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Algunos Problemas de Optimización para el
p−Laplaciano

(Resumen)

Dentro de la teorı́a de autovalores para operadores elı́pticos diferenciales, un problema
de especial importancia es el de optimización de estos autovalores con respecto a los
diferentes parámetros considerados. En está tesis, nos dedicamos al estudio de algunos
de estos problemas, considerando como operador no lineal modelo el p−Laplaciano que
se define como

∆pu = div(|∇u|p−2∇u).

Palabras Claves: p−Laplaciano; primer autovalor; problemas de optimización; existen-
cia; reordenamientos; derivada de forma.





Some Optimization Problems for the
p−Laplacian

(Abstract)

Within the eigenvalues theory for elliptic differential operators, a relevant problem is the
optimization of these eigenvalue with respect to the different parameters under consider-
ation. In this thesis, we study some of this problems, we consider as a model of nonlineal
operator we take the p−Laplacian, that is defined as

∆pu = div(|∇u|p−2∇u).

Key words: p−Laplacian; first eigenvalue; optimization problem; existence; rearrange-
ments; shape derivative.
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Introduction

Eigenvalue problems for second order elliptic differential equations are one of the funda-
mental problems in mathematical physics and, probably, one of the most studied ones in
the past years. See [DS1, DS2, DS3].

When studying eigenvalue problems for nonlinear homogeneous operators, the classi-
cal linear theory does not work, but some of its ideas can still be applied and partial results
are obtained. See, for instance, [An, C, GAPA1, GAPA2].

For example, the eigenvalue problem for the p-Laplace operator subject to zero Dirich-
let boundary condition, i.e., find λ and u(x) such that−∆pu = λ|u|p−2u in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open set in RN , and ∆pu := div(|∇u|p−2∇u) is the p−Laplacian,
have been studied extensively during the past two decades and many interesting results
have been obtained. The investigations have principally relied on variational methods
and the existence of a principal eigenvalue (i.e., the associated eigenspace has dimension
one and the associated nonzero eigenfunction does not change sign) has been proved as
a consequence of minimization results of appropriate functionals. Then, this principal
eigenvalue λ1 is the smallest of all possible eigenvalues λ. Moreover, λ1 is isolated. On
the other hand, the study of higher eigenvalues introduces complications which depend
upon the boundary conditions in a significant way, and thus the existence proofs may
differ significantly, as well.

In recent years, models involving the p−Laplace operator have been used in the theory
of quasiregular and quasiconformal mappings in Riemannian manifolds with boundary
(see [E, T]), non-Newtonian fluids, reaction diffusion problems, flow through porous me-
dia, nonlinear elasticity, glaciology, etc. (see [ADT, AE, AC, Di]).

In the theory for eigenvalues of elliptic operators, a relevant problem is the optimization
of these eigenvalues with respect to different parameters under consideration. Problems
linking the shape of the domain or the coefficients of an elliptic operator to the sequence
of its eigenvalues are among the most fascinating of mathematical analysis. In part, this
is because they involve different fields of mathematics.

In this thesis, we focus on extremal problems for principal eigenvalues. For instance,
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we look for the optimization of the principal eigenvalue of the p−Laplace operator per-
turbed by a potential function V(x) where the potential varies in an admissible class. This
type of problems are nonlinear versions of Schröedinger operators (that is elliptic linear
operators L under perturbations given by a potential V , in bounded regions). These opera-
tors appear in different fields of applications such as quantum mechanics, stability of bulk
matter, scattering theory, etc. See Chapter 2. We investigate similar questions for other
kind of eigenvalues and related elliptic operators, like the Steklov eigenvalue problem and
nonlinear elastic membranes (see Chapter 3 and 6).

In [AsHa], for example, the authors consider Schröedinger operators, and the following
problem is studied: Let L be a uniformly elliptic linear operator and assume that ‖V‖Lq(Ω)

is constrained but otherwise the potential V is arbitrary. Can the maximal value of the first
(fundamental) eigenvalue for the operator L + V be estimated? And the minimal value?
There exist optimal potentials? (i.e. potentials V∗ and V∗ such that the first eigenvalue for
L + V∗ is maximal and the first eigenvalue for L + V∗ is minimal).

In [AsHa] these questions are answered in a positive way and, moreover, a characteri-
zation of these optimal potentials is given.

Other interesting example is given in [He]. In that article, the author studies a non-
homogeneous membranes. He considers a membrane Ω in which non-homogeneity is
characterized by a non-negative density function g(x). The following eigenvalue problem
is then analyzed: −∆u = λg(x)u in Ω,

u = 0 on ∂Ω.

The first eigenvalue λ(g) is characterized by the usual minimization formula:

λ(g) = inf


∫

Ω
|∇u|2 dx∫

Ω
g(x)u2 dx

: u ∈ H1
0(Ω)


The author is then interested in the following optimization problem:

inf{λ(g) : g ∈ G}, sup{λ(g) : g ∈ G},

where

G :=
{

g ∈ L∞(Ω) : α ≤ g(x) ≤ β a.e. in Ω,

∫
Ω

g dx = c
}

where α, β and c three real numbers such that 0 ≤ α < β and α|Ω| ≤ c ≤ β|Ω|.

In the case where Ω ⊂ R2, this equation models the vibration of a non-homogeneous
membrane Ω which is fixed along the boundary ∂Ω. Given several materials (with differ-
ent densities) of total extension |Ω|, we investigate the location of these materials inside
Ω so as to minimize or maximize the vibration of the corresponding membrane.

In the [He], the author proved that there exists a minimizer of λ(g) in the class G and
that there exists a unique maximizer of λ(g) in the same class.
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A very important issue in this type of problems is not only to establish the existence
of optimal configurations but also to give some characterization of those optimal con-
figurations or, at least, some necessary conditions that these optimal configurations must
satisfy.

In order to deal with these issue, we compute the derivative of the functionals that we
are trying to optimize with respect to perturbations of the parameters under consideration
in the class of admissible parameters. This is achieve by means of suitable extentions of
the Hadamard method of regular variations. See [HP].

This method has been proved to be extremely useful in order to perform actual compu-
tations of the optimal parameter configurations in many situations, see [P].

So, the computation of these derivatives will be extremely useful for designing numer-
ical algorithms that compute the optimal configurations of the paremeters.

We perform this computations in most of the problems under consideration in this thesis
(see Chapters 5, 6 and 7). We believe that the results in those chapters are the main
contribution of this thesis.

Thesis outline

The rest of the thesis is organized as follows.

Chapter 1 contains the notation and some preliminary tools used throughout this thesis.
Almost always, the results are not quoted in the most general form, but in a way that is
appropriate to our purposes; nevertheless some of them are actually slightly more general
than we strictly need. Most of these results are well known, but we include it here for the
sake of completeness. We will not go into details, referring the reader to the corresponding
literature.

The purpose of Chapter 2 is the extension of the results of [AsHa] to the nonlinear case.
We are also interested in extending these results to degenerate/singular operators. As a
model of these operators, we take the p−Laplacian.

We want to remark that the proofs are not straightforward extensions of those in [AsHa]
since the proof there are not, in general, variational. Moreover, some new technical dif-
ficulties arise since solutions to a p−Laplace type equation are not regular and, mostly,
since the eigenvalue problem for the p−Laplacian is far from being completely under-
stood.

In Chapter 3, we study the first (nonlinear) Steklov eigenvalue, λ, of the following
problem:

−∆pu + |u|p−2u + αφ|u|p−2u = 0

in a bounded smooth domain Ω with

|∇u|p−2∂u
∂ν

= λ|u|p−2u
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on the boundary ∂Ω. We analyze the dependence of this first eigenvalue with respect to
the weight φ and with respect to the parameter α. We prove that for fixed α there exists
an optimal φα that minimizes λ in the class of uniformly bounded measurable functions
with fixed integral.

Next, we study the limit of these minima as the parameter α goes to infinity and we
find that the limit is the first Steklov eigenvalue in Ω with a hole where the eigenfunction
vanishes.

In Chapter 4, we compute the derivative of the norms ‖ · ‖Lq(Ω), ‖ · ‖W1,p(Ω) and ‖ · ‖Lp(∂Ω)

with respect to perturbation in Ω. These computations are fundamental for the rest of this
thesis.

Moreover, this chapter collects some general results on differential geometry that are
needed in the course of our arguments.

In Chapter 5, we study the problem of minimizing the first eigenvalue of the
p−Laplacian plus a potential with weights, when the potential and the weight are allowed
to vary in the class of rearrangements of a given fixed potential V0 and weight g0.

More recently, in [CEP2], the authors analyze this problem but when the potential
function is zero. In that work the authors prove the existence of a minimizing weight g∗
in the class of rearrangements of a fixed function g0 and, in the spirit of [Bu1] they found
a sort of Euler-Lagrange formula for g∗. However, this formula does not appear to be
suitable for use in actual computations of these minimizers.

In this chapter, we extend the results in [CEP2] to our problem. Also, the same type of
Euler-Lagrange formula is proved for both the weight and potential. But, we go further
and study the dependence of the first eigenvalue with respect to the weight and potential,
and prove the continuous dependence in Lq norm and, moreover, the differentiability with
respect to regular perturbations of the weight and the potential.

In the case when the perturbations are made inside the class of rearrangements, we
exhibit a simple formula for the derivative of the eigenvalue with respect to the weight
and the potential.

We believe that this formula can be used in actual computations of the optimal eigen-
value, weight and potential, since this type of formulas have been used in similar problems
in the recent years with significant success, see [FBGR, H, O, P] and references therein.

In Chapter 6, we study some optimization problems for nonlinear elastic membranes.
More precisely, we consider the problem of optimizing the cost functional

J(u) =

∫
∂Ω

f (x)u dHN−1

over some admissible class of loads f where Ω is a bounded smooth domain,HN−1 is the
N − 1−dimensional Hausdorff measure and u is the (unique) solution to the problem

−∆pu + |u|p−2u = 0
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in Ω with

|∇u|p−2∂u
∂ν

= f

on ∂Ω.

We have chosen three different classes of admissible functionsA to work with.

• The class of rearrangements of a given function f0.

• The (unit) ball in some Lq.

• The class of characteristic functions of sets of given surface measure.

Observe that this latter class is in fact a subclass of the first one. In fact, if we choose
f0 to be a characteristic function, then the class of rearrangements of f0 is the class of
characteristic functions of sets of given surface measure. Nevertheless, since we believe
that this case is the most interesting one, we have chosen to treated separately from the
others.

For each of these classes, we prove existence of a maximizing load (in the respective
class) and analyze properties of these maximizers.

Then, in order to do that, we compute the first variation with respect to perturbations
on the load.

Lastly, in Chapter 7, We study the Sobolev trace constant for functions defined in a
bounded domain Ω that vanish in the subset A, i.e.,

S q(A) := inf


∫

Ω
|∇u|p + |u|p dx(∫

∂Ω
|u|q dHN−1

)p/q
: u ∈ W1,p

A (Ω) \W1,p
0 (Ω)

 ,
with

W1,p
A (Ω) = C∞0 (Ω \ A)

where where the closure is taken in W1,p−norm.

We find a formula for the first variation of the Sobolev trace with respect to the hole.
As a consequence of this formula, we prove that when Ω is a centered ball, the symmetric
hole is critical when we consider deformations that preserve volume but is not optimal for
some cases.

The results in this chapter generalize those in [FBGR] where the same problem was
treated in the linear case p = q = 2. We want to remark that this extension is far from
being elementary, since the arguments in [FBGR] uses the linearity in a crucial way. We
have to develop a new method in order to consider the nonlinear setting that relates to that
in [GMSL].



xviii Introduction

Included publications

The results in Chapters 2, 3, 5, 6 and 7 have appeared published as research articles.
These results are readable as individuals contributions linked by a common theme and
all of them are either published, accepted for publication or submitted for publication in
refereed journals. The chapters contain the following papers:

Chapter 2

L. Del Pezzo and J. Fernández Bonder. An optimization problem for the first eigenvalue
of the p-Laplacian plus a potential. Commun. Pure Appl. Anal., vol. 5 (2006), no. 4, pp.
675–690.

Chapter 3

L. Del Pezzo, J. Fernández Bonder and J. D. Rossi. An optimization problem for the
first Steklov eigenvalue of a nonlinear problem. Differential Integral Equations, vol. 19
(2006), no. 9, pp. 1035–1046.

Chapter 5

L. Del Pezzo and J. Fernández Bonder. An optimization problem for the first weighted
eigenvalue problem plus a potential. Submitted for publication.
arxiv.org/pdf/0906.2985v1.

Chapter 6

L. Del Pezzo and J. Fernández Bonder. Some optimization problems for p-Laplacian type
equations. Appl. Math. Optim., vol. 59 (2009), no. 3, pp. 365–381.

L. Del Pezzo and J. Fernández Bonder. Remarks on an optimization problem for the
p−Laplacian. Applied Mathematical Letters, vol. 23 (2010), no. 2, pp. 188–192.
doi:10.1016/j.aml.2009.09.010.

Chapter 7

L. Del Pezzo. Optimization problem for extremals of the trace inequality in domains with
holes. Submitted for publication.
arxiv.org/pdf/0809.0246.

arxiv.org/pdf/0906.2985v1
doi:10.1016/j.aml.2009.09.010
arxiv.org/pdf/0809.0246


1

Preliminaries

This chapter contains the notation and some preliminary tools used throughout this thesis.
Almost always, the results are not quoted in the most general form, but in a way appropri-
ated to our purposes; nevertheless some of them are actually slightly more general than
we strictly need.

Section 1.1 fixes some notations. Section 1.2, 1.3, 1.4, 1.5, 1.6 and 1.7 collect some re-
sults regarding Banach spaces, measure theory, Lp−spaces, Sobolev spaces and spherical
symmetrization, respectively. Section 1.8 consists in an overview of some results for the
operator HV(u) := −∆pu + V(x)|u|p−2u with V ∈ Lq(Ω). Finally, in Section 1.9, we give
some important results about functions of bounded variation.

Most of these results are well known, but we include it here for the sake of complete-
ness. We will not go into details, referring the reader to the corresponding literature.

1.1 Notation

Throughout this thesis the term domain and the symbol Ω shall be reserved for an open
set in the N− dimensional, real Euclidean space RN .

A typical point in RN is denoted by x = (x1, . . . , xN); its norm

|x| =

 N∑
i=1

x2
i


1
2

.

The inner product of x and y is 〈x, y〉 or x · y, i.e.,

〈x, y〉 = x · y =

N∑
i=1

xiyi.

If u : Ω→ R is a continuous function, the support of u is defined by

supp u = Ω ∩ {x : u(x) , 0},
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where the closure of a set A ⊂ RN is denoted by A. If A ⊂ Ω, A compact and also A ⊂ Ω

we shall write A ⊂⊂ Ω. The boundary of a set A is defined by

∂A = A ∩ RN \ A.

For E ⊂ RN the characteristic function is denoted by χE and we write 2E for the set of
all subset of E.

The symbol
B(x, r) =

{
y ∈ RN : |x − y| < r

}
denotes the open ball with center x and radius r, and

B(x, r) =
{
y ∈ RN : |x − y| ≤ r

}
will stand for the closed ball.

We use the standard notation Ck(Ω;Rm) for the k−times continuously differentiable
functions on some domain Ω, for m ∈ N and k = 0 (continuous functions),1, 2, . . . ,∞. We
abbreviate Ck(Ω;R) ≡ Ck(Ω) and C0(Ω) ≡ C(Ω). The subspace C0(Ω) and C∞0 (Ω) consist
of all those function in C(Ω) and C∞(Ω), respectively, which have compact support in Ω.

If α = (α1, . . . , αN) is an N−tuple non-negative integers, α is called a multi-index and
the length of α is

|α| =

N∑
i=1

αi.

The higher order derivatives operators are defined by

Dα =
∂|α|

∂xα1
1 · · · ∂xαN

N

.

The gradient of u ∈ C1(Ω) is

∇u =

(
∂u
∂x1

, . . . ,
∂u
∂xN

)
.

Let Ω be a open bounded subset of RN and 0 < γ ≤ 1. We say that f : Ω → R is
Lipschitz continuous if for all x, y ∈ Ω,

| f (x) − f (y)| ≤ C|x − y|,

for some constant C. It turns out to be useful to consider also functions f satisfying a
variation of the above inequality, namely

| f (x) − f (y)| ≤ C|x − y|γ ∀ x, y ∈ Ω,

for some constant C. Such a function is said to be Hölder continuous with exponent γ; and
locally Hölder continuous with exponent γ if f is Hölder continuous with exponent γ on
every compact subset of Ω.

Clearly if f is Lipschitz (Höder) continuous, then f is continuous.
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Example 1.1.1. The function f : B(0, 1) → R given by f (x) = |x|β, 0 < β < 1 is Hölder
continuous with exponent β, and is Lipschitz continuous when β = 1.

The Hölder spaces Ck,γ(Ω) (Ck,γ
loc(Ω)) are defined as the subspaces of Ck(Ω) consisting

of functions whose k−th order partial derivatives are Hölder continuous (locally Hölder
continuous) with exponent γ in Ω. For simplicity, we write

C0,γ
loc (Ω) ≡ Cγ

loc(Ω) and C0,γ(Ω) ≡ Cγ(Ω),

for each 0 < γ < 1.

We will say that Ω is a Lipschitz (smooth) bounded domain when Ω is a bounded
domain and its boundary is Lipschitz (smooth).

If Ω is a smooth bounded domain, ν and ∂
∂ν

denote the unit outer normal vector along
∂Ω and the outer normal derivative, respectively.

1.2 Banach spaces

Here, we give the functional analysis background that will be needed in this thesis.

Let E be a real linear space. A function ‖ · ‖ : E → [0,+∞] is called a norm if

(i) ‖x‖ ≥ 0 for all x ∈ E, ‖x‖ = 0 if only if x = 0,

(ii) ‖λx‖ = |λ|‖x‖ for all x ∈ E, λ ∈ R,

(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ E, (triangle inequality).

A linear space E equipped with a norm is called a normed linear space. A normed linear
space E is a metric space under metric ρ defined by

ρ(x, y) = ‖x − y‖ ∀x, y ∈ E.

Hereafter, we assume that E is a normed linear space.

We say a sequence {xn}n∈N in E converges to x ∈ E, written

xn → x,

if
lim
n→∞
‖xn − x‖ = 0.

A sequence {xn}n∈N in E is called a Cauchy sequence if for each ε > 0 there exists
n0 ∈ N such that

‖xn − xm‖ < ε ∀ n,m > n0.
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E is a complete space if each Cauchy sequence in E converges and E is called a Banach
space if E is a complete normed linear space.

We say E is a separable space if E contains a countable dense subset.

Example 1.2.1. Euclidean space RN is a Banach space under the standard norm.

Example 1.2.2. Let Ω be an open bounded subset of RN . The space of functions Ck,γ(Ω)
is a Banach spaces under the norm:

‖u‖Ck,γ(Ω) =

k∑
j=0

|D ju|Ω + [Dku]γ;Ω,

where
|D ju|Ω = sup

|β|= j
sup
x∈Ω
|Dβu(x)| (0 ≤ j ≤ k),

and

[Dku]γ;Ω = sup
|β|=k

sup
x,y

x,y∈Ω

|Dβu(x) − Dβu(y)|
|x − y|γ

.

1.2.1 Hilbert spaces

Let H be a real linear space.

A function 〈, 〉 : H × H → R is said to be an inner product if

(i) 〈x, y〉 = 〈x, y〉 for each x, y ∈ E,

(ii) the function x→ 〈x, y〉 is linear for each y ∈ E,

(iii) 〈x, u〉 ≥ 0 for each u ∈ E,

(iv) 〈x, x〉 = 0 if only if x = 0.

If 〈, 〉 is an inner product, the associated norm is

‖x‖ := 〈x, x〉1/2 ∀ x ∈ H.

The Cauchy–Schwarz inequality states that

〈x, y〉 ≤ ‖x‖‖y‖ ∀ x, y ∈ H.

A Hilbert space H is a Banach space endowed with an inner product which generates
the norm.

Example 1.2.3. Euclidean space RN is a Hilbert space under the inner product

x · y =

N∑
i=1

xiyi, x = (x1, . . . , xN), y = (y1, . . . , yN).
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1.2.2 Dual space

Let E and F be a Banach spaces.

A function L : E → F is a linear operator provided that

L(λx + γy) = λL(x) + γL(y) ∀ x, y ∈ E, λ, γ ∈ R.

We say a linear operator L : E → F is bounded if

‖L‖ = sup {‖L(x)‖F : x ∈ E, ‖x‖E ≤ 1} < ∞.

A bounded linear operator L : E → R is called a bounded lineal functional. We denote
by E∗ the set of all bounded linear functional on E. E∗ is the dual space of E.

Observe that E∗ is a Banach space with the norm

‖L‖E∗ = sup{‖L(x)‖F : x ∈ E, ‖x‖E ≤ 1} ∀ L ∈ E∗.

The dual space of E∗ is called the second dual of E and is denoted by E∗∗. Clearly, the
mapping Ψ : E → E∗∗ given by Ψ(x)( f ) = f (x) is a norm preserving, linear, one-to-one
mapping of E into E∗∗. If E∗∗ = Ψ(E), then we call E reflexive.

1.2.3 Weak and weak* convergence

Let E be a Banach space.

Definition 1.2.4. A sequence {xn}n∈N in E converges weakly to x ∈ E, written

xn ⇀ x,

if
L(xn)→ L(x) ∀ L ∈ E∗.

Remark 1.2.5. It easy to check that

(i) if xn → x, then xn ⇀ x,

(ii) any weakly convergent sequence is bounded,

(iii) if xn ⇀ x weakly in E and Ln → L strongly in E∗, then Ln(xn)→ L(x),

(iv) if xn ⇀ x, then ‖x‖ ≤ lim inf
n→∞

‖xn‖.

The proofs of the following theorems can be found in [Y].
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Theorem 1.2.6. Let E be a reflexive Banach space and let {xn}n∈N be a bounded sequence
in E. Then, there exists a subsequence {xn j} j∈N of {xn}n∈N and x ∈ E such that

xn j ⇀ x.

In other words, bounded sequences in a reflexive Banach space are weakly pre-
compact.

Theorem 1.2.7 (Mazur’s Theorem). Let E be a reflexive Banach space. Then any convex,
closed subset of E is weakly closed.

Definition 1.2.8. A sequence {Ln}n∈N in E∗ converges weakly∗ to L ∈ E∗, written

Ln
∗
⇀ L,

if
Ln(x)→ L(x) ∀ x ∈ E.

Remark 1.2.9. It easy to check that

(i) if Ln → L, then Ln
∗
⇀ L,

(ii) if Ln ⇀ L, then Ln
∗
⇀ L,

(iii) if Ln
∗
⇀ L, then {Ln}n∈N is bounded and ‖L‖E∗ ≤ lim inf

n→∞
‖Ln‖E∗ ,

(iv) if Ln
∗
⇀ L weakly∗ in E∗ and if xn → x strongly in E, then Ln(xn)→ L(x).

1.3 Measure theory

This section provides a quick outline of some fundamentals of measure theory.

1.3.1 Measure

Let X be a nonempty subset of RN .

A measure µ is a function from 2X into [0,+∞] such that µ(∅) = 0 and

µ(A) ≤
∞∑

n=1

µ(An) whenever A ⊂
∞⋃

n=1

An.

Throughout the section, X and µ denote a nonempty of RN and a measure on X, respec-
tively.
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If a set A ⊂ X satisfies

µ(E) = µ(E ∩ A) + µ(E \ A) ∀ E ⊂ X,

then we say A is a µ−measurable.
Remark 1.3.1. Observe that

(i) if µ(A) = 0 then A is µ−measurable,

(ii) A is measurable if and only if X \ A is µ−measurable,

(iii) if A is µ−measurable and B ⊂ X, then µ(A ∪ B) = µ(A) + µ(B) − µ(A ∩ B).

Some important examples,

Example 1.3.2 (Lebesgue Measure). We consider the closed N−dimensional cube

Q = {x : a j ≤ x j ≤ b j, j = 1, . . . ,N},

and their volumes

v(Q) =

N∏
j=1

(b j − a j).

For any A ⊂ RN , we define its Lebesgue measure |A| by

|A| = inf

 ∞∑
n=1

v(Qn) : A ⊂
∞⋃

n=1

Qn,Qn is a cube ∀ n ∈ N

 .
If µ is the Lebesgue measure, we say that A ⊂ RN is measurable in place of

µ−measurable.

Example 1.3.3 (d−dimensional Hausdorff measure). For any A ⊂ RN , let us denote by
diam(A) the diameter of A, i.e.,

diam A = inf
{
‖x − y‖ : x, y ∈ RN

}
.

Now, fix d > 0 and let E be any subset of RN . Given ε > 0, let

Hd
ε (E) = inf

 ∞∑
n=1

α(d)
(
diam A j

2

)d

: A ⊂
∞⋃

n=1

An, diam C j ≤ ε


where

α(d) =
πd/2

Γ
(

d
2 + 1

) .
Here Γ(d) =

∫ ∞
0

e−tts−1 dt, (0 < d < ∞), is the usual gamma function.

Note thatHd
ε (E) is monotone decreasing in ε since the larger ε is, the more collections

of sets are permitted. Thus, the limit limε→0H
d
ε (E) exists. Let

Hd(E) = sup
{
Hd

ε (E) : ε > 0
}

= lim
ε→0
Hd

ε (E).

Hd(E) is called d−dimensional Hausdorff measure.
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Proposition 1.3.4. Let {An}n∈N be a sequence of µ−measurable sets.

1. The sets ⋃
n∈N

An and
⋂
n∈N

An

are µ− measurable.

2. If the sets {An}n∈N are pairwise disjoint, then

µ

 ∞⋃
n=1

An

 =

∞∑
n=1

µ(An).

3. If An ⊂ An+1 for each n ∈ N, then

µ

 ∞⋃
n=1

An

 = lim
n→∞

µ(An).

4. If An+1 ⊂ An for each n ∈ N and µ(A1) < ∞, then

µ

 ∞⋂
n=1

An

 = lim
n→∞

µ(An).

Proof. See [EG]. �

A collection of subset Σ ⊂ 2X is a σ−algebra provided that

(i) ∅, X ∈ Σ;

(ii) A ∈
∑

implies X \ A ∈ Σ;

(iii) {An}n∈N ⊂ Σ implies
⋃

n∈N An ∈ Σ.

The collection of all µ−measurable subset of X form a σ−algebra. The smallest
σ−algebra of RN that contains the open sets is called the Borel σ−algebra of RN .

Now we introduce certain classes of measures.

Definition 1.3.5. We say that

(i) µ is regular if for each set A ⊂ X there exists a µ−measurable set B such that A ⊂ B
and µ(A) = µ(B);

(ii) µ is Borel regular if every open set is µ−measurable and if for each A ⊂ X there
exists a Borel set B ⊂ X such that A ⊂ X and µ(A) = µ(B);
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(iii) µ is a Radon measure if µ is Borel regular and µ(K) < ∞ for each compact set
K ⊂ X.

Let P(x) be a statement or formula that contains a free variable x ∈ X. We say that P(x)
holds for µ−a.e. (µ−almost every) x ∈ X if

µ({x ∈ X : P(x) is false}) = 0.

If X is understood from context, then we simply say that P(x) holds µ-a. e. and when µ is
the Lebesgue measure, a.e. is used in place of µ−a.e.

Lastly, we give an important result about the Hausdorff measure, for the proof see [EG].

Theorem 1.3.6. The N− dimensional Hausdorff measure is equal to the Lebesgue mea-
sure on RN .

1.3.2 Measurable function and integration

A function f : X → [−∞,+∞] is called µ−measurable if for each open U ⊂ R, f −1(U)
is µ−measurable. If µ is the Lebesgue measure, we say that f is measurable in place of
µ−measurable.

Proposition 1.3.7. We have that

1. if f , g : X → R are µ−measurable, then so are f +g, f g, | f |,min{ f , g} and max{ f , g}.
the function f/g is also µ−measurable, provided g , 0 on X;

2. if the functions fn : X → [−∞,+∞] are µ−measurable (n ∈ N), then inf{ fn : n ∈ N},
sup{ fn : n ∈ N}, lim infn→∞ fn and lim supn→∞ fn are also µ−measurable;

3. if f : X → [0,+∞] is µ−measurable. Then there exist µ−measurable sets {An}n∈N in
X such that

f =

∞∑
n=1

1
n
χAn .

Proof. See [EG]. �

Let Ω be a domain in RN and let µ a measure on Ω. The support of a µ−measurable
function f , supp f , is the complement of the largest open set which f vanishes µ−a.e.

Observe that, if µ is the Lebesgue measure and f is continuous on Ω, this definition of
support coincides with the definition that we gave in Section 1.1.

Given f : X → [−∞,+∞], we denote by

f + = max{ f , 0} and f − = min{ f , 0}.
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Observe that f = f + − f −.

A function g : X → [−∞,+∞] is called a simple function if the image of g is countable.

Our next task is to define the integrals of a µ−measurable function.

We start with a non-negative simple µ−measurable function g defined on X. We define
the integral of g over X as ∫

X
g dµ =

∑
0≤y≤+∞

yµ
(
g−1(y)

)
.

Then, for f : X → [0,+∞] µ−measurable we define the integral of f by∫
X

f dµ = sup
∫

X
g dµ,

the supremum being taken over all simple µ−measurable function g such that 0 ≤ g ≤ f
µ− a.e.

Finally, a µ−measurable function f is called µ−integrable if∫
X
| f | dµ < +∞,

in which case we write ∫
X

f dµ =

∫
X

f + dµ −
∫

X
f − dµ.

When µ is the Lebesgue measure, dx is used in place of dµ.

Given µ a Radon measure. We write

µb f

provided

µb f (K) =

∫
K

f dµ

holds for all compact sets K. Note µbA = µbχA.

We now give the limit theorems (for the proofs, see [EG]).

Lemma 1.3.8 (Fatou’s Lemma). If fn : X → [0,+∞] are µ−measurable (n ∈ N), then∫
X

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
X

fn dµ.

Theorem 1.3.9 (Monotone Convergence Theorem). Let fn : X → [0,+∞] be
µ−measurable (n ∈ N), with fn ≤ fn+1 for all n ∈ N. Then∫

X
lim
n→∞

fn dµ ≤ lim
n→∞

∫
X

fn dµ.
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Theorem 1.3.10 (Dominate Convergence Theorem). Suppose { fn}n∈N is a sequence of
µ−measurable functions such that

f (x) = lim
n→∞

fn(x)

exists µ−a.e. If there is a function g µ−integrable such that | fn| ≤ g µ− a.e. for each
n ∈ N, then f is µ−integrable and

lim
n→∞

∫
X
| fn − f | dµ = 0.

Theorem 1.3.11. Assume f and { fn}n∈N are µ−measurable and

lim
n→∞

∫
X
| fn − f | dµ = 0.

Then there exists a subsequence { fn j} j∈N of { fn}n∈N such that

lim
j→∞

fn j(x) = f (x) µ − a. e.

The following result can be easily deduced from [LL] (Theorem 1.14 p.28).

Theorem 1.3.12 (Bathtub Principle). Let f be a real-valued, measurable function on X
such that µ({x : f (x) > t}) is finite for all t ∈ R. Let the number G > 0 be given and define
the class C of measurable functions on X by

C =

{
g : 0 ≤ g(x) ≤ 1∀ x and

∫
X

g(x) dµ = G
}
.

Then the maximization problem

I = sup
{∫

X
f (x)g(x) dµ : g ∈ C

}
is solved by

g(x) = χ{y : f (y)>s}(x) + cχ{y : f (y)=s}(x), (1.1)

where
s = inf{t : µ({x : f (x) ≥ t}) ≤ G}

and
cµ({x : f (x) = s}) = G − µ({x : f (x) > s}).

The maximizer given in (1.1) is unique if G = µ({x : f (x) > s}) or if G = µ({x : f (x) ≥ s}).
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1.4 Lp−spaces

Throughout this section X is a nonempty subset of RN and µ is positive measure on X.

Let p be a positive real number. We denote by Lp(X, µ) the class of all µ−measurable
functions f , defined on X, for which ∫

X
| f |p dµ < ∞.

When µ is the Lebesgue measure, Lp(X) is used in place of Lp(X, µ).

The functional ‖ · ‖Lp(X,µ) defined by

‖ f ‖Lp(X,µ) =

(∫
X
| f |p dµ

) 1
p

is a norm on Lp(X, µ) provided 1 ≤ p < ∞.

By Lp
loc(X, µ) we denote the set of all µ−measurable function f defined µ−a.e. on X, for

which f ∈ Lp(K, µ) for every compact set K ⊂ X

A function f , µ−measurable on X, is said to be essentially bounded on Ω provided there
exists a constant K for which | f (x)| ≤ K µ−a.e. on X. The greatest lower bound of such
constants K is called the essential supremum of | f | on X and is denoted

ess sup{| f (x)| : x ∈ X}.

We denote by L∞(X, µ) the vector space consisting of all function f that are essentially
bounded on X. The functional ‖ · ‖ defined by

‖ f ‖∞ = ess sup{| f (x)| : x ∈ X}

is a norm on L∞(X, µ).

If µ is the Lebesgue measure, L∞(X) is used in place of L∞(X, µ).

Let 1 ≤ p ≤ ∞ we denote by p′ the number
∞ if p = 1,
p

p − 1
if 1 < p < ∞,

1 if p = ∞,

so that 1 ≤ p′ ≤ ∞ and 1/p + 1/p′ = 1. p′ is called the exponent conjugate to p.

For the proofs of the followings theorems, see [Ru1].

Theorem 1.4.1 (Höder’s inequality). If 1 ≤ p ≤ ∞ and f ∈ Lp(X, µ), g ∈ Lp′(X, µ) then
f g ∈ L1(X, µ) and ∫

X
| f g| dµ ≤ ‖ f ‖Lp(X,µ)‖g‖Lp′ (X,µ).
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Theorem 1.4.2. Let 1 ≤ p ≤ ∞, then Lp(X, µ) is a Banach space. Lp(X, µ)∗ = Lp′(X, µ)
for all 1 ≤ p < ∞ and L1(X, µ) ⊂ L∞(X, µ)∗.

Corollary 1.4.3. L2(X, µ) is a Hilbert space with respect to the inner product

〈 f , g〉 =

∫
Ω

f g dµ.

Theorem 1.4.4. If 1 ≤ p ≤ ∞, a Cauchy sequence in Lp(X, µ) has a subsequence con-
verging pointwise almost everywhere on Ω.

The proofs of the next theorems can be found in [B].

Theorem 1.4.5. Let Ω be a domain in RN . Then L1(Ω) is a separable Banach space and
Lp(X, µ) is a separable, reflexive and uniformly convex Banch space for each 1 < p < ∞.

Theorem 1.4.6. Let Ω be a domain in RN . Then C∞0 (Ω) is dense in Lp(Ω) if 1 ≤ p < ∞.

Proposition 1.4.7. Let Ω be a domain in RN and let A > 0. The set{
φ ∈ L∞(Ω) : 0 ≤ φ ≤ 1 and

∫
Ω

φ(x) dx = A
}

is the closure in the weak∗ topology in L∞(Ω) of the set of characteristic functions

{χE : E ⊂ Ω and |E| = A}.

1.5 Rearrangements of functions

Here, we recall some well-known facts concerning the rearrangements of functions. They
can be found, for instance, in [Bu1, Bu2].

Throughout the section, Ω is a domain in RN , α ∈ {N − 1,N} and

Xα =

∂Ω if α = N − 1
Ω if α = N

and Hα =

HN−1 if α = N − 1
HN if α = N.

Definition 1.5.1. Given two functions f , g : Xα → R H
α−measurable, we say that f is a

rearrangement of g if

Hα({x ∈ Xα : f (x) ≥ t}) = Hα({x ∈ Xα : g(x) ≥ t}) ∀ t ∈ R.

Lemma 1.5.2. Let f , g : Xα → R be Hα−measurable functions, and suppose that f is a
rearrangement of g. Then

(i) For any Borel set A ⊂ R, we haveHα( f −1(A)) = Hα(g−1(A)).



14 Preliminaries

(ii) If φ : R→ R is Borel measurable then φ ◦ f is a rearrangement of φ ◦ g.

(iii) If f ∈ L1(Xα,H
α) then g ∈ L1(Xα,H

α) and∫
Xα

f dHα =

∫
Xα

g dHα.

(iv) If 1 ≤ p < ∞ and f ∈ Lp(Xα,H
α) then f ∈ Lp(Xα,H

α) ‖ f ‖Lp(Xα,Hα) = ‖g‖Lp(Xα,Hα).

Proof. See [Bu2]. �

Now, given f0 ∈ Lp(Xα,H
α) the set of all rearrangements of f0 is denoted by R( f0) and

R( f0) denotes the closure of R( f0) in Lp(Xα,H
α) with respect to the weak topology.

Theorem 1.5.3. Let 1 ≤ p < ∞ and let p′ be the conjugate exponent of p. Let f0 ∈

Lp(Xα,H
α), f0 . 0 and let g ∈ Lp′(Xα,H

α). Then, there exists f∗, f ∗ ∈ R( f0) such that∫
Xα

f∗g dHα ≤

∫
Xα

f g dHα ≤

∫
Xα

f ∗g dHα ∀ f ∈ R( f ).

Proof. The proof follows from Theorem 4 in [Bu1]. �

Theorem 1.5.4. Let 1 ≤ p ≤ ∞ and let p′ be the conjugate of p. Let f0 ∈ Lp(Xα,H
α),

f0 . 0 and let g ∈ Lp′(Xα,H
α).

If the linear functional L( f ) =
∫

Xα
f g dHα has a unique maximizer f ∗ relative to R( f0)

then there exists an increasing function φ such that f ∗ = φ ◦ gHα−a.e. in Ω.

Furthermore, if the linear functional L( f ) has a unique minimizer f∗ relative to R( f0)
then there exists a decreasing function ψ such that f∗ = ψ ◦ gHα−a.e. in Ω.

Proof. The proof follows from Theorem 5 in [Bu1]. �

1.6 Sobolev spaces

Let Ω be a domain in RN and u ∈ L1
loc(Ω). For α a multi-index, |α| ≥ 1, the function

vα ∈ L1
loc(R

N) is called weak (or distributional) derivative of u (of order α) if the identity∫
Ω

vαφ dx = (−1)|α|
∫

Ω

uDαφ dx.

holds for every φ ∈ C∞0 (Ω). Then vα is denoted by Dαu.

We call a function weakly derivative if all its weak derivatives of first order exist. Let
us denote the linear space of weakly derivative function by W1(Ω). Observe that C1(Ω) is
included in W1(Ω).

For the proof of the following lemmas, see [GT].
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Lemma 1.6.1. Let u ∈ W1(Ω). Then u+, u− and |u| ∈ W1(Ω).

Lemma 1.6.2. Let Ω be a bounded domain in RN and let u ∈ W1(Ω). Then ∇u = 0 a.e.
on any set where u is constant.

For k ∈ N and 1 ≤ p ≤ ∞, we define the Sobolev space by

Wk,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ n}.

When p = 2, Hk(Ω) is used in place of Wk,2(Ω).

The space Wk,p(Ω) is a Banch space if equipped with the norm

‖u‖Wk,p(Ω) =

∑
|α|≤k

‖Dαu‖p
Lp(Ω)


1
p

.

We denote by Wk,p
loc (Ω) the set of all functions u defined on Ω, for which u ∈ Wk,p(K)

for every compact K ⊂ Ω.

Further, the space Wk,p
0 (Ω) is defined as the closure of C∞0 (Ω) in the space Wk,p(Ω).

Theorem 1.6.3. Wk,p(Ω) is separable if 1 ≤ p < ∞, and is reflexive and uniformly convex
if 1 < p < ∞. In particular, Hk(Ω) is a separable Hilbert space with inner product

〈u, v〉k =
∑

0≤|α|≤k

∫
Ω

DαuDαv dx.

Proof. See [A]. �

Theorem 1.6.4. Assume u ∈ Wk,p(Ω) for some 1 ≤ p < ∞. Then there exists a sequence
{φn}n∈N in Wk,p(Ω) ∩C∞(Ω) such that

φn → u strongly in Wk,p(Ω).

Proof. See [EG]. �

Theorem 1.6.5 (Rellich–Kondrachov Theorem). Let Ω be a Lipschitz bounded domain.
Then,

• if 1 < p < N, W1,p(Ω) is embedded in Lq(Ω) for all q ∈ [1, p∗) where p∗ = N p/(N−p),

• if p = N, W1,p(Ω) is embedded in Lq(Ω) for all q ∈ [1,+∞),

• if p > N, W1,p(Ω) is embedded in C(Ω).

Moreover, all the embeddings are compact.
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Proof. See [B]. �

Theorem 1.6.6 (Trace Theorem). Assume Ω is a Lipschitz bounded domain and
1 ≤ p < ∞. There exist a bounded linear operator T : W1,p(Ω) → Lp(∂U) such that
Tu = u on ∂Ω for all u ∈ W1,p(Ω) ∩ C(Ω). Furthermore, for all φ ∈ C1(RN;RN) and
u ∈ W1,p(Ω), ∫

Ω

u div φ dx = −

∫
Ω

∇u · φ dx +

∫
∂Ω

〈φ, ν〉Tu dHN−1,

where ν denoting the unit outer normal to ∂Ω.

Proof. See [EG]. �

The function Tu is called the trace of u on ∂Ω.

Theorem 1.6.7 (Sobolev Trace Embedding Theorem). Let Ω be a Lipschitz bounded do-
main. Then W1,p(Ω) is embedded in Lq(∂Ω) for all q ∈ [1, p∗) wherep∗ =

p(N−1)
N−p if 1 < p < N,

p∗ = +∞ if p ≥ N.

Moreover, the embedding is compact.

Proof. See [GT]. �

1.7 Spherical Symmetrization

In this section, we consider the case where Ω is the unit ball, Ω = B(0, 1).

Spherical symmetrization of a measurable set. Given a measurable set A ⊂ RN , the
spherical symmetrization A∗ of A is constructed as follows: for each r, take A ∩ ∂B(0, r)
and replace it by the spherical cap of the same area and center reN . This can be done for
almost every r. The union of these caps is A∗.

Now, we define spherical symmetrization of measurable function. Given a measurable
function u ≥ 0. The spherical symmetrization u∗ of u is constructed by symmetrizing the
super-level sets so that, for all t, {u∗ ≥ t} = {u ≥ t}∗. See [K, Sp].

The following theorem is proved in [K] (see also [Sp]).
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Theorem 1.7.1. Let u ∈ W1,p(B(0, 1)) and let u∗ be its spherical symmetrization. Then
u∗ ∈ W1,p(B(0, 1)) and ∫

B(0,1)
|∇u∗|p dx ≤

∫
B(0,1)
|∇u|p dx,∫

B(0,1)
|u∗|p dx =

∫
B(0,1)
|u|p dx,∫

∂B(0,1)
|u∗|p dHN−1 =

∫
∂B(0,1)

|u|p dHN−1,∫
B(0,1)

(αχD)∗|u∗|p dx ≤
∫

B(0,1)
αχD|u|p dx,

(1.2)

where D ⊂ B(0, 1) and (αχD)∗ = −(−αχD)∗.

1.8 p−Laplace equations

In this section we give some results regarding solutions of some p−Laplace type equa-
tions.

Given Ω a smooth bounded domain, 1 < p < ∞ and V ∈ Lq(Ω) (1 ≤ q < ∞), consider
the operator HV , which has the form

HVu := −∆pu + V(x)|u|p−2u, (1.3)

where ∆pu = div(|∇u|p−2∇u) is the usual p−Laplacian. Suppose that u ∈ W1,p(Ω) and V
is a measurable function that satisfy the following assumptions:

V ∈ Lq(Ω) where

q > N
p if 1 < p ≤ N,

q = 1 if p > N.
(H1)

We say u is a weak solution of HVu = 0 (≥ 0, ≤ 0) in Ω if

D(u, v) :=
∫

Ω

|∇u|p−2∇u · ∇w dx +

∫
Ω

V(x)|u|p−2uw dx = 0 (≤ 0, ≥ 0), (1.4)

for each w ∈ C1
0(Ω). Let f ∈ Lp′(Ω), u ∈ W1,p(Ω) is a weak solution of the equation

HVu = f in Ω, (1.5)

if

D(u,w) = J(w) :=
∫

Ω

f w dx ∀w ∈ C1
0(Ω). (1.6)

The aim of this section is to study the Dirichlet problem for the equation (1.5).
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We say u ∈ W1,p(Ω) is a weak solution of the Dirichlet problemHV(u) = f in Ω

u = 0 on ∂Ω,
(1.7)

if u is a weak solution of (1.5) and u ∈ W1,p
0 (Ω).

Note that

|D(u,w)| ≤ ‖∇u‖p−1
Lp(Ω)‖∇w‖Lp(Ω) +

∫
Ω

(|V(x)|
1
p′ |u|p−1)(|V(x)|

1
p |w|) dx

≤ ‖∇u‖p−1
Lp(Ω)‖∇w‖Lp(Ω) +

(∫
Ω

|V(x)||u|p dx
) 1

p′
(∫

Ω

|V(x)||w|p dx
) 1

p

≤ ‖∇u‖p−1
Lp(Ω)‖∇w‖Lp(Ω) + C‖V‖Lq(Ω)‖u‖

p−1
W1,p(Ω)‖w‖W1,p(Ω)

≤ (1 + C‖V‖q)‖u‖p−1
W1,p(Ω)‖w‖W1,p(Ω).

Hence, for fixed u ∈ W1,p(Ω), the mapping w 7→ D(u,w) is a bounded linear functional
on W1,p

0 (Ω). Consequently the validity of the relations (1.4) for w ∈ C1
0(Ω) imply their

validity for w ∈ W1,p
0 (Ω). We remark that, for fixed u ∈ W1,p(Ω), HVu may be defined as

an element of the dual space of W1,p
0 (Ω), W−1,p′(Ω), HVu(w) = D(u,w), w ∈ W1,p

0 (Ω), and
hence the Dirichlet problem (1.7) can be studied for f ∈ W−1,p′(Ω).

1.8.1 Solvability of the Dirichlet problem

We need the following notation:

S q := inf


∫

Ω
|∇v|p dx(∫

Ω
|v|q dx

) p
q

: v ∈ W1,p
0 (Ω)

 . (1.8)

This constant S q is positive and is the best (largest) constant in the Sobolev–Poincaré
inequality

S ‖v‖p
Lq(Ω) ≤ ‖∇v‖p

Lp(Ω) ∀ v ∈ W1,p
0 (Ω).

We have the following,

Theorem 1.8.1. Let V be a measurable function that satisfy the assumptions (H1) and

‖V−‖Lq(Ω) < S pq′ or V ≥ −S p + δ for some δ > 0. (H2)

Then the Dirichlet problem (1.7) has a unique weak solution for any f ∈ Lp′(Ω).
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Proof. The proof of this theorem is standard. First observe that the weak solutions of
(1.7) are critical points of the functional ψ : W1,p

0 (Ω)→ R given by

ψ(u) :=
1
p

∫
Ω

|∇u|p dx +
1
p

∫
Ω

V(x)|u|p dx −
∫

Ω

f u dx.

Now, it is easy to see that ψ is bounded below, coercive, strictly convex and sequentially
weakly lower semi continuous. Therefore it has a unique critical point which is a global
minimum. �

It is proved in [GV] that solutions to (1.7) are bounded. We state the Theorem for future
reference.

Theorem 1.8.2 ([GV], Proposition 1.3). Assume 1 < p ≤ N, f ∈ Lq(Ω) for some q > N/p

and u ∈ W1,p
0 (Ω) is a solution to (1.7). Then u ∈ L∞(Ω) and there exists a constant

C = C(N, p, |Ω|) such that
‖u‖L∞(Ω) ≤ C‖ f ‖1/(p−1)

Lq(Ω) .

1.8.2 The strong maximum principle

Here we recall the classical maximum principles for HV .

Theorem 1.8.3 (Weak Maximum Principle). Let V be a measurable function that satisfy
the assumptions (H1) and (H2), f ∈ Lp′(Ω) and u ∈ W1,p

0 (Ω) be the weak solution of
(1.7). Then f ≥ 0 implies u ≥ 0 in Ω.

Proof. The proof follows using u− as a test function in the weak formulation of (1.7). See
[GT] for the case p = 2. Here is analogous. �

For the strong maximum principle, we need the following result

Theorem 1.8.4 (Harnack’s Inequality). Let u be a weak solution of problem (1.7) in a
cube K = K(3ρ) ⊂ Ω, with 0 ≤ u < M in K. Then

max {u(x) : x ∈ K(ρ)} ≤ C min {u(x) : x ∈ K(ρ)} ,

where C = C(N,M, ρ).

Proof. See [Tr]. �

Now we can prove the strong maximum principle for weak solutions of (1.7).

Theorem 1.8.5 (Strong Maximum Principle). Let u ∈ W1,p
0 (Ω) be a weak solution of

problem (1.7). Then, if f ≥ 0, f , 0,

u > 0 in Ω.

Proof. It follows from Theorems 1.8.2, 1.8.3 and 1.8.4. �
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1.8.3 The weighted eigenvalue problems

In this subsection we analyse the (nonlinear) weighted eigenvalue problems,HVu = λg|u|p−2u in Ω

u = 0 on ∂Ω,
(1.9)

with g ∈ Lq(Ω).

Theorem 1.8.6. Assume that V and g satisfy (H1). If V satisfies the assumption (H2) and
g+ . 0, then there exists a unique positive principal weighted eigenvalue λ(g,V) of (1.9)
and it is characterized by

λ(V, g) := inf
{∫

Ω

|∇u|p dx +

∫
Ω

V(x)|u|p dx : u ∈ W1,p
0 (Ω) and

∫
Ω

gu dx = 1
}
.

Proof. See [CRQ]. �

Obviously, if u is a minimizer, so is |u|; therefore we may assume u ≥ 0.

When g ≡ 1, λ(V) is used in place of λ(1,V) and λ(V) is called the first eigenvalue (or
simply eigenvalue).

In the case g ≡ 1, we can relax the assumption for V.

Theorem 1.8.7. Let V be a measurable functions that satisfy the assumptions (H1). Then
there exists u0 ∈ W1,p

0 (Ω) such thatλ(V) =

∫
Ω

|∇u0|
p dx +

∫
Ω

V(x)|u0|
p dx

‖u‖Lp(Ω) = 1.

Moreover, u0 is a weak solution of (1.9) with λ = λ(V). Finally, λ(V) is the lowest
eigenvalue of (1.9) with g ≡ 1.

For the proof we need the following Lemma

Lemma 1.8.8. Assume V be a measurable function that satisfy the assumptions (H1).
Then, given ε > 0, there exists a constant Dε > 0 such that∣∣∣∣∣∫

Ω

V(x)|v|p dx
∣∣∣∣∣ ≤ ε∫

Ω

|∇v|p dx + Dε‖V‖Lq(Ω)

∫
Ω

|v|p dx,

for any v ∈ W1,p
0 (Ω).

Proof. First we assume that 1 ≤ p ≤ N. Let us observe that q > N/p implies that pq′ < p∗.
Now the Lemma follows from Hölder’s inequality and the Sobolev embedding. In fact,
let us see that if 1 < r < p∗, there exists a constant Mε such that

‖v‖Lr(Ω) ≤ ε‖∇v‖Lp(Ω) + Mε‖v‖Lp(Ω) ∀ v ∈ W1,p
0 (Ω). (1.10)
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Assume (1.10) does not hold, then there exists ε0 > 0 and a sequence {vn}n∈N in W1,p
0 (Ω)

such that ‖vn‖Lr(Ω) = 1 and

ε0‖∇vn‖Lp(Ω) + n‖vn‖Lp(Ω) < 1

for all n ∈ N. But then {vn}n∈N is bounded in W1,p
0 (Ω) and ‖vn‖Lp(Ω) → 0. Now, by the

Rellich–Kondrachov Theorem, up to a subsequence, vn → v strongly in Lr(Ω), and so
‖v‖Lr(Ω) = 1. A contradiction.

Now, it is easy to check that (1.10) implies the lemma since q > N/p.

If p > N, the proof is similar to above case and is left to the reader. �

Proof of Theorem 1.8.7. Let {un}n∈N ⊂ W1,p
0 (Ω) be a minimizing sequence for λ(V), i.e.,∫

Ω

|∇un|
p dx +

∫
Ω

V(x)|un|
p dx→ λ(V) and ‖un‖Lp(Ω) = 1 ∀ n ∈ N.

Then there exists C > 0 such that∫
Ω

|∇un|
p dx +

∫
Ω

V(x)|un|
p dx ≤ C ∀ n ∈ N.

Since V satisfies the assumptions (H1), by Lemma 1.8.8, given ε > 0 there exists Dε such
that ∣∣∣∣∣∫

Ω

V(x)|un|
p dx

∣∣∣∣∣ ≤ ε‖∇un‖
p
Lp(Ω) + Dε‖V‖Lq(Ω)‖un‖

p
Lp(Ω),

for any n ∈ N. Then

(1 − ε)
∫

Ω

|∇un|
p dx − Dε‖V‖q ≤

∫
Ω

|∇un|
p dx +

∫
Ω

V(x)|un|
p dx ≤ C ∀ n ∈ N.

Fixing ε < 1, we get ∫
Ω

|∇un|
p dx ≤

C + Dε‖V‖Lq(Ω)

1 − ε
, ∀ n ∈ N.

Therefore {un}n∈N is bounded in W1,p
0 (Ω).

Now, by Rellich–Kondrachov Theorem, there exists a function u0 ∈ W1,p
0 (Ω) such that,

for a subsequence that we still call {un}n∈N,

un ⇀ u0, weakly in W1,p
0 (Ω), (1.11)

un → u0, strongly in Lp(Ω), (1.12)
un → u0, strongly in Lpq′(Ω). (1.13)

By (1.12), ‖u0‖Lp(Ω) = 1 so u0 , 0 and by (1.11) and (1.13)

λ(V) = lim
n→∞

∫
Ω

|∇un|
p dx +

∫
Ω

V(x)|un|
p dx ≥

∫
Ω

|∇u0|
p dx +

∫
Ω

V(x)|u0|
p dx.
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It is clear that u0 is an eigenfunction of HV with eigenvalue λ(V).

Finally, let λ be an eigenvalue of problem (1.9) with associated eigenfunction w ∈
W1,p

0 (Ω). Then

λ =

∫
Ω

|∇w|p dx +

∫
Ω

V(x)|w|p dx∫
Ω

|w|p dx
≥ λ(V).

This finishes the proof. �

Now, we prove that u0 has constant sign in Ω.

Lemma 1.8.9 ([C], Proposition 3.2). Let g and V be two measurable functions that satisfy
the assumption (H1). If u ∈ W1,p

0 (Ω) is a non-negative weak solution to (1.9) then either
u ≡ 0 or u > 0 for all x ∈ Ω.

Proof. The proof is a direct consequence of Harnack’s inequality. See [S]. �

We therefore immediately obtain,

Corollary 1.8.10. Under the assumptions of the previous Lemma, every eigenfunction
associated to the principal positive eigenvalue has constant sign.

Now, we recall a couple of results regarding the eigenvalue problem (1.9) when g ≡ 1.
We do not use these results in the rest of the thesis, but we include them here for com-
pleteness.

Proposition 1.8.11. If V satisfies the assumption (H1) and g ≡ 1, then there exists a
increasing, unbounded sequence of eigenvalues for the problem (1.9).

Proof. It is similar to [GAPA1, GAPA2]. �

Proposition 1.8.12. If V satisfies the assumption (H1) and g ≡ 1, then λ(V) is isolated in
the spectrum.

Proof. It is similar to [C]. �

Lastly, following [CRQ], we have that the principal eigenvalue λ(g,V) is simple. This
is, the only eigenfunction of HV associated to λ(V, g) are multiples of a single one, u0.

Lemma 1.8.13. Let g and V be two measurable functions that satisfy the assumption
(H1). Let u and v be two eigenfunction associated to λ(g,V). Then, there exists a constant
c ∈ R such that u = cv.
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1.9 BV functions

Throughout, this section Ω denote an open subset of RN .

We say that a function f ∈ L1(Ω) has bounded variation in Ω if

sup
{∫

Ω

f divϕ dx : ϕ ∈ C1
c (Ω;RN) and |φ| ≤ 1

}
< ∞.

The space of function of bounded is denoted by

BV(Ω).

A measurable subset E ⊂ RN has finite perimeter in Ω if

χE ∈ BV(Ω).

A function f ∈ L1
loc(Ω) has locally bounded variation in Ω if for each open set U ⊂⊂ Ω

sup
{∫

Ω

f divϕ dx : ϕ ∈ C1
c (U;RN) and |φ| ≤ 1

}
< ∞.

We write
BVloc(Ω).

A measurable subset E ⊂ RN has locally finite perimeter in Ω if

χE ∈ BVloc(Ω).

Now, we give the structure theorem.

Theorem 1.9.1 (Structure theorem for BVloc functions). Let f ∈ BVloc(Ω). Then there
exists a Radon measure µ on Ω and µ−measurable function σ : Ω→ RN such that

1. |σ(x)| = 1 µ−a.e., and

2.
∫

Ω
f divϕ dx = −

∫
Ω
〈ϕ, σ〉 dµ

for all ϕ ∈ C1
c (Ω;RN).

Proof. See [EG]. �

If f ∈ BVloc(Ω), we will henceforth write

‖D f ‖
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for the measure µ, and
[D f ] = ‖D f ‖bσ

Hence the assertion 2 in above theorem reads∫
Ω

f divϕ dx = −

∫
Ω

〈ϕ, σ〉 dµ = −

∫
Ω

ϕ d[D f ] ∀ϕ ∈ C1
c (Ω;RN).

In the case that f = χE, and E has locally finite perimeter in Ω, we will hereafter write

‖∂E‖

for the measure µ, and
νE ≡ −σ

Consequently, ∫
E

div φ dx =

∫
Ω

〈φ, νE〉 d‖∂E‖ ∀ϕ ∈ C1
c (Ω;RN).

We now give a characterization of the measure ‖D f ‖, for the proof see [EG].

Theorem 1.9.2. Given f ∈ BVloc(Ω). For each V ⊂⊂ Ω, we have

‖D f ‖(V) = sup
{∫

E
divϕ dx : ϕ ∈ C1

c (V;RN), |ϕ| ≤ 1
}
.

Example 1.9.3. Assume E is a smooth, open subset of RN and HN−1(∂E ∩ K) < ∞ for
each compact set K ⊂ Ω. Then, for each V ⊂⊂ Ω and ϕ ∈ C1

c (V,RN), with |ϕ| ≤ 1, we
have that ∫

E
divϕ dx = −

∫
∂E
〈ϕ, ν〉 dHN−1,

ν denoting the outward unit normal along ∂E.

Hence ∫
E

divϕ dx =

∫
∂E∩V
〈ϕ, ν〉 dx ≤ HN−1(∂E ∩ V) < ∞.

Thus χE ∈ BVloc(Ω). Moreover,

‖∂E‖(Ω) = HN−1(∂E ∩Ω)

and
νE = ν HN−1 − a.e. on ∂E ∩Ω.

Our next aim is to give a Gauss-Green theorem for sets with locally finite perimeter in
RN .

Let E be a set of locally finite perimeter in RN . The subset of the topological boundary
∂E defined by

∂∗E :=
{

x ∈ RN : lim sup
r→0

|B(x, r) ∩ E|
|B(x, r)|

> 0 and lim sup
r→0

|B(x, r) \ E|
|B(x, r)|

> 0
}
.

is called the measure theoretic boundary of E.
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Remark 1.9.4. The measure theoretic boundary may differ from the topological boundary
of a set of non-nullHN−1−measure. Indeed, for example, if N = 2 we consider

E = B(0, 1) \ {(x, y) : x = 0, 0 ≤ y < 1}.

Then, ∂∗E is the sphere but ∂E is the union of the sphere and {(x, y) : x = 0, 0 ≤ y ≤ 1}.

Lastly, we give the generalized Gauss-Green theorem, for the proof [AGM].

Theorem 1.9.5 (Gauss-Green Theorem). Let E ⊂ RN have locally finite perimeter.

1. ThenHN−1(∂∗E ∩ K) < ∞ for each compact set K ⊂ RN .

2. Furthermore, forHN−1−a.e. x ∈ ∂∗E, there exist a unique unit vector νE(x), called
the generalized outer normal vector to E at x, such that∫

E
div φ dx =

∫
∂∗E
〈φ, νE〉 dHN−1

for all φ ∈ C1
c (RN;RN).



2

The first eigenvalue of the p−Laplacian plus a
potential

Here, we consider Schröedinger operators, that is elliptic operators L under perturbations
given by a potential V , in bounded regions. These operators appear in different fields of
applications such as quantum mechanics, stability of bulk matter, scattering theory, etc.

In Ashbaugh–Harrell [AsHa] the following problem is studied: Let L be a uniformly
elliptic linear operator and assume that ‖V‖Lq(Ω) is constrained but otherwise the potential
V is arbitrary. Can the maximal value of the first (fundamental) eigenvalue for the operator
L + V be estimated? And the minimal value? There exists optimal potentials? (i.e.
potentials V∗ and V∗ such that the first eigenvalue for L + V∗ is maximal and the first
eigenvalue for L + V∗ is minimal).

In [AsHa] these questions are answered in a positive way and, moreover, a characteri-
zation of these optimal potentials is given.

The purpose of this first chapter is the extension of the results of [AsHa] to the nonlinear
case. We are also interested in extending these results to degenerate/singular operators. As
a model of these operators, we take the p−Laplacian. This operator has been intensively
studied in recent years and is a model for the study of degenerated operators (if p > 2) and
singular operators (if 1 < p < 2). In the case p = 2 it agrees with the usual Laplacian. This
operator also serves as a model in the study of non-Newtonian fluids. See [ADT, AE].

Here we prove that, if one consider perturbations of the p−Laplacian by a potential V
with ‖V‖Lq(Ω) constrained, then there exists optimal potentials in the sense described above
and a characterizations of these potentials are given.

We want to remark that the proofs are not straightforward extensions of those in [AsHa]
since the proofs there are not, in general, variational. Moreover, some new technical dif-
ficulties arise since solutions to a p−Laplace type equation are not regular and, mostly,
since the eigenvalue problem for the p−Laplacian is far from being completely under-
stood.

The rest of the chapter is divided into four sections. In Section 2.1, we introduce
the exact problem that we will study trough this chapter. Section 2.2, we prove some
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properties of the first eigenvalue of HV respect to V. Finally, in Section 2.3 and 2.4, we
analyze the existence and characterization problem for maximal potential and minimal
potential, respectively.

2.1 The problems

Let Ω ⊂ RN be a connected smooth bounded domain. We consider the differential operator

HVu := −∆pu + V(x)|u|p−2u

where V ∈ Lq(Ω) (1 ≤ q ≤ +∞) and 1 < p < +∞. Let λ(V) be the lowest eigenvalue of
HV in W1,p

0 (Ω).

In this chapter we analyze the following problems: If B ⊂ Lq(Ω) is a convex, bounded
and closed set,

1. find sup{λ(V) : V ∈ B} and V ∈ B, if any, where this value is attained,

2. find inf{λ(V) : V ∈ B} and V ∈ B, if any, where this value is attained.

Here, we answer these questions positively, following the approach of Ashbaugh–
Harrell’s work for the case p = 2 and 1 ≤ N ≤ 3, see [AsHa, H].

2.2 Some properties of eigenvalue

We begin by proving some important properties of λ(·).

Lemma 2.2.1. λ : B→ R is concave.

Proof. Throughout the proof,A stand for the set

{u ∈ W1,p
0 (Ω) : ‖u‖Lp(Ω) = 1}.

Let V1, V2 ∈ B and 0 ≤ t ≤ 1. Then

λ (tV1 + (1 − t)V2) = inf
{∫

Ω

|∇u|p dx +

∫
Ω

(tV1 + (1 − t)V2) u dx : u ∈ A
}

≥ t inf
{∫

Ω

|∇u|p dx +

∫
Ω

V1u dx : u ∈ A
}

+ (1 − t) inf
{∫

Ω

|∇u|p dx +

∫
Ω

V2u dx : u ∈ A
}

= tλ(V1) + (1 − t)λ(V2),

as we wanted to prove. �



28 The first eigenvalue of the p−Laplacian plus a potential

Next we set M for which ‖V‖Lq(Ω) ≤ M for all V ∈ B.

Proposition 2.2.2. There exists a constant C > 0, depending only on p, q, M and Ω such
that

λ(V) ≤ C ∀V ∈ B.

Proof. Let u0 ∈ C1
0(Ω) be such that ‖u0‖Lp(Ω) = 1.

λ(V) ≤
∫

Ω

|∇u0|
p dx +

∫
Ω

V(x)|u0|
p dx

≤

∫
Ω

|∇u0|
p dx + ‖u0‖

p
L∞(Ω)

∫
Ω

V(x) dx

≤

∫
Ω

|∇u0|
p dx + ‖u0‖

p
L∞(Ω)|Ω|

1
q′ ‖V‖q

≤

∫
Ω

|∇u0|
p dx + ‖u0‖

p
L∞(Ω)|Ω|

1
q′ M

= C(p, q,M,Ω).

�

2.3 Maximizing potentials

In this section we prove that there exists an unique V∗ ∈ B such that

λ(V∗) = sup {λ(V) : V ∈ B}

and we characterize it.

Theorem 2.3.1. Let q > max{N/p, 1}. Then there exists V∗ ∈ B that maximizes λ(V).
Moreover if Vi ∈ B, i = 1, 2, are two maximizing potentials and ui ∈ W1,p

0 (Ω), i = 1, 2,
are the eigenfunction of HVi associated to λ(Vi) respectively, then u1 = u2 a.e. in Ω and
V1 = V2 a.e. in Ω.

Proof. Let λ∗ = sup {λ(V) : V ∈ B} and let {Vn}n∈N be a maximizing sequence in B, i.e.,

lim
n→∞

λ(Vn) = λ∗.

Note that, by Proposition 2.2.2, λ∗ is finite. As {Vn}n∈N ⊂ B and B is bounded, there exists
V∗ ∈ Lq(Ω) and a subsequence of {Vn}n∈N, which we denote again by {Vn}n∈N, such that

Vn ⇀ V∗ weakly in Lq(Ω).

By Mazur’s Theorem, V∗ ∈ B.

Let us see that λ∗ = λ(V∗). Given ε > 0, there exists u0 ∈ C1
0(Ω) such that

λ(V∗) ≥
∫

Ω

|∇u0|
p dx +

∫
Ω

V∗(x)|u0|
p dx − ε.
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Since Ω is bounded,

lim
n→∞

∫
Ω

Vn(x)|u0|
p dx =

∫
Ω

V∗(x)|u0|
p dx.

Therefore,

λ(V∗) + ε ≥

∫
Ω

|∇u0|
p dx +

∫
Ω

V∗(x)|u0|
p dx

=

∫
Ω

|∇u0|
p dx + lim

n→∞

∫
Ω

Vn(x)|u0|
p dx

= lim
n→∞

∫
Ω

|∇u0|
p dx +

∫
Ω

Vn(x)|u0|
p dx

≥ lim
n→∞

λ(Vn)

= λ∗.

Then, as V∗ ∈ B, λ(V∗) = λ∗.

We have just proved existence. Let us now show uniqueness.

Suppose that we have V1 and V2 two maximizing potentials and let V3 = V1+V2
2 . Since

B is convex and λ(·) is concave, we have V3 ∈ B and

λ(V3) ≥
λ(V1) + λ(V2)

2
= λ∗,

therefore V3 is also a maximizing potential.

We denote the associated normalized, positive eigenfunction by u1, u2 and u3 respec-
tively. If u3 , u1 or u3 , u2, since, by Theorem 1.8.13, there exists only one normalized
nonnegative eigenfunction,

λ∗ = λ(V3)

=

∫
Ω

|∇u3|
p dx +

∫
Ω

V3(x)|u3|
p dx

=
1
2

(∫
Ω

|∇u3|
p dx +

∫
Ω

V1(x)|u3|
p dx +

∫
Ω

|∇u3|
p dx +

∫
Ω

V2(x)|u3|
p dx

)
>
λ(V1) + λ(V2)

2
= λ∗,

a contradiction. Thus u1 = u2 = u3. Now we have,∫
Ω

|∇u1|
p−2∇u∇v dx +

∫
Ω

V1(x)|u1|
p−2u1v =

∫
Ω

λ∗|u1|
p−2u1v dx, (2.1)∫

Ω

|∇u1|
p−2∇u∇v dx +

∫
Ω

V2(x)|u1|
p−2u1v =

∫
Ω

λ∗|u1|
p−2u1v dx, (2.2)
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for all v ∈ W1,p
0 (Ω). Subtracting (2.2) from (2.1), we get∫

Ω

(V1(x) − V2(x)) |u1|
p−2u1v dx = 0 ∀ v ∈ W1,p

0 (Ω),

then
(V1(x) − V2(x)) |u1|

p−2u1 = 0 a.e. in Ω,

and therefore V1 = V2 a.e. in Ω. �

Remark 2.3.2. In the proof of Theorem 2.3.1 we only have used q > max{N/p, 1} to show
the existence of an eigenfunction for the lowest eigenvalue.

Assume now that the convex set B is the ball in Lq(Ω). Then we can prove that

λ∗(M) := max
{
λ(V) : V ∈ Lq(Ω) and ‖V‖q ≤ M

}
is increasing in M. We will need this in the sequel.

Theorem 2.3.3. Let λ∗ : R≥0 → R

λ∗(M) := max
{
λ(V) : V ∈ Lq(Ω) and ‖V‖q ≤ M

}
.

Then λ∗(·) increases monotonically.

Proof. Let 0 ≤ M1 < M2. Then, by Theorem 2.3.1, there exists V1 ∈ B(0,M1) such that
λ∗(M1) = λ(V1). Since ‖V1‖Lq(Ω) ≤ M1 < M2, there exists t ∈ R>0 such that

‖V1 + t‖Lq(Ω) ≤ M2.

Now, given u ∈ W1,p
0 (Ω), with ‖u‖Lp(Ω) = 1, we have∫

Ω

|∇u|p dx +

∫
Ω

(V1(x) + t)|u|p dx =

∫
Ω

|∇u|p dx +

∫
Ω

V1(x)|u|p dx + t

≥ λ(V1) + t.

Thus
λ(V1 + t) ≥ λ(V1) + t > λ(V1).

As (V1 + t) ∈ B(0,M2),

λ∗(M2) ≥ λ(V1 + t) > λ(V1) = λ∗(M1).

Then λ∗(·) increases monotonically. �

Remark 2.3.4. In the proof that λ∗(·) increases monotonically, what is actually proved is
that λ∗(M)↗ ∞ as M ↗ ∞.
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Let q > max{N/p, 1} and consider the case B = B(0,M) ⊂ Lq(Ω), for simplicity we take
M = 1. Observe that B is a convex, closed and bounded set.

Let V∗ ∈ B be such that
λ(V∗) = {λ(V) : V ∈ B}

and

V0 =
|V∗|

‖V∗‖Lq(Ω)
∈ S := ∂B

.

Let u0 ∈ W1,p
0 (Ω) be a normalized eigenfunction of HV0 associated to λ(V0), i.e.,

‖u0‖Lp(Ω) = 1 and

λ(V0) =

∫
Ω

|∇u0|
p dx +

∫
Ω

|V∗(x)|
‖V∗‖Lq(Ω)

|u0|
p dx.

Then

λ(V0) ≥
∫

Ω

|∇u0|
p dx +

∫
Ω

V∗(x)|u0|
p dx ≥ λ(V∗) = λ∗.

Thus, from uniqueness, V0 = V∗, from where ‖V∗‖Lq(Ω) = 1 and V∗ ≥ 0.

Therefore, if we take S = ∂B(0, 1), there exists V0 ≥ 0 in S such that

λ(V0) = max{λ(V) : V ∈ S } = max{λ(V) : V ∈ B}.

We now try to characterize V0. For this, we need the following notation: For any V ∈ S ,
we denote by TV(S ) the tangent space of S at V . It is well known that

TV(S ) =

{
W ∈ Lq(Ω) :

∫
Ω

|V |q−2VW dx = 0
}
.

Now, let W ∈ TV0(S ) and α : (−1, 1)→ Lq(Ω) be a differentiable curve such that

α(t) ∈ S ∀ t ∈ (−1, 1), α(0) = V0 and α̇(0) = W.

We denote by Vt = α(t) and λ(t) = λ(α(t)).

Let ut ∈ W1,p
0 (Ω) be the nonnegative normalized eigenfunction of HVt with eigenvalue

λ(t), i.e., ‖ut‖Lp(Ω) = 1 and

λ(t) =

∫
Ω

|∇ut|
p dx +

∫
Ω

Vt(x)|ut|
p dx.

We have the following,

Lemma 2.3.5. λ(t) is continuous at t = 0, i.e.,

lim
t→0

λ(t) = λ(0) = λ(V0) = λ∗.
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Proof. By Proposition 2.2.2, there exists C = C(Ω, q, p) > 0 such that

C >

∫
Ω

|∇ut|
p dx +

∫
Ω

Vt(x)|ut|
p dx,

and as q > N/p, by Lemma 1.8.8, given ε > 0 there exists Dε such that∣∣∣∣∣∫
Ω

Vt(x)|ut|
p dx

∣∣∣∣∣ ≤ ε‖∇ut‖
p
Lp(Ω) + Dε‖ut‖

p
Lp(Ω)

for any t. Thus if ε < 1

‖∇ut‖
p
p ≤

C + Dε

1 − ε
.

Then {ut}t∈(−1,1) is bounded in W1,p
0 (Ω) and therefore it is bounded in Lpq′(Ω). Since

lim
t→0

Vt = V0 in Lq(Ω),

then

lim
t→0

∫
Ω

(Vt(x) − V0(x)) |ut|
p dx = 0.

Thus

λ(t) =

∫
Ω

|∇ut|
p dx +

∫
Ω

Vt(x)|ut|
p dx

=

∫
Ω

|∇ut|
p dx +

∫
Ω

V0(x)|ut|
p dx +

∫
Ω

(Vt(x) − V0(x))|ut|
p dx

≥ λ(0) +

∫
Ω

(Vt(x) − V0(x))|ut|
p dx

and

λ(0) =

∫
Ω

|∇u0|
p dx +

∫
Ω

V0(x)|u0|
p dx

=

∫
Ω

|∇u0|
p dx +

∫
Ω

Vt(x)|u0|
p dx +

∫
Ω

(V0(x) − Vt(x))|u0|
p dx

≥ λ(t) +

∫
Ω

(V0(x) − Vt(x))|u0|
p dx.

Therefore

λ(0) +

∫
Ω

(Vt(x) − V0(x))|u0|
p dx ≥ λ(t) ≥ λ(0) +

∫
Ω

(Vt(x) − V0(x))|ut|
p dx.

Hence,
lim
t→0

λ(t) = λ(0),

as we wanted to show. �
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Lemma 2.3.6. λ(t) is differentiable at t = 0 and

dλ
dt

(0) =

∫
Ω

W(x)|u0|
p dx.

Proof. Let {tn}n∈N be such that lim
n→∞

tn = 0. As {utn}n∈N is bounded in W1,p
0 (Ω), there exists

a subsequence of {tn}n∈N (still denoted by {tn}n∈N) and u ∈ W1,p
0 (Ω) such that

utn ⇀ u weakly in W1,p
0 (Ω), (2.3)

utn → u strongly in Lr(Ω), (2.4)

for any 1 < r < p∗. Let us see that u = u0.

In fact, by (2.4), we have ‖u‖Lp(Ω) = 1 and, by (2.3), we have

lim inf
n→∞

∫
Ω

|∇utn |
p dx ≥

∫
Ω

|∇u|p dx.

Now, observe that, as in the proof of Lemma 2.3.5, Vtn → V0 strongly in Lq(Ω), then,
using again (2.4), we get

lim
n→∞

∫
Ω

Vtn(x)|utn |
p dx =

∫
Ω

V0(x)|u|p dx.

Therefore,

λ(0) = lim
n→∞

∫
Ω

|∇utn |
p dx +

∫
Ω

Vtn(x)|utn |
p dx

≥

∫
Ω

|∇u|p dx +

∫
Ω

V0(x)|u|p dx

≥ λ(0).

Hence u is a nonnegative, normalized eigenfunction associated to λ(0). By Theorem
1.8.13, we have that u = u0. Since the limit u0 is independent of the sequence {tn}n∈N, it
follows that (2.3)–(2.4) hold for the limit t → 0.

By the differentiability of Vt and by (2.4) we obtain

lim
t→0

∫
Ω

(
Vt(x) − V0(x)

t

)
|ut|

p dx =

∫
Ω

W(x)|u0|
p dx.

In the proof of Lemma 2.3.5, we have showed that

λ(0) +

∫
Ω

(Vt(x) − V0(x))|u0|
p dx ≥ λ(t) ≥ λ(0) +

∫
Ω

(Vt(x) − V0(x))(x)|ut|
p dx.

Thus, for t > 0,∫
Ω

(
Vt(x) − V0(x)

t

)
|u0|

p dx ≥
λ(t) − λ(0)

t
≥

∫
Ω

(
Vt(x) − V0(x)

t

)
|ut|

p dx,
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and an analogous inequality for t < 0. Then λ(t) is differentiable at t = 0 and

dλ
dt

(0) =

∫
Ω

W(x)|u0|
p dx.

The proof is now complete. �

Remark 2.3.7. Since λ has maximum at t = 0, we have∫
Ω

W(x)|u0|
p dx = 0 ∀W ∈ TV0S . (2.5)

The following proposition characterize the support of the maximal potential.

Proposition 2.3.8. Ω ⊆ supp V0.

Proof. Suppose not. Then, let x ∈ Ω such that x < supp V0. As supp V0 is closed there
exists r > 0 such that

B(x, r) ⊂ Ω and B(x, r) ∩ supp V0 = ∅.

Then W = χB(x,r) ∈ TV0S and, by (2.5),∫
B(x,r)
|u0|

p dx = 0.

Hence u0 = 0 a.e. in B(x, r), a contradiction. �

Finally, we arrive at the following characterization of the maximal potential.

Theorem 2.3.9. Let V0 be a maximal potential and let u0 be the eigenfunction associated
to λ(V0). Then, there exists a constant k such that

|u0|
p = k|V0|

q−1 in Ω. (2.6)

Proof. Let T1 and T2 be subsets of supp V0. We denote

W(x) =
χT1(x)∫

T1

|V0|
q−1 dx

−
χT2(x)∫

T2

|V0|
q−1 dx

.

Let us see that W ∈ TV0S . In fact, as V0 is a maximal potential, V0 ≥ 0. Then∫
Ω

|V0|
q−2V0W dx =

∫
Ω

Vq−1
0 W dx

=

∫
T1

Vq−1
0 dx∫

T1

Vq−1
0 dx

−

∫
T2

Vq−1
0 dx∫

T2

Vq−1
0 dx

= 0.



2.3 Maximizing potentials 35

Thus W ∈ TV0S , as we wanted to see.

By (2.5), we have

0 =

∫
Ω

W |u0|
p dx =

∫
T1

|u0|
p dx∫

T1

|V0|
q−1 dx

−

∫
T2

|u0|
p dx∫

T2

|V0|
q−1 dx

.

Then ∫
T1

|u0|
p dx∫

T1

|V0|
q−1 dx

=

∫
T2

|u0|
p dx∫

T2

|V0|
q−1 dx

.

Therefore, there exists a constant k such that∫
T
|u0|

p dx∫
T
|V0|

q−1 dx
= k

for each T ⊂ supp V0. In particular, if we take

T =
{
x ∈ supp V0 : k|V0(x)|q−1 > |u0(x)|p

}
we get ∫

T
|u0|

p dx = k
∫

T
|V0|

q−1 dx,

thus
k
∫

T
|V0|

q−1 dx −
∫

T
|u0|

p dx = 0.

Since k|V0(x)|q−1 > |u0(x)|p for any x ∈ T , the measure of T is zero. In the same way, we
obtain that {

x ∈ supp V0 : k|V0(x)|q−1 < |u0(x)|p
}

has measure zero. Thus

|u0|
p = k|V0|

q−1 a.e. in supp V0.

By Proposition 2.3.8,
|u0|

p = k|V0|
q−1 in Ω.

This ends the proof. �

Equation (2.6) gives us purely algebraic relationship between the optimizing potentials
and their associated eigenfunction. Since the eigenvalue equation is homogeneous of
degree p in the eigenfunction, we can choose the constant in (2.6) to be equal to one, this
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can be obtained by taking u0
kp as the eigenfunction instead of u0. Replacing in equation

(1.9), we see that the eigenfunction associated to the maximal eigenvalue satisfies

− ∆pu + uα = λup−1 (2.7)

where λ is the maximal potential eigenvalue and the equation can be written in terms of
the associated eigenfunction. An interesting consequence of Theorem 2.3.1 is, in this
context, a proof of existence and certain properties of a solution of equation (2.7). More
precisely, we have

Corollary 2.3.10. Let Ω ⊂ RN be a bounded domain, 1 < p < ∞ and α ∈ R. For any
λ > λ(0), where λ(0) is the principal eigenvalue of the operator −∆p in W1,p

0 (Ω), the
nonlinear eigenvalue problem

−∆pu + uα = λup−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(2.8)

has a solution in the following cases:

1. If 1 < p < N, we take p − 1 < α < N(p−1)+p
N−p .

2. If p ≥ N, we take α > p − 1.

Proof. The existence of a potential V0 maximizing of −∆p+V subject to ‖V‖Lq(Ω) = M, for
any M > 0 is known from Theorem 2.3.1, with α =

pq−q+1
q−1 . If the maximized eigenvalue

is λ∗ = λ(V0), then the necessary condition (2.7) becomes (2.8) with u = u0 and λ = λ∗.

The corollary will thus be proved if it is shown that λ∗ increases continuously from λ(0)
to∞ as M goes from 0 to∞. By Remark 2.3.3, λ∗(·) is increases monotonically from λ(0)
to∞ as M ↗ ∞. It remains to prove the continuity.

We denote with V M
0 the maximal potential associated to λ∗(M). If t > 0, then

λ(V M+t
0 ) = λ∗(M + t) ≥ λ∗(M).

Take V = M
M+t V

M+t
0 , note that ‖V‖q = M, then λ(V) ≤ λ∗(M). Given u ∈ W1,p

0 (Ω), ‖u‖p = 1,
we have∫

Ω

|∇u|p dx +

∫
Ω

V(x)|u|p dx =

∫
Ω

|∇u|p dx +

∫
Ω

M
M + t

V M+t
0 (x)|u|p dx

=
M

M + t

(∫
Ω

|∇u|p dx +

∫
Ω

V M+t
0 (x)|u|p dx

)
+

(
1 −

M
M + t

) ∫
Ω

|∇u|p dx

≥
M

M + t

(∫
Ω

|∇u|p dx +

∫
Ω

V M+t
0 (x)|u|p dx

)
.
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Thus
λ(V) = λ

( M
M + t

V M+t
0

)
≥

M
M + t

λ
(
V M+t

0

)
=

M
M + t

λ∗ (M + t)

then, as λ(V) ≤ λ∗(M),

M
M + t

λ∗(M + t) ≤ λ∗(M) ≤ λ∗(M + t). (2.9)

Similarly,

λ∗(M − t) ≤ λ∗(M) ≤
M − t

M
λ∗(M − t). (2.10)

Then, taking limits in (2.9) and (2.10),

lim
t→0

λ∗(M + t) = λ∗(M).

This completes the proof. �

2.4 Minimizing potentials

In this section we present the results for minimizing potentials. Since the results and the
proof are completely analogous to those of the previous subsection we only state the main
results and point out only the significant differences.

Theorem 2.4.1. If q > max{N/p, 1}, there exists V∗ ∈ B that minimizes λ(V).

Proof. Is analogous to that of Theorem 2.3.1. �

As in the previous subsection, we consider the case B = B(0,M) ⊂ Lq(Ω), and to
simplify the computations, we take M = 1.

As a concave function defined over a convex set achieves its minimum at the extreme
points of the convex, there exists V0 ∈ ∂B such that

λ(V0) = min{λ(V) : V ∈ ∂B} = min{λ(V) : V ∈ ∂B}.

Moreover, since −|V0| ≤ V0 and λ(·) is nondecreasing we may assume that V0 ≤ 0.

Let us now try to characterize V0. As before, let α : (−1, 1)→ Lq(Ω) be a differentiable
curve such that

α(t) ∈ S := ∂B, α(0) = V0 and α̇(0) = W ∈ TV0S .

We denote by Vt = α(t) and λ(t) = λ(α(t)). Let ut the normalized, nonnegative eigenfunc-
tion of HVt associated to λ(t). Observe that Lemmas 2.3.5 and 2.3.6 apply. Hence, as λ
has a minimum at t = 0 we have∫

Ω

W(x)|u0|
p dx = 0 ∀W ∈ TV0S (2.11)

As for maximizing potential, we have,
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Proposition 2.4.2. Ω ⊆ supp V0.

Proof. Analogous to that of Lemma 2.3.8. �

Proposition 2.4.3. Let V0 be a minimal potential and let u0 be the normalized, nonnega-
tive eigenfunction of HV0 associated to λ(V0). Then, there exists a constant k ∈ R+ such
that

|u0|
p = k|V0|

q−1 in Ω. (2.12)

Proof. Analogous to that of Lemma 2.3.9. �

As before, from (2.12) we obtain a purely algebraic relationship between minimal po-
tential and their associated eigenfunction. Using the homogeneity of the equation, we can
choose the constant in (2.12) to be 1. Replacing in (1.9) we obtain that the eigenfunction
associated to the minimal potential satisfies

− ∆pu − uα = λup−1 (2.13)

where λ is the minimal eigenvalue and α =
pq−q+1

q−1 .

Therefore, we obtain the following corollary

Corollary 2.4.4. Let Ω ⊂ RN be a smooth open and bounded set, 1 < p < ∞ and
α ∈ R. For every λ < λ(0), where λ(0) is the principal eigenvalue of −∆p in W1,p

0 (Ω), the
nonlinear eigenvalue problem

−∆pu − uα = λup−1 in Ω

u > 0 in Ω

u = 0 on ∂Ω

(2.14)

has a solution in the cases

1. If 1 < p < N, we take p − 1 < α < N(p−1)+p
N−p .

2. If p ≥ N, we take α > p − 1.

Proof. Analogous to that of Corollary 2.3.10. �



3

The first Steklov eigenvalue of a nonlinear
problem

Given a domain Ω ⊂ RN (bounded, connected, with smooth boundary), α > 0 and E ⊂ Ω

a measurable set, in this chapter, we want to study the eigenvalue problem−∆pu + |u|p−2u + αχE |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν

= λ|u|p−2u on ∂Ω,
(3.1)

here λ stands for the eigenvalue and α is a positive parameter. We remark that in this
problem the eigenvalue appears in the boundary condition. These type of problems are
known as Steklov eigenvalue problems, see [St]. Observe that when p = 2 the problem
becomes linear.

We denote the first eigenvalue by λ(α, E). The existence of this first eigenvalue and a
positive associated eigenfunction follows easily from the variational characterization

λ(α, E) := inf
{∫

Ω

|∇v|p + |v|p dx + α

∫
E
|v|p dx : v ∈ W

}
, (3.2)

where
W =

{
v ∈ W1,p(Ω) : ‖v‖Lp(∂Ω) = 1

}
,

and the compactness of the embedding W1,p(Ω) ↪→ Lp(∂Ω), see [FBR1].

Once the set E is fixed, it is not difficult to check that when α→ ∞ the eigenvalues con-
verge to the first eigenvalue of the problem with E as a hole (the eigenfunction vanishes
on E). That is,

lim
α→∞

λ(α, E) = λ(∞, E),

where

λ(∞, E) := inf
{∫

Ω

|∇v|p + |v|p dx : v ∈ W and v |E≡ 0
}
.

The aim of this chapter is to study the following optimization problem: for a fixed α
we want to optimize λ(α, E) with respect to E, that is, we want to look at the infimum,

inf {λ(α, E) : E ⊂ Ω and |E| = A} (3.3)
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for a fixed volume A ∈ [0, |Ω|]. Moreover, we want to study the limit as α → ∞ in the
above infimum. The natural limit problem for these infimum is

λ(∞, A) := inf {λ(∞, E) : E ⊂ Ω and |E| = A} . (3.4)

These kind of problems appear naturally in optimal design. They are usually formu-
lated as problems of minimization of the energy, stored in the design under a prescribed
loading. Solutions of these problems are unstable to perturbations of the loading. The
stable optimal design problem is formulated as minimization of the stored energy of the
project under the most unfavorable loading. This most dangerous loading is one that max-
imizes the stored energy over the class of admissible functions. The problem is reduced
to minimization of Steklov eigenvalues. See [CC].

Also this limit problem (3.4) can be regarded as the study of the best Sobolev trace
constant for functions that vanish in a subset of prescribed measure. The study of optimal
constants in Sobolev embeddings is a very classical subject, see [DH]. Related problems
for the best Sobolev trace constant can be found in [FBFR, FBR2]. In our case, the limit
problem was studied in [FBRW2] where an optimal configuration is shown to exists and
some properties of this optimal configuration are obtained. Among them it is proved
that λ(∞, A) is strictly increasing with respect to A. In a companion paper [FBRW1] the
interior regularity of the optimal hole is analyzed.

The rest of the chapter is organized as follows: in Section 3.1, we prove that there
exists an optimal configuration; in Section 3.2, we analyze the limit α→ ∞ and finally in
Section 3.3 we study the symmetry properties of the optimal pairs in a ball.

3.1 Existence of an optimal configuration

In this section we prove that there exists an optimal configuration for the relaxed problem
and find some properties of it.

To begin the study of our optimization problem (3.2), we prove that there exists an op-
timal configuration. To this end, it is better to relax the problem and consider φ ∈ L∞(Ω),
such that 0 ≤ φ ≤ 1 and

∫
Ω
φ(x) dx = A instead of χE. Hence we consider the problem,−∆pu + |u|p−2u + αφ|u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν

= λ|u|p−2u on ∂Ω.
(3.5)

This relaxation is natural in the use of the direct method in the calculus of variations since

R =

{
φ ∈ L∞(Ω) : 0 ≤ φ ≤ 1 and

∫
Ω

φ(x) dx = A
}

is closed in the weak∗ topology in L∞(Ω). In fact, by the Theorem 1.4.6, this set is the
closure in this topology of the set of characteristic functions

{χE : |E| = A} .
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We denote by λ(α, φ) the lowest eigenvalue of (3.5). This eigenvalue has the following
variational characterization

λ(α, φ) := inf
{∫

Ω

|∇v|p + |v|p dx + α

∫
Ω

φ|v|p dx : v ∈ W
}
. (3.6)

Again, as an immediate consequence of the compact embedding W1,p(Ω) ↪→ Lp(∂Ω),
the above infimum is in fact a minimum. There exists u = uα,φ ∈ W1,p(Ω) such that
‖u‖Lp(∂Ω) = 1 and

λ(α, φ) =

∫
Ω

|∇u|p + |u|p dx + α

∫
Ω

φ|u|p dx.

Moreover, u is a weak solution of (3.5), does not change sign (see [FBR1, FBR3, MR])
and hence, by Harnack’s inequality (see Theorem 1.8.4), it can be assumed that u is strictly
positive in Ω.

Define
Λ(α, A) = inf {λ(α, φ) : φ ∈ R} . (3.7)

Any minimizer φ in (3.7) will be called an optimal configuration for the data (α, A). If φ
is an optimal configuration and u satisfies (3.5) then (u, φ) will be called an optimal pair
(or solution).

By the direct method of the calculus of variations, it is not difficult to see that there exits
an optimal pair. The main point of the following result is to show that we can recover a
classical solution of our original problem (3.3). In fact, if (u, φ) is an optimal pair, then
φ = χD for some measurable set D ⊂ Ω.

Theorem 3.1.1. For any α > 0 and A ∈ [0, |Ω|] there exists an optimal pair. Moreover,
any optimal pair (u, φ) has the following properties:

1. u ∈ C1,δ(Ω) for some 0 < δ < 1.

2. There exists an optimal configuration φ = χD, where {u < t} ⊂ D ⊂ {u ≤ t} with
t := sup{s : |{u < s}| ≤ A}.

For the proof we use ideas from [CGIK, CGK] where a similar linear problem with
homogeneous Dirichlet boundary conditions was studied.

Proof. To prove existence, fix α and A, and write Λ = Λ(α, A), λ(φ) = λ(α, φ) to simplify
the notation. Let {φn}n∈N be a minimizing sequence, i.e., 0 ≤ φn ≤ 1,

∫
Ω
φn dx = A and

λ(φn)→ Λ as n→ ∞.

Let un ∈ W1,p(Ω), be a normalized eigenfunction associated to λ(φn), that is, un verifies
‖un‖Lp(∂Ω) = 1 and

λ(φn) =

∫
Ω

|∇un|
p + |un|

p dx + α

∫
Ω

φn|un|
p dx

= inf
{∫

Ω

|∇v|p + |v|p dx + α

∫
Ω

φn|v|p dx : v ∈ W
}
.

(3.8)
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Then, un is a positive weak solution of
−∆pu j + |un|

p−2un + αφ|un|
p−2un = 0 in Ω,

|∇un|
p−2 ∂u j

∂ν
= λ(φn)|un|

p−2un on ∂Ω,

‖un‖Lp(∂Ω) = 1.

Since λ(φn) is bounded, the sequence un is bounded in W1,p(Ω). Also {φn} is bounded in
L∞(Ω). Therefore, we may choose a subsequence (again denoted un, φn) and u ∈ W1,p(Ω),
φ ∈ L∞(Ω) such that

un ⇀ u weakly in W1,p(Ω), (3.9)
un → u strongly in Lp(Ω), (3.10)
un → u strongly in Lp(∂Ω), (3.11)

φn
∗
⇀ φ weakly∗ in L∞(Ω). (3.12)

By (3.10),
‖u‖Lp(∂Ω) = 1,

and by (3.12)

0 ≤ φ ≤ 1 and
∫

Ω

φ dx = A.

Now taking limits in (3.8), we get

Λ = lim
n→∞

λ(φn)

≥ lim inf
n→∞

∫
Ω

|∇un|
p + |un|

p dx + α

∫
Ω

φn|un|
p dx

≥

∫
Ω

|∇u|p + |u|p dx + α

∫
Ω

φ|u|p dx.

(3.13)

Therefore, (u, φ) is an optimal pair and so u is a weak solution to−∆pu + |u|p−2u + αφ|u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν

= Λ|u|p−2u on ∂Ω.

That (1) holds is a consequence of the regularity theory for quasilinear elliptic equations
with bounded coefficients developed, for instance, in [L].

To prove (2), observe that, by the Theorem 1.3.12, the minimization problem

inf
{∫

Ω

φ|u|p dx : φ ∈ R
}

has a solution φ = χD where D is any set with |D| = A and

{x : u(x) < t} ⊂ D ⊂ {x : u(x) ≤ t}, t := sup{s : |{u < s}| ≤ A}.
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Therefore, we get from (3.13)∫
Ω

|∇u|p + |u|p dx + α

∫
Ω

χD|u|p dx ≤ Λ.

By definition of Λ as a minimum, this must actually be an equality, and we conclude that
(u, χD) is an optimal pair. �

Now, we find the derivative of λ(α, φ) in an admissible direction f ∈ F, given by

F =

{
f : f ≤ 0 in {φ = 1}, f ≥ 0 in {φ = 0},

∫
Ω

f dx = 0
}
. (3.14)

Proposition 3.1.2. Let f ∈ F, then the derivative from the right of λ(α, φ) in the direction
of f ∈ F is given by

λ′(α, φ)( f ) = lim
t↘0

λ(α, φ + t f ) − λ(α, φ)
t

= α

∫
Ω

f |u|p dx, (3.15)

where u is an eigenfunction of λ(α, φ).

Proof. Let us consider the curve
φt = φ + t f .

Note that since f ∈ F and φ is admissible then φt is admissible for every t ≥ 0 small
enough. Therefore, we may compute λ(α, φt).

Using an eigenfunction ut of λ(α, φt) in the variational formulation of λ(α, φ) we get

λ(α, φt) − λ(α, φ)
t

≤ α

∫
Ω

f |ut|
p dx. (3.16)

On the other hand, using u in the variational formulation of λ(α, φt) we get

λ(α, φt) − λ(α, φ)
t

≥ α

∫
Ω

f |u|p dx. (3.17)

As before, using v = 1 as a test function in the definition of λ(α, φt), we obtain that the
family {ut}0≤t≤t0 is bounded in W1,p(Ω). Then, by our previous arguments we have that

ut → u strongly in Lp(Ω) when t → 0.

Hence, taking limits in (3.16) and (3.17) we conclude (3.15). �

Using this Proposition we can prove that the optimal set must be a sublevel set of u,
i.e., there is a number t ≥ 0 such that {x : u(x) ≤ t} is the optimal set.

Corollary 3.1.3. There exists a number t ≥ 0 such that the optimal set D is

D = {x : u(x) ≤ t}.
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Proof. As χD realizes the minimum of λ(α, φ), we have for all f ∈ F,

λ′(α, χD)( f ) = α

∫
Ω

f |u|p dx ≥ 0, (3.18)

Given two points x0 ∈ D of positive density (i.e., for every ε > 0, |B(x0, ε) ∩ D| > 0) and
x1 ∈ (Ω \ D) also with positive density we can take a function f ∈ F of the form

f = MχT0 − MχT1 ,

with T0 ⊂ B(x0, ε) ∩ D, T1 ⊂ B(x1, ε) ∩ (Ω \ D) and M−1 = |T0| = |T1|. It is clear that
f ∈ F. From our expression for the right derivative (3.15) and using that D is a minimizer,
taking the limit as ε→ 0 and using the continuity of u we get u(x0) ≤ u(x1). We conclude
that D = {x : u ≤ t}. �

3.2 Limit as α→ ∞

In this section, we analyze the limit as α→ ∞ of the optimal configurations found in The-
orem 3.1.1. We give a rigorous proof of the convergence of these optimal configurations
to those of (3.4).

First, we need a result about the monotonicity of λ(∞, A) in A.

Lemma 3.2.1. λ(∞, A) is strictly monotonically increasing in A.

Proof. The prove of this lemma is found in [FBRW2]. We include here only by the sake
of completeness.

We proceed in three steps.

Step 1. First, we show that

λ(∞, A) = inf{λ(∞, E) : E ⊂ Ω and |E| = A}
= inf{λ(∞, E) : E ⊂ Ω and |E| ≥ A}.

It is clear that

inf{λ(∞, E) : E ⊂ Ω and |E| = A} ≥ inf{λ(∞, E) : E ⊂ Ω and |E| ≥ A}.

On the other hand, if v is a test function for a set of measure greater than or equal to A
it is also a test function for a set of measure A. Then, the two infima coincide.

Step 2. we show that, if u is an extremal for λ(∞, A) then |{x : u(x) = 0}| = A.

Suppose by contradiction that u vanishes in a set E with |E| > A. By taking a subset we
may assume that E is closed. Let us take a small ball B so that |E \B| > A with B centered
at a point in ∂E∩∂Ω1,where Ω1 is the connected component of Ω\E such that ∂Ω ⊂ ∂Ω1.
We can pick the ball B in such a way that |E∩B| > 0. In particular, |{x : u(x) = 0}∩B| > 0.
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Since u is an extremal for λ(∞, A) and |E \ B| > A, it is an extremal for λ(∞, E \ B).
Thus, there holds that

−∆pu + |u|p−2u = 0 in Ω \ (E \ B) = (Ω \ E) ∪ B.

Now, as u ≥ 0, there holds that either u ≡ 0 or u > 0 in each connected component of
(Ω \ A) ∪ B. Since u , 0 on ∂Ω there holds, in particular, that u > 0 in B. This is a
contradiction to the choice of the ball B. Therefore,

|{x : u(x) = 0}| = A.

Step 3. Lastly, we show that λ(∞, A) is strictly monotonically increasing in A.

By the Step 1, we deduce that λ(∞, A) is nondecreasing respect to A.On the other hand,
let 0 < A1 < A2 < |Ω|, such that λ(∞, A1) = λ(∞, A2) and let u be an extremal for λ(∞, A2)
then, by step 2, |{u = 0} = A2. But u is an admissible function for λ(∞, A1), so that it is
an extremal for λ(∞, A1) with |{x : u(x) = 0}| > A1. This is a contradiction with what has
been proved in the step 2. Thus, λ(∞, A) is strictly monotonically increasing in A. �

Theorem 3.2.2. For any sequence α j → ∞ and optimal pairs (D j, u j) of (3.3) there exists
a subsequence, that we still call α j, and an optimal pair (D, u) of (3.4) such that

lim
j→∞

χD j = χD, weakly∗ in L∞(Ω),

lim
j→∞

u j = u, strongly in W1,p(Ω).

Moreover, u > 0 in Ω \ D.

Proof. Let (uα, χDα
) be a solution to our minimization problem

Λ(α, A) = inf
{∫

Ω

|∇u|p dx +

∫
Ω

|u|p dx + α

∫
Ω

φ|u|p dx : u ∈ W and φ ∈ R
}
.

Recall that uα is a positive weak solution of
−∆pu + |u|p−2u + αφ|u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν

= Λ(α, A)|u|p−2u on ∂Ω,

‖u‖Lp(∂Ω) = 1.

Let u0 ∈ W1,p(Ω) and D0 ⊂ Ω be such that |D0| = A and u0χD0 = 0. Then, we have that

Λ(α, A) ≤

∫
Ω

|∇u0|
p dx +

∫
Ω

|u0|
p dx + α

∫
Ω

χD0 |u0|
p dx∫

∂Ω

|u0|
p dHN−1

=

∫
Ω

|∇u0|
p dx +

∫
Ω

|u0|
p dx∫

∂Ω

|u0|
p dHN−1

= K



46 The first Steklov eigenvalue of a nonlinear problem

with K independent of α.

Thus {Λ(α, A)} is a bounded sequence in R and it is clearly increasing. As a conse-
quence, {uα} is bounded in W1,p(Ω). Moreover {χDα

} is bounded in L∞(Ω). Therefore, we
may choose a sequence α j and u∞ ∈ W1,p(Ω), φ∞ ∈ L∞(Ω) such that

uα j ⇀ u∞ weakly in W1,p(Ω), (3.19)
uα j → u∞ strongly in Lp(Ω), (3.20)
uα j → u∞ strongly in Lp(∂Ω), (3.21)

χDα j

∗
⇀ φ∞ weakly∗ in L∞(Ω), (3.22)

By (3.21) and as ‖uα j‖Lp(∂Ω) = 1 for all j ∈ N, we have that ‖u∞‖Lp(∂Ω) = 1 and, by
(3.22), 0 ≤ φ∞ ≤ 1 with

∫
Ω
φ∞ dx = A. Also, by (3.20) and (3.22), it holds∫

Ω

χDα j
|uα j |

p dx→
∫

Ω

φ∞|u∞|p dx.

As

0 ≤ α j

∫
Ω

χDα j
|uα j |

p dx ≤ Λα j ≤ K ∀ j ∈ N,

we have

0 ≤
∫

Ω

χDα j
|uα j |

p dx ≤
K
α j

∀ j ∈ N,

then ∫
Ω

χDα j
|uα j |

p dx→ 0.

Therefore ∫
Ω

φ∞|u∞|p dx = 0,

and we conclude that
φ∞u∞ = 0 a.e. Ω.

Since {Λ(α j, A)} is bounded and increasing, there exists the limit

lim
j→∞

Λ(α j, A) = Λ∞ < +∞.

Then

Λ∞ = lim
j→∞

∫
Ω

|∇uα j |
p dx +

∫
Ω

|uα j |
p dx + α j

∫
Ω

χα j |uα j |
p dx

≥ lim inf
j→∞

∫
Ω

|∇uα j |
p dx +

∫
Ω

|uα j |
p dx

≥

∫
Ω

|∇u∞|p dx +

∫
Ω

|u∞|p dx.
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Hence, we have

Λ∞ ≥

∫
Ω

|∇u∞|p dx +

∫
Ω

|u∞|p dx

≥ inf
{∫

Ω

|∇u|p dx +

∫
Ω

|u|p dx : u ∈ W and φ ∈ R
}
.

≥ Λ(α j, A).

foar all j ∈ N.

Therefore

Λ∞ = inf
{∫

Ω

|∇u|p dx +

∫
Ω

|u|p dx : u ∈ W, φ ∈ R and uφ = 0
}

=

∫
Ω

|∇u∞|p + |u∞|p dx,

and so the infimum in the above equation is achieved by (u∞, φ∞).

Now, if we take D∞ = {φ∞ > 0} we get that |D∞| = B ≥ A. Hence

λ(∞, B) ≤ λ(∞,D∞) = Λ∞ ≤ λ(∞, A).

This implies that |D∞| = A (otherwise, we have a contradiction with the strict monotonic-
ity of λ(∞, A) in A). So, φ∞ = χD∞ .

We observe that D∞ ⊂ {x : u∞(x) = 0} and again, by the strict monotonicity of λ(∞, A)
in A, D∞ = {x : u∞(x) = 0}. �

3.3 Symmetry properties.

In this section, we consider the case where Ω is the unit ball, i.e., Ω = B(0, 1).

Now, we study symmetry properties of the optimal configuration when Ω is the unit
ball.

Theorem 3.3.1. Fix α > 0 and 0 < A < |B(0, 1)|, there exists an optimal pair of (3.5),
(u, χD), such that u and D are spherically symmetric. Moreover, when p = 2, every
optimal pair (u, χD) is spherically symmetric.

Proof. Fix α > 0 and A and assume (u, χD) is and optimal pair. Let u∗ the spherical
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symmetrization of u. Define the set D∗ by χD∗ = (χD)∗. By Theorem 1.7.1, we get

λ(α,D∗) ≤

∫
Ω

|∇u∗|p dx +

∫
Ω

|u∗|p dx +

∫
Ω

(αχD)∗|u∗|p dx∫
∂Ω

|u∗|p dHN−1

≤

∫
Ω

|∇u|p dx +

∫
Ω

|u|p dx + α

∫
Ω

χD|u|p dx∫
∂Ω

|u|p dHN−1

= λ(α,D∗).

Since we have |D∗| = |D| = A, optimality of (u, χD) implies that (u∗, χD∗) is also a mini-
mizer.

Now consider p = 2. In this case, it is proved in [D] that if equality holds in (1.2) then
for each 0 < r ≤ 1 there exists a rotation Rr such that

u |∂B(0,r)= (u∗ ◦ Rr) |∂B(0,r) . (3.23)

We can assume that the axis of symmetry eN was taken so that R1 = Id. Therefore u and
u∗ coincide on the boundary of B(0, 1). Then, the optimal sets D, D∗ are sublevel sets of u
and u∗ with the same level, t. As u and u∗ are solutions of a second order elliptic equation
with bounded measurable coefficients they are C1. Hence {x : u(x) > t} ∩ {x : u∗(x) > t}
is an open neighborhood of ∂Ω ∩ {x : u(x) > t}. In that neighborhood both functions are
solutions of the same equation, ∆v = v (which has a unique continuation property), and
along ∂Ω ∩ {x : u(x) > t} both coincide together with their normal derivatives. Thus they
coincide in the whole neighborhood.

Now we observe that the set {x : u(x) > t} is connected, because every connected com-
ponent of {x : u(x) > t} touches the boundary (since solutions of ∆v = v cannot have a
positive interior maximum) and {x : u(x) > t} ∩ ∂Ω is connected.

We conclude that {x : u(x) > t} = {x : u∗(x) > t} and u = u∗ in that set. In the com-
plement of this set both u and u∗ satisfy the same equation with the same Dirichlet data,
therefore they coincide. �
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Differential calculus

In optimization problems, one of the aims is to obtain optimality conditions for the mini-
mum. By example, a method for searching a minimum of a function f : RN → R consists
in solving the equation ∇ f = 0 in RN and, then selecting between the solutions one cor-
responding to the minimum. In the following chapter, we will study the minima of some
functionals defined on W1,p(Ω) and we will give some optimality conditions for them. We
will see how the minima depend respect to some perturbation of the domain and, then we
will compute the derivatives of the functional respect to this perturbation for obtaining
an equation similar to the case in that the functional is defined in RN . This approach for
optimization problems has been used several times in the literature. For example, see
[HP, DPFBR, FBRW2, KSS] and references therein.

In this kind of study, will be important calculate the derivative of the norms ‖ · ‖Lq(Ω),
‖ · ‖W1,p(Ω) and ‖ · ‖Lp(∂Ω).

The aim of this chapter is given some technical result, that we will use in the rest of
this thesis.

Throughout this chapter, Ω will be a bounded domain in RN with boundary of class C2.
T A and A−1 denote the transpose and the inverse of the matrix A, respectively. Let Φ be a
C1 field over RN , Φ′ denotes the differential matrix of Φ and the Jacobian of Φ is denoted
by Jac(Φ).

The rest of the chapter is divided into three sections. In Section 4.1, we prove that the
norms ‖ · ‖Lq(Ω) and ‖ · ‖W1,p(Ω) are differentiation respect to perturbations in the domain
Ω. The Section 4.2 collect some results regarding the differential geometry. Lastly, in
Section 4.3, we show that ‖ · ‖Lp(∂Ω) is differentiable respect to perturbation in Ω.

4.1 Differentiation of the norms ‖ · ‖Lq(Ω) and ‖ · ‖W1,p(Ω)

We begin by describing the kind of variations that we are going to consider. Let W be a
regular (smooth) vector field, globally Lipschitz, with support in Ω and let ϕt : RN → RN
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be the flow defined by  d
dtϕt(x) = W(ϕt(x)) t > 0,
ϕ0(x) = x x ∈ RN .

(4.1)

We have
ϕt(x) = x + tW(x) + o(t) ∀ x ∈ RN .

In [HP], the following asymptotic formulas were proved

[ψ′t]
−1(x) = Id − tW ′(x) + o(t), (4.2)

Jac(ψt)(x) = 1 + t divW(x) + o(t), (4.3)

for all x ∈ RN .

Our first result of this section shows that ‖ · ‖Lq(Ω) is differentiable with respect to t at
t = 0.

Lemma 4.1.1. Given f ∈ Lq(Ω) then

ft := f ◦ ϕ−1
t → f strongly in Lq(Ω), as t → 0+.

Moreover ∫
Ω

| ft|
p dx =

∫
Ω

| f |p dx + t
∫

Ω

| f |q div W dx + o(t).

Proof. We proceed in two steps.

Step 1. First we show that

ft → f strongly in Lq(Ω), as t → 0+.

Let ε > 0 and let g ∈ C∞c (Ω) be fixed such that ‖ f − g‖Lq(Ω) < ε. By the usual change of
variables formula, we have that

‖ ft − gt‖
q
Lq(Ω) =

∫
Ω

| f − g|q Jac(ϕt) dx,

where gt = g ◦ ϕ−1
t .

Then
‖ ft − gt‖

q
Lq(Ω) =

∫
Ω

| f − g|q(1 + t div W + o(t)) dx.

Therefore, there exist t1 > 0 such that if 0 < t < t1 then

‖ ft − gt‖Lq(Ω) < Cε,

where C is a constant independent of t. Moreover, since ϕ−1
t → Id in the C1 topology

when t → 0 then gt = g ◦ϕ−1
t → g in the C1 topology and therefore there exist t2 > 0 such

that if 0 < t < t2 then
‖gt − g‖Lq(Ω) < ε.
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Finally, for all 0 < t < t0 = min{t1, t2} we have that

‖ ft − f ‖Lq(Ω) ≤ ‖ ft − gt‖Lq(Ω) + ‖gt − g‖Lq(Ω) + ‖ f − g‖Lq(Ω)

≤ Cε,

where C is a constant independent to t.

Step 2. Now we prove that∫
Ω

| ft|
p dx =

∫
Ω

| f |p dx + t
∫

Ω

| f |q div W dx + o(t).

Again, by the usual change of variables formula, we have∫
Ω

| ft|
q dx =

∫
Ω

| f |q Jac(ϕt) dx

=

∫
Ω

| f |q(1 + t div W + o(t)) dx

=

∫
Ω

| f |p dx + t
∫

Ω

| f |q div W dx + o(t),

as we wanted to prove. �

Example 4.1.2. Let D be a locally finite perimeter set in Ω. If Dt = φt(Ω), by Theorem
1.9.5 and the previous lemma, we have that

d
dt
|Dt|

∣∣∣∣
t=0

=
d
dt

∫
Ω

χDt dx

∣∣∣∣∣∣
t=0

=

∫
D

div V d x

=

∫
D
〈V, ν〉 dx.

where ν is the generalized outer normal vector.

Now, we prove that ‖ ·‖W1,p(Ω) is differentiable with respect to t at t = 0. Note that, by the
previous lemma, it is enough to prove that the Lp−norm of the gradient is differentiable.

Theorem 4.1.3. Given u ∈ W1,p(Ω)

ut := u ◦ ϕ−1
t → u strongly in W1,p(Ω), as t → 0+.

Moreover∫
Ω

|∇ut|
pdx =

∫
Ω

|∇u|p dx + t
∫

Ω

|∇u|p div W dx − pt
∫

Ω

|∇u|p−2〈∇u, T W ′∇uT 〉 dx + o(t).
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Proof. We proceed in three steps.

Step 1. First, we observe that, by the above lemma, we have that

ut → u strongly in Lp(Ω) as t → 0+.

Then, it is enough to prove that

∇ut → ∇u strongly in (Lp(Ω))N as t → 0+.

Step 2. We show that

∇ut → ∇u strongly in (Lp(Ω))N as t → 0+,

Let ε > 0, by Theorem 1.6.4, there exists g ∈ Wk,p(Ω) ∩C∞(Ω) such that

‖u − g‖W1,p(Ω) < ε.

Let gt = g ◦ ϕ−1
t , by the usual changes of variable formula, we get∫

Ω

|∇ut − ∇gt|
p dx =

∫
Ω

|T [ϕ′t]
−1(∇u − ∇g)T |p Jac(φt) dx

=

∫
Ω

|(Id − tT W ′ + o(t))(∇u − ∇g)T |p(1 + t div W + o(t)) dx

=

∫
Ω

|∇u − ∇g|p dx + t
∫

Ω

|∇u − ∇g|p div W dx

− tp
∫

Ω

|∇u − ∇g|p−2〈∇u − ∇g,T W ′(∇u − ∇g)T 〉 dx + o(t).

Therefore, there exists t1 > 0 such that if 0 < t < t1 then

‖∇ut − ∇gt‖Lp(Ω) ≤ Cε,

where C is a constant independent of t.

As in the prove of the previous lemma, since ϕ−1
t → Id in the C1 topology when t → 0

then gt = g ◦ ϕ−1
t → g in the C1 topology and therefore there exists t2 > 0 such that if

0 < t < t2 then
‖∇gt − ∇g‖Lp(Ω) < ε.

Thus, for all 0 < t < t0 = min{t1, t2}, we have

‖∇ut − ∇u‖Lp(Ω) ≤ ‖∇ut − ∇gt‖Lp(Ω) + ‖∇gt − ∇g‖Lp(Ω) + ‖∇g − ∇u‖Lp(Ω)

< Cε,

where C is a constant independent of t.

Step 3. Lastly, we show that∫
Ω

|∇ut|
pdx =

∫
Ω

|∇u|pdx + t
∫

Ω

|∇u|p div W dx − tp
∫

Ω

|∇u|p−2〈∇u, T W ′∇uT 〉 dx + o(t).
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Again, by the usual changes of variables formula, we have that∫
Ω

|∇ut|
p dx =

∫
Ω

|T [ϕ′t]
−1∇uT |p Jac(φt) dx

=

∫
Ω

|(Id − tT W ′ + o(t))∇uT |p(1 + t div W + o(t)) dx

=

∫
Ω

|∇u|p dx + t
∫

Ω

|∇u|p div W dx − tp
∫

Ω

|∇u|p−2〈∇u,T W ′∇uT 〉 dx + o(t).

The prove is now complete. . �

Remark 4.1.4. By Lemma 4.1.1 and Theorem 4.1.3, we have that ‖ut‖W1,p(Ω) is differen-
tiable with respect to t at t = 0 and

d
dt
‖ut‖

p
W1,p(Ω)

∣∣∣∣∣∣
t=0

=

∫
Ω

(|∇u|p + |u|p) div W dx − p
∫

Ω

|∇u|p−2〈∇u,T W ′∇uT 〉 dx.

4.2 Results on differential geometry

Here, we state some results on differential geometry that will be used in the rest of this
thesis. The proof of these results can be found, for instance, in [HP].

Definition 4.2.1 (Definition of the tangential Jacobian). Let Φ be a C1 field over RN . We
call the tangential Jacobian of Φ

Jacτ(Φ) := |T [Φ′]−1ν| Jac(Φ).

The definition of the tangential Jacobian is suited to state the following change of vari-
ables formula

Proposition 4.2.2. Let f be a measurable function and let ΩΦ = Φ(Ω). Then f ∈ L1(∂ΩΦ)
if only if f ◦ Φ ∈ L1(∂Ω) and∫

∂ΩΦ

f dHN−1 =

∫
∂Ω

( f ◦ Φ) Jacτ(Φ) dHN−1.

Definition 4.2.3 (Definition of the tangential divergence). Let V ∈ C1(∂Ω,RN). The tan-
gential divergence of V over ∂Ω is defined by

divτ V := div Ṽ − 〈Ṽ ′ν, ν〉,

where Ṽ ∈ C1(RN ,RN) and Ṽ
∣∣∣
∂Ω

= V.

Observe that, the previous definition does not depend on the choice of Ṽ .
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Definition 4.2.4. The mean curvature of ∂Ω is defined by

H := divτ ν.

Definition 4.2.5. Let g ∈ C1(∂Ω,R). The tangential gradient is defined by

∇τg := ∇g̃ −
∂g̃
∂ν
ν on ∂Ω,

where g̃ ∈ C1(RN ,R) and g̃
∣∣∣
∂Ω

= g.

This definition is also independent of the choice of the extension.

Remark 4.2.6. The Definitions 4.2.3 and 4.2.5 can be extended to (W1,1(∂Ω))N and
W1,1(∂Ω), respectively.

Proposition 4.2.7. Let g ∈ W1,1(∂Ω) and V ∈ C1(∂Ω,RN). Then

〈V,∇τg〉 + g divτ V = divτ(gV).

Now, we give a version of the divergence Theorem.

Theorem 4.2.8 (Divergence Theorem). Let Ω be a bounded smooth open set of RN , D ⊂
∂Ω be a (relatively) open smooth set. Let V be a [W1,1(∂Ω)]N vector field. Then∫

D
divτ V dHN−1 =

∫
∂D
〈V, ντ〉 dHN−2 +

∫
D

H〈V, ν〉 dHN−1,

where ντ is the outer unit normal vector to D along ∂Ω.

4.3 Differentiation of the Lq(∂Ω)−norm

Now we are in condition to calculate the derivative of the norm ‖ · ‖Lq(∂Ω) with respect to
perturbations in the domain.

Again, we begin by describing the kind of variations that we are considering. Let V
be a regular (smooth) vector field, globally Lipschitz, with support in a neighbourhood of
∂Ω and let ψt : RN → RN be defined as the unique solution to d

dtψt(x) = V(ψt(x)) t > 0,
ψ0(x) = x x ∈ RN .

(4.4)

We have
ψt(x) = x + tV(x) + o(t) ∀x ∈ RN .
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Lemma 4.3.1. Given f ∈ Lq(∂Ω) then

ft = f ◦ ψ−1
t → f strongly in Lq(∂Ω), as t → 0.

Moreover ∫
∂Ω

| ft|
q dHN−1 =

∫
∂Ω

| f |q dHN−1 + t
∫
∂Ω

| f |q divτ V dHN−1 + o(t).

Proof. We proceed in two steps.

Steps 1 First, we show that

ft → f strongly in Lq(∂Ω), as t → 0.

Let ε > 0, and let g ∈ C∞c (∂Ω) fixed such that ‖ f − g‖Lq(∂Ω) < ε. By the Theorem 4.2.2,
we have,

‖ ft − gt‖
q
Lq(∂Ω) =

∫
∂Ω

| f − g|q Jacτ(ψt)dHN−1,

where gt = g ◦ ψ−1
t . We also know that

Jacτ(ψ) := 1 + t divτ V + o(t). (4.5)

Then
‖ ft − gt‖

q
Lq(∂Ω) =

∫
∂Ω

| f − g|q(1 + t divτ V + o(t)) dHN−1.

Therefore, there exists t1 > 0 such that if 0 < t < t1 then

‖ ft − gt‖Lq(∂Ω) ≤ Cε.

where C is a constant independent of t. Moreover, since ψ−1
t → Id in the C1 topology

when t → 0 then gt = g ◦ ψ−1
t → g in the C1 topology and therefore there exists t2 > 0

such that if 0 < t < t2 then
‖gt − g‖Lq(∂Ω) < ε.

Finally, we have for all 0 < t < t0 = min{t1, t2} then

‖ ft − f ‖Lq(∂Ω) ≤ ‖ ft − gt‖Lq(∂Ω) + ‖gt − g‖Lq(∂Ω) + ‖g − f ‖Lq(∂Ω)

≤ Cε,

where C is a constant independent of t.

Step 2 Now, we prove that∫
∂Ω

| ft|
q dHN−1 =

∫
∂Ω

| f |q dHN−1 + t
∫
∂Ω

| f |q divτ V dHN−1 + o(t).

Again, by the Theorem 4.2.2 and (4.5), we have∫
∂Ω

| ft|
q dHN−1 =

∫
∂Ω

| f |q(1 + t divτ V + o(t)) dHN−1∫
∂Ω

| f |q dHN−1 + t
∫
∂Ω

| f |q divτ V dHN−1 + o(t),

as we wanted to prove. �



5

The first weighted eigenvalue problem plus a
potential

In this chapter we consider the following eigenvalue problem with weights−∆pu + V(x)|u|p−2u = λg(x)|u|p−2u in Ω,

u = 0 on ∂Ω,
(5.1)

where Ω is a smooth bounded open subset of RN . Here V is a potential function and g is
a weight.

Our aim is to study the following optimization problems:

I := inf {λ(g,V) : g ∈ R(g0),V ∈ R(V0)} , (5.2)

where V0 and g0 are fixed potential and weight functions respectively that satisfy the
following assumptions

V0, g0 ∈ Lq(Ω) where

q > N
p if 1 < p ≤ N,

q = 1 if p > N.
(H1)

‖V−0 ‖Lq(Ω) < S pq′ or V0 ≥ −S p + δ for some δ > 0. (H2)

(observe that, this assumptions are the same that we use in Section 1.8), and R(V0), R(g0)
are the classes of rearrangements of V0 and g0 respectively.

A related minimization problem when the minimization parameter was allowed to vary
in the class of rearrangements of a fixed function, was first considered by [CEP1].

More recently, in [CEP2], the authors analyze problem (5.2) but when the potential
function is zero. In that work the authors prove the existence of a minimizing weight g∗
in the class of rearrangements of a fixed function g0 and, in the spirit of [Bu1] they found
a sort of Euler-Lagrange formula for g∗. However, this formula does not appear to be
suitable for use in actual computations of these minimizers.

In this chapter, we first extend the results in [CEP2] to (5.1) and prove the existence of a
minimizing weight and potential for (5.2). Also the same type of Euler-Lagrange formula
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is proved for both the weight and potential. But, we go further and study the dependence
of the eigenvalue λ(g,V) with respect to g and V and prove the continuous dependence in
Lq−norm and, moreover, the differentiability with respect to regular perturbations of the
weight and the potential.

In the case when the perturbations are made inside the class of rearrangements, we
exhibit a simple formula for the derivative of the eigenvalue with respect to g and V .

We believe that this formula can be used in actual computations of the optimal eigen-
value, weight and potential, since this type of formulas have been used in similar problems
in the past with significant success, see [FBGR, H, O, P] and references therein.

The chapter is organized as follows. In Section 5.1, we prove the existence of a unique
minimizer and give a characterization of it, similar to the one found in [CEP2] for the
problem without potential. In Section 5.2, we study the dependence of the eigenvalue with
respect to the weight and the potential and prove, first the continuous dependence in the
Lq−topology (Proposition 5.2.1), and finally we show a simple formula for the derivative
of the eigenvalue with respect to regular variations of the weight and the potential within
the class of rearrangements (Theorem 5.2.11).

5.1 Minimization and characterization

Let Ω be a bounded smooth domain in RN with N ≥ 2 and 1 < p < ∞.

Definition 5.1.1. Given g and V measurable functions, we say that g and V satisfy the
asumption (H) if g satisfies the assumption (H1),

V satisfies the assumption (H1) and (H2).
(H)

Given g0 and V0 measurable functions that satisfy the asumption (H) our aim in this
section is to analyze the following problem

I = inf {λ(g,V) : g ∈ R(g0), V ∈ R(V0)} ,

where R(g0) (resp. R(V0)) is the set of all rearrangements of g0 (resp. V0) and λ(g,V) is
the first positive principal eigenvalue of problem (5.1) and it is characterized by

λ(V, g) := inf
{

JV(u) : u ∈ W1,p
0 (Ω) and

∫
Ω

gu dx = 1
}

(5.3)

where
JV(u) :=

∫
Ω

|∇u|p dx +

∫
Ω

V(x)|u|p dx,

see Theorem 1.8.6.

Remark 5.1.2. Observe that if g ∈ R(g0) and V ∈ R(V0) then g and V satisfy (H).
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We first need a lemma to show that, under hypotheses (H1) and (H2), the functionals
JV(·) are uniformly coercive for V ∈ R(V0).

Lemma 5.1.3. Let V0 satisfies (H1) and (H2). Then, there exists δ0 > 0 such that

JV(u) ≥ δ0

∫
Ω

|∇u|p dx, ∀V ∈ R(V0).

Proof. We prove the lemma assuming that ‖V−0 ‖Lq(Ω) < S pq′ . Also, we assume that
1 < p ≤ N. The other cases are easier and are left to the reader.

First, observe that

JV(u) ≥
∫

Ω

|∇u|p dx +

∫
Ω

V−(x)|u|p dx.

On the other hand, q > N/p implies that pq′ < p∗. So∫
Ω

|V−(x)||u|p dx ≤ ‖V−‖Lq(Ω)‖u‖
p
Lpq′ (Ω)

= ‖V−0 ‖Lq(Ω)‖u‖
p
Lpq′ (Ω)

.

Then, by (H2), there exists δ0 such that

‖V−0 ‖Lq(Ω) ≤ (1 − δ0)S pq′ .

Therefore
JV(u) ≥ δ0

∫
Ω

|∇u|p dx,

as we wanted to prove. �

Remark 5.1.4. We remark that is actually needed the uniform coercitivity of the func-
tionals JV for V ∈ R(V0). Hypotheses (H1) and (H2) are a simple set of hypotheses that
guaranty that.

We now prove that the infimum is achieved.

Theorem 5.1.5. Let g0 and V0 be measurable functions that satisfy the assumption (H),
and let R(g0) and R(V0) be the sets of all rearrangements of g0 and V0 respectively. Then
there exists g∗ ∈ R(g0) and V∗ ∈ R(V0) such that

I = λ(g∗,V∗).

Proof. Let {(gn,Vn)}n∈N be a minimizing sequence, i.e.,

gn ∈ R(g0) and Vn ∈ R(V0) ∀ n ∈ N

and
I = lim

n→∞
λ(gn,Vn).
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Let un be the positive eigenfunction corresponding to λ(gn,Vn) then∫
Ω

gn(x)up
n = 1 ∀ n ∈ N, (5.4)

and
λ(gn,Vn) =

∫
Ω

|∇un|
p dx +

∫
Ω

Vn(x)up
n dx ∀ n ∈ N.

Hence
I = lim

n→∞

∫
Ω

|∇un|
p dx +

∫
Ω

Vn(x)up
n dx. (5.5)

Thus, by Lemma 5.1.3, {un}n∈N is bounded in W1,p
0 (Ω) and therefore there exists

u ∈ W1,p
0 (Ω) and some subsequence of {un}n∈N (still denoted by {un}n∈N) such that

un ⇀ u weakly in W1,p(Ω), (5.6)
un → u strongly in Lpq′(Ω). (5.7)

Recall that our assumptions on q imply that pq′ < p∗.

On the other hand, gn ∈ R(g0) and Vn ∈ R(V0) for all n ∈ N then

‖gn‖Lq(Ω) = ‖g0‖Lq(Ω) and ‖Vn‖Lq(Ω) = ‖V0‖Lq(Ω) ∀ n ∈ N.

Therefore, there exists f , W ∈ Lq(Ω) and subsequence of {gn}n∈N and {Vn}n∈N (still call by
{gn}n∈N and {Vn}n∈N) such that

gn ⇀ f weakly in Lq(Ω), (5.8)
Vn ⇀ W weakly in Lq(Ω). (5.9)

Thus, by (5.5), (5.6), (5.7) and (5.9), we have that

I ≥
∫

Ω

|∇u|p dx +

∫
Ω

W(x)|u|p dx,

and by (5.4), (5.7) and (5.8) we get∫
Ω

f (x)|u|p dx = 1.

Now, since f ∈ R(g0) and W ∈ R(V0), by Theorem 1.5.3, there exists g∗ ∈ R(g0) and
V∗ ∈ R(V0) such that

α =

∫
Ω

g∗(x)|u|p dx ≥
∫

Ω

f (x)up dx = 1

and ∫
Ω

V∗(x)up dx ≤
∫

Ω

W(x)|u|p dx.
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Let v = α−1/p|u|, then ∫
Ω

g∗(x)vpdx = 1,

and ∫
Ω

|∇v|p dx +

∫
Ω

V∗(x)vp dx =
1
α

∫
Ω

|∇u|p dx +

∫
Ω

V∗(x)|u|p dx

≤
1
α

∫
Ω

|∇u|p dx +

∫
Ω

W(x)|u|p dx.

Consequently
λ(g∗,V∗) ≤ I,

then
I = λ(g∗,V∗).

The proof is now complete. �

Now we give a characterization of g∗ and V∗.

Theorem 5.1.6. Let g0 and V0 be measurable functions that satisfy the assumption (H).
Let g∗ ∈ R(g0) and V∗ ∈ R(V0) be such that λ(g∗,V∗) = I are the ones given by Theorem
5.1.5. Then there exist an increasing function φ and a decreasing function ψ such that

g∗ = φ(u∗) a.e. in Ω,

V∗ = ψ(u∗) a.e. in Ω,

where u∗ is the positive eigenfunction associated to λ(g∗,V∗).

Proof. We proceed in four steps.

Step 1. First we show that V∗ is a minimizer of the linear functional

L(V) :=
∫

Ω

V(x)up
∗ dx

relative to V ∈ R(V0).

We have that ∫
Ω

g∗(x)up
∗ dx = 1

and
I = λ(g∗,V∗) =

∫
Ω

|∇u∗|p dx +

∫
Ω

V∗(x)up
∗ dx,

then, for all V ∈ R(V0),∫
Ω

|∇u∗|p dx +

∫
Ω

V∗(x)up
∗ dx ≤ λ(g∗,V) ≤

∫
Ω

|∇u∗|p dx +

∫
Ω

V(x)up
∗ dx
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and therefore ∫
Ω

V∗(x)up
∗ dx ≤

∫
Ω

V(x)up
∗ dx ∀V ∈ R(V0).

Thus, we can conclude that∫
Ω

V∗(x)up
∗ dx = inf

{
L(V) : V ∈ R(V0)

}
.

Step 2. We show that V∗ is the unique minimizer of L(V) relative to R(V0).

Suppose that W is another minimizer of L(V) relative to R(V0), then∫
Ω

V∗(x)up
∗ dx =

∫
Ω

W(x)up
∗ dx.

Thus

I = λ(g∗,V∗)

=

∫
Ω

|∇u∗|p dx +

∫
Ω

V∗(x)up
∗ dx

=

∫
Ω

|∇u∗|p dx +

∫
Ω

W(x)up
∗ dx

≥ λ(g∗,W)
≥ I.

Hence u∗ is the positive eigenfunction associated to λ(g∗,V∗) = λ(g∗,W). Then

− ∆pu∗ + V∗(x)up−1
∗ = λ(g∗,V∗)g∗(x)up−1

∗ in Ω, (5.10)
−∆pu∗ + W(x)up−1

∗ = λ(g∗,V∗)g∗(x)up−1
∗ in Ω. (5.11)

Subtracting (5.11) from (5.10), we get

(V∗(x) −W(x))up−1
∗ = 0 a.e. in Ω,

then V∗ = W a.e. in Ω.

Thus, by Theorem 1.5.4, there exists decreasing function ψ such that

V∗ = ψ(u∗) a.e. in Ω.

Step 3. Now, we show that g∗ is a maximizer of the linear functional

H(g) :=
∫

Ω

g(x)up
∗ dx

relative to g ∈ R(g0).

We argue by contradiction, so assume that there exists g ∈ R(g0) such that

α =

∫
Ω

g(x)up
∗ dx >

∫
Ω

g∗(x)up
∗ dx = 1
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and take v = α−1/pu∗. Then ∫
Ω

g(x)vp dx = 1

and∫
Ω

|∇v|p dx +

∫
Ω

V∗(x)vp dx =
1
α

∫
Ω

|∇u∗|p dx +

∫
Ω

V∗(x)up
∗ dx =

1
α
λ(g∗,V∗) < λ(g∗,V∗).

Therefore
λ(g,V∗) < λ(g∗,V∗),

which contradicts the minimality of λ(g∗,V∗).

Step 4. Lastly, we show that g∗ is the unique maximizer of H(g) relative to R(g0).

Assume that there exists another maximizer f of H(g) relative to R(g0). Then∫
Ω

f (x)up
∗ dx =

∫
Ω

g∗(x)up
∗ dx = 1

and therefore

I = λ(g∗,V∗) ≤ λ( f ,V∗) ≤
∫

Ω

|∇u|p dx +

∫
Ω

V∗(x)up
∗ dx = I,

then λ(g∗,V∗) = λ( f ,V∗) and hence u∗ is the eigenfunction associated to λ(g∗,V∗) =

λ( f ,V∗). Thus

− ∆pu∗ + V∗(x)up−1
∗ = λ(g∗,V∗)g∗(x)up−1

∗ in Ω, (5.12)
−∆pu∗ + V∗(x)up−1

∗ = λ(g∗,V∗) f (x)up−1
∗ in Ω. (5.13)

Subtracting (5.13) from (5.12), we get

λ(g∗,V∗) (g∗(x) − f (x)) up
∗ = 0 a.e. in Ω,

thus g∗ = f a.e. in Ω.

Then, by Theorem 1.5.4, there exist increasing function φ such that

g∗ = φ(u∗) a.e. in Ω.

This finishes the proof. �

5.2 Differentiation of the eigenvalue

The first aim of this section is prove the continuity of the first positive eigenvalue λ(g,V)
with respect to g and V. Then we proceed further and compute the derivative of λ(g,V)
with respect to perturbations in g and V .
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Proposition 5.2.1. The first positive eigenvalue λ(g,V) of (5.1) is continuous with respect
to (g,V) ∈ A where

A := {(g,V) ∈ Lq(Ω) × Lq(Ω) : g and V satisfy (H) } .

i.e.,
λ(gn,Vn)→ λ(g,V),

when (gn,Vn)→ (g,V) strongly in Lq(Ω) × Lq(Ω) and (gn,Vn), (g,V) ∈ A.

Proof. We know that

λ(gn,Vn) =

∫
Ω

|∇un|
p dx +

∫
Ω

Vn(x)up
n dx

and
λ(g,V) =

∫
Ω

|∇u|p dx +

∫
Ω

V(x)up dx,

with ∫
Ω

gn(x)up
n dx =

∫
Ω

g(x)up dx = 1,

where un and u are the positive eigenfunction associated to λ(gn,Vn) and λ(g,V) respec-
tively.

We begin by observing that

H(gn) :=
∫

Ω

gn(x)up dx =

∫
Ω

(gn(x) − g(x))up dx + 1→ 1,

as n→ ∞. Then there exists n0 ∈ N such that

H(gn) > 0 ∀ n ≥ n0.

Thus we take vn := H(gn)−1/pu, and by (5.3) we have

λ(gn,Vn) ≤
∫

Ω

|∇vn|
p dx +

∫
Ω

Vn(x)vp
n dx =

1
H(gn)

∫
Ω

|∇u|p dx +

∫
Ω

Vn(x)up dx.

Therefore, taking limits when gn → g and Vn → V in Lq(Ω), we get that

lim sup
n→∞

λ(gn,Vn) ≤
∫

Ω

|∇u|p dx +

∫
Ω

V(x)up dx = λ(g,V).

On the other hand, as Vn → V strongly in Lq(Ω) it is easy to see that there exist n1 ∈ N
and δ1 > 0 such that

‖V−n ‖Lq(Ω), ‖V−‖Lq(Ω) < S pq′(1 − δ1) ∀n ≥ n1,

or there exist a subsequence of {Vn}n∈N, wich we denote again by {Vn}n∈N, and δ2 > 0 such
that

Vn,V > −S p + δ2 ∀n ∈ N.
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Therefore, as {λ(gn,Vn)}n∈N is bounded, arguing as in Lemma 5.1.3, we have that {un}n∈N

is bounded in W1,p
0 (Ω). Therefore there exists v ∈ W1,p

0 (Ω) and a subsequence of {un}n∈N

(that we still denote by {un}n∈N) such that

un ⇀ v weakly in W1,p
0 (Ω), (5.14)

un → v strongly in Lpq′(Ω). (5.15)

By (5.15) and as gn → g in Lq(Ω), we have that

1 = lim
n→∞

∫
Ω

gn(x)|un|
p dx =

∫
Ω

g(x)|v|p dx.

Finally, by (5.14), (5.15) and, as Vn → V in Lq(Ω), we arrive at

lim inf
n→∞

λ(gn,Vn) = lim inf
n→∞

∫
Ω

|∇un|
p dx +

∫
Ω

Vn(x)up
n dx

≥

∫
Ω

|∇v|p dx +

∫
Ω

V(x)|v|p dx

≥ λ(g,V)

and the result follows. �

Remark 5.2.2. Observe that if instead of (H2) we required only that V > −S p + δ, the
same proof of Proposition 5.2.1 gives the continuity of λ(g,V) with respect to weak con-
vergence.

Now we arrive at the main result of this section, namely we compute the derivative of
the first positive eigenvalue λ(g,V) with respect to perturbations in g and V .

We begin by describing the kind of variations that we are going to consider. Let W be a
regular (smooth) vector field, globally Lipschitz, with support in Ω and let ϕt : RN → RN

be the flow defined by  d
dtϕt(x) = W(ϕt(x)) t > 0,
ϕ0(x) = x x ∈ RN .

(5.16)

We have
ϕt(x) = x + tW(x) + o(t) ∀x ∈ RN .

Thus, if g and V are measurable functions that satisfy the assumption (H), we define
gt := g ◦ ϕ−1

t and Vt := V ◦ ϕ−1
t . Now, let

λ(t) := λ(gt,Vt) =

∫
Ω

|∇ut|
p dx +

∫
Ω

Vt(x)|ut|
p dx,

with ∫
Ω

gt(x)up
t dx = 1,

where ut is the eigenfunction associated to λ(t).
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Remark 5.2.3. In order for this approach to be useful for the optimization problem of the
previous section, we need to guaranty that gt ∈ R(g0) and Vt ∈ R(V0) whenever g ∈ R(g0)
and V ∈ R(V0).

It is not difficult to check that this is true for incompressible deformation fields, i.e., for
those W’s such that

div W = 0.

By Proposition 5.2.1 and Lemma 4.1.1, we have that

Theorem 5.2.4. Let g and V be measurable functions that satisfy the assumption (H).
Then, with the previous notation, λ(t) is continuous at t = 0, i.e.,

λ(t)→ λ(0) = λ(g,V) as t → 0+.

Lemma 5.2.5. Let g and V be measurable functions that satisfy the assumption (H). Let
ut be the normalized positive eigenfunction associated to λ(t) with t > 0. Then

lim
t→0+

ut = u0 strongly in W1,p
0 (Ω).

where u0 is the unique normalized positive eigenfunction associated to λ(g,V).

Proof. From the previous theorem, we deduce that λ(t) is bounded and, as in the proof of
Proposition 5.2.1, we further deduce that {ut} is bounded in W1,p

0 (Ω).

So, given {tn}n∈N, we have that {utn}n∈N is bounded in W1,p
0 (Ω) and therefore there exists

u0 ∈ W1,p
0 (Ω) and some subsequence (still denoted by {utn}n∈N) such that

utn ⇀ u0 weakly in W1,p
0 (Ω), (5.17)

utn → u0 strongly in Lpq′(Ω). (5.18)

Since (gtn ,Vtn)→ (g,V) strongly in Lq(Ω) × Lq(Ω) as n→ ∞ and by (5.18) we get

1 = lim
n→∞

∫
Ω

gtn(x)|utn |
p dx =

∫
Ω

g(x)|u0|
p dx

and
lim
n→∞

∫
Ω

Vtn(x)|utn |
p dx =

∫
Ω

V(x)|u0|
p dx.

Thus, using (5.17),

λ(0) = lim
n→∞

λ(tn)

= lim
n→∞

∫
Ω

|∇utn |
p dx +

∫
Ω

Vtn(x)|utn |
p dx

≥

∫
Ω

|∇u0|
p dx +

∫
Ω

V(x)|u0|
p dx

≥ λ(0),
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then u0 is the a normalized eigenfunction associated to λ(0) and, as {utn}n∈N are positive,
it follows that u0 is positive.

Moreover
‖∇utn‖Lp(Ω) → ‖∇u0‖Lp(Ω) as n→ ∞.

Then, using again (5.17), we have

utn → u0 in W1,p
0 (Ω) as n→ ∞.

as we wanted to show. �

Remark 5.2.6. It is easy to see that, as ϕt → Id in the C1 topology, then from Lemma
5.2.5 it follows that

ut ◦ ϕt → u0 strongly in W1,p
0 (Ω) as t → 0,

when ut → u0 strongly in W1,p
0 (Ω).

Now, we arrive at the main result of the section

Theorem 5.2.7. With the previous notation, if g and V are measurable functions that
satisfy the assumption (H), we have that λ(t) is differentiable at t = 0 and

dλ(t)
dt

∣∣∣∣
t=0

=

∫
Ω

(|∇u0|
p + V(x)|u0|

p) div W dx − p
∫

Ω

|∇u0|
p−2〈∇u0,

T W ′∇uT
0 〉 dx

− λ(0)
∫

Ω

g(x)|u0|
p div W dx,

where u0 is the eigenfunction associated to λ(0) = λ(g,V).

Proof. First we consider vt := u0 ◦ ϕ
−1
t . Then, by the Lemma 4.1.1, we get∫

Ω

gt(x)|vt|
p dx = 1 + t

∫
Ω

g(x)|u0|
p div W dx + o(t),∫

Ω

Vt(x)|vt|
p dx =

∫
Ω

V(x)|u0|
p dx + t

∫
Ω

V(x)|u0|
p div W dx + o(t)

and, by Theorem 4.1.3,∫
Ω

|∇vt|
p dx =

∫
Ω

|∇u0|
p dx + t

∫
Ω

|∇u0|
p div W dx

− tp
∫

Ω

|∇u0|
p−2〈∇u0,

T W ′∇uT
0 〉 dx + o(t).

Then, for t small enough, ∫
Ω

gt(x)|vt|
p dx > 0,
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and therefore

λ(t) ≤

∫
Ω
|∇vt|

p dx +
∫

Ω
Vt(x)|vt|

p dx∫
Ω

gt(x)|vt|
p dx

.

So
λ(t)

∫
Ω

gt(x)|vt|
p dx ≤

∫
Ω

|∇vt|
p dx +

∫
Ω

Vt(x)|vt|
p dx,

then, we have that

λ(t)
(
1 + t

∫
Ω

g(x)|u0|
p div W dx

)
≤

∫
Ω

|∇u0|
p dx +

∫
Ω

V(x)|u0|
p dx

+ t
∫

Ω

(|∇u0|
p + V(x)|u0|

p) div W dx

− tp
∫

Ω

|∇u0|
p−2〈∇u0,

T W ′∇uT
0 〉 dx + o(t)

= λ(0) + t
∫

Ω

(|∇u0|
p + V(x)|u0|

p) div W dx

− tp
∫

Ω

|∇u0|
p−2〈∇u0,

T W ′∇uT
0 〉 dx + o(t),

and we get that

λ(t) − λ(0)
t

≤

∫
Ω

(|∇u0|
p + V(x)|u0|

p) div W dx − p
∫

Ω

|∇u0|
p−2〈∇u0,

T W ′∇uT
0 〉 dx

− λ(t)
∫

Ω

g(x)|u0|
p div W dx + o(1).

In a similar way, if we take wt = ut ◦ ϕt we have that

λ(t) − λ(0)
t

≥

∫
Ω

(|∇wt|
p + V(x)|wt|

p) div W dx − p
∫

Ω

|∇wt|
p−2〈∇wt,

T W ′∇wT
t 〉 dx

− λ(0)
∫

Ω

g(x)|wt|
p div W dx + o(1).

Thus, taking limit in the two last inequalities as t → 0+, by the Theorem 5.2.4 and Remark
5.2.6, we get that

lim
t→0+

λ(t) − λ(0)
t

=

∫
Ω

(|∇u0|
p + V(x)|u0|

p) div W dx − p
∫

Ω

|∇u0|
p−2〈∇u0,

T W ′∇uT
0 〉 dx

− λ(0)
∫

Ω

g(x)|u0|
p div W dx.

This finishes the proof. �

Remark 5.2.8. When we work in the class of rearrangements of a fixed pair (g0,V0), as
was mentioned in Remark 5.2.3, we need the deformation field W to verified div W = 0.
So, in this case, the formula for λ′(0) reads,

dλ(t)
dt

∣∣∣∣
t=0

= −p
∫

Ω

|∇u0|
p−2〈∇u0,

T W ′∇uT
0 〉 dx.
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In order to improve this expression for λ′(0), we need a lemma that will allow us to
regularize problem (5.1) since solutions to (5.1) are C1,δ for some δ > 0 but are not C2 nor
W2,q in general (see [L]).

Lemma 5.2.9. Let V, g be measurable functions that satisfy the assumption (H), and let
Vε, gε ∈ C∞0 (Ω) be such that Vε → V and gε → g in Lq(Ω). Let

λε := min
{

Jε(v) : v ∈ W1,p
0 (Ω),

∫
Ω

gε(x)|v|p dx = 1
}

where
Jε(v) :=

∫
Ω

(|∇v|2 + ε2)(p−2)/2|∇v|2 dx +

∫
Ω

Vε(x)|v|p dx.

Finally, let uε be the unique normalized positive eigenfunction associated to λε.

Then, λε → λ(g,V) and uε → u0 strongly in W1,p
0 (Ω), where u0 is the unique normalized

positive eigenfunction associated to λ(g,V).

Proof. First, observe that, as gε → g in Lq(Ω) if u0 is the normalized positive eigenfunc-
tion associated to λ(g,V), we have that∫

Ω

gε(x)|u0|
p dx > 0.

for all ε > 0 small enough. Then, for all ε > 0 small enough, taking

vε =
u0∫

Ω
gε(x)|u0|

p dx

in the characterization of λε, we get

λε ≤

∫
Ω

(|∇vε|2 + ε2)(p−2)/2|∇vε|2 + Vε(x)|vε|p dx.

Hence, passing to the limit as ε → 0+, since
∫

Ω
gε(x)|u0|

p dx →
∫

Ω
g(x)|u0|

p dx = 1 as
ε→ 0+, we arrive at

lim sup
ε→0+

λε ≤ λ(g,V).

Now, for any v ∈ W1,p
0 (Ω) normalized such that∫

Ω

gε(x)|v|p dx = 1,

we have that∫
Ω

(|∇v|2 + ε2)(p−2)/2|∇v|2 dx +

∫
Ω

Vε(x)|v|p dx ≥
∫

Ω

|∇v|p dx +

∫
Ω

Vε(x)|v|p dx

≥ λ(gε,Vε),
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therefore λε ≥ λ(gε,Vε).

Now, by Proposition 5.2.1, we have that λ(gε,Vε)→ λ(g,V) as ε→ 0+. So

lim inf
ε→0+

λε ≥ λ(g,V).

Finally, from the convergence of the eigenvalues, it is easy to see that the normalized
eigenfunction uε associated to λε are bounded in W1,p

0 (Ω) uniformly in ε > 0. Therefore,
there exists a sequence, that we still call {uε}, and a function u ∈ W1,p

0 (Ω) such that

uε ⇀ u weakly in W1,p
0 (Ω),

uε → u strongly in Lpq′(Ω).

Recall that our assumptions on q imply that pq′ < p∗.

Hence, ∫
Ω

g(x)|u|p dx = lim
ε→0+

∫
Ω

gε(x)|uε|p dx = 1,

and so

λ(g,V) = lim
ε→0+

λε

= lim
ε→0+

∫
Ω

(|∇uε|2 + ε2)(p−2)/2|∇uε|2 dx +

∫
Ω

Vε(x)|uε|p dx

≥

∫
Ω

|∇u|p dx +

∫
Ω

V(x)|u|p dx

≥ λ(g,V).

These imply that u = u0 the unique normalized positive eigenfunction associated to
λ(g,V) and that ‖uε‖W1,p

0 (Ω) → ‖u‖W1,p
0 (Ω) as ε→ 0+. So

uε → u0 strongly in W1,p
0 (Ω).

This finishes the proof. �

Remark 5.2.10. Observe that the eigenfunctions uε are weak solutions to− div((|∇uε|2 + ε2)(p−2)/2∇uε) + Vε(x)|uε|p−2uε = λεgε(x)|uε|p−2uε in Ω,

uε = 0 on ∂Ω.
(5.19)

Therefore, by the classical regularity theory (see [LU]), the functions uε are C2,δ for some
δ > 0.

With these preparatives we can now prove the following Theorem.

Theorem 5.2.11. With the assumptions and notations of Theorem 5.2.7, we have that

dλ(t)
dt

∣∣∣∣
t=0

= λ′(0) =

∫
Ω

(V(x) − λ(0)g(x)) div(|u0|
pW) dx,

for every field W such that div W = 0.
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Proof. During the proof of the Theorem, we will require that the eigenfunction u0 to be
C2. As it is well known (see [L]), this is not true.

In order to overcome this difficulty, we regularize the problem and work with the regu-
larized eigenfunction uε defined in Lemma 5.2.9.

Since in the resulting formula only appears up to the first derivatives of uε and uε → u0

strongly in W1,p
0 (Ω) the result will follows.

Given W ∈ C1
0(Ω;RN) such that div W = 0, by the Theorem 5.2.7 and the Lemma 5.2.9,

we have that
dλ(t)

dt

∣∣∣∣
t=0

= −p
∫

Ω

|∇u0|
p−2〈∇u0,

T W ′∇uT
0 〉 dx

= lim
ε→0
−p

∫
Ω

||∇uε|2 + ε2|
(p−2)/2〈∇uε,T W ′∇uT

ε 〉 dx

Since W ∈ C1
0(Ω;RN), ∫

Ω

div((|∇uε|2 + ε2)p/2W) dx = 0.

So,∫
Ω

||∇uε|2 + ε2|
(p−2)/2〈∇uε,T W ′∇uT

ε 〉 dx =

∫
Ω

||∇uε|2 + ε2|
(p−2)/2〈∇uε,T W ′∇uT

ε 〉 dx

+
1
p

∫
Ω

div((|∇u0|
2 + ε2)p/2W) dx

=

∫
Ω

||∇uε|2 + ε2|
(p−2)/2〈∇uε,T W ′∇uT

ε 〉 dx

+

∫
Ω

||∇uε|2 + ε2|
(p−2)/2〈∇uε,D2uεWT 〉 dx

=

∫
Ω

||∇uε|2 + ε2|
(p−2)/2〈∇uε,T W ′∇uT

ε + D2uεWT 〉 dx

=

∫
Ω

||∇uε|2 + ε2|
(p−2)/2〈∇uε,∇〈∇uε,W〉〉 dx.

Now, we use the fact that uε is a weak solution to (5.19) to get∫
Ω

||∇uε|2 + ε2|
(p−2)/2〈∇uε,T W ′∇uT

ε 〉 dx =

∫
Ω

||∇uε|2 + ε2|
(p−2)/2〈∇uε,∇〈∇uε,W〉〉 dx

=

∫
Ω

(λεgε(x) − Vε)|uε|p−2uε〈∇uε,W〉 dx

Now, using again the Lemma 5.2.9, we have

lim
ε→0

∫
Ω

||∇uε|2 + ε2|
(p−2)/2〈∇uε,T W ′∇uT

ε 〉 dx = lim
ε→0

∫
Ω

(λεgε(x) − Vε)|uε|p−2uε〈∇uε,W〉 dx

=

∫
Ω

(λ(0)g(x) − V(x)) div(|u0|
pW) dx.
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Therefore,

λ′(0) = −p lim
ε→0

∫
Ω

||∇uε|2 + ε2|
(p−2)/2〈∇uε,T W ′∇uT

ε 〉 dx

= p
∫

Ω

(V(x) − λ(0)g(x))|u0|
p−2u0〈∇u0,W〉 dx

=

∫
Ω

(V(x) − λ(0)g(x)) div(|u0|
pW) dx.

The proof is now complete. �



6

Some optimization problems for p−Laplacian
type equations

In this chapter we analyze the following optimization problem: Consider a smooth
bounded domain Ω ⊂ RN and some class of admissible loads A. Then, we want to
maximize the cost functional

J( f ) :=
∫
∂Ω

f (x)u dHN−1,

for f ∈ A, where u is the (unique) solution to the nonlinear membrane problem with load
f −∆pu + |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν

= f on ∂Ω.
(6.1)

These types of optimization problems have been considered in the literature due to
many applications in science and engineering, specially in the linear case p = 2. See for
instance [CC].

We have chosen three different classes of admissible functionsA to work with.

• The class of rearrangements of a given function f0.

• The (unit) ball in some Lq.

• The class of characteristic functions of sets of given surface measure.

This latter case is what we believe is the most interesting one and where our main
results are obtained.

For each of these classes, we prove existence of a maximizing load (in the respective
class) and analyze properties of these maximizers.
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The approach to the class of rearrangements follows the lines of [CEP1], where a sim-
ilar problem was analysed, namely, the maximization of the functional

J̄(g) :=
∫

Ω

gu dx,

where u is the solution to −∆pu = g in Ω with Dirichlet boundary conditions.

When we work in the unit ball of Lq the problem becomes trivial and we explicitly find
the (unique) maximizer for J , namely, the first eigenfunction of a Steklov-like nonlinear
eigenvalue problem (see Section 6.2).

Finally, we arrive at the main part of this chapter, namely, the analysis of the problem
for the class of characteristic functions of sets of given boundary measure. In order to
work within this class, we first relax the problem and work with the weak∗ closure of
the characteristic functions (i.e. bounded functions of given L1 norm), prove existence
of a maximizer within this relaxed class and then prove that this optimizer is in fact a
characteristic function.

Then, in order to analyze properties of this maximizers, we compute the first variation
with respect to perturbations on the load.

This approach for optimization problems has been used several times in the literature.
Just to cite a few, see [DPFBR, FBRW2, KSS] and references therein. Also, our approach
to the computation of the first variation borrows ideas from [GMSL].

The chapter is organized as follows. First, in Section 6.1, we study the problem when
the admissible class of loads A is the class of rearrangements of a given function f0. In
Section 6.2, we study the simpler case when A is the unit ball in Lq. In Section 6.3, we
analyze the case whereA is the class of characteristic functions of sets with given surface
measure. Lastly, in Section 6.4, we compute the first variation with respect to the load.

6.1 Maximizing in the class of rearrangements

Given a domain Ω ⊂ RN (bounded, connected, with smooth boundary), first we want to
study the following problem −∆pu + |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν

= f on ∂Ω.
(6.2)

Here 1 < p < ∞ and f is a measurable function that satisfy the assumption

f ∈ Lq(Ω) where

q > N′
p′ if 1 < p < N,

q > 1 if p ≥ N.
(A1)

We say u ∈ W1,p(Ω) is a weak solution of (6.2) if∫
Ω

|∇u|p−2∇u∇v + |u|p−2uv dx =

∫
∂Ω

f v dHN−1 ∀ v ∈ W1,p(Ω).
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The assumption (A1) is related to the fact that p′/N′ = p′∗ if 1 < p < N, and q′ < ∞ if
p ≥ N . So, in order for that the right side of last equality to make sense for f ∈ Lq(∂Ω),
we need v to belong to Lq′(∂Ω). This is achieved by the assumption (A1) and the Sobolev
Trace Embedding Theorem.

It is a standard result that (6.2) has a unique weak solution u f , for which the following
equations hold ∫

∂Ω

f u f dHN−1 = sup
{
I(u) : u ∈ W1,p(Ω)

}
, (6.3)

where

I(u) =
1

p − 1

{
p
∫
∂Ω

f u dHN−1 −

∫
Ω

|∇u|p + |u|p dx
}
.

Let f0 be a measurable function that satisfy the assumption (A1), we are interested in
finding

sup
{∫

∂Ω

f u f dHN−1 : f ∈ R( f0)
}
. (6.4)

Theorem 6.1.1. There exists f̂ ∈ R( f0) such that

J( f̂ ) =

∫
∂Ω

f̂ û dHN−1

= sup {J( f ) : f ∈ R( f0)}

= sup
{∫

∂Ω

f u f dHN−1 : f ∈ R( f0)
}
,

where û = u f̂ .

Proof. Let

I = sup
{∫

∂Ω

f u f dHN−1 : f ∈ R( f0)
}
.

We first show that I is finite. Let f ∈ R( f0). By Hölder’s inequality and the Sobolev Trace
Embedding Theorem, we have∫

Ω

|∇u f |
p + |u f |

p dx ≤ C‖ f ‖Lq(∂Ω)‖u f ‖W1,p(Ω),

then
‖u f ‖W1,p(Ω) ≤ C ∀ f ∈ R( f0) (6.5)

since ‖ f ‖Lq(∂Ω) = ‖ f0‖Lq(∂Ω) for all f ∈ R( f0). Therefore I is finite.

Now, let { fn}n∈N be a maximizing sequence and let un = u fn . From (6.5) it is clear that
{un}n∈N is bounded in W1,p(Ω), then there exists a function u ∈ W1,p(Ω) such that, for a
subsequence that we still call {un}n∈N,

un ⇀ u weakly in W1,p(Ω),
un → u strongly in Lp(Ω),
un → u strongly in Lq′(∂Ω).
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On the other hand, since { fn}n∈N is bounded in Lp′(∂Ω), we may choose a subsequence,
still denoted by { fn}n∈N, and f ∈ Lq(∂Ω) such that

fn ⇀ f weakly in Lq(∂Ω).

Then

I = lim
n→∞

∫
∂Ω

fnun dHN−1

=
1

p − 1
lim
n→∞

{
p
∫
∂Ω

fnun dHN−1 −

∫
Ω

|∇un|
p + |un|

p dx
}

≤
1

p − 1

{
p
∫
∂Ω

f u dHN−1 −

∫
Ω

|∇u|p + |u|p dx
}
.

Furthermore, by Lemma 1.5.3, there exists f̂ ∈ R( f0) such that∫
∂Ω

f u dHN−1 ≤

∫
∂Ω

f̂ u dHN−1.

Thus

I ≤
1

p − 1

{
p
∫
∂Ω

f̂ u dHN−1 −

∫
Ω

|∇u|p + |u|p dx
}
.

As a consequence of (6.3), we have that

I ≤
1

p − 1

{
p
∫
∂Ω

f̂ u dHN−1 −

∫
Ω

|∇u|p + |u|p dx
}

≤
1

p − 1

{
p
∫
∂Ω

f̂ û dHN−1 −

∫
Ω

|∇û|p + |û|p dx
}

=

∫
∂Ω

f̂ û dHN−1

≤ I.

Recall that û = u f̂ . Therefore f̂ is a solution to (6.4). This completes the proof. �

Remark 6.1.2. With a similar proof we can prove a slighter stronger result. Namely, we
can consider the functional

J1( f , g) :=
∫

Ω

gu dx +

∫
∂Ω

f u dHN−1,

where u is the (unique, weak) solution to−∆pu + |u|p−2u = g in Ω,

|∇u|p−2 ∂u
∂ν

= f on ∂Ω,

and consider the problem of maximizing J1 over the class R(g0) × R( f0) for some fixed
g0 and f0.

We leave the details to the reader.



76 Some optimization problems for p−Laplacian type equations

Now, we give characterization of a maximizer function in the spirit of [CEP1].

Theorem 6.1.3. Let f̂ ∈ R( f0) such that∫
∂Ω

f̂ û dHN−1 = sup
{∫

∂Ω

f u f dHN−1 : f ∈ R( f0)
}
,

where û = u f̂ . Then f̂ is the unique maximizer of linear functional

L( f ) :=
∫
∂Ω

f û dHN−1,

relative to f ∈ R( f0).

Therefore, there is an increasing function φ such that f̂ = φ ◦ ûHN−1−a.e.

Proof. We proceed in three steps.

Step 1. First we show that f̂ is a maximizer of L( f ) relative to f ∈ R( f0).

In fact, let h ∈ R( f0), since∫
∂Ω

f̂ û dHN−1 = sup
{∫

∂Ω

f u f dHN−1 : f ∈ R( f0)
}
,

we have that∫
∂Ω

f̂ û dHN−1 ≥

∫
∂Ω

huh dHN−1

=
1

p − 1
sup

{
p
∫
∂Ω

hu dHN−1 −

∫
∂Ω

|∇u|p + |u|p dx : u ∈ W1,p(Ω)
}

≥
1

p − 1

{
p
∫
∂Ω

hû dHN−1 −

∫
∂Ω

|∇û|p + |û|p dx
}
,

and, since ∫
∂Ω

f̂ û dHN−1 =
1

p − 1

{
p
∫
∂Ω

f̂ û dHN−1 −

∫
∂Ω

|∇û|p + |û|p dx
}
,

we have ∫
∂Ω

f̂ û dHN−1 ≥

∫
∂Ω

hû dHN−1.

Therefore, ∫
∂Ω

f̂ û dHN−1 = sup {L( f ) : f ∈ R( f0)} .

Step 2. Now, we show that f̂ is the unique maximizer of L( f ) relative to f ∈ R( f0).
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We suppose that g is another maximizer of L( f ) relative to f ∈ R( f0). Then∫
∂Ω

f̂ û dHN−1 =

∫
∂Ω

gû dHN−1.

Thus∫
∂Ω

gû dHN−1 =

∫
∂Ω

f̂ û dHN−1

≥

∫
∂Ω

gug dHN−1

=
1

p − 1
sup

{
p
∫
∂Ω

gu dHN−1 −

∫
Ω

|∇u|p + |u|p dx : u ∈ W1,p(Ω)
}
.

On the other hand,∫
∂Ω

gû dHN−1 =

∫
∂Ω

f̂ û dHN−1

=
1

p − 1

{
p
∫
∂Ω

f̂ û dHN−1 −

∫
Ω

|∇û|p + |û|p dx
}

=
1

p − 1

{
p
∫
∂Ω

gû dHN−1 −

∫
Ω

|∇û|p + |û|p dx
}
.

Then∫
∂Ω

gû dHN−1 =
1

p − 1
sup

{
p
∫
∂Ω

gu dHN−1 −

∫
Ω

|∇u|p + |u|p dx : u ∈ W1,p(Ω)
}
.

Therefore û = ug. Then û is the unique weak solution to−∆pû + |û|p−2û = 0 in Ω,

|∇û|p−2 ∂û
∂ν

= g on ∂Ω.

Furthermore, we now that û is the unique weak solution to−∆pû + |û|p−2û = 0 in Ω,

|∇û|p−2 ∂û
∂ν

= f̂ on ∂Ω.

Therefor f̂ = gHN−1−a.e.

Step 3. Lastly, we have that there is an increasing function φ such that f̂ = φ ◦ û
HN−1−a.e.

This is a direct consequence of Steps 1, 2 and Theorem 1.5.4.

This completes the proof of theorem. �
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6.2 Maximizing in the unit ball of Lq

In this section we consider the optimization problem

maxJ( f )

where the maximum is taken over the unit ball in Lq(∂Ω).

In this case, the answer is simple and we find that the maximizer can be computed
explicitly in terms of the extremal of the Sobolev trace embedding.

So, we let f be a measurable function that satisfy the assumptions (A1) and

‖ f ‖Lq(∂Ω) ≤ 1,

we consider the problem

sup
{∫

∂Ω

f u f dHN−1 : f ∈ Lq(∂Ω) and ‖ f ‖Lq(∂Ω) ≤ 1
}
, (6.6)

where u f is the weak solution of−∆pu + |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν

= f on ∂Ω.
(6.7)

The assumption (A1) is taken by the same reason that in the previous section.

In this case it is easy to see that the solution becomes

f̂ = vq′−1
q′

where vq′ ∈ W1,p(Ω) is a nonnegative extremal for S q′ normalized such that ‖vq′‖Lq′ (∂Ω) = 1,
and S q′ is the Sobolev trace constant. Furthermore

û = u f̂ =
1

S 1/(p−1)

q′
vq′ .

Observe that, as f satisfies the assumption (A1), there exists an extremal for S q′ . See
[FBR1] and references therein.

In fact

J( f̂ ) =

∫
∂Ω

f̂ û dHN−1

=

∫
Ω

|∇û|p + |û|p dx

=
1

S p/(p−1)

q′

∫
Ω

|∇vq′ |
p + |vq′ |

p dx

=
1

S 1/(p−1)

q′
.
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On the other hand, given f ∈ Lq(∂Ω), such that ‖ f ‖Lq(∂Ω) ≤ 1, we have

J( f ) =

∫
∂Ω

f u f dHN−1

≤ ‖ f ‖Lq(∂Ω)‖u f ‖Lq′ (∂Ω)

≤

(
1

S q′

∫
Ω

|∇u f |
p + |u f |

p dx
)1/p

=
1

S 1/p

q′

(∫
∂Ω

f u f dHN−1
)1/p

,

from which it follows that
J( f ) ≤

1

S 1/(p−1)

q′
.

This completes the characterization of the optimal load in this case.

6.3 Maximizing in L∞

Now we consider the problem

sup
{∫

∂Ω

φuφ dHN−1 : φ ∈ B
}
, (6.8)

where

B :=
{
φ : 0 ≤ φ(x) ≤ 1 for all x ∈ ∂Ω and

∫
∂Ω

φ dHN−1 = A
}
,

for some fixed 0 < A < HN−1(∂Ω), and uφ is the weak solution of−∆pu + |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν

= φ on ∂Ω.
(6.9)

We believe that this is the most interesting case considered in this chapter.

In this case, we have the following theorem:

Theorem 6.3.1. There exists D ⊂ ∂Ω withHN−1(D) = A such that∫
∂Ω

χDuD dHN−1 = sup
{∫

∂Ω

φuφ dHN−1 : φ ∈ B
}
,

where uD = uχD .

Proof. Let

I = sup
{∫

∂Ω

φuφ dHN−1 : φ ∈ B
}
.
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Arguing as in the first part of the proof for Theorem 6.1.1, we have that I is finite.

Next, let {φn}n∈N be a maximizing sequence and let un = uφn . It is clear that {un}n∈N is
bounded in W1,p(Ω), then there exists a function u ∈ W1,p(Ω) such that, for a subsequence
that we still call {ui}n∈N,

un ⇀ u weakly in W1,p(Ω),
un → u strongly in Lp(Ω),
un → u strongly in Lp(∂Ω).

On the other hand, since {φn}n∈N is bounded in L∞(∂Ω), we may choose a subsequence,
again denoted {φn}n∈N, and φ ∈ L∞(∂Ω) and such that

φn
∗
⇀ φ weakly∗ in L∞(∂Ω).

Then

I = lim
n→∞

∫
∂Ω

φnun dHN−1

=
1

p − 1
lim
n→∞

{
p
∫
∂Ω

φnun dHN−1 −

∫
Ω

|∇un|
p + |un|

p dx
}

≤
1

p − 1

{
p
∫
∂Ω

φu dHN−1 −

∫
Ω

|∇u|p + |u|p dx
}
.

Furthermore, by Theorem 1.3.12, there exists D ⊂ ∂Ω withHN−1(D) = A such that∫
∂Ω

φu dHN−1 ≤

∫
∂Ω

χDu dHN−1,

and
{t < u} ⊂ D ⊂ {t ≤ u}, t := inf

{
s : HN−1({s < u}) < A

}
.

Thus

I ≤
1

p − 1

{
p
∫
∂Ω

χDu dHN−1 −

∫
Ω

|∇u|p + |u|p dx
}
.

As a consequence of (6.3), we have that

I ≤
1

p − 1

{
p
∫
∂Ω

χDu dHN−1 −

∫
Ω

|∇u|p + |u|p dx
}

≤
p

p − 1

{
p
∫
∂Ω

χDuD dHN−1 −

∫
Ω

|∇uD|
p + |uD|

p dx
}

=

∫
∂Ω

χDuD dHN−1

≤ I.

Recall that uD = uχD . Therefore χD is a solution to (6.8). This completes the proof. �
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Remark 6.3.2. Note that in arguments in the proof of Theorem 6.3.1, using again the
Theorem 1.3.12, we can prove that

{t < uD} ⊂ D ⊂ {t ≤ uD}

where t := inf
{
s : HN−1({s < uD}) < A

}
. Therefore uD is constant on ∂D.

6.4 Derivate with respect to the load

Now we compute the derivate of the functional J( f̂ ) with respect to perturbations in
f̂ . We will consider regular perturbations and assume that the function f̂ has bounded
variation in ∂Ω.

We begin by describing the kind of variations that we are considering. Let V be a
regular (smooth) vector field, globally Lipschitz, with support in a neighborhood of ∂Ω

such that 〈V, ν〉 = 0 and let ψt : RN → RN be defined as the unique solution to d
dtψt(x) = V(ψt(x)) t > 0,
ψ0(x) = x x ∈ RN .

(6.10)

We have
ψt(x) = x + tV(x) + o(t) ∀x ∈ RN .

Thus, if f satisfies the assumption (A1), we define ft = f ◦ ψ−1
t . Now, let

I(t) := J( ft) =

∫
∂Ω

ut ftdHN−1

where ut ∈ W1,p(Ω) is the unique solution to−∆put + |ut|
p−2 = 0 in Ω,

|∇ut|
p−2 ∂ut

∂ν
= ft on ∂Ω.

(6.11)

Lemma 6.4.1. Let u0 and ut be the solution of (6.11) with t = 0 and t > 0, respectively.
Then

ut → u0 in W1,p(Ω), as t → 0+.

Proof. The proof follows exactly as the one in Lemma 4.2 in [CEP1]. The only difference
being that we use the trace inequality instead of the Poincaré inequality.

In fact, as

C〈|x|p−2x − |y|p−2y, x − y〉 ≥

|x − y|p if p ≥ 2,
|x−y|2

(|x|+|y|)2−p if p ≤ 2
(6.12)

for all x, y ∈ RN , where C is a positive constant (see, for example,[T]). We consider two
cases
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Case 1. Let p ≥ 2. Using (6.12) we have

1
C
‖ut − u0‖W1,p(Ω) ≤

∫
Ω

〈|∇ut|
p−2∇ut − |∇u0|

p−2∇u0,∇ut − ∇u0〉 dx

+

∫
Ω

(
|ut|

p−2ut − |u0|
p−2u0

)
(ut − u0) dx.

By (6.11), we can rewrite the above inequality as

‖ut − u0‖
p
W1,p(Ω) ≤ C

∫
∂Ω

( ft − f )(ut − u) dHN−1.

So by applying the Hölder’s inequality followed by the trace inequality we obtain

‖ut − u0‖
p−1
W1,p(Ω) ≤ C̃‖ ft − f ‖Lq(∂Ω).

From the above inequality and Lemma 4.3.1, the assertion of the lemma follows.

Case 2. Let p ≤ 2. Let us begin with the following observation

‖ut − u0‖
p
W1,p(Ω) =

∫
Ω

|∇ut − ∇u0|
p

(|∇ut| + |∇u0|)
p(2−p)/2

(|∇ut| + |∇u0|)
p(2−p)/2 dx

+

∫
Ω

|ut − u0|
p

(|ut| + |u0|)
p(2−p)/2

(|ut| + |u0|)
p(2−p)/2 dx

≤

(∫
Ω

|∇ut − ∇u0|
2

(|∇ut| + |∇u0|)(2−p) dx
) p

2
(∫

Ω

(|∇ut| + |∇u0|)p dx
) 2−p

2

+

(∫
Ω

|ut − u0|
2

(|ut| + |u0|)(2−p) dx
) p

2
(∫

Ω

(|ut| + |u0|)p dx
) 2−p

2

,

which follows from the Hölder inequality, since 2/p > 1. Note that {ut}t>o is bounded in
W1,p(Ω). Thus from the above inequality

1
C
‖ut − u0‖

p
W1,p(Ω) ≤

(∫
Ω

|∇ut − ∇u0|
2

(|∇ut| + |∇u0|)(2−p) dx
) p

2

+

(∫
Ω

|ut − u0|
2

(|ut| + |u0|)(2−p) dx
) p

2

.

Now, applying (6.12) to the right hand side of the last inequality, the assertion of the
lemma can be confirmed using similar arguments as in the ending part of Case 1. �

Remark 6.4.2. It is easy to see that, as ψt → Id in the C1 topology, then from Lemma
6.4.1 it follows that

wt := ut ◦ ψt → u0 strongly in W1,p(Ω).

Now, we can prove that I(t) is differentiable at t = 0 and give a formula for the deriva-
tive.
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Theorem 6.4.3. With the previous notation, we have that I(t) is differentiable at t = 0 and

dI(t)
dt

∣∣∣∣∣∣
t=0

=
p

p − 1

∫
∂Ω

u0 f divτ V dHN−1

+
1

p − 1

∫
Ω

[
p|∇u0|

p−2〈∇u0,
T V ′∇uT

0 〉 − (|∇u0|
p + |u0|

p) div V
]

dx,

where u0 is the solution of (6.11) with t = 0.

Proof. By (6.3) we have that

I(t) = sup
1

p − 1

{
p
∫
∂Ω

v ft dHN−1 −

∫
Ω

|∇v|p + |v|p dx : v ∈ W1,p(Ω)
}
.

Given v ∈ W1,p(Ω), we consider u = v ◦ ψt ∈ W1,p(Ω). Then, by the Lemma 4.1.1, we
have ∫

Ω

|v|p dx =

∫
Ω

|u|p dx + t
∫

Ω

|u|p div V dx + o(t).

and, by the Theorem 4.1.3,∫
Ω

|∇v|p dx =

∫
Ω

|∇u|p dx + t
∫

Ω

|∇u|pdivV dx − tp
∫

Ω

|∇u|p−2〈∇u,T V ′∇uT 〉dx + o(t),

Also, by Lemma 4.3.1, we have∫
∂Ω

v ft dHN−1 =

∫
∂Ω

u f dHN−1 + t
∫
∂Ω

u f divτ V dHN−1 + o(t),

Then, for all v ∈ W1,p(Ω) we have that

p
∫
∂Ω

v ft dHN−1 −

∫
Ω

|∇v|p + |v|p dx = ϕ(u) + tφ(u) + o(t),

where
ϕ(u) = p

∫
∂Ω

u f dHN−1 −

∫
Ω

|∇u|p + |u|p dx

and

φ(u) = p
∫
∂Ω

u f divτ VdHN−1 −

∫
Ω

[
p|∇u|p−2〈∇u,T V ′∇uT 〉 − (|∇u|p + |u|p) div V

]
dx.

Therefore, we can rewrite I(t) as

I(t) = sup
{

1
p − 1

[
ϕ(u) + tφ(u)

]
+ o(t) : u ∈ W1,p(Ω)

}
.

If we define wt = ut ◦ ψt for all t > 0, we have that w0 = u0 and

I(t) =
1

p − 1
[
ϕ(wt) + tφ(wt)

]
+ o(t) ∀ t.
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Thus
I(t) − I(0) ≥

1
p − 1

[
ϕ(u0) + tφ(u0)

]
+ o(t) −

1
p − 1

ϕ(u0),

then
lim inf

t→0+

I(t) − I(0)
t

≥
1

p − 1
φ(u0). (6.13)

On the other hand

I(t) − I(0) ≤
1

p − 1
[
ϕ(wt) + tφ(wt)

]
+ o(t) −

1
p − 1

ϕ(wt),

hence,
I(t) − I(0)

t
≤

1
p − 1

φ(wt) +
1
t
o(t).

By Remark 6.4.2,
φ(wt)→ φ(u0) as t → 0+,

therefore,

lim sup
t→0+

I(t) − I(0)
t

≤
1

p − 1
φ(u0). (6.14)

From (6.13) and (6.14) we deduced that there exists I′(0) and

I′(0) =
1

p − 1
φ(u0)

=
p

p − 1

∫
∂Ω

u0 f divτ V dHN−1

+
1

p − 1

∫
Ω

[
p|∇u0|

p−2〈∇u0,
T V ′∇uT

0 〉 − (|∇u0|
p + |u0|

p) div V
]

dx.

The prove is now complete. �

Now we try to find a more explicit formula for I′(0). For This, we consider

f ∈ Lq(∂Ω) ∩ BV(∂Ω).

Theorem 6.4.4. If f ∈ Lq(∂Ω) ∩ BV(∂Ω), we have that

∂I(t)
∂t

∣∣∣∣∣∣
t=0

=
p

p − 1

∫
∂Ω

u0V d[D f ].

where u0 is the solution of (6.11) with t = 0.

Proof. In the course of the computations, we require the solution u0 to−∆u0 + |u0|
p−2u0 = 0 in Ω,

|∇u0|
p−2 ∂u0

∂ν
= f on ∂Ω,
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to be C2. However, this is not true. As it is well known (see, for instance, [L]), u0 belongs
to the class C1,δ for some 0 < δ < 1.

In order to overcome this difficulty, we proceed as follows. We consider the regularized
problems − div

((
|∇uε0|

2 + ε2
)(p−2)/2

∇uε0
)

+ |uε0|
p−2uε0 = 0 in Ω,(

|∇uε0|
2 + ε2

)(p−2)/2 ∂uε0
∂ν

= f on ∂Ω.
(6.15)

It is well known that the solution uε0 to (6.15) is of class C2,ρ for some 0 < ρ < 1 (see
[LSU]).

Then, we can perform all of our computations with the functions uε0 and pass to the
limit as ε→ 0+ at the end.

We have chosen to work formally with the function u0 in order to make our arguments
more transparent and leave the details to the reader. For a similar approach, see the proof
of the Theorem 5.2.11.

Now, by Theorem 6.4.3 and since

div(|u0|
pV) = p|u0|

p−2u0〈∇u0,V〉 + |u0|
p div V,

div(|∇u0|
pV) = p|∇u0|

p−2〈∇u0D2u0,V〉 + |∇u0|
p div V,

we obtain

I′(0) =
p

p − 1

∫
∂Ω

u0 f divτ V dHN−1

+
1

p − 1

∫
Ω

[
p|∇u0|

p−2〈∇u0,
T V ′∇uT

0 〉 − (|∇u0|
p + |u0|

p) div V
]

dx

=
p

p − 1

{
p
∫
∂Ω

u0 f divτ V dHN−1 +

∫
Ω

|∇u0|
p−2〈∇u0,

T V ′∇uT
0 〉 dx

}
+

1
p − 1

∫
Ω

{
p|∇u0|

p−2〈∇u0D2u0,V〉 − div([|∇u0|
p + |u0|

p]V)
}

dx

+
p

p − 1

∫
Ω

|u0|
p−2u0〈∇u0,V〉 dx.

Hence, using that 〈V, ν〉 = 0 in the right hand side of the above equality, we find

I′(0) =
p

p − 1

{∫
∂Ω

u0 f divτ V dHN−1 +

∫
Ω

|∇u0|
p−2〈∇u0,

T V ′∇uT
0 + D2u0VT 〉 dx

}
+

p
p − 1

∫
Ω

|u0|
p−2u0〈∇u0,V〉 dx

=
p

p − 1

{∫
∂Ω

u0 f divτ V dHN−1 +

∫
Ω

|∇u0|
p−2〈∇u0,∇(〈∇u0,V〉)〉 dx

}
+

p
p − 1

∫
Ω

|u0|
p−2u0〈∇u0,V〉 dx.
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Since u0 is a week solution of (6.11) with t = 0, we have

I′(0) =
p

p − 1

{∫
∂Ω

u0 f divτ V dHN−1 +

∫
∂Ω

〈∇u0,V〉 f dHN−1
}

=
p

p − 1

∫
∂Ω

divτ(u0V) f dHN−1.

Finally, since f ∈ BV(∂Ω) and V ∈ C1(∂Ω;RN),

I′(0) =
p

p − 1

∫
∂Ω

divτ(u0V) f dHN−1

=
p

p − 1

∫
∂Ω

u0V d[D f ],

as we wanted to prove. �

Lastly, we consider the case that f = χD. Observe that, in this case,

R(χD) = {χE : |E| = |D|} ,

and therefore we find in the case studied in Section 6.3.

Corollary 6.4.5. Let D be a locally finite perimeter set in ∂Ω. If f = χD, with the previous
notation, we have that

d
dt

I(t)

∣∣∣∣∣∣
t=0

=
p

p − 1

∫
∂D

u0〈V, ντ〉 dHN−2,

where u0 is the solution of (6.11) with t = 0.

Proof. Since D has locally finite perimeter in ∂Ω, it follows that

f = χD ∈ Lq(∂Ω) ∩ BV(∂Ω).

Then, by the previous theorem and Theorem 1.9.5, we have

d
dt

I(t)

∣∣∣∣∣∣
t=0

=
p

p − 1

∫
∂Ω

u0V d[DχD]

=
p

p − 1

∫
∂D

u0〈V, ντ〉 dHN−2,

where u0 is the solution of (6.11) with t = 0.

This completes the proof. �

The following theorem is a result that we have already observed, actually under weaker
assumptions on D, in Remark 6.3.2.

Nevertheless, we have chosen to include this remark as a direct application of the
Lemma 4.3.1 and Corollary 6.4.5.
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Theorem 6.4.6. Let χD be a maximizer for J over the class B and assume that D has
locally finite perimeter in ∂Ω. Let uD be the solution to the associated state equation−∆pu + |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν

= χD on ∂Ω.

Then, uD is constant along ∂D.

Proof. Let D be a critical point of I and, with the previous notation, Dt = ψt(D). Then,
by Theorem 1.9.5 and Lemma 4.3.1, we have

d
dt
HN−1(Dt)

∣∣∣∣∣∣
t=0

=
d
dt

∫
∂Ω

χDt dHN−1

∣∣∣∣∣∣
t=0

=

∫
D

divτ V dHN−1

=

∫
∂D
〈V, ντ〉 dHN−2.

Thus, the fact that D is a critical point of I and by Corollary 6.4.5, we derive

I′(0) = c
d
dt
HN−1(Dt)

∣∣∣∣
t=0
⇐⇒ u = constant, on ∂D.

As we wanted to prove. �



7

Extremals of the trace inequality in domains
with holes

Throughout this chapter, Ω is a bounded smooth domain inRN with N ≥ 2 and 1 < p < ∞.

For any A ⊂ Ω, which is a smooth open subset, we define the space

W1,p
A (Ω) = C∞0 (Ω \ A),

where the closure is taken in W1,p−norm. By the Sobolev Trace Embedding Theorem,
there is a compact embedding

W1,p
A (Ω) ↪→ Lq(∂Ω), (7.1)

for all 1 ≤ q < p∗.

Thus, given 1 < q < p∗, there exist a constant C = C(q, p) such that

C
(∫

∂Ω

|u|q dHN−1
)p/q

≤

∫
Ω

|∇u|p + |u|p dx.

The best (largest) constant in the above inequality is given by

S q(A) := inf


∫

Ω
|∇u|p + |u|p dx(∫

∂Ω
|u|q dHN−1

)p/q
: u ∈ W1,p

A (Ω) \W1,p
0 (Ω)

 . (7.2)

By (7.1), there exist an extremal for S q(A). Moreover, an extremal for S q(A) is a weak
solution to 

−∆pu + |u|p−2u = 0 in Ω \ A,
|∇u|p−2 ∂u

∂ν
= λ|u|q−2u on ∂Ω \ ∂A,

u = 0 on ∂A,
(7.3)

where λ depends on the normalization of u. When ‖u‖Lq(∂Ω) = 1, we have that λ = S q(A).
Moreover, when p = q the problem (7.3) becomes homogeneous, and therefore it is a
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nonlinear eigenvalue problem. In this case, the first eigenvalue of (7.3) coincides with
the best Sobolev trace constant S q(A) = λ1(A) and it is shown in [MR], that it is simple
(see also [FBR3]). Therefore, if p = q, the extremal for S p(A) is unique up to constant
factor. In the linear setting, i.e., when p = q = 2, this eigenvalue problem is known as the
Steklov eigenvalue problem, see [St].

We say that hole A∗ is optimal for the parameter α, 0 < α < |Ω|, if |A∗| = α and

S q(A∗) = inf
{
S q(A) : A ⊂ Ω and |A| = α

}
.

In [FBRW2], the authors proof the existence of an optimal hole. Moreover, in the case
that Ω is a ball, they prove the following result

Theorem 7.0.7. Let Ω = B(0, 1) and 0 < α < |B(0, 1)|. Then there exists an optimal hole
of measure α which is spherically symmetric.

The aim of this chapter is to analyze the dependence of the Sobolev trace constant
S q(A) with respect to variations on the set A. To this end, we compute the so-called shape
derivative of S q(A) with respect to regular perturbations of the hole A.

In [FBGR], this problem is analyzed in the linear case p = q = 2. There, the authors
consider the following kind of variation. Let V : RN → RN be a regular (smooth) vector
filed, globally Lipschitz, with support in Ω and let ϕt : RN → RN be defined as the unique
solution to  d

dtϕt(x) = V(ϕt(x)) t > 0
ϕ0(x) = x x ∈ RN .

Then, they define At := ϕt(A) ⊂ Ω for all t > 0 and

S 2(t) = inf


∫

Ω
|∇v|2 + |v|2 dx∫
∂Ω
|v|2 dHN−1

: v ∈ W1,p
At

(Ω) \W1,p
0 (Ω)

 .
Observe that A0 = A and therefore S 2(0) = S 2(A). The authors prove that S 2(t) is differ-
entiable with respect to t at t = 0 and it holds

S ′2(0) =
d
dt

S 2(t)
∣∣∣∣
t=0

= −

∫
∂A

(
∂u
∂ν

)2

〈V, ν〉 dHN−1,

where u is a normalized eigenfunction for S 2(A) and ν is the exterior normal vector to
Ω \ A.

Furthermore, in the case that Ω is the ball BR with center 0 and radius R > 0 the authors
show that a centered ball A = Br, r < R, is critical in the sense that S ′2(A) = 0 when
considering deformations that preserves volume but this configuration is not optimal.

Therefore there is a lack of symmetry in the optimal configuration.
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Here, we extend these results to the more general case 1 < p < ∞ and 1 < q < p∗. Our
method differs from the one in [FBGR] in order to deal with the nonlinear character of
the problem.

The rest of the chapter is organized as follows: in Section 7.1, we compute the deriva-
tive of S q(·) with respect to theregular perturbation of the hole and in Section 7.2, we
study the lack of symmetry in the case that Ω is a ball.

7.1 Differentiation of the extremal

In this section, we compute the shape derivative of S q(·) with respect to the regular per-
turbations of the hole.

As in Section 5.2, we consider the following variation. Let V : RN → RN be a regular
(smooth) vector filed, globally Lipschitz, with support in Ω , and let ϕt : RN → RN be
defined as the unique solution to d

dtϕt(x) = V(ϕt(x)) t > 0
ϕ0(x) = x x ∈ RN .

Given A ⊂ ∂Ω, we define At := ϕt(A) ⊂ Ω for all t > 0 and

S q(t) = inf


∫

Ω
|∇v|p + |v|p dx(∫

∂Ω
|v|q dHN−1

)p/q
: v ∈ W1,p

At
(Ω) \W1,p

0 (Ω)

 . (7.4)

The aim of this section is show that S q(t) is differentiable to t at t = 0. For this we
require some previous results. Here, we use some ideas from [GMSL].

We begin by observing that if v ∈ W1,p
At

(Ω) \W1,p
0 (Ω), then

u = v ◦ ϕt ∈ W1,p
A (Ω) \W1,p

0 (Ω).

Thus, by the Lemma 4.1.1, we have that∫
Ω

|u|p dx =

∫
Ω

|u|p dx + t
∫

Ω

|u|p div V dx + o(t),

and by the Theorem 4.1.3,∫
Ω

|∇v|p dx =

∫
Ω

|∇u|p dx + t
∫

Ω

|∇u|p div V dx − pt
∫

Ω

|∇u|p−2〈∇u, T V ′∇uT 〉 dx + o(t).

Moreover, since supp V ⊂ Ω, we have that∫
∂Ω

|v|q dHN−1 =

∫
∂Ω

|u|q dHN−1.
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Therefore, we can rewrite (7.4) as

S q(t) = inf
{
ρ(u) + tγ(u) : v ∈ W1,p

A (Ω) \W1,p
0 (Ω)

}
(7.5)

where

ρ(u) =

∫
Ω
|∇u|p + |u|p dx{∫

∂Ω
|u|q dHN−1

}p/q
,

and

γ(u) =

∫
Ω
{|∇u|p + |u|p} div V dx − p

∫
Ω
|∇u|p−2〈∇u, T V ′∇uT 〉 dx{∫

∂Ω
|u|q dHN−1

}p/q
+ o(1).

Given t ≥ 0, let ut ∈ W1,p
A (Ω) \W1,p

0 (Ω) such that ‖ut‖Lq(∂Ω) = 1 and

S q(t) = ψ(t) + tφ(t),

where
ψ(t) = ρ(ut) and φ(t) = γ(ut) ∀ t ≥ 0.

We observe that ψ, φ : R≥0 → R and

Lemma 7.1.1. The function φ is nonincreasing.

Proof. Let 0 ≤ t1 ≤ t2. By (7.5), we have that

ψ(t2) + t1φ(t2) ≥ S q(t1) = ψ(t1) + t1φ(t1) (7.6)
ψ(t1) + t2φ(t1) ≥ S q(t2) = ψ(t2) + t2φ(t2). (7.7)

Subtracting (7.6) from (7.7), we get

(t2 − t1)φ(t1) ≥ (t2 − t1)φ(t2).

Since t2 − t1 ≥ 0, we obtain
φ(t1) ≥ φ(t2).

This ends the proof. �

Remark 7.1.2. Since φ is nonincreasing, we have

φ(t) ≤ φ(0) ∀ t ≥ 0,

and there exists
φ(0+) = lim

t→0+
φ(t).

Corollary 7.1.3. The function ψ is nondecreasing.
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Proof. Let 0 ≤ t1 ≤ t2. Again, by (7.5), we have that

ψ(t2) + t1φ(t2) ≥ S q(t1) = ψ(t1) + t1φ(t1) (7.8)

so
ψ(t2) − ψ(t1) ≥ t1(φ(t1) − φ(t2)).

Since 0 ≤ t1 ≤ t2, by Lemma 7.1.1, we have that φ(t1) − φ(t2) ≥ 0. Then

ψ(t2) − ψ(t1) ≥ 0,

that is what we wished to prove. �

Now we can prove that S q(t) is continuous at t = 0.

Theorem 7.1.4. The function S q(t) is continuous at t = 0, i.e.,

lim
t→0+

S q(t) = S q(0).

Proof. Given t ≥ 0 so, by Corollary 7.1.3,

S q(t) − S q(0) = ψ(t) + tφ(t) − ψ(0) ≥ tφ(t).

On the other hand, by (7.5), we have that

S q(t) ≤ ψ(0) + tφ(0) = S q(0) + tφ(0).

Then
tφ(t) ≤ S q(t) − S q(0) ≤ tφ(0).

Thus, by Remark 7.1.2,
lim
t→0+

S q(t) − S q(0) = 0.

This finishes the proof. �

Thus, from Remark 7.1.2 and Theorem 7.1.4, we obtain the following corollary:

Corollary 7.1.5. The function ψ is continuous at t = 0, i.e.,

lim
t→0+

ψ(t) = ψ(0).

Proof. We observe that

ψ(t) − ψ(0) = S q(t) − S q(0) − tφ(t)

then, by Remark 7.1.2 and Theorem 7.1.4,

lim
t→0+

ψ(t) − ψ(0) = 0.

That proves the result. �
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Theorem 7.1.6. The function ψ is differentiable at t = 0 and

dψ
dt

(0) = 0.

Proof. Let 0 < r < t. By (7.5), we get

S q(r) = ψ(r) + rφ(r) ≤ ψ(t) + rφ(t),

and
S q(t) = ψ(t) + tφ(t) ≤ ψ(r) + tφ(r).

So
r
t
(φ(r) − φ(t)) ≤

ψ(t) − ψ(r)
t

≤ φ(r) − φ(t)

hence, taking limits when r → 0+, by Remark 7.1.2 and Corollary 7.1.5, we have that

0 ≤
ψ(t) − ψ(0)

t
≤ φ(0+) − φ(t).

Now, taking limits when t → 0+, and again, by Remark 7.1.2, we get

lim
t→0+

ψ(t) − ψ(0)
t

= 0

as we wanted to show. �

Now, we are in condition to prove the main result of this section.

Theorem 7.1.7. Suppose A ⊂ Ω is a smooth open subset and let 1 < q < p∗. Then, with
the previous notation, we have that S q(t) is differentiable at t = 0 and

d
dt

S q(t)

∣∣∣∣∣∣
t=0

= (1 − p)
∫
∂A

∣∣∣∣∂u0

∂ν

∣∣∣∣p〈V, ν〉 dHN−1,

where u0 is a normalized extremal for S q(A) and ν is the exterior normal vector to Ω \ A.

Remark 7.1.8. If u0 is an extremal for S q(A) we have that |u0| is also an extremal associated
to S q(A). Then, in the above theorem, we can suppose that u0 ≥ 0 in Ω. Moreover, by

[L], we have that u0 ∈ C1,ρ(Ω \ A) if Ω \ A is an open smooth open and if Ω \ A satisfies
the interior ball condition for all x ∈ ∂Ω \ ∂A then u0 > 0 on ∂Ω \ ∂A, see [V].

Proof of Theorem 7.1.7. We proceed in three steps.

Step 1. We show that S q(t) is differentiable at t = 0 and

d
dt

S q(t)

∣∣∣∣∣∣
t=0

= φ(0+).
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We have that
S q(t) − S q(0)

t
=
ψ(t) − ψ(0)

t
− φ(t).

Then, by Remark 7.1.2 and Theorem 7.1.6,

d
dt

S q(t)

∣∣∣∣∣∣
t=0

= S ′q(0) = lim
t→0+

S q(t) − S q(0)
t

= φ(0+).

Step 2. We show that there exists u extremal for S q(A) such that ‖u‖Lq(∂Ω) = 1 and

φ(0+) =

∫
Ω

(|∇u|p + |u|p) div V dx − p
∫

Ω

|∇u|p−2〈∇u, T V ′∇u〉 dx.

By Theorem 7.1.5,

‖vt‖
p
W1,p(Ω) = ψ(t)→ ψ(0) = S q(0) as t → 0+. (7.9)

Then, there exists u ∈ W1,p(Ω) and tn → 0+ as n→ ∞ such that

vtn ⇀ u weakly in W1,p(Ω), (7.10)
vtn → u strongly in Lq(∂Ω), (7.11)
vtn → u a.e. in Ω. (7.12)

By (7.11) and (7.12), u ∈ W1,p
A (Ω) and ‖u‖Lq(∂Ω) = 1 and by (7.10)

S q(0) = lim
n→∞
‖vtn‖

p
W1,p(Ω) ≥ ‖u‖

p
W1,p(Ω) ≥ S q(0),

then
S q(0) = ‖u‖p

W1,p(Ω). (7.13)

Moreover, by (7.9), (7.10) and (7.13), we have that

vtn → u strongly in W1,p(Ω).

Therefore

φ(0+) = lim
n→∞

φ(vtn)

=

∫
Ω

(|∇u|p + |u|p) div V dx − p
∫

Ω

|∇u|p−2〈∇u, T V ′∇uT 〉 dx.

Step 3. Lastly, we show that

S ′q(0) =

∫
Ω

(|∇u|p + |u|p) div V dx − p
∫

Ω

|∇u|p−2〈∇u, T V ′∇uT 〉 dx

= −

∫
∂A

∣∣∣∣∂u
∂ν

∣∣∣∣p〈V, ν〉 dHN−1.
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To show this we would require that u ∈ C2. However, this is not true. Since u is an
esxtremal for S q(A) and ‖u‖Lq(Ω) = 1, we known that u is weak solution to


−∆pu + |u|p−2u = 0 in Ω \ A,
|∇u|p−2 ∂u

∂ν
= S q(A)|u|q−2u on ∂Ω,

u = 0 on ∂A,

and by [L] we get that u belongs to the class C1,δ for some 0 < δ < 1.

In order to overcome this difficulty, we proceed as follows. We consider the regularized
problems

S ε := inf


∫

Ω
(|∇v|2 + ε2)

p−2
2 |∇v|2 + |v|p dx{∫

∂Ω
|v|q dS

} p
q

: v ∈ W1,p
A (Ω) \W1,p

0 (Ω)

 . (7.14)

Let uε be a normalized positive eigenvalue associated to S ε. Observe that the eigenfunc-
tion is weak solution to

−div(|∇uε|2 + ε2)(p−2)/2∇uε) + |uε|p−2uε = 0 in Ω \ A,
(|∇uε|2 + ε2)(p−2)/2 ∂uε

∂ν
= S ε|uε|q−2uε on ∂Ω,

uε = 0 on ∂A.
(7.15)

It is well known that the solution uε to (7.15) is of class C2,ρ for some 0 < ρ < 1 (see
[LSU]).

Then, we can perform all of our computations with the functions uε and pass to the
limit as ε→ 0 at the end.

We have chosen to work formally with the function u in order to make our arguments
more transparent and leave the details to the reader. For a similar approach, see Lemma
5.2.9, Remark 5.2.10 and proof of the Theorem 5.2.11.

Since

div(|u|pV) = |u|p div V + p|u|p−2u〈∇u,V〉,
div(|∇u|pV) = |∇u|p div V + p|∇u|p−2〈∇uD2u,V〉,

we have that∫
Ω

(|∇u|p + |u|p) div V dx =

∫
Ω

div(|u|pV + |∇u|pV) dx

−p
∫

Ω

{|u|p−2u0〈∇u,V〉 + |∇u|p−2〈∇uD2u, uV〉 }dx.
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Integrating by parts, we obtain∫
Ω

div(|u|pV + |∇u|pV) dx =

∫
∂Ω

(|u|p + |∇u|p)〈V, ν〉 dHN−1

−

∫
∂A

(|u|p + |∇u|p)〈V, ν〉 dHN−1

= −

∫
∂A
|∇u|p〈V, ν〉 dHN−1.

where the las equality follows from the fact that supp V ⊂ Ω and u = 0 on ∂A.

Thus

S ′q(0) = −

∫
∂A
|∇u|p〈V, ν〉 dHN−1 − p

∫
Ω

|u|p−2u〈∇u0,V〉dx

−p
∫

Ω

|∇u|p−2〈∇u, T V ′∇u +T D2uVT 〉 dx

= −

∫
∂A
|∇u|p〈V, ν〉 dHN−1 − p

∫
Ω

|u|p−2u〈∇u,V〉dx

−p
∫

Ω

|∇u|p−2〈∇u, ∇(〈∇u,V〉)〉 dx.

Since u is a week solution of (7.3) as λ = S q(0) and supp V ⊂ Ω we have

S ′q(0) =

∫
∂A
|∇u|p〈V, ν〉 dHN−1 − p

∫
∂A
|∇u|p−2〈∇u, ν〉〈∇u,V〉 dHN−1.

Then, noticing that ∇u = ∂u
∂ν
ν, the proof is complete. �

7.2 Lack of Symmetry in the Ball

In this section, we consider the case where Ω = B(0,R) and A = B(0, r) with 0 < r < R.
The proofs of this section are based on the argument of [FBGR] and [LDT] adapted to
our problem. In order to simplify notations, we write Bs and S q(r) instead B(0, s) and
S q(B(0, r)), respectively.

First, we prove that the nonnegative solution of (7.3) is unique in this case.

Proposition 7.2.1. Let 1 < q < p. The nonnegative solution of (7.3) is unique.

Proof. Suppose that there exist two nonnegative solutions u and v of (7.3). By Remark
7.1.8, it follows that u, v > 0 on ∂Ω. Let vn = v + 1

n with n ∈ N, using first Piccone’s
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identity (see [AH]) and the weak formulation of (7.3), we have

0 ≤
∫

BR

|∇u|p dx −
∫

BR

|∇vn|
p−2∇vn∇

(
up

vp−1
n

)
dx

=

∫
BR

|∇u|p dx −
∫

BR

|∇v|p−2∇v∇
(

up

vp−1
n

)
dx

= −

∫
BR

up dx + λ

∫
∂BR

uq dHN−1 +

∫
BR

vp−1 up

vp−1
n

dx − λ
∫
∂BR

vq−1 up

vp−1
n

dHN−1

≤ λ

∫
∂BR

uq dHN−1 − λ

∫
∂BR

vq−1 up

vp−1
n

dHN−1.

Thus, by the Monotone Convergence Theorem,

0 ≤
∫
∂BR

uq dHN−1 −

∫
∂BR

vq−1 up

vp−1 dHN−1 =

∫
∂BR

up(uq−p − vq−p) dHN−1.

Note that the role of u and v in the above equation are exchangeable. Therefore, adding
we get

0 ≤
∫
∂BR

(up − vp)(uq−p − vq−p) dHN−1.

Since q < p, we have that u ≡ v on ∂BR. Then, by uniqueness of solution to the Dirichlet
problem, we get u ≡ v in BR. �

Remark 7.2.2. As the problem (7.3) is rotationally invariant, by uniqueness we obtain
that the nonnegative solution of (7.3) must be radial. Therefore, if Ω = BR, A = Br and
1 < q ≤ p we can suppose that the extremal for S q(r) found in the Theorem 7.1.7 is
nonnegative and radial.

Now, we can prove that this kind of configuration is critical.

Theorem 7.2.3. Let Ω = BR and let the hole be a centered ball A = Br. Then, if 1 < q ≤ p,
this configuration is critical in the sense that S ′q(r) = 0 for all deformations V that pre-
serve the volume of Br.

Proof. We consider Ω = BR, A = Br and 1 < q ≤ p. By Theorem 7.3 and Remark 7.2.2,
there exist a nonnegative and radial normalized extremal for S q(r) such that

S ′q(0) = (1 − p)
∫
∂Br

∣∣∣∣∂u
∂ν

∣∣∣∣p〈V, ν〉 dHN−1.

Since u is radial,
∂u
∂ν
≡ c on ∂Br,

where c is a constant.
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Thus, using that we are dealing with deformations V that preserves the volume of the
Br, we have that

S ′q(0) = (1 − p)cp
∫
∂Br

〈V, ν〉 dHN−1 = (p − 1)cp
∫

Br

div(V) dx = 0.

�

But, if q is sufficiently large, the symmetric hole with a radial extremal is not an optimal
configuration. To prove this, we need two previous results.

Proposition 7.2.4. Let r > 0 fixed. Then, there exists a positive radial function u0 such
that −∆pu + |u|p−2u = 0 in RN \ Br,

u = 0 on ∂Br.
(7.16)

This u0 is unique up to a constant factor and for any R > r the restriction of u0 to BR is
the first eigenfunction of (7.3) with q = p.

Proof. For R > r, let uR be the unique solution of the Dirichlet problem
∆puR = |uR|

p−2uR in BR \ Br,

u(R) = 1,
u(r) = 0.

Then, by uniqueness, uR is a nonnegative and radial function. Moreover, by the regular-
ity theory and maximum principle we have ∂uR

∂ν
(r) , 0 (see [L, V]). Thus, for any R > r,

we define the restriction of u0 by
u0 =

uR

∂uR

∂ν
(r)
.

By uniqueness of the Dirichlet problem, it is easy to check that u0 is well defined and is
a nonnegative radial solution of (7.16). Furthermore, by the simplicity of S p(r), u0 is the
eigenfunction associated to S p(r) for every R > r. �

Proposition 7.2.5. Let v be a radial solution of (7.3). Then v is a multiple of u0. In
particular, any radial minimizer of (7.2) is a multiple of u0.

Proof. Let a > 0 be such that v = au0 on ∂B(0,R). Then v and au0 are two solutions to
the Dirichlet problem ∆pw = wp−1 and w = v on ∂

(
BR \ Br

)
. Hence, by uniqueness, we

have that v = au0 in BR. �

Remark 7.2.6. If 1 < q < p then the solution of (7.3), by Remark 7.2.2 and Proposition
7.2, is a multiple of u0.

Now, we are in condition to prove that he symmetric hole with a radial extremal is not
an optimal configuration if q is sufficiently large.
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Theorem 7.2.7. Let r > 0 and 1 < p < ∞ be fixed. Let R > r and

Q(R) =
1

S p(Br)
p

p−1

(
1 −

N − 1
R

S p(Br)
)

+ 1. (7.17)

If q > Q(R) then the centered hole Br is not optimal.

Proof. Let R > r be fixed and consider u0 to be the nonnegative radial function given by
Proposition 7.2.4 such that that u0 = 1 on ∂BR. Then, by Proposition 7.2.5, it is enough to
prove that u0 is not a minimizer for S q(r) when q > Q(R).

First, let us move this symmetric configuration in the x1 direction. For any t ∈ R and
x ∈ RN , we denote xt = (x1 − t, x2, . . . , xN) and define

U(t)(x) = u0(xt)

Observe that U vanishes in At := B(te1, r) a subset of BR of the same measure of Br for all
t small.

Consider the function
h(t) =

f (t)
g(t)

where

f (t) =

∫
BR

|∇U |p + U p dx and g(t) =

(∫
∂BR

UqdHN−1
)p/q

.

We observe that h(0) = 0 and since h is an even function, we have h′(0) = 0. Now,

h′′(0) =
f ′′g2 − f gg′′ − 2 f ′gg′ − 2 f gg′

g3

∣∣∣∣∣∣
t=0

.

Next we compute these terms. First, since u0 is the first eigenfunction of (7.3) with q = p
and u0 = 1 on ∂BR we get

f (0) = S p(r)|∂BR| and g(0) = |∂BR|
p
q .

Thus, by Gauss-Green’s Theorem and using the fact that u0 is radial, we get

f ′(0) = −

∫
BR

∂

∂x1

(
|∇u0|

p + up
0

)
dx =

∫
∂BR

(|∇u0|
p + up

0)ν1dHN−1 = 0.

Again, since u0 is radial,

g′(0) =
p
q

(∫
∂BR

uqdHN−1
) p

q−1 (∫
∂BR

∂uq

∂x1
dHN−1

)
= 0.

Finally, using that u0 = 1 on ∂BR, we obtain

g′′(0) = p|∂BR|
p
q−1

∫
∂BR

(q − 1)
(
∂u0

∂x1

)2

+
∂2u0

∂x2
1

dHN−1,



100 Extremals of the trace inequality in domains with holes

and by the Gauss–Green’s Theorem,

f ′′(0) = p
∫

BR

∂

∂x1

(
1
2
|∇u0|

p−2∂|∇u0|
2

∂x1
+

1
p
∂up

0

∂x1

)
dx

= p
∫
∂BR

(
1
2
|∇u0|

p−2∂|∇u0|
2

∂x1
+

1
p
∂up

0

∂x1

)
ν1 dHN−1.

Then

h′′(0) =
p

|∂BR(0)|p/q

[ ∫
∂BR

(
1
2
|∇u0|

p−2∂|∇u0|
2

∂x1
+

1
p
∂up

0

∂x1

)
ν1 dHN−1

− S p(r)
∫
∂BR

(q − 1)
(
∂u0

∂x1

)2

+
∂2u0

∂x2
1

dHN−1
]
.

Thus, since u0 is radial, we get

h′′(0) =
p

N|∂BR(0)|p/q

[ ∫
∂BR

(
1
2
|∇u0|

p−2∂|∇u0|
2

∂ν
+

1
p
∂up

0

∂ν

)
dHN−1

− S p(r)
∫
∂BR

(q − 1)|∇u0|
2 + ∆u0 dHN−1

]
.

Now, by definition, u0(x) = u0(|x|) satisfies

(sN−1|u′0|
p−1u′0)′ = sN−1up−1

0 ∀ s > r

with u0(R) = 1 and u0(r) = 0. Moreover, by Proposition 7.2.4, we have

u′0(s)p−1 = S p(r)u0(s)p−1 ∀ s > r.

Then
1
2
|∇u0|

p−2∂|∇u0|
2

∂ν
+

1
p
∂up

0

∂ν
=

S p(r)
1

p−1

p − 1

(
1 −

N − 1
R

S p(r)
)

+ S p(r)
1

p−1 ,

and

S p(r)
[
(q − 1)|∇u0|

2 + ∆u0

]
= (q − 1)S p(r)

p+1
p−1 +

S p(r)
1

p−1

p − 1

(
1 −

N − 1
R

S p(r)
)

+
N − 1

R
S p(r)

p
p−1 .

Therefore

h′′(0) =
pS

1
p−1
p

N |∂BR|
p
q−1

[
1 − (q − 1)S p(r)

p
p−1 −

N − 1
R

S p(r)
]
.

Thus, if q > Q(R), we get that h′′(0) < 0 and so 0 is a strict local maxima of h. So we
have proved that

S q(r) = h(0) > h(t) ≥ S q(B(te1, r))

for all t small. Therefore a symmetric configuration is not optimal. �
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Lastly, to study the asymptotic behavior of Q(R)

Proposition 7.2.8. The function Q(R) has the following asymptotic behavior

lim
R→r

Q(R) = 1− and lim
R→+∞

Q(R) = p.

Remark 7.2.9. Observe that Q(R) < 1 for R close to r, and therefore the symmetric hole
with a radial extremal is not an optimal configuration for R close to r.

Proof of Proposition 7.2.8. We proceed in two step.

Step 1. First we show that, for R > r, S p(R, r) = S p(r) verifies the differential equation

∂S p

∂R
= −

N − 1
R

S p + 1 − (p − 1)S
p

p−1
p (7.18)

with the condition
S p|R=r = +∞.

Again, we consider u0(x) = u0(|x|) the nonnegative radial function given by Proposition
7.2.4. Thus, for all R > r, we get

(p − 1)
(
u′0

)p−2
u′′0 +

N − 1
R

(u′0)p−1 = up−1
0 ,

u′0(R)p−1 = S pu0(R)p−1,

u0(r) = 0.

Then

S p =

(
u′0(R)
u0(R)

)p−1

.

Thus

∂S p

∂R
= (p − 1)

(
u′0(R)
u0(R)

)p−2 u′′0 (R)u0(R) − u′0(R)2

u0(R)2

= (p − 1)
(
u′0(R)
u0(R)

)p−2 u′′0 (R)
u0(R)

− (p − 1)S
p

p−1
p

= (p − 1)
u′0(R)p−2u′′0 (R)

u0(R)p−1 − (p − 1)S
p

p−1
p

= 1 −
N − 1

R
S p − (p − 1)S

p
p−1
p .

On the other hand, since (by definition) ∂u0
∂ν
≡ 1 on ∂Br, we get that u′(r) = 1. Then

lim
R→r

S p = lim
R→r

(
u′0(R)
u0(R)

)p−1

= +∞.

Now, it is easy to check that limR→r Q(R) = 1−.
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Step 2. Finally, we prove that

lim
R→+∞

Q(R) = p.

We begin differentiating (7.18) to obtain

∂2S p

∂R2 =
N − 1

R2 S p −
N − 1

R
∂S p

∂R
− pS

1
p−1
p
∂S p

∂R
.

Then, since S p > 0, at any critical point (S ′p = 0) we have that S ′′p > 0. Thus, S p has at
most one critical point, which is a minimum. If S p has a minimum, then there exist R0 > r
such that S ′p(R0) = 0. Moreover, since S ′p(R) , 0 for any R , R0 and S p → +∞ as R→ r
and by (7.18), we get that S ′p < 0 for all r < R < R0 and S ′p > 0 for all R > R0. Thus,
using again (7.18), we have that

S
p

p−1
p <

1
p − 1

∀R > R0.

Then S p is strictly increasing as a function of R and bonded for all R > R0. Consequently
S ′p → 0 as R→ +∞. It follows, by (7.18), that

S
p

p−1
p →

1
p − 1

as R→ +∞.

On the other hand using (7.17) and (7.18) we see that

S p = (Q(R) − p)S
p

p−1
p . (7.19)

So, if S p has a minimum, we get that Q(R) > p for all R > R0 and Q(R)→ p+ as R→ +∞.
Now, If S p has not critical points so S ′p , 0 for all R > r and using that S p → +∞ as
R → r, and (7.18) we get that S ′p < 0 for all R > r. Consequently, in this case, S p is
strictly decreasing, and therefore S ′p → 0 as R→ +∞. By (7.18) we have that

S p →
1

p − 1
as R→ +∞.

Then, if S p has not critical points, we get Q(R) < p and Q(R)→ p− as R→ +∞. �
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Hölder continuous, 2
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norm, 3
normed linear space, 3
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rearrangement function, 13
Rellich–Kondrachov Theorem, 15

separable space, 4
simple function, 10
Soblev space, 15
Sobolev Trace Embedding Theorem, 16
spherical symmetrization

function, 16
set, 16

Structure theorem for BVloc functions, 23
support

continuous function, 1
measurable function, 9

tangential divergence, 53
tangential gradient, 54
tangential Jacobian, 53
Trace Theorem, 16

weak convergence, 5
weak derivative, 14
weak∗ convergence, 6
weakly derivative function, 14
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