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Abstract. We study the Sobolev trace constant for functions defined in a
bounded domain Ω that vanish in the subset A. We find a formula for the

first variation of the Sobolev trace with respect to hole. As a consequence of

this formula, we prove that when Ω is a centered ball, the symmetric hole is
critical when we consider deformation that preserve volume but is not optimal

for some case.

1. Introduction and Main Results.

Let Ω be a bounded smooth domain in RN with N ≥ 2 and 1 < p < ∞.
We denote by p∗ the critical exponent for the Sobolev trace immersion given by
p∗ = p(N − 1)/(N − p) if p < N and p∗ =∞ if p ≥ N .

For any A ⊂ Ω, which is a smooth open subset, we define the space

W 1,p
A (Ω) = C∞0 (Ω \A),

where the closure is taken in W 1,p−norm. By the Sobolev Trace Theorem, there is
a compact embedding

(1.1) W 1,p
A (Ω) ↪→ Lq(∂Ω),

for all 1 < q < p∗. Thus, given 1 < q < p∗, there exists a constant C = C(q, p)
such that

C

{∫
∂Ω

|u|q dS

} p
q

≤
∫

Ω

|∇u|p + |u|p dx.

The best (largest) constant in the above inequality is given by

(1.2) Sq(A) := inf
u∈W 1,p

A (Ω)\W 1,p
0 (Ω)

∫
Ω
|∇u|p + |u|p dx{ ∫
∂Ω
|u|q dS

} p
q

.

By (1.1), there exist an extremal for Sq(A). Moreover, an extremal for Sq(A) is a
weak solution to

(1.3)


−∆pu+ |u|p−2u = 0 in Ω \A,
|∇u|p−2 ∂u

∂ν = λ|u|q−2u on ∂Ω \A,
u = 0 on ∂A,
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where ∆pu = div(|∇u|p−2∇u) is the usual p−laplacian, ∂
∂ν is the outer unit normal

derivative and λ depends on the normalization of u. When ‖u‖Lq(∂Ω) = 1 we have
that λ = Sq(A). Moreover, when p = q problem (1.3) becomes homogeneous and
therefore is a nonlinear eigenvalue problem. In this case, the first eigenvalue of
(1.3) coincides with the best Sobolev trace constant Sq(A) = λ1(A) and it is shown
in [9] that it is simple (see also [3]). Therefore, if p = q, the extremal for Sp(A)
is unique up to constant factor. In the linear setting, i.e., when p = q = 2, this
eigenvalue problem is known as the Steklov eigenvalue problem, see [11].

The aim of this paper is to analyze the dependence of the Sobolev trace constant
Sq(A) with respect to variations on the set A. To this end, we compute the so-called
shape derivative of Sq(A) with respect to regular perturbations of the hole A.

Let V : RN → RN be a regular (smooth) vector filed, globally Lipschitz, with
support in Ω and let ψt : RN → RN be defined as the unique solution to

(1.4)

{
d
dtψt(x) = V (ψt(x)) t > 0
ψ0(x) = x x ∈ RN .

We have
ψt(x) = x+ tV (x) + o(t) ∀x ∈ RN .

Now, we define At := ψt(A) ⊂ Ω for all t > 0 and

(1.5) Sq(t) = inf
u∈W 1,p

At
(Ω)\W 1,p

0 (Ω)

∫
Ω
|∇u|p + |u|p dx{ ∫
∂Ω
|u|q dS

} p
q

.

Observe that A0 = A and therefore Sq(0) = Sq(A).
In the linear case p = q = 2, Rossi studies the best constant of the Sobolev

trace embedding in a domain without holes, see [10]. He finds a formula for the
first variation of the best constant with respect to the domain. As a consequence
he proves that the ball is a critical domain when we consider deformations that
preserve volume.

In [2], Fernández Bonder, Groisman and Rossi analyze this problem in domain
with holes and prove that S2(t) is differentiable with respect to t at t = 0 and it
holds

d

dt
S2(t)

∣∣∣
t=0

= −
∫
∂A

(
∂u

∂ν

)2

〈V, ν〉dS,

where u is a normalized eigenfunction for S2(A) and ν is the exterior normal vector
to Ω \ A. Furthermore, in the case that Ω is the ball BR with center 0 and radius
R > 0 the authors show that a centered ball A = Br, r < R, is critical in the sense
that S′2(A) = 0 when considering deformations that preserves volume and that this
configuration is not optimal.

We say that a hole A∗ is optimal for the parameter α, 0 < α < |Ω|, if |A∗| = α
and

Sq(A∗) = inf
A⊂Ω
|A|=α

Sq(A).

Therefore, in the case p = q = 2, there is a lack of symmetry in the optimal
configuration.

Here we extend these results to the more general case 1 < p <∞ and 1 < q < p∗.
Our method differs from the one in [2] in order to deal with the nonlinear character
of the problem.
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Our first result states

Theorem 1.1. Suppose A ⊂ Ω is a smooth open subset and let 1 < q < p∗. Then,
with the previous notation, we have that Sq(t) is differentiable at t = 0 and there
exists u a normalized extremal (according to ‖u‖Lq(∂Ω) = 1) for Sq(A) such that

S′q(0) = (1− p)
∫
∂A

∣∣∣∂u
∂ν

∣∣∣p〈V, ν〉dS,
where S′q(0) = d

dtSq(t)
∣∣∣
t=0

and ν is the exterior normal vector to Ω \A.

Remark 1.2. If u is an extremal for Sq(A) we have that |u| is also an extremal
associated to Sq(A). Then in the previous theorem we can suppose that u ≥ 0 in Ω.
Moreover, by [8], we have that for all U ⊂⊂ Ω open subset such that U ∩ ∂A 6= ∅
is a smooth open set there exists δ ∈ (0, 1) such that u ∈ C1,δ(U \A) and u > 0 on
∂Ω \ ∂A if Ω \A satisfies the interior ball condition for all x ∈ ∂Ω \ ∂A, see [12].

In the case that Ω = BR, we have the next result

Theorem 1.3. Let Ω = BR and let the hole be a centered ball A = Br. Then,
if 1 < q ≤ p, this configuration is critical in the sense that S′q(Br) = 0 for all
deformations V that preserve the volume of Br.

But, if q is sufficiently large, the symmetric hole with a radial extremal is not an
optimal configuration. In fact, we prove

Theorem 1.4. Let r > 0 and 1 < p <∞ be fixed. Let R > r and

(1.6) Q(R) =
1

Sp(Br)
p
p−1

(
1− N − 1

R
Sp(Br)

)
+ 1.

If q > Q(R) then the centered hole Br is not optimal.

Finally, to study the asymptotic behavior of Q(R)

Proposition 1.5. The function Q(R) has the following asymptotic behavior

lim
R→r

Q(R) = 1− and lim
R→+∞

Q(R) = p.

Observe that Q(R) < 1 for R close to r and therefore the symmetric hole with
a radial extremal is not an optimal configuration for R close to r.

2. Proof of Theorem 1.1

2.1. Preliminary Results. The proof of Theorem 1.1 require some technical re-
sults. In this subsection we use some ideas from [4].

Given u ∈W 1,p
At

(Ω) \W 1,p
0 (Ω) we consider v = u ◦ ψt, so v ∈W 1,p

A (Ω) \W 1,p
0 (Ω)

and ∇vT = Tψ′t∇(u ◦ ψt)T , where ψ′t denotes the differential matrix of ψt and TA
is the transpose of matrix A. Thus, by the change of variables formula, we have
that ∫

Ω

|∇u|p + |u|p dx =
∫

Ω

{
|T [ψ′t]

−1∇vT |p + |v|p
}
J(ψt) dx,

here J(ψt) is the usual Jacobian of ψt. Moreover, since supp(V ) ⊂ Ω, we have that∫
∂Ω

|u|q dS =
∫
∂Ω

|v|q dS.
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In [5] are proved the following asymptotic formulas

[ψ′t]
−1(x) = Id− tV ′(x) + o(t),(2.7)

J(ψt)(x) = 1 + tdivV (x) + o(t).(2.8)

Then, by (2.7) and (2.8), we have∫
Ω

|v|pJ(ψt) dx =
∫

Ω

|v|p{1 + tdivV + o(t)} dx

=
∫

Ω

|v|p dx+ t

∫
Ω

|v|pdivV dx+ o(t)

and∫
Ω

|T [ψ′t]
−1∇vT |pJ(ψt) dx =

∫
Ω

|[Id− t TV ′ + o(t)]∇vT |p{1 + tdivV + o(t)} dx

=
∫

Ω

|∇v − t TV ′∇vT + o(t)|p{1 + tdivV + o(t)} dx,

since

|∇v − t TV ′∇vT + o(t)|p = |∇v|p − pt|∇v|p−2〈∇v, TV ′∇vT 〉+ o(t)

we obtain that∫
Ω

|T [ψ′t]
−1∇vT |pJ(ψt) dx =

∫
Ω

|∇v|p dx+ t

∫
Ω

|∇v|pdivV dx

− pt
∫

Ω

|∇v|p−2〈∇v, TV ′∇vT 〉dx+ o(t).

Thus, we conclude∫
Ω

|∇u|p + |u|p dx =
∫

Ω

{|T [ψ′t]
−1∇vT |p + |v|p}J(ψt) dx

=
∫

Ω

|v|p dx+
∫

Ω

|∇v|p dx+ t

∫
Ω

{|∇v|p + |v|p}divV dx

− pt
∫

Ω

|∇v|p−2〈∇v, TV ′∇vT 〉dx+ o(t).

Therefore, we can rewrite (1.5) as

(2.9) Sq(t) = inf
v∈W 1,p

A (Ω)\W 1,p
0 (Ω)

{ρ(v) + tγ(v)}

where

ρ(v) =

∫
Ω
|∇v|p + |v|p dx{∫
∂Ω
|v|q dS

}p/q ,
and

γ(v) =

∫
Ω
{|∇v|p + |v|p}divV dx− p

∫
Ω
|∇v|p−2〈∇v, TV ′∇vT 〉dx{∫

∂Ω
|v|q dS

}p/q + o(1).

Given t ≥ 0, let vt ∈W 1,p
A (Ω) \W 1,p

0 (Ω) such that ‖vt‖Lq(∂Ω) = 1 and

Sq(t) = ϕ(t) + tφ(t),

where
ϕ(t) = ρ(vt) and φ(t) = γ(vt) ∀t ≥ 0.
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We observe that ϕ, φ : R≥0 → R and

Lemma 2.1. The function φ is nonincreasing.

Proof. Let 0 ≤ t1 ≤ t2. By (2.9), we have that

ϕ(t2) + t1φ(t2) ≥ Sq(t1) = ϕ(t1) + t1φ(t1)(2.10)
ϕ(t1) + t2φ(t1) ≥ Sq(t2) = ϕ(t2) + t2φ(t2).(2.11)

Subtracting (2.10) from (2.11), we get

(t2 − t1)φ(t1) ≥ (t2 − t1)φ(t2).

Since t2 − t1 ≥ 0, we obtain
φ(t1) ≥ φ(t2).

This ends the proof. �

Remark 2.2. Since φ is nonincreasing, we have

φ(t) ≤ φ(0) ∀t ≥ 0,

and there exists
φ(0+) = lim

t→0+
φ(t).

Corollary 2.3. The function ϕ is nondecreasing.

Proof. Let 0 ≤ t1 ≤ t2. Again, by (2.9), we have that

(2.12) ϕ(t2) + t1φ(t2) ≥ Sq(t1) = ϕ(t1) + t1φ(t1)

so
ϕ(t2)− ϕ(t1) ≥ t1(φ(t1)− φ(t2)).

Since 0 ≤ t1 ≤ t2, by Lemma 2.1, we have that φ(t1)− φ(t2) ≥ 0. Then

ϕ(t2)− ϕ(t1) ≥ 0

that is what we wished to prove. �

Now we can prove that Sq(t) is continuous at t = 0.

Theorem 2.4. The function Sq(t) is continuous at t = 0, i.e.,

lim
t→0+

Sq(t) = Sq(0).

Proof. Given t ≥ 0 so, by Corollary 2.3,

Sq(t)− Sq(0) = ϕ(t) + tφ(t)− ϕ(0) ≥ tφ(t).

On the other hand, by (2.9), we have that

Sq(t) ≤ ϕ(0) + tφ(0) = Sq(0) + tφ(0).

Then
tφ(t) ≤ Sq(t)− Sq(0) ≤ tφ(0).

Thus, by Remark 2.2,
lim
t→0+

Sq(t)− Sq(0) = 0.

This finishes the proof. �

Thus, from Remark 2.2 and Theorem 2.4, we obtain the following corollary:
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Corollary 2.5. The function ϕ is continuous at t = 0, i.e.,

lim
t→0+

ϕ(t) = ϕ(0).

Proof. We observe that

ϕ(t)− ϕ(0) = Sq(t)− Sq(0)− tφ(t)

then, by Remark 2.2 and Theorem 2.4,

lim
t→0+

ϕ(t)− ϕ(0) = 0.

That proves the result. �

Finally, we prove the following:

Theorem 2.6. The function ϕ is differentiable at t = 0 and
dϕ
dt

(0) = 0.

Proof. Let 0 < r < t. By (2.9), we get

Sq(r) = ϕ(r) + rφ(r) ≤ ϕ(t) + rφ(t),

and
Sq(t) = ϕ(t) + tφ(t) ≤ ϕ(r) + tφ(r).

So
r

t
(φ(r)− φ(t)) ≤ ϕ(t)− ϕ(r)

t
≤ φ(r)− φ(t)

hence, taking limits when r → 0+, by Remark 2.2 and Corollary 2.1, we have that

0 ≤ ϕ(t)− ϕ(0)
t

≤ φ(0+)− φ(t).

Now, taking limits when t→ 0+, and again by Remark 2.2, we get

lim
t→0+

ϕ(t)− ϕ(0)
t

= 0

as we wanted to show. �

2.2. Proof of Theorem 1.1. We proceed in three steps.
Step 1. We show that Sq(t) is differentiable at t = 0 and

S′q(0) = φ(0+).

We have that
Sq(t)− Sq(0)

t
=
ϕ(t)− ϕ(0)

t
+ φ(t).

Then, by Remark 2.2 and Theorem 2.6,

S′q(0) = lim
t→0+

Sq(t)− Sq(0)
t

= φ(0+).

Step 2. We show that there exists u extremal for Sq(A) such that ‖u‖Lq(∂Ω) = 1
and

φ(0+) =
∫

Ω

(|∇u|p + |u|p)divV dx− p
∫

Ω

|∇u|p−2〈∇u, TV ′∇u〉dx.

By Theorem 2.1

(2.13) ‖vt‖pW 1,p(Ω) = ϕ(t)→ ϕ(0) = Sq(0) when t→ 0+.
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Then there exists u ∈W 1,p(Ω) and tn → 0+ when n→∞ such that

vtn ⇀ u weakly in W 1,p(Ω),(2.14)
vtn → u strongly in Lq(∂Ω),(2.15)
vtn → u a.e. in Ω.(2.16)

By (2.15) and (2.16), u ∈W 1,p
A (Ω) and ‖u‖Lq(∂Ω) = 1 and by (2.14)

Sq(0) = lim
n→∞

‖vtn‖
p
W 1,p(Ω) ≥ ‖u‖

p
W 1,p(Ω) ≥ Sq(0),

then

(2.17) Sq(0) = ‖u‖pW 1,p(Ω).

Moreover, by (2.13), (2.14) and (2.17), we have that

vtn → u strongly in W 1,p(Ω).

Therefore

φ(0+) = lim
n→∞

φ(vtn)

=
∫

Ω

(|∇u|p + |u|p)divV dx− p
∫

Ω

|∇u|p−2〈∇u, TV ′∇uT 〉dx.

Step 3. Finally, we show that

S′q(0) =
∫

Ω

(|∇u|p + |u|p)divV dx− p
∫

Ω

|∇u|p−2〈∇u, TV ′∇uT 〉dx

=(1− p)
∫
∂A

∣∣∣∂u
∂ν

∣∣∣p〈V, ν〉dS.
To show this we require that u ∈ C2. However, this is not true in general. Since

u is an extremal for Sq(A) and ‖u‖Lq(∂Ω) = 1, we know that u is weak solution to
−∆pu+ |u|p−2u = 0 in Ω \A,
|∇u|p−2 ∂u

∂ν = Sq(A)|u|q−2u on ∂Ω \A,
u = 0 on ∂A,

and by [8] we get that u belongs to the class C1,δ for some 0 < δ < 1.
Now, in order to overcome our difficulty, we proceed as follows. We consider the

following problem, let ε > 0

(2.18) Sε := inf
v∈W 1,p

A (Ω)\W 1,p
0 (Ω)

∫
Ω

(|∇v|2 + ε2)
p−2

2 |∇v|2 + |v|p dx{ ∫
∂Ω
|v|q dS

} p
q

.

Let uε be the normalized positive eigenvalue associated to Sε. Observe that the
eigenfunction is weak solution to

(2.19)


−div(|∇uε|2 + ε2)(p−2)/2∇uε) + |uε|p−2uε = 0 in Ω \A,
(|∇uε|2 + ε2)(p−2)/2 ∂uε

∂ν = Sε|uε|q−2uε on ∂Ω,
uε = 0 on ∂A.

It is well known that the solution uε to (2.19) is of class C2,ρ(Ω \ A) for some
0 < ρ < 1 (see [6]).
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Thus, since uε ∈ W 1,p
A (Ω) \W 1,p

0 (Ω) and ‖uε‖Lq(∂Ω) = 1 for all ε > 0, we have
that

Sq(A) ≤ Sε

≤
∫

Ω

(|∇uε|2 + ε2)
p−2

2 |∇uε|2 + |uε|p dx

≤
∫

Ω

(|∇u|2 + ε2)
p−2

2 |∇u|2 + |u|p dx.

Then λε → Sq(0) as ε → 0+ and the normalized eigenfunction uε associated to
λε are bounded in W 1,p(Ω) uniformly in ε > 0. Therefore, there exists a sequence,
that we still call {uε}, and a function w ∈W 1,p(Ω) such that

uε ⇀ w weakly in W 1,p(Ω),
uε → w strongly in Lq(∂Ω),
uε → w a.e. in Ω.

Hence, w ∈W 1,p
A (Ω), ‖w‖Lq(∂Ω) = 1 and

Sq(A) = lim
ε→0+

Sε

= lim
ε→0+

∫
Ω

(|∇uε|2 + ε2)
p−2

2 |∇uε|2 + |uε|p dx

≥
∫

Ω

|∇w|p + |w|p dx

≥ Sq(A).

These imply that w is a normalized positive extremal for Sq(A) and ‖uε‖W 1,p(Ω) →
‖w‖W 1,p(Ω) as ε→ 0+, and therefore

uε → w strongly in W 1,p(Ω).

Let U ⊂⊂ Ω be a smooth open subset such that U \ A is a smooth open set
and the support of V is contained in U. By [8], there exists δ ∈ (0, 1) such that
w, uε ∈ C1,δ(U \A). Moreover, there exists a constant C independent of ε > 0 such
that

‖uε‖C1,δ(U\A)
≤ C.

Then, we have that uε → w and ∇uε → ∇w uniformly in U \A as ε→ 0+.

Hence,

S′q(0) =
∫

Ω

(|∇w|p + |w|p)divV dx− p
∫

Ω

|∇w|p−2〈∇w, TV ′∇wT 〉dx

= lim
ε→0+

∫
Ω

[
(|∇uε|2 + ε2)

p
2 |+ |uε|p

]
divV dx

− p
∫

Ω

|∇w|p−2〈∇w, TV ′∇wT 〉dx,
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and since

div(|uε|pV ) =|uε|pdivV + p|uε|p−2uε〈∇uε, V 〉,

div((|∇uε|2 + ε2)
p
2 V ) =(|∇uε|2 + ε2)

p
2 divV + p(|∇uε|2 + ε2)

p−2
2 〈∇uεD2uε, V 〉

=(|∇uε|2 + ε2)
p
2 divV + p(|∇uε|2 + ε2)

p−2
2 〈∇uε,∇〈∇uε, V 〉〉

−p(|∇uε|2 + ε2)
p−2

2 〈∇uε, TV ′∇uTε 〉,

we have that
S′q(0) = lim

ε→0+
aε − pbε

where

aε =
∫

Ω

div((|∇uε|2 + ε2)
p
2 V + |uε|pV ) dx,

bε =
∫

Ω

{
(|∇uε|2 + ε2)

p−2
2 〈∇uε,∇〈∇uε, V 〉〉+ |uε|p−2uε〈∇uε, V 〉

}
dx.

Now, integrating by parts and using that supp(V ) ⊂ Ω and uε = 0 on ∂Ω, we
obtain that

aε =
∫
∂A

(|∇uε|2 + ε2)
p
2 〈V, ν〉dS,

and since uε is solution of (2.19), we have

bε =
∫
∂A

(|∇uε|2 + ε2)
p−2

2 〈∇uε, V 〉〈∇uε, ν〉dS.

where ν is the exteriror normal vector to Ω \ A. Then using that ∇wε → ∇w
uniformly in U \A as ε→ 0+, we get that

S′q(0) =
∫
∂A

|∇w|p〈V, ν〉dS − p
∫
∂A

|∇w|p−2〈∇w, ν〉〈∇w, V 〉dS.

Hence, since ∇w = ∂w
∂ν ν on ∂A,

S′q(0) = (1− p)
∫
∂A

∣∣∣∂w
∂ν

∣∣∣p〈V, ν〉dS,
as wanted to show. �

3. Lack of Symmetry in the Ball

In this section we consider the case where Ω = BR and A = Br with r < R and
show Theorem 1.3, Theorem 1.4 and Proposition 1.5. The proofs are based on the
argument of [2] and [7] adapted to our problem. In order to simplify notations, we
write Sq(r) instead Sq(Br).

First we proof Theorem 1.3, for this we need the following proposition

Proposition 3.1. Let 1 < q < p. The nonnegative solution of (1.3) is unique.

Proof. Suppose that there exist two nonnegative solutions u and v of (1.3). By
Remark 1.2 it follows that u, v > 0 on ∂Ω. Let vn = v + 1

n with n ∈ N, using first
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Piccone’s identity (see [1]) and the weak formulation of (1.3) we have

0 ≤
∫
BR

|∇u|p dx−
∫
BR

|∇vn|p−2∇vn∇
(

up

vp−1
n

)
dx

=
∫
BR

|∇u|p dx−
∫
BR

|∇v|p−2∇v∇
(

up

vp−1
n

)
dx

= −
∫
BR

up dx+ λ

∫
∂BR

uq dS +
∫
BR

vp−1 up

vp−1
n

dx− λ
∫
∂BR

vq−1 up

vp−1
n

dS

≤ λ
∫
∂BR

uq dS − λ
∫
∂BR

vq−1 up

vp−1
n

dS.

Thus, by the Monotone Convergence Theorem,

0 ≤
∫
∂BR

uq dS −
∫
∂BR

vq−1 up

vp−1
dS

=
∫
∂BR

up(uq−p − vq−p) dS.

Note that the role of u and v in the above equation are exchangeable. Therefore,
adding we get

0 ≤
∫
∂BR

(up − vp)(uq−p − vq−p) dS.

Since q < p we have that u ≡ v on ∂BR. Then, by uniqueness of solution to the
Dirichlet problem, we get u ≡ v in BR. �

Remark 3.2. As the problem (1.3) is rotationally invariant, by uniqueness we
obtain that the nonnegative solution of (1.3) must be radial. Therefore, if Ω = BR,
A = Br and 1 < q ≤ p we can suppose that the extremal for Sq(r) found in the
Theorem 1.1 is nonnegative and radial.

Now we can prove the Theorem 1.3,

Proof of Theorem 1.3. We consider Ω = BR, A = Br and 1 < q ≤ p. By Theo-
rem 1.3 and Remark 3.2 there exist a nonnegative and radial normalized extremal
for Sq(r) such that

S′q(0) = (1− p)
∫
∂Br

∣∣∣∂u
∂ν

∣∣∣p〈V, ν〉dS.
Since u is radial

∂u

∂ν
≡ c on ∂Br,

where c is a constant.
Thus, using that we are dealing with deformations V that preserves the volume

of the Br, we have that

S′q(0) = (1− p)cp
∫
∂Br

〈V, ν〉dS = (p− 1)cp
∫
Br

div(V ) dx = 0.

�

To prove Theorem 1.4, we need two previous results.
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Proposition 3.3. Let r > 0 fixed. Then, there exists a positive radial function u0

such that

(3.20)

{
−∆pu+ |u|p−2u = 0 in RN \Br,
u = 0 on ∂Br.

This u0 is unique up to a constant factor and for any R > r the restriction of u0

to BR is the first eigenfunction of (1.3) with q = p.

Proof. For R > r, let uR be the unique solution of the Dirichlet problem
∆puR = |uR|p−2uR in BR \Br,
u(R) = 1,
u(r) = 0.

Then, by uniqueness, uR is a nonnegative and radial function. Moreover, by the
regularity theory and maximum principle we have ∂uR

∂ν (r) 6= 0 (see [8, 12]). Thus,
for any R > r, we define the restriction of u0 by

u0 =
uR

∂uR
∂ν

(r)
.

By uniqueness of the Dirichlet problem, it is easy to check that u0 is well defined
and is a nonnegative radial solution of (3.20). Furthermore, by the simplicity of
Sp(r), u0 is the eigenfunction associated to Sp(r) for every R > r. �

Proposition 3.4. Let v be a radial solution of (1.3). Then v is a multiple of u0.
In particular any radial minimizer of (1.2) is a multiple of u0.

Proof. Let a > 0 be such that v = au0 on ∂B(0, R). Then v and au0 are two
solutions to the Dirichlet problem ∆pw = wp−1 and w = v on ∂

(
BR \Br

)
. Hence,

by uniqueness, we have that v = au0 in BR. �

Remark 3.5. If 1 < q < p then the solution of (1.3), by Remark 3.2 and Propo-
sition 3, is a multiple of u0.

Now we can deal with the proof of Theorem 1.4.

Proof of Theorem 1.4. Let R > r be fixed and consider u0 to be the nonnegative
radial function given by Proposition 3.3 such that that u0 = 1 on ∂BR. Then, by
Proposition 3.4, it is enough to prove that u0 is not a minimizer for Sq(r) when
q > Q(R).

First let us move this symmetric configuration in the x1 direction. For any t ∈ R
and x ∈ RN we denote xt = (x1 − t, x2, . . . , xN ) and define

U(t)(x) = u0(xt)

Observe that U vanishes in At := Br(te1) (the ball with center te1 and radius r) a
subset of BR of the same measure of Br for all t small.

Consider the function

h(t) =
f(t)
g(t)
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where

f(t) =
∫
BR

|∇U |p + Up dx and g(t) =
(∫

∂BR

UqdS
) p
q

.

We observe that h(0) = 0 and since h is an even function, we have h′(0) = 0. Now,

h′′(0) =
f ′′g2 − fgg′′ − 2f ′gg′ − 2fgg′

g3

∣∣∣∣
t=0

.

Next we compute these terms. First, since u0 is the first eigenfunction of (1.3) with
q = p and u0 = 1 on ∂BR we get

f(0) = Sp(r)|∂BR| and g(0) = |∂BR|
p
q .

Thus, by Gauss–Green’s Theorem and using the fact that u0 is radial, we get

f ′(0) = −
∫
BR

∂

∂x1
(|∇u0|p + up0) dx =

∫
∂BR

(|∇u0|p + up0)ν1dS = 0.

Again, since u0 is radial,

g′(0) =
p

q

(∫
∂BR

uqdS
) p
q−1(∫

∂BR

∂uq

∂x1
dS
)

= 0.

Finally, using that u0 = 1 on ∂BR, we obtain

g′′(0) = p|∂BR|
p
q−1

∫
∂BR

(q − 1)
(
∂u0

∂x1

)2

+
∂2u0

∂x2
1

dS

and, by the Gauss–Green’s Theorem

f ′′(0) = p

∫
BR

∂

∂x1

(
1
2
|∇u0|p−2 ∂|∇u0|2

∂x1
+

1
p

∂up0
∂x1

)
dx

= p

∫
∂BR

(
1
2
|∇u0|p−2 ∂|∇u0|2

∂x1
+

1
p

∂up0
∂x1

)
ν1 dS.

Then

h′′(0) =
p

|∂BR(0)|p/q

[∫
∂BR

(
1
2
|∇u0|p−2 ∂|∇u0|2

∂x1
+

1
p

∂up0
∂x1

)
ν1 dS

− Sp(r)
∫
∂BR

(q − 1)
(
∂u0

∂x1

)2

+
∂2u0

∂x2
1

dS

]
.

Thus, since u0 is radial, we get

h′′(0) =
p

N |∂BR(0)|p/q

[∫
∂BR

(
1
2
|∇u0|p−2 ∂|∇u0|2

∂ν
+

1
p

∂up0
∂ν

)
dS

− Sp(r)
∫
∂BR

(q − 1)|∇u0|2 + ∆u0 dS

]
.

Now, by definition, u0(x) = u0(|x|) and α satisfies

(sN−1|u′0|p−1u′0)′ = sN−1up−1
0 ∀s > r

with u0(R) = 0 and u0(r) = 0, moreover, by Proposition 3.3, we have

u′0(s)p−1 = Sp(r)u0(s)p−1 ∀s > r.



EXTREMALS OF THE TRACE INEQUALITY 13

Then

1
2
|∇u0|p−2 ∂|∇u0|2

∂ν
+

1
p

∂up0
∂ν

=
Sp(r)

1
p−1

p− 1

(
1− N − 1

R
Sp(r)

)
+ Sp(r)

1
p−1

and

Sp(r)
[
(q − 1)|∇u0|2 + ∆u0

]
= (q − 1)Sp(r)

p+1
p−1 +

Sp(r)
1
p−1

p− 1

(
1− N − 1

R
Sp(r)

)
+
N − 1
R

Sp(r)
p
p−1 .

Therefore

h′′(0) =
pS

1
p−1
p

N |∂BR|
p
q−1

[
1− (q − 1)Sp(r)

p
p−1 − N − 1

R
Sp(r)

]
.

Thus, if q > Q(R) we get that h′′(0) < 0 and so 0 is a strict local maxima of ψ.
So we have proved that

Sq(r) = h(0) > h(t) ≥ Sq(Br(te1))

for all t small. Therefore a symmetric configuration is not optimal. �

To finish the paper we prove Proposition 1.5.

Proof of Proposition 1.5. We proceed in two step.
Step 1. First we show that, for R > r, Sp(R, r) = Sp(r) verifies the differential
equation

(3.21)
∂Sp
∂R

= −N − 1
R

Sp + 1− (p− 1)S
p
p−1
p

with the condition
Sp|R=r = +∞.

Again we consider u0(x) = u0(|x|) the nonnegative radial function given by
Proposition 3.3. Thus, for all R > r, we get

(p− 1) (u′0)p−2
u′′0 +

N − 1
R

(u′0)p−1 = up−1
0 ,

u′0(R)p−1 = Spu0(R)p−1,

u0(r) = 0.

Then

Sp =
(
u′0(R)
u0(R)

)p−1

.

Thus
∂Sp
∂R

= (p− 1)
(
u′0(R)
u0(R)

)p−2
u′′0(R)u0(R)− u′0(R)2

u0(R)2

= (p− 1)
(
u′0(R)
u0(R)

)p−2
u′′0(R)
u0(R)

− (p− 1)S
p
p−1
p

= (p− 1)
u′0(R)p−2u′′0(R)

u0(R)p−1
− (p− 1)S

p
p−1
p

= 1− N − 1
R

Sp − (p− 1)S
p
p−1
p .
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On the other hand, since (by definition) ∂u0
∂ν ≡ 1 on ∂Br, we get that u′(r) = 1.

Then

lim
R→r

Sp = lim
R→r

(
u′0(R)
u0(R)

)p−1

= +∞.

Now, it is easy to check that limR→r Q(R) = 1−.
Step 2. Finally, we prove that

lim
R→+∞

Q(R) = p.

We begin differentiating (3.21) to obtain

∂2Sp
∂R2

=
N − 1
R2

Sp −
N − 1
R

∂Sp
∂R
− pS

1
p−1
p

∂Sp
∂R

.

Then, since Sp > 0, at any critical point (S′p = 0) we have that S′′p > 0. Thus, Sp has
at most one critical point, which is a minimum. If Sp has a minimum, then there
exist R0 > r such that S′p(R0) = 0. Moreover, since S′p(R) 6= 0 for any R 6= R0

and Sp → +∞ as R → r and by (3.21), we get that S′p < 0 for all r < R < R0

and S′p > 0 for all R > R0. Thus, using again (3.21) we have that S
p
p−1
p < 1

p−1 for
all R > R0. Then Sp is strictly increasing as a function of R and bonded for all

R > R0. Consequently S′p → 0 as R→ +∞. It follows, by (3.21), that S
p
p−1
p → 1

p−1

as R→ +∞. On the other hand using (1.6) and (3.21) we see that

(3.22) Sp = (Q(R)− p)S
p
p−1
p .

So, if Sp has a minimum, we get that Q(R) > p for all R > R0 and Q(R)→ p+ as
R→ +∞. Now, If Sp has not critical points so S′p 6= 0 for all R > r and using that
Sp → +∞ as R → r and (3.21) we get that S′p < 0 for all R > r. Consequently, in
this case, Sp is strictly decreasing and therefore S′p → 0 as R→ +∞ and by (3.21)
we have that Sp → 1

p−1 as R → +∞. Then, if Sp has not critical points, we get
Q(R) < p and Q(R)→ p− as R→ +∞. �
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