� u

2

1 + u2

taking u = N

A
, r = A rB

B
, q = KB

A
and ⌧ = B t

A
.

uc

0
u

p(u)
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The steady state solutions are given by

f (u) = r u

 
1 � u

q

!
� u

2

1 + u2 = 0.

u0 = 0 is an equilibrium for any r and q.

The other ones can be computed by

r

 
1 � u

q

!
=

u

1 + u2

and they will depend on parameters r and q.
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u1 u2 u3
u

r

Blue(u) =
u

1 + u2 Red(u; r, q) = r

 
1 � u

q

!
assuming u � 0.
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u

f

? The space phase is gotten using the graph of f .

u1 u2 u30

u10

u30
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This model exhibits a hysteresis effect.

u1

u3

r1
*r2

*

r

a) If r increases from zero, we have a jump from equilibrium u1 to the
outbreak equilibrium u3 at r

⇤
1 >> 0.

b) From large r to zero, we notice a jump from u3 to u1 at r
⇤
2 < r

⇤
1.

c) This discontinuous behavior is called catastrophe.
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Diffusion and random walks
‘Diffusion is a description of movement that arises as a result of an object or

organism making many short movements in random directions.’a

aC. Cosner.

If p(x, t) is the probability of being at location x at time t, we have

p(x, t) =
1
2

p(x + �x, t � �t) +
1
2

p(x � �x, t � �t)

which leads us to

p(x, t) � p(x, t � �t)
�t

=
D

(�x)2 [p(x + �x, t � �t) � 2p(x, t � �t)

+p(x � �x, t � �t)]

assuming

D =
(�x)2

2�t
.
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Taking limit as �x and �t! 0, we get the diffusion equation

@p
@t
= D
@2

p

@x2

which describes the probable location of a single organism.

The diffusion coefficient D is 1/2 of the square of the distance moved
per unit time.

Using Fourier transform, one can solve the equation for p(x, t)
starting at time t = 0 and at position x = y as a Dirac functional

p(x, t) =
1p

4⇡Dt

e
�(x�y)2/4Dt.
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Then, if we start with a collection of organisms at t = 0 with density
u0(x), then the density at t is obtained by averaging

u(x, t) =
1p

4⇡Dt

Z +1

�1
e
�(x�y)2/4Dt

u0(y) dy.

Thus, if the organisms are just moving and not dying or reproducing,
we get the diffusion equation

@u
@t
= D
@2

u

@x2 , t > 0 and x 2 R,

for the density u(x, t).
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Diffusion and transport from Fick’s law

i) Suppose a substance flowing and diffusing along a tube.

ii) A flux J sets the rate per unit area at which the substance is transported
across a cross-section of the tube at point x.

iii) Call A the cross-sectional area of the tube.

iv) Assume J is constant on the cross-section.

? If u(x, t) is its density, then the rate of change of the amount of substance
in (x, x + �x) at the time interval �t is given by:

(A�x)u(x, t + �t) � (A�x)u(x, t)
�t

= A[J(x) � J(x + �x)]

which leads us to3

@u
@t
= �@J
@x

as �x, �t! 0.

3This expression can also be derived from the continuity equation which states
that a change in density in any part of the system is due to inflow and outflow of
material into and out of that part of the system.
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a) If the transport is by diffusion Fick’s law gives us

J = �D
@u
@x
.

b) If the transport arises from advection with velocity v

J = vu.

It yields a diffusion equation with advection:

@u
@t
= D
@2

u

@x2 �
@(vu)
@x
.

Notice that the advective term can be seen as a description of directed
movement along environment gradients.
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Boundary conditions
For models involving diffusion in a bounded interval⌦ ⇢ R, it is necessary
to specify what happens at the boundary.

Typical boundary conditions with null advection involve setting:

the density at the boundary, Dirichlet boundary conditions

u(x, t) = g(x), x 2 @⌦;

if the flux is specified by Fick’s law, Neumann b.c.

J = �D
@u
@x
= g(x), on @⌦.

As the flux is proportional to the density, we get Robin b.c.

�D
@u
@x
= �u, x 2 @⌦.
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Reaction-diffusion models

Let ⌦ ⇢ RN with boundary @⌦ and u(x, t) setting the density of a substance
or population at a position x 2 ⌦ and time t:

@u
@t
= D�u + f (u) in ⌦ ⇥ (0,1)

↵
@u
@n
+ (1 � ↵)u = 0 on @⌦ ⇥ (0,1)

u(x, 0) = u0(x) on ⌦

↵ 2 [0, 1]; n is the normal vector of @⌦; and � is the Laplacian

� =
NX

k=1

@2

@x2
k

.

Under smoothness conditions, u exists and is unique in ⌦ ⇥ [0,T].
Also, if T < 1 and f : R 7! R, we have

lim
t!T

max
⌦̄
|u(x, t)| = 1.
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Minimal patch size. a

aC. Cosner (2008).

We consider
@u
@t
= D
@2

u

@x2 + ru x 2 (0, l)

with u(0) = u(l) = 0.

a) u is the density of a population in a patch of length l.

b) Dirichlet BC sets the region outside the patch is lethal.

c) D is the diffusion rate and r intrinsic growth rate of population.

? Notice that we can solve this problem in terms of
eigenvalues and eigenfunctions.
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We have

u(x, t) =
1X

n=1

cne
(r�Dn

2⇡2/l2)t sin(n⇡x/l) (x, t) 2 (0, l) ⇥ [0,1)

where cn depends on the initial density u(x, 0),

�n = �n
2⇡2/l2 and �n(x) = sin(n⇡x/l) n = 1, 2, ...

are respectively the eigenvalues and eigenfunctions of

�xx + �� = 0 x 2 (0, l)
�(0) = �(l) = 0.

? See that u(x, t)! 0 as t!1 if r � Dn
2⇡2/l2 < 0.

? To predict population growth, we need r � D⇡2/l2 > 0, that is:

l > ⇡
p

D/r or r > ��1D

which gives us the minimum patch size.
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A logistic example.a

aPage 95; D. Henry 1982.

Consider
@u
@t
=
@2

u

@x2 + ru

✓
1 � ⇢

r
u

◆
, x 2 (0,⇡)

with u(0) = u(⇡) = 0 for r and ⇢ > 0.

Maximum principle arguments shows

C = {� 2 H
1
0(0,⇡) : � � 0}

is a positively invariant set. Indeed A : D(A) ⇢ L
2(0,⇡) 7! L

2(0,⇡) with

Au(x) = �uxx and D(A) = H
2 \ H

1
0(0,⇡)

satisfies, whenever u 2 C,

Au(x) � 0) u(x) � 0, and then, e
�At

u � 0 for all t � 0.4

4
e
�At denotes the analytic semigroup of A.
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Also, since f (u) = ru

⇣
1 � ⇢

r
u

⌘
� 0 for u 2 [0, r/⇢],

u(t, u0) = e
�At

u0 +

Z
t

0
e
�A(t�s)

f (u(s)) ds � 0

whenever u0 2 C.

r/ρ0

u

f(u)

See that u(x) = r/⇢ does not belong to H
1
0(0,⇡)! And then it is not an

equilibrium solution.
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Using the Lyapunov function

V(�) =
Z ⇡

0

(
�x

2 � r�2 +
2⇢
3
�3

)
dx for � 2 C

we get a gradient dynamical system. If �(t) is a solution

d

dt
V(�(t)) = 2

Z ⇡

0

n
�x�xt � r��t + ⇢�2�t

o
dx

= 2
Z ⇡

0

n
��xx�t � r��t + ⇢�2�t

o
dx + �t�x

����
x=⇡

x=0

= 2
Z ⇡

0
�t

n
��xx � r� + ⇢�2

o
dx

= �2
Z ⇡

0
�t

2
dx  0.

Further, by Poincaré and Hölder Inequality, one can get

V(�) � (1 � r)k�k2
L2(0,⇡) +

2⇢
3
p
⇡
k�k3

L2(0,⇡).
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Then, by La Salle invariance principle, we get

lim
t!+1

u(t, u0) 2M

where
M = {u 2 C : u is a critical point of V}

which is the non-negative solutions of
(
�xx + r� � ⇢�2 = 0
�(0) = �(⇡) = 0

(⇤).

More precisely:

If 0 < r  1, V(�) � 2⇢
3
p
⇡
k�k3

L2(0,⇡), and thenM = {0}.

As r > 1,M is 0 and the unique positive solution �+ of (⇤).

? Previous example ensures r > �1D = 1 implies zero unstable.a

a�1 here is the first eigenvalue of ��xx with Dirichlet BC.
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Indeed, if � 2M, it satisfies equation

�2
x
+ r�2 � 2⇢/3�3 = Const.

which leads us to level curves of

F(u, v) = v
2 + ru

2 � 2⇢/3u
3

and ODE (
ux = v

vx = �ru + ⇢u
2 .

(0,0) (0,r/ρ)

ϕ

ϕ x
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Since �(0) = �(⇡) = 0, we are looking for a closed curve with

�x =
q

rc2 � 2⇢/3c3 � r�2 + 2⇢/3�3

where c = maxx2(0,⇡) �(x) is attached at x = ⇡/2.

In a neighborhood of (0, 0)

x =

Z
x

0
ds

=

Z
c

0

d�
p

rc2 � 2⇢/3c3 � r�2 + 2⇢/3�3

'
Z

c

0

d�
p

rc2 � r�2
=

1p
r

⇡
2

with change of variable sin✓ = �
c

which works since 0 < �
c
 1.

? Here we get 0 < x < ⇡/2 for r > 1.
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As, for 0 < � < r/⇢, we have
d�x

dx
= �r� + ⇢�2 ) dx

d�x

=
1

�(⇢� � r)

there exist unique (0, v) with v > 0 in the phase space such that
(
�xx + r� � ⇢�2 = 0
�(0) = �(⇡) = 0

since x assume values less than ⇡/2 and near to +1 for r > 1.

(0,0)

ϕ

ϕ x
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Now let us see that zero is an unstable equilibrium. Set

s(t) =
Z ⇡

0
sin x u(x, t) dx

where u is the solution of

ut = uxx + ru � ⇢u
2, x 2 (0,⇡)

u(0) = u(⇡) = 0

with initial condition u(x, 0) = �(x). Then

s
0(t) =

Z ⇡

0

⇣
uxx(x, t) + ru(x, t) + ⇢u

2(x, t)
⌘

sin x dx

= s(t)(r � 1) � ⇢
Z ⇡

0
u

2(x, t) sin x dx

' s(t)(r � 1) if � ' 0.

marcone@ime.usp.br XI Escuela Santaló - UBA - Argentina - 2019



Thus,
lim

t!+1
s(t) = lim

t!+1
s(0)e(r�1)t = +1

since r > 1 and � > 0 is small enough which implies that

u(x, t) ⌘ 0 is unstable for any small initial condition � > 0.

We conclude from La Salle principle

limt!+1ku(t)k
H

1
0 (0,⇡) = 0 as 0 < r  1.

limt!+1ku(t)k
H

1
0 (0,⇡) = �

+ as 1 < r

? Recent results in bounded sets of RN can be see at Arrieta, Pardo,
Rodriguez-Bernal, JDE (2015).
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Main aim
In this second class we discuss eigenvalue problems to nonlocal equations
going to nonlocal equations and systems.

Referências:
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A nonlocal model for dispersal
‘a class of model more general than difusion’a

aHutson, Martinez et al. (2003)

ut(x, t) =
Z

RN
J(x � y)u(y, t)dy �

Z

RN
J(x � y)u(x, t)dy, x 2 ⌦ ⇢ RN

? Here u is the density at x 2 ⌦ and J(x � y) is the probability
distribution of jumping from location y to location x.

? Dirichlet condition is set by u(x, t) ⌘ 0 whenever x 2 RN \⌦.
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A nonlocal model for dispersal
‘a class of model more general than difusion’a

aHutson, Martinez et al. (2003).

ut(x, t) =
Z

RN
J(x � y)u(y, t)dy �

Z

RN
J(x � y)u(x, t)dy, x 2 ⌦ ⇢ RN

We assume

(HJ)
J 2 C(RN ,R) is non-negative with J(0) > 0,

J(�x) = J(x) for every x 2 RN and
R
RN J(x) dx = 1.

1
R
RN J(x � y)u(y, t)dy is the rate which individuals arrive at position x.

2 �
R
RN J(x � y)u(x, t)dy is the rate which they leave location x.
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From local to nonlocal models
‘natural nonlocal counterpart of �u’a

aP. Fife (2003).

��u on Dirichlet BC can also be characterized by

E[u] =
Z

⌦

1
2
|ru|2dx, u 2 H1

0(⌦),

since
d
dt
E[u(t)] =

Z

⌦
ru(t) · rut(t) dx = �

Z

⌦
�u� dx

for instance to u(t) = u + t� 2 H1
0(⌦). Hence, its Gateaux derivative is

E0[u] = ��u.

? In this context, E measures how much u deviates from zero.
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From local to nonlocal models
‘natural nonlocal counterpart of �u’a

aP. Fife (2003).

A natural energy being an alternative measure is

El =

Z

RN

Z

RN

1
4

J(x � y)(u(x) � u(y))2dxdy

for u(x) ⌘ 0 whenever x 2 RN \⌦ since

d
dt
El[u(t)] =

1
2

Z

RN

Z

RN
J(x � y)(u(x) � u(y))(ut(x) � ut(y)) dydx

=
1
2

"Z

RN
ut(x)

Z

RN
J(x � y)(u(x) � u(y))dydx

�
Z

RN
ut(y)

Z

RN
J(x � y)(u(x) � u(y))dydx

#

=

Z

RN
ut(x)

Z

RN
J(x � y)(u(x) � u(y))dydx.
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Then,

E0l [u] =

Z

RN
J(x � y)(u(x) � u(y))dydx

= �
Z

RN
J(x � y)(u(y) � u(x))dydx

= �
"Z

RN
J(x � y)u(y)dy �

Z

RN
J(x � y)u(x)dy

#

for x 2 ⌦ taking as before

u(t) = u + t� in L2(RN)

with u(t) ⌘ 0 in RN \⌦.

? Thus, El also measures how much u deviates from zero.
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Indeed, from Andreu-Vaillo et al. (2010), if ⌦ is smooth and bounded,

J�(x) = C1
1
�N+2 J(x/�) with C1 =

 
1
2

Z

RN
J(x)x2

N dx
!�1

and u� is solution of

ut =

Z

RN
J�(x � y)(u(y, t) � u(x, t))dydx x 2 ⌦

with u(x, 0) = u0(x) in ⌦ and u(x, t) ⌘ 0 in RN \⌦, then

sup
t2[0,T]

ku�(t) � v(t)kL1(⌦) ! 0 as �! 0

where v is the solution of
vt = �v in ⌦

with v = 0 on @⌦ and v(x, 0) = u0(x) in ⌦.
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? Clue: Performing the change z = (x � y)/� and using Taylor expansion
Z

RN
J�(x � y)(u(y) � u(x))dy

= C1
1
�2+N

Z

RN
J
✓x � y
�

◆
(u(y) � u(x)) dy

=
C1

�2

Z

RN
J(z) (u(x � �z) � u(x)) dz

=
C1

�2

2
666664�

NX

i=1

@iu(x)
Z

RN
J(z)zi dz +

�2

2

X

i,j=N

@2
iju(x)

Z

RN
J(z)zizj dz

3
777775 + O(�)

= �u(x) + O(�)

since J is even, and then,
Z

RN
J(z) zi dz = 0 and

Z

RN
J(z) z2

i dz =
Z

RN
J(z) z2

N dz < 1.
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Principal eigenvalue to Dirichlet problem.a

aJ. García-Melián and J. D. Rossi (2009)

We consider
Z

RN
J(x � y)(u(y) � u(x))dy = ��u(x) x 2 ⌦ (⇤)

with u(x) ⌘ 0 in RN \⌦.

First let us notice that � and u satisfies (⇤) if and only if satisfies

L0u = (1 � �)u

with
L0u(x) =

Z

RN
J(x � y)u(y) dy, u(x) ⌘ 0 in RN \⌦.

As L0 is self-adjoint, positive and compact2 in L2(⌦)

2By Arzelà-Ascoli.
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Then

? L0 possesses a unique simple eigenvalue � associated to a positive
eigenfunction u 2 C(⌦̄) such that |�| = kL0k. Thus

�1(⌦) = 1 � kL0k < 1.

Moreover

��1(⌦)
Z

RN
u2(x) dx =

Z

RN
u(x) ((L0u)(x) � u(x)) dx

=

Z

RN
u(x)

Z

RN
J(x � y)(u(y) � u(x))dydx

= �1
2

Z

RN

Z

RN
J(x � y)(u(y) � u(x))2dydx < 0

which implies
�1(⌦) > 0.
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Further

kL0k2 = sup
�,0

kL0�k2L2

k�k2L2

= sup
�,0

R
RN

⇣R
RN J(x � y)�(y)dy

⌘2
dx

k�k2L2

kL0k = sup
�,0

| < L0�,� > |
k�k2L2

= sup
�,0

R
RN

R
RN J(x � y)�(x)�(y)dydx

k�k2L2

which gives us

�1(⌦) = 1 �
0
BBBBBBB@
sup
�,0

R
RN

⇣R
RN J(x � y)�(y)dy

⌘2
dx

k�k2L2

1
CCCCCCCA

1/2

= 1 � sup
�,0

R
RN

R
RN J(x � y)�(x)�(y)dydx

k�k2L2

.
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Also

1
2

R
RN

R
RN J(x � y)(�(x) � �(y))2dxdy

k�k2L2

= 1 �
R
RN

R
RN J(x � y)�(x)�(y)dydx

k�k2L2

and then,

�1(⌦) = inf
�,0

1
2

R
RN

R
RN J(x � y)(�(x) � �(y))2dxdy

k�k2L2

.

�1(⌦) is decreasing.

? If ⌦1 ( ⌦2, we have L2(⌦1) ⇢ L2(⌦2). Hence �1(⌦1) � �1(⌦2).
Indeed, �1(⌦1) > �1(⌦2) since the eigenfunctions are strictly positive.

? Indeed, �1(⌦)! 1 as |⌦|! 0 and �1(⌦)! 0 as ⌦! RN .
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Existence and uniqueness
Let us consider

ut(x, t) =
Z

RN
J(x � y)(u(y) � u(x))dy + f (x, t) x 2 ⌦

with u(x) ⌘ 0 in RN \⌦, u(x, 0) = u0(x) and f 2 C(R; L2(⌦)).

Then, there exists u : R ⇥RN 7! R such that for all [a, b] ⇢ R
u 2 C1([a, b],L2(RN)) with u(x) ⌘ 0 for x 2 RN \⌦,

satisfying the equation in an integral sense

u(x, t) = e�tu0(x) +
Z t

0
e�(t�s)

Z

RN
J(x � y) u(y, s) dyds

+

Z t

0
e�(t�s)f (x, s) ds (x, t) 2 R ⇥⌦

since Z

RN
J(x � y) dy = 1 for all x 2 RN .
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Moreover, there exist positive ↵ and C, such that

ku(·, t)kL2(⌦✏)  e�↵t
"
ku0kL2(⌦) + C

Z t

0
kf (·, s)k2L2(⌦) ds

#
, t > 0.

It is not difficult to see that the solutions can be written in the integral form
being obtained as the fixed point of

F(u)(x, t) = e�tu0(x) +
Z t

0
e�(t�s)

Z

RN
J(x � y) u(y, s) dyds

+

Z t

0
e�(t�s)f (x, s) ds, x 2 ⌦.

The proof that F possesses a fixed point globally defined is standard.
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Also, estimate is obtained from the energy

H(t) =
1
2

Z

RN
(u(x, t))2 dx =

1
2
ku(·, t)k2L2(⌦) .

For any � > 0, we get by Young Inequality

H0(t) =
Z

RN
u(x, t)ut(x, t) dx

=

Z

RN
u(x, t)

Z

RN
J(x � y)(u(y, t) � u(x, t))dydx +

Z

RN
u(x, t)f (x, t)dx

= �1
2

Z

RN

Z

RN
J(x � y)(u(y, t) � u(x, t))2dydx +

Z

RN
u(x, t)f (x, t) dx

 2(�2 � �1(⌦))H(t) + ��2kf (·, t)k2L2(⌦)

where �1 is the principal eigenvalue. Thus,

H(t)  e2(�2��1(⌦))t
"
H(0) + ��2

Z t

0
kf (s, ·)k2L2(⌦)ds

#

completing the proof since �1(⌦) > 0.
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An analogous proof can be performed assuming

f : R 7! R globally Lipschitz.

Semilinear equations

ut(x, t) =
Z

RN
J(x � y)(u(y) � u(x))dy + f (u) x 2 ⌦

with u(x) ⌘ 0 in RN \⌦ and initial condition u(x, 0) = u0(x).

1 Nonlinearities as f (u) = up are also studied. Solutions are global when
0  p  1 blowing up for p > 1 and initial conditions in L1(⌦).3

2 Indeed, existence, uniqueness and monotonicity properties setting f
locally Lipschitz satisfying sign condition as

f (u)u  Cu2 + D|u|

for C 2 R and D > 0 are also considered.4

3Pérez-Llanos and Rossi (2009).
4Sastre-Gomez, PhD thesis (2016).
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Nonlocal minimal patch size.
Now, let us consider

ut(x, t) =
Z

RN
J(x � y)(u(y, t) � u(x, t))dy + ru(x, t) x 2 ⌦

with u(x, t) ⌘ 0 in RN \⌦.

a) u is the density of a population in a patch ⌦.

b) Dirichlet BC sets the region outside the patch is lethal.

c) r is the intrinsic growth rate of population.
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As before, we have

d
dt

✓1
2
ku(t)k2L2(⌦)

◆
=

Z

RN
u(x, t)

"Z

RN
J(x � y)(u(y, t) � u(x, t))dy + ru(x, t)

#
dx

= �1
2

Z

RN

Z

RN
J(x � y)(u(y, t) � u(x, t))2dydx + r

Z

RN
u2(x, t) dx

 2(r � �1(⌦))
1
2
ku(t)k2L2(⌦)

which implies
ku(t)kL2(⌦)  e(r��1(⌦))tku(0)kL2(⌦).

marcone@ime.usp.br XI Escuela Santaló - UBA - Argentina - 2019



Moreover, if �(x) is the eigenfunction associated to �1(⌦) and

v(x, t) = e(r��1(⌦))t�(x)

we have

vt(x, t) = (r � �1(⌦))�(x)e(r��1(⌦))t

=

"
r�(x) +

Z

RN
J(x � y)(�(y) � �(x))dy

#
e(r��1(⌦))t

= rv(x, t) +
Z

RN
J(x � y)(v(y, t) � v(x, t))dy

with initial condition v(x, 0) = �(x) and v(x, t) ⌘ 0 in RN \⌦.
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Therefore, from

1 ku(t)kL2(⌦)  e(r��1(⌦))tku(0)kL2(⌦)

2 v(x, t) = e(r��1(⌦))t�(x) being a solution

we get

a) If the intrinsic rate growth r < �1(⌦) the null function is
asymptotically stable and population is extinct.

b) As r > �1(⌦), zero is unstable with

lim
t!+1

v(x, t)! +1, for all x 2 ⌦

since �(x) > 0 in ⌦.

c) Intrinsic rate growth bigger than 1 implies null function unstable
whatever ⌦ is. In this sense nonlocal equations further population
growth.
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We discuss perforated domains on Dirichlet BC

u✏t (x, t) =
Z

RN
J(x � y)(u✏(y, t) � u✏(x, t))dy + ru✏(x, t) x 2 ⌦✏, t 2 R

with u✏(x, t) ⌘ 0 in x 2 RN \⌦✏ and u✏(0, x) = u0(x).

Let ⌦✏ ⇢ ⌦ ⇢ RN be a family of bounded sets for ✏ > 0.

? �✏ 2 L1 is the characteristic
function of ⌦✏ with �✏ * X
weakly⇤ in L1(⌦).

? Holes are given by
A✏ = ⌦ \⌦✏.

Ωϵ

Recall �✏ * X weakly⇤ in L1(⌦) as ✏! 0 as
Z

⌦
�✏(x)'(x) dx!

Z

⌦
X(x)'(x) dx 8' 2 L1(⌦).
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Periodically Perforated Domain. Let Q ⇢ RN be the representative cell

Q = (0, l1) ⇥ (0, l2) ⇥ ... ⇥ (0, lN).

?We perforate ⌦ removing a set A✏ of periodically distributed holes.

1 Take any open set A ⇢ Q such that T = Q \ A and |T | , 0.

2 Denote by ⌧✏(A) the set of all translated images of ✏Ā of the form
✏(kl + A) where k 2 ZN and kl = (k1l1, ..., kNlN).

3 Now define the holes inside ⌦ by

A✏ = ⌦ \ ⌧✏(A).

We introduce our perforated domain as

⌦✏ = ⌦ \ A✏.

? Considering ⌦✏ we have removed from ⌦ a large number of holes of
size |✏Ā| which are ✏-periodically distributed.
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? Let us get the characteristic function �✏ to ⌦✏.

If �A be the characteristic function of A periodically extended in RN , and
�A✏ is the characteristic function of A✏, for each x 2 A✏

�A✏ (x) = �A

✓x � ✏kl
✏

◆
= �A(x/✏), for some k 2 ZN .

Therefore, if �⌦ and �✏ are the characteristic functions of ⌦ and ⌦✏

�✏(x) = �⌦(x) � �A✏ (x).

It follows from the Average Theorem

�A✏ *
1
|Q|

Z

Q
�A(s) ds =

|A|
|Q| weakly⇤ inL1(⌦). (1)

Hence,

�✏ *
|Q \ A|
|Q| weakly⇤ in L1(⌦).

Thus, we can set

X(x) =
|Q \ A|
|Q| �⌦(x) in RN .
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Let us pass to the limit

u✏t (x, t) =
Z

RN
J(x � y)(u✏(y, t) � u✏(x, t))dy + ru✏(x, t) x 2 ⌦✏, t 2 R

with u✏(x, t) ⌘ 0 in x 2 RN \⌦✏, u✏(0, x) = u0(x) and

�✏ * X weakly⇤ in L1(⌦).

? First, we notice there exists K > 0, independent of ✏ > 0, such that

sup
t2[a,b]

ku✏(t, ·)kL2(⌦) = sup
t2[a,b]

ku✏(t, ·)kL2(⌦✏)  K

for any bounded [a, b] ⇢ R.

? Now, since L1
⇣
[a, b]; L2(⌦)

⌘
is separable, we can extract a subsequence,

still denoted by u✏, such that

u✏ * u⇤ weakly⇤ in L1([a, b]; L2(⌦)),

for some u⇤ 2 L1
⇣
[a, b]; L2(⌦)

⌘
.

marcone@ime.usp.br XI Escuela Santaló - UBA - Argentina - 2019



? Set [a, b] = [0,T]. We pass to the limit in the variational formulation
Z

⌦
'(x) u✏(x, t) dx =

Z

⌦
'(x) e�t �✏(x) u0(x) dx

+

Z

⌦
'(x)

Z t

0
e�(t�s)ru✏(x, s) dsdx

+

Z

⌦
'(x)�✏(x)

Z t

0
e�(t�s)

Z

RN
J(x � y) u✏(y, s) dydsdx

= I✏1 + I✏2 + I✏3

as ✏! 0 for any ' 2 L2(⌦).
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? One can show that:

I✏1 =
Z

⌦
'(x) e�t �✏(x) u0(x) dx!

Z

⌦
'(x) e�tX(x) u0(x) dx

I✏2 =
Z

⌦
'(x)

Z t

0
e�(t�s)ru✏(x, s) dsdx!

Z

⌦
'(x)

Z t

0
e�(t�s)ru⇤(x, s) dsdx

and

I✏3 =

Z

⌦
'(x)�✏(x)

Z t

0
e�(t�s)

Z

RN
J(x � y) u✏(y, s) dydsdx

!
Z

⌦
'(x)X(x)

Z t

0
e�(t�s)

Z

RN
J(x � y) u⇤(y, s) dydxds

as ✏! 0.
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Thus, we obtain
Z

⌦
'(x) u⇤(x, t) dx =

Z

⌦
'(x)

"
e�tX(x)u0(x) +

Z t

0
e�(t�s) ru(x, s) ds

#
dx

+

Z

⌦
'(x)X(x)

Z t

0
e�(t�s)

Z

RN
J(x � y) u⇤(y, s) dydsdx,

which implies

u⇤(x, t) = e�tX(x) u0(x) +
Z t

0
e�(t�s) ru(x, s) ds

+

Z t

0
e�(t�s)X(x)

Z

RN
J(x � y) u⇤(y, s) dyds

for all t 2 [0,T] and a.e. x in ⌦.
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Notice u⇤ 2 C1([0,T]; L2(⌦)) satisfies

u⇤t (x, t) = X(x)
Z

RN
J(x � y) u⇤(t, y) dy + ru⇤(x, t) � u⇤(x, t),

u⇤(0, x) = X(x) u0(x),

with u⇤(x, t) ⌘ 0 in x 2 RN \⌦ whose equation can be rewritten as

u⇤t (x, t) = X(x)
Z

RN
J(x � y)(u⇤(t, y) � u⇤(x, t))dy

+u⇤(x, t)(r � 1 +X(x)) x 2 ⌦, t 2 R.

? At the limit perfurations change the operator and reaction term.

? And about minimal patch size in periodically perforated domains?
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If we take periodically perforated domains, we know that

X(x) =
|Q \ A|
|Q| �⌦(x) in RN

is a positive constant in ⌦ with

u⇤t (x, t) = X
Z

RN
J(x � y)(u⇤(t, y) � u⇤(x, t))dy + u(x, t)(r � 1 +X).

? In order to get population growth we need
intrinsic growth bigger than first eigenvalue.

r � 1 +X > X�1(⌦)

where �1(⌦) is the first eigenvalue of the original nonlocal operator.
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Then
r > X(�1(⌦) � 1) + 1.

λ1(Ω)

1

1
X

r(X)

? Let us recall
0 < �1(⌦) < 1 and 0  X  1.

Thus, perforations do not further population growth.
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A logistic nonlocal equation.a

aHutson et al. (2003).

Consider

@u
@t
=

Z

RN
J(x � y)(u(y, t) � u(x, t))dy + u(x, t) (a(x) � u(x, t)) (lp)

for x 2 [0, l] with u(x, t) ⌘ 0 for x 2 R \ [0, l].

We assume

J 2 C1(R,R) non-negative, with J(0) > 0,
J(�x) = J(x) for every x 2 R and

R
RN J(x) dx = 1.

a 2 C1[0, l] strictly positive.

? Thus, the intrinsic growth rate depends on x 2 ⌦ = [0, l].
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Strong Maximal Principle.

Let c : ⌦ ⇥ [0,+1) 7! R be continuous and T > 0. Assume u satisfies

@u
@t
�

Z

RN
J(x � y)(u(y, t) � u(x, t))dy + c(x, t) u(x, t)

with u(x, 0) � 0. Then

Either u > 0 in QT [ ST

or 9 t⇤  T such that u = 0 in t 2 [0, t⇤] and u > 0 if t > t⇤.

Here
QT = [0, l] ⇥ {T} and ST = [0, l] ⇥ (0,T).
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?We say u� is a subsolution if

@u
@t


Z

RN
J(x � y)(u(y, t) � u(x, t))dy + u(x, t) (a(x) � u(x, t))

Supersolution is set similarly by reversing the inequality.

Comparison

Let u� and u� sub/supersolutions with u�(x, 0)  u�(x, 0). Then

Either
u� < u� in QT [ ST

or 9 t⇤  T such that

u� = u� in Qt⇤ [ St⇤ .
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Moreover:

1 Let u� be a stationary subsolution and u a solution with u(x, 0) = u�.
Then

Either u� is a solution,
or u is strictly increasing in t for each x 2 [0, l].

2 If u0(x) � 0 in [0, l], then there exists u nonnegative solution to the
logistic equation (lp), defined for all t > 0 with u(x, 0) = u0(x).

Stability
Suppose there exists a nontrivial subsolution u�.
Then (lp) has exactly one, strictly positive stationary solution, globally
stable in the sense of pointwise convergence.
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? How can we get a subsolution?

If the linearization about zero possesses a positive principal eigenvalue
Z

RN
J(x � y)(�(y) � �(x))dy + �(x)a(x) = �1�(x), x 2 ⌦

we can set a subsolution. Indeed, let �✏ = ✏�, then
Z

RN
J(x � y)(�✏(y) � �✏(x))dy + �✏(x)a(x) � �✏(x)2

=

Z

RN
J(x � y)(�✏(y) � �✏(x))dy + �✏(x)a(x) � �✏(x)2 ± �1�✏(x)

= �✏(x)(�1 � �✏(x))

= ✏�(x)(�1 � ✏�(x)) � 0 =
@
@t
�(x)

as ✏ is small and �1 > 0.
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Time-scale analysis non-local diffusion systems
We consider a vector-borne disease modeled by the Ross-Macdonald model
incorporating spatial movements. The hosts can move non-locally and
vectors can move locally.

a) Assuming birth and mortality rates are equal, we have that
populations remain constant over time.

b) We also set host and vector dynamics in different scales.

We lead to the following system

di/dt = ↵h(1 � i)j � �hi
" dj/dt = ↵v(1 � j)i � �vj

for positive constants ↵h, ↵v, �h and �v.

i and j are human and vector density.
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The spatial movement for the vector will be modeled by the Laplacian with
Neumann boundary condition and for the hosts our non-local operator KJ

KJ i(x) =
Z

⌦
J(x � y)(i(y) � i(x))dy, x 2 ⌦.

Putting the local disease dynamics with the spatial dynamics, we get
8>>>>>><>>>>>>:

@i
@t
= ↵h(1 � i)j � �hi + d1KJ i,

@j
@t
=
↵v

"
(1 � j)i � �v

"
j + d2�j,

x 2 ⌦, t > 0.

with @j
@~n = 0 on x 2 @⌦.
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Asymptotic Expansion
Here we use power series expansion to analyze in a formal way the
asymptotic behavior of the system with respect to " > 0.

We assume
i = i0 + "i1 + . . . and j = j0 + "j1 + . . .

and then,

di
dt
=

di0
dt
+ "

di1
dt
+ . . . and

dj
dt
=

dj0
dt
+ "

dj1
dt
+ . . .

which gives us that

di
dt
=

⇥
↵h(1 � i0)j0 � �hi0 + d1KJi0

⇤

+"
⇥
↵h(j1 � i0j1 � i1j0) � �hi1 + d1KJi1

⇤
+ O("2)

dj
dt
=

⇥
↵v(1 � j0)i0 � �vj0

⇤

+"
⇥
↵v(i1 � j0i1 � j1i0) � �vi1 + d2�j0

⇤
+ O("2)
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Hence, if we plug these expressions in the system, we get at " = 0 that
8>>>><>>>>:

@i0
@t

= ↵h(1 � i0)j0 � �hi0 + d1KJ i0,

0 = ↵v(1 � j0)i0 � �vj0.

Consequently,

j0 = m(i0) =
↵vi0
↵vi0 + �v

and then, we deduce the reduced equation

@i0
@t
= ↵h(1 � i0)m(i0) � �hi0 + d1KJ i0

with initial condition i0(t, x) = i0(0, x).

i ⇡ i0 in L2(⌦)

under smooth initial conditions and finite time.
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The limit problem
Strong Maximum Principle works to the limit equation for non-negative
continuous functions. Hence, we get a dynamical system behaving as

dz
dt
= ↵h(1 � z)m(z) � �hz.

? Thus, if
(HC) ↵h↵v > �h�v

the constant i⇤0 is the unique stationary solution globally stable for
solutions with non-trivial and non-negative initial conditions.

0 i*

? On the other hand, if ↵h↵v  �h�v, then the null function is the unique
stationary and non-negative solution globally stable.

marcone@ime.usp.br XI Escuela Santaló - UBA - Argentina - 2019



Indeed, we consider a more general system as:
(

ẋ = f (x, y) + KJx
"ẏ = g(x, y) + "�y

in ⌦, " > 0,

with homogeneous Neumann boundary condition

@y
@N
= 0 on @⌦.

The nonlinearities f and g : R2 7! R are smooth functions and will
include the class of those ones discussed in the previous sections.

As "! 0, we show slow component x(t) converges to X(t) which is
governed by the effective equation

Ẋ = f (X,m(X)) + KJX, in ⌦,

where y = m(x) is the graph representation of a set given by

g(x,m(x)) = 0.

Other work with nonlocal systems: Bai, X.; Li, F.; Calculus of
Variations (2018).
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