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ABSTRACT. We deal with the first eigenvalue for a system of two p—Laplacians
with Dirichlet and Neumann boundary conditions. If Apw = div(|Vw|P~2w)
stands for the p—Laplacian and % + g = 1, we consider

—Apu = Aalu|*2ulv|®  in Q,
{—Aqv = M\Blul*w|[f~2v  in Q,

with mixed boundary conditions
5 0V
o

We show that there is a first non trivial eigenvalue that can be characterized
by the variational minimization problem

P q
/&CM/ ol e
Q P Q 49

[ 1l 1ol? do
Q
where

Ag”qﬁ = {(u,v) € W(}’p(Q) x WH(Q): uv # 0 and / |u|¥|v|?~2v dx = 0} .
Q

u =0, V|9~ =0, on 0.

¢ (u,v) € AcB R

B _ i
Ap/q = min P.q

We also study the limit of )\ff”qﬁ as p,q — oo assuming that % — T €(0,1),
and % — Q € (0,00) as p,q — 0o. We find that this limit problem interpolates

between the pure Dirichlet and Neumann cases for a single equation when we
take @ = 1 and the limits ' —+ 1 and " — 0.

Dedicated to Juan Luis Vazquez, a great mathematician.

1. INTRODUCTION

Let 2 be bounded domain in R™ with smooth boundary, 1 < p,q, < oo, and
0 < «, B such that

The aim of this work is to study the following eigenvalue problem

—Apu = Aajul*2ulv]?  in Q,
—Agv = ABul*v[f~2v  in Q,

(1)
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with mixed boundary conditions
ov
o
Here Apw = div(|Vw[P~2w) is the usual p—Laplacian and 2 is the outer normal
derivative.

Our first result is a variational characterization of the first non trivial eigenvalue
of our problem.

(2) u =0, |Vo|T™2 = =0, on 0.

Theorem 1.1. Let 8 > 1. If p > N or q > N, then the first non trivial eigenvalue
is given by

p q
[Vl o [ IV 4

(3) A8 = inf

of Q P o 49 :(u7,U)EAa,B
[ 1ule ol da
Q

p,q

where
Afj,’f = {(u,v) € Wy P() x WH(Q): uv £ 0 and / lu|®|v[P 20 da = O}.
Q

Next we want to study the behaviour of this first non trivial eigenvalue for large
values of p and q. We look at the limit as p, ¢ — oo of )\;’f. To this end, we assume
that

(A) 2ore@1) and T Qe(0,00) aspg— oo
P p

Observe that, since % + g =1, we also get the following limit:

B

——=1-T asp,q— oo
q

Theorem 1.2. Under the assumption (A), there exists a sequence {(pn,qn) tnen
with Py, ¢, — 00, such that

Up = Uso, Un — Voo uniformly in Q as n — oo,
where (un,vy,) 18 an eigenfunction corresponding to A1 (pn,qn) normalized with

Jo [tn|*vp]? dz =1 for all n € N. Moreover,

max { [Vl e ay; V219 o) }
o0 s (w, 2) € A
1Tl e )

(A2 P 5 Ao (1, Q) = inf

p,q

as p,q — oo. Here
Ao = {(w,z) c WOIOO(Q) X WI’OO(Q): wz £ 0 and
max w|" 24|79 = max |w|F|z—I“”Q} ’
€N zEQ

where zy and z_ stand for the positive and negative parts of z respectively.
In addition, this limit (Ueo, Vo) 18 a solution to the minimization problem for
Ao (T, Q) and a viscosity solution to

min {—(D?u - Du, Du), |Du| — Ao (T, Q)ut |vag |19} =0 in Q
u=20 on 09,
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and

min {—(D%Dv7 Dv),|Dv| — Axo (T, Q)I/QUZQ\UP*F} =0 in {v >0},
max{—(DQUDv,Dv), —|Dv| — AOO(F,Q)I/ngéQ|v|1_F} =0 in {v <0},

—(D?*vDv,Dv) =0 in {v =0},
ov
W 0 on 0.

In the case that € is a ball of radius R (that is, = Bg), or when {2 is a rectangle
(that is, @ = (=R, R) x (=L, L) C R?, we assume here that L < R), we can obtain
an explicit value for this limit value, Ao (T, Q).

Theorem 1.3.
(i) When Q is a ball of radius R we have
Ao - (FHe0-D) T4+ -1\ e
R 'R Q1-D)R ’
(ii) When Q is the rectangle (—R, R) x (—L, L) we get

r+Q1-n\" /T+Qu-\*" " TR .

_ ( IR ) (Q(lF)R) Toa-m=h
Aoo(FvQ)_ 1 FR

e Toa-p ok

Remark that the value A (T, Q) for the ball coincides with the one for the
rectangle (and does not depends on L) when L is close to R; while for L small the
two values differ (and the latter depends on L and goes to oo as L — 0).

Note that for the ball, Q@ = Bgr(0), when ¢ = o = p (hence 8 = 0) we have
that pAbd (given by (3)) is the first eigenvalue for the Dirichlet p—Laplacian and

for this eigenvalue, it is proved in [18] that (p/\g:g)l/p — 1/R as p — oo, one over
the radius of the largest ball included in Q. This value corresponds to the value of
A (T, @) computed in Theorem 1.3 since in this case I' = 1 and @ = 1. Therefore,
we can recover the well known result for a single equation with Dirichlet boundary
conditions from our results. For the Neumann case we have to consider ¢ = 8 =p
(and hence v = 0). Now we have that pA)? is the first non trivial eigenvalue for
the Neumann p—Laplacian and for this eigenvalue, it is proved in [13, 30] that

(P)xgig)l/p — 1/R as p — oo, that is 2 over the diameter of 2. In this case in
Theorem 1.3 we have to take I' = 0 and @ = 1 that gives again Ao (0,1) = !/r.
Hence, we recover again the known result for a single equation with Neumann
boundary conditions. Remark that similar limits cases also hold for the case of the
rectangle.

These limit behaviours hold in general. Note that if we take @ = 1 in the
minimization problem for Ao (I", Q) and then I' — 1 we get

max { [ Vw| Lo ); IVl } (w,2) € %,}

A (T, 1) — inf
||wHL°°(Q)

where # = {(w,z) € Wy™(Q) x W°(Q): wz # 0} This limit value coincides
with the first eigenvalue for the Dirichlet problem for the scalar infinity Laplacian
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(just take z = 1 and w a first eigenfunction for the Dirichlet problem), see [18]. On
the other hand when we let I' — 0 (keeping @ = 1) we obtain

max {||Vw| 1= (q); V2|1 @)}
HZ”LOO(Q)

AOO(F,l)—>inf{ : (w, 2) EB}

where B = {(w,2) € Wy ™(Q) x WH®(Q): wz # 0 and max |z, | = max|z_|}.
Hence in this case we obtain the first nontrivial eigenvalue for the Neumann infinity
Laplacian (in this case just take w = 0 and z a first non trivial eigenfunction for the
Neumann problem), see [13, 30]. We conclude that our eigenvalue limit problem is
somehow in between the Dirichlet and the Neumann cases.

Let us end the introduction giving some references and motivation for the anal-
ysis of this problem. Concerning the p—Laplacian and its properties we quote
[5, 21, 23, 27, 31] and references therein. The limit of p—harmonic functions, that
is, of solutions to —A,u = —div(|Vu[P~2Vu) = 0, as p — oo has been extensively
studied in the literature (see [3] and the survey [1]) and leads naturally to solutions
of the infinity Laplacian, given by —Au = —VuD?u(Vu)! = 0. Infinity harmonic
functions (solutions to —As,u = 0) are related to the optimal Lipschitz extension
problem (see the survey [1]) and find applications in optimal transportation, im-
age processing and tug-of-war games (see, e.g., [8, 15, 28, 29] and the references
therein). Also limits of the eigenvalue problem related to the p-Laplacian have been
exhaustively examined (see [14, 18, 20]), and lead naturally to the infinity Laplacian
eigenvalue problem min {|Vu|(z) — Asxou(z), —Asu(x)} = 0. In fact, it is proved
in [18, 20] that the limit as p — oo exists both for the eigenfunctions, u, — us
uniformly, and for the eigenvalues (/\p)l/ ? — Ao = /R, where the pair us, Ay iS
a non trivial solution to the infinity Laplacian eigenvalue problem.

More recently, the limit problem for the fractional p—laplacian has been studied
in [9, 11, 12, 22].

Eigenvalues for the p—Laplacian are related to the asymptotic behaviour of so-
lutions to the corresponding evolutions equations, see, for example, [6, 16, 17].

Concerning eigenvalues for systems of p—Laplacian type there is a rich recent
literature, we refer to [4, 7, 24, 26, 32] and references therein. The first case in which
there is an study of the limit as p — oo of eigenvalues for systems of p—Laplacians
is [7] where both equations are subject to Dirichlet boundary conditions.

The paper is organized as follows: in Section 2 we collect some preliminary
results; in Section 3 we deal with the first eigenvalue to our problem for fixed
exponents (in this section we prove Theorem 1.1); in Section 4 we deal with the
limit as p,q — oo in a variational setting (showing the first part of Theorem 1.2);
in Section 5 we compute explicitly the limit eigenvalue in the case of a ball and
a rectangle (see Theorem 1.3); finally, in Section 6 we pass the the limit in the
equations in the viscosity sense (finishing the proof of Theorem 1.2).

2. PRELIMINARIES
We begin with some basic facts that will be needed in subsequent sections.

Lemma 2.1. Let > 1, p> N and fiz u € Wol’p(Q) such that u £ 0. Then

AP (u) = {w e WhHi(Q): / lu|*|v|# 20 dz = o}
Q
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is a closed set in WH4(Q).
Proof. Let {vn}tnen C A%P(u) and v € WH9(Q) such that v, — v strongly in
Wh4(Q). Then, up to a subsequence, |v,|*~2v,, — |v|?~2v strongly in Lﬁ(Q).

Since p > N, by the Sobolev embedding theorem, we have that |u|® € La=51 (Q).
Therefore

0= lim / u|®|v, P20y, da 2/ [u|*|v]?~2v da
and hence v € A%P(u). O
Lemma 2.2. Let 3> 1,p> N andu € Wol’p(Q) such that uw £ 0. Then there is a
positive constant C' such that
(4) [vllzae) < ClIVvllLae)
Jor all v € A%E (u).
Proof. We argue by contradiction. Suppose that for all n € N there exists v, €
A2P (u) such that [|vp| ey = 1 and
1
) Vol oy <

Then {v,, }nen is bounded in W14(£). Thus, using the Sobolev embedding theorem,
we have that there exist a subsequence, still denoted by {v, }nen, and v € W14(€Q)
such that

v, — v weakly in Wh4(Q),
v, — v strongly in LI(Q).
Thus ||vn||Laq) = 1, and by (5), we get

1
||VU||Lq(Q) < lim inf ||VU||Lq(Q) < lim — =0.
n—00 n—00 N,

Then Vv = 0 and hence v is constant since {2 is connected. Moreover, since v,, — v
weakly in W4(Q) and ||lv lw.a(q) = |v]lwr.a(q), we have that v, — v strongly in
Wh4(Q). By Lemma 2.1, we have that v € Ag‘f (u). This is a contradiction because
v is a constant. O

Note that the best constant C for the validity of (4) is
1 [Vv||Lao)

— — =min{ ————2:p e A% (u)\ {0} ;.

C(u) { o]l Lace) P

Lemma 2.3. Let p > N, 8> 1, and {up }nen a bounded sequence in Wol’p(Q). If

lim sup C(u,) = 0o
n— oo

then, up to a subsequence, u, — 0 weakly in W1P(Q).

Proof. We first assume that C(u,) — co. For all n € N, there is v, € A3/ (uy)
such that [|v,| Leo) = 1 and

Oy — Vel
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Then {v,, }nen is bounded in W14(Q). Therefore there exist a subsequence {v,, }ken,
and v € W4(Q) such that

Up,, — v weakly in WH9(Q),
(6) Up,, — U strongly in L(Q),
v, [P 20, — |v]° 20 strongly in L777 ().
Then |v||Laq) = 1 and
IVl < i [V, 1rco) = Jim ot = 0.

Therefore v is a constant. Moreover, since ||v||Ls(q) = 1, we have that v = 1/j0"s.
On the other hand, since {u,, }ren is bounded in WP(Q) and p > N, there

exist a subsequence, still denoted {u,, }ren, and u € W1P(Q2) such that

o Up, — u weakly in WP (Q),

7

[thn,, |* — |u|” strongly in L7571 (Q).

Using (6) and (7), we get

0= lim / |ty | [0n, [P 20, da = / [u|“|v|?~2v da = %/ |u| dz.
k=00 Jo Q | # Ja
Therefore u = 0. O
The proof os the next lemma is classical and therefore omitted in this paper.
Lemma 2.4. If ¢ > N then there is a positive constant C' = C(q, N, Q) such that
[0l ey < ClIVollLr(o)
for all v € {w € WLP(Q): 3z € Q with w(zg) = 0}.

3. THE FIRST NON TRIVIAL EIGENVALUE

A natural definition of an eigenvalue is a value A for which there is (u,v) €
WyP() x Wh(Q) \ {(0,0)} such that

/ |Vu|p_2Vqudx:)\a/ lu|®2u|v/Pw dz,
Q Q

(8)
/|Vv\q_2Vszdx:)\ﬂ/ lu|®|v|? 20z de,
Q Q

for all (w, 2) € Wy P(Q) x Wh4(Q); that is, (u,v) is a nontrivial solution of (1)—(2).
In this context, the pair (u,v) is called an eigenfunction corresponding to .

Note that, if @ > 1 then (u,v) = (0,1) is a solution of (1)—(2) for all A € R, that
is every A € R is an eigenvalue. We say that a value A is a non trivial eigenvalue
if there is (u,v) € W, ?(Q) x W4(Q) such that uv # 0 in Q and (u,v) is an
eigenfunction corresponding to A.

Remark 3.1. Tf (u,v) € Wy P(Q) x WP(RQ) is a solution of (1)~(2) with A = 0 then
/ |VulP~2VuVw de = / V|7 2VuVzdr = 0
Q Q

for all (w,z) € Wy (Q) x WHP(). Therefore u = 0 and v is constant, that is 0 is
a simple eigenvalue.
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If \ is a non trivial eigenvalue then there is (u,v) € Wy (Q) x W4(Q) such
that uv # 0 in 2 and (u,v) is a solution of (1)—(2). Then

/ [VulP do = )\a/ lu|®|v|? de,
Q Q

/ Vol de = )\B/ lu|®|v|? da.
Q Q
Therefore, using that % + g =1, we have that

/|Vu|p dx—i—/ Vot dzx
(9) A= Q p Q q
[ 1uletol da
Q

Moreover, by Remark 3.1, we have A > 0.
On the other hand, taking z =1 in (8), we get

/ lu|®|v|?~%v dz = 0.
Q

Thus, our candidate for first non trivial eigenvalue is

p q
/Mdaz—i—/ﬂd:c
Q p Q q (

: (u,v) € .Agjqﬁ
/ |0l de
Q

A%B = {(u,v) € Wy P(Q) x Wh(Q): wv # 0 and / lu|“|v|?~ 2 dz = 0}.
Q

>0

(10) )\;’f = inf

3.1. Scaling invariance of ;. If we take (u,v) € A%# such that

(11) / fufJo]? dz = 1
Q
and we scale both functions according to
U = au v =bv

we get [, [@|*|0]? dz = a*b”. Then, to still have (11) we impose a®b” = 1. On the
other hand, we have

P 5la P q
/ [Vl dx—l—/ Vol dmzap/ &daj—&—bq/ de :=aPA+b?B,
Q P o 4 o D Q 4

and then we want to compute

min oA+ biB.

a*bP=1

This leads to (using Lagrange’s multipliers) pa?~'A = faa®'b? and ¢b?'B =
0Ba“bP~1, with a®b® = 1. That is, pa? A = O and ¢b?B = 0 and we arrive to

Bpa’ A = agbiB.

This computation shows that in a minimizing sequence we can assume that the

terms — Yo l4
/ ﬂdm and / M dx
Q p Q q
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are of the same order.

3.2. Is )\gf a non trivial eigenvalue? We start showing that A} 5 is not a non
trivial eigenvalue when o =0 or = 0.

Observe that if p =g = and o = 0 then Ag:g > A)'/p where )\111:I is the first non
trivial eigenvalue of the Neumann p—Laplacian that is

/ [VoulP dz

= min cv € WHP(Q)\ {O},/ lv[P~2vdx = 0
/ |v]? dx @

Moreover, if ¢ € C3(Q2) and v is an eigenfunction corresponding to )\11:1 such that
¢v # 0 then (e¢,v) € A%P for all € > 0. Then

\N /|V¢|pd;v /|Vv|pdx /|V¢\pdx
710 A\0P < — L8
p

App <
/|v|pdac /|v|pdm /\v|pdx
Q

Therefore, passing to the limit as € — 0 we have that )\gzg = /p
We claim that )\g:g is not a non trivial eigenvalue. Suppose, contrary to our
claim, that A)? is a non trivial eigenvalue. Then there exists (u,v) € A)P such

that
/|Vu\pd:c /|Vv|pdx /|Vv\pdx
/|v|pdm /|v|pdx /|v|pdm

since u # 0. Therefore A;'/p = A0 > A)'/p, a contradiction that implies that A is
not a non trivial eigenvalue.

Similarly, if p = ¢ = a and § = 0 then )\gzg = A7 /p is not a non trivial eigenvalue.
Here )\1],3 is the first eigenvalue of the Dirichlet p—Laplacian, that is,

Now we show that if 8 > 1 and p> N org> N then )‘;Of,’[f is the first non trivial
eigenvalue.

N
+ L2 ve>o.
p

= min

Proof of Theorem 1.1. By (9) and (10), we only need to prove that )\gf is a non
trivial eigenvalue. Let {(tn, vn)nen C Wy P(Q) x WH2(£2) such that

(12) /\un|°‘\vn|572vndx20,
Q
(13) [ unl*onl? dz =1,
Q
and
p q

(14) A28 = lim Nunl® +/Md

n—0 Jq p Q q

Then, using the Poincare inequality, we have that {u, },en is bounded in W1P(Q).
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We now split the rest of the proof into 2 cases.
Case p > N. By the Sobolev embedding theorem, there exist a subsequence,
still denoted by {ty }nen, and u € W, P () such that

u, — u weakly in WyP(Q),
(15) |tn|® — |u|® strongly in L& (),
|tn|® — |u|® strongly in L7=571 (€2).

On the other hand, by (14) and Lemma 2.2, we have that {v,}nen is bounded
in W19(Q). Hence, by the Sobolev embedding theorem, there exist a subsequence,
still denoted by {v, }nen, and v € WH4(Q) such that

v, — v weakly in WH9(Q),
(16) |Un|’8 — |v|ﬁ strongly in L%(Q)
|'Un|372’0n — |U|B*20 strongly in L%(Q)_

By (14), (15), and (16), we have that
p a
(17) Al > / de+/ I
’ Q b o 4
On the other hand, by (12), (13), (15), and (16), we get
/ lu|*|v|?~2vda = 0, and / lu|®|v|? do = 1.
Q Q

Then (u,v) € A%F, and by (17) and (3) we have that
A :/ [Vl da:+/ Vol 4o,
Q P Q 4
that is (u, v) is a minimizer of (3). Therefore (u,v) is an eigenfunction corresponding
to )\;’f .
Case ¢ > N. By the Sobolev embedding theorem, there exist a subsequence,
still denoted by {uy, }nen, and u € Wy (Q) such that

U, — u weakly in W, (),

(18) v
|un|® = |ul® strongly in L= ().

On the other hand, by (14) and Lemma 2.4, we have that {v,}nen is bounded
in Wh4(Q). Hence, by the Sobolev embedding theorem, there exist a subsequence,
still denoted by {v,, }nen, and v € WH4(Q) such that

v, — v weakly in Wh4(Q),
vn, — v strongly in C(9Q).
By (14), (18), and (19), we have that

p q
(20) Agfz/@dx+/ Vol 4,
’ Q b o ¢

On the other hand, by (12), (13), (18), and (19), we get

)
/ [u*|v|?~2v dx = 0 and / lu|“|v|? dz = 1,
Q Q

(19)
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since 8 > 1. Then (u,v) € .Ag‘f, and by (20) and (3) we have that

p q
g = [T gy [ 170
o (4

which concludes the proof. [l
Remark 3.2. Note that, if (u,v) is a minimizer of (3) then so is (|u|,v), that is

if (u,v) is a solution of (1)—(2) with A\ = )\g‘f then we can assume that v > 0.
Moreover, due to the results in [31] we get u > 0 in Q.

4. THE LIMIT AS p,q — 00

From now on, to simplify the notation, we write A, , instead of )\g‘f and by
(Up,g> Up,q) We denote an eigenfunction corresponding to A = A% normalized with
Jo ltp,g|*1vp,ql? dz = 1.

Recall that we have assumed that

g%FG(O,l), and g%QE(OOO) as p,q — oo.
p p

In addition, since % + % =1, we get

B

——=1-T asp,q— .
q

Now, we deal with the limit as p,q — oo in a variational setting (showing the
first part of Theorem 1.2).

Lemma 4.1. Under the assumption (A), there exists a sequence {(pn, Gn)}nen such
that pp, gn — 00,

Up = Uso, Un —> Uso  uniformly in € as n — oo,

where (un,v,) is an eigenfunction corresponding to A1(pn, qn) for alln € N. More-
over,

max {| Vol VeEew }

™12 =D o (@)

(A2 5 A (1, Q) = in ,2) € Ao

as p,q = 00 and (Uoo, Uoo) 18 a minimizer of A(T, Q).

Proof. We first look for a uniform bound for ()\p,q)l/ P To this end, let us consider
a non-negative Lipschitz function w € W1>°(Q) that vanishes on 9.

Once this functions is fixed we choose z € WH°(Q) a Lipschitz function and
after that we choose K = K (p, q) such that

/ lw|®|(z = K)|?7%(z — K) dz = 0.
Q

Note that K(p,q) is bounded, in fact, we have inf{z(z): z € Q} < K(p,q) <
sup{z(z): = € Q}. We normalize according to

/ lw|¥|(z — K)|? dz = 1.

Hence, using the pair (w,z — K) as test in (13) we get

/\Vw|p /|V2|q
Apg <
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Therefore
1/p
imsup(y, )" < limsup {1V, o)+ 519000 |
(21) P,q—00 p—
_ max{nvwnmm ||vz||Lw(Q)} <c.

Therefore, there is a constant, C', independent of p and ¢ such that, for p and ¢
large,

Dp)'/? < C.

Let (up,q,pq) be a minimizer for A, , normalized by [, [up.q|*|vp.ql° dz = 1.

Then, we have that
1 / 1
— | [VupqlP + f/ Vupal? = Apgs
D Q| poal q Q| poal D,q

from which we deduce using (21) that

lim sup ||V || L 0) < hmsup (PAp.g)"* =limsup (Ap4)7* < C,

P,g—0 q—0 pP,qg—0

/
(22) limsup || Vvp 4| La(o) < limsup (q/\pﬁq)l/" = lim sup {(Ap,q)l/”}

P,q—20 P,q—+00 p,q—00
1/ /e
= {limsup (Ap.g) p} <C.
P,q—

Now, we argue as follows: We fix » € (N,00). Using Holder’s inequality, we
obtain for p,q > r large enough that

1/7‘ 1/[) L L
(23) ( / mmr) < ( / Vup,m) i <

Analogously, we have
l/r l/q L L
)= (fvear) wi<c
Q

(/ IVup.q
Q

Hence, extracting a subsequence {(pn, ¢n)}nenN Pn,dn — 00 if necessary, we have
that

Up = Up, q, — Uso and vp =Vp, g, — Voo

weakly in W17 (Q) for any N < r < oo and uniformly in .
From (22) and (23), we obtain that this weak limit verifies

1y
< / |vuoo|r> < | limsup(A,4) 77
Q P,g—+00
As we can assume that the above inequality holds for every r > N (using a diagonal
argument), we get that us, € Wy "°(Q) and moreover, taking the limit as r — oo,
we obtain

|Vt ()| < liminf(pA, 4)"” = liminf(), 4)"7, a.e. x € .

pP,qg—0 pP,q—©
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Analogously, we obtain that the function v, verifies that v,, € W1°°(Q) and

(Vs (z)] < liminf (gAp4)7" = liminf (A,4)"* = liminf (A, )"

P,g—00 p,q—00 p,q—00

P,g—00 p,q—o0

1 p/q N /Q
= liminf [(A,.0) 7] = [liminf()\p’q) /P} ae. x€Q,

Then
[Vse(2)|9 < liminf (Ay4) 7" ae. x€Q,

P,q—0

From the uniform convergence and the normalization condition, we obtain that

troo " [000] 79 oo () = 1.
and from
/Q ‘up7q|a|vp7q|ﬁ_27)p7q dx = 0.

we get
r (1-1)Q _ r (1-0Q
max |uoo (2)]" |(voo (2))+] max |too ()] |(voo ())- | :
Therefore, (Uoo, Voo) € Ase and we get

max 4 ||Vtoo || Lo (q); ||VU<>OHQOC
(24)  AL(NQ) < { - fon)

< liminf(\, )"
oo oo | 79| oo 0 praoe

Now, we note that since K(p,q) is bounded, there is a sequence {(pn, ¢»)} such
that

PnyQqn — OO and K(pvu‘]n) — k

as n — oco. From (21), we get

max { | Vil o3 1V (2 = )lFe 0 }
(25) limsup(A,,q) 7" < -
P el = W1 D2 pe)

for every pair (w, z — k) with

max [w(@)|"|(2(2) = k)+]" 79 = max jw(@)["|(=(z) - B)-|"7D%.

Thus

lim sup()\p,q)l/” < Ao (T, Q).

pP,q—0

Therefore, by (24) and (25) we get

(Apg)”” = Ao (T, Q)

as p,q = 00, and (Ueo, Vso) is & minimizer of A (T, Q). O



THE FIRST NONTRIVIAL EIGENVALUE FOR A SYSTEM OF p—LAPLACIANS 13

5. THE VALUE OF Ao IN A BALL AND IN A RECTANGLE.

5.1. The case of a ball. Now our aim is to compute the limit value A, in the
ball of radius R, that we denote as Bp.

By symmetry reasons we have to choose zg = (a,0,...,0) with 0 < a < R, the
point where

|||U00|F|”00|(1_F)Q||L°°(BR) = |U0<>|F‘UOO|(1_F)Q(1’O) =1
Note that we can choose vy, to be symmetric (odd in the z;-direction), that is,
Voo (T1, T2, ..., EN) = —Voo(—Z1, T2, ..., TN).

Now we are lead to compute:
max{||Vuoo||Loo(BR)§ ||Vvoo||goo(33)} :
Observe that the best choice that we can make is to take u, as the cone
Uoo(z) = k1 (R — |z|).

Then we have

VoL (BR) = k1 and Uoo(T0) = k1 (R — a).
Concerning v, we can choose a plane

Voo (2) = ka(x, €1).

Then we have

Voo || Lo (Br) = k2 and Voo (T0) = kaa.

These functions us, and v, are depicted in the following figure.
z

kiR

Now we have to compute

min max {k‘l; kQQ}
ki1,k2,a
with the restriction

r 1-DQ _ o\ 1-mQ
1ax Jtioo | [Uoo OglsagXR(kl(R s))" (kas)

= k{kélfF)Q(R —a)fat D@ =1,
Then we have to compute

max (R — s)l s,
0<s<R
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We have that this maximum is attained at a point a that satisfies
Ta=Q(1~T)(R-a),
hence, a is given by
_ QU-DR
- I+Q-T)
Therefore, the restriction is given by

e (L IRy (@upryte

Froi-1) \T+o0-r
This gives
ki = Ok, @
with
o T+Q-T) <F+Q(1—F)>(1FF)Q
TR Q1 -D)R

Finally we arrive to

. EQ Q

min max {@kQF i ks } .

2

We must have
r—i
Ok, ™ “ =k
and hence
N
ko =00,

We conclude that the optimal value for A, is given by

P+Q1-D)\" (T+Qu-1)\" "
i) (onron)

Ao (T,Q) =0" = (

5.2. The case of a rectangle. Now we want to compute Ao (I', Q) when Q is
the rectangle (—R, R) x (—L, L) € R%. Without loss of generality, we assume that
L <R.

Here, as for the case of the ball, we rely on symmetry. We look for a point
xo = (a,0) with L < a < R, where

etoo | 000 P9 1oe (@) = o] [vso| TP (0) = 1.

Note that we can choose vo, to be symmetric (odd in the z-direction), that is,

’UOO('Ta y) = _’UOO(_x7 y)
Observe that the best choice that we can make is to take u., as the cone

Uos(z) = k1 (p = (2, ) = (a,0)])+,
with p = R —a <min{L, R — L}. Then we have
Vool oo () = k1 and  uso(mg) = ki1p.
Concerning v, as before, we can choose a plane
Voo (T) = kox.
Then we have

Voo |l Loe(Br) = k2 and Voo (Z0) = koa.
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Now we have to compute
min max {k‘l; k?}
k1,k2,a

with the restriction

r (1-DQ _ _o\r 1-mQ
max [too | [voc| max (ki (R —s))" (kzs)

=ik YR — a)Ta1DR = 1,
Then we have to compute

—5)s-De
(26) argn:ing(R s)' s .

When p < L, this maximum is attained at a point a that is given by
Fa=Q(1-T)(p+a—a),

that is,
_ -0
a=Q T p-

Hence, with similar computations as the ones that we did for the ball we obtain

that

An(.Q) = r+Q1-1)\" /T+Q1-1)\""¢ s TR .

s 'R Q(1-T)R ' Q(1-T) ~

Observe that, in this case, A (I, Q) coincides with the eigenvalue that we found
in the case of the ball.

When p = L, (26) is attained at a point a that is given by a = R — L then

1 'R
Ao (D,Q) = —— 7, if —— > L.
0.Q) = G- Yoa-n”

Note that computing the value of Ao (I',Q) for a general domain € is not

straightforward.

6. VISCOSITY SOLUTIONS

In order to identify the limit PDE problem satisfied by any limit (ueo,veo),
we introduce the definition of viscosity solutions. Since we deal with different
boundary conditions for the components u, , (Dirichlet) and v, ; (Neumann) we
split the passage to the limit into two parts. Also remark that us, is non-negative
in Q but v changes sign. This is reflected in the fact that they are solutions to
quite different equations. First, we deal with the equation and boundary condition
verified by us and next we deal with v.

6.1. Passing to the limit in u, ;. Assuming that u, 4 is smooth enough, we can
rewrite the first equation in (1) as

(27) —|Vup, P~ (|Vtp,g|*Aup g + (p — 2) Asctipq) = a)\p,qugglvgq.

Recall that —Au = —VuD?*u(Vu)!. This equation is non-linear, elliptic (degen-
erate) but not in divergence form, thus it makes sense to consider viscosity sub-
solutions and super-solutions of it. Let z,y € R, z € RN ,and S a real symmetric
matrix. We consider the following function

Hy(z,y,2,5) = —[2["~" (|2 trace(S) + (p — 2)(S - 2, 2)) — ap g|y|* yup,q(2)”.
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Observe that H), is elliptic in the sense that Hy(z,y,z,5) > Hp(z,y,z,5") if
S < S in the sense of bilinear forms, and also that (27) can be written as
H,(x,up,q, Vp.g, D2up,q) = 0. We are thus interested in viscosity super and sub
solutions of the partial differential equation
(28) Hy(z,u,Vu,D?*u) =0 in (Q,

u=0 on 0f).
Definition 6.1. An upper semi-continuous function u defined in §2 is a wiscosity
sub-solution of (28) if, u|apg < 0 and, whenever ¢ € 2 and ¢ € C?(Q) are such that
u(zo) = ¢(xo) and u(x) < é(x), if  # xo, then

Hy(x0, ¢(x0), Vo (o), D*d(x0)) < 0.

Definition 6.2. A lower semi-continuous function u defined in 2 is a wviscosity
super-solution of (28) if, ulpq > 0 and, whenever zg €  and ¢ € C?(2) are such
that u(xo) = ¢(xo) and u(z) > ¢(x), if  # x, then

Hp(l‘o, ¢($0), V(b(l‘o), D2¢(1‘0)) Z O

We observe that in both of the above definitions the second condition is required
just in a neighbourhood of xy and the strict inequality can be relaxed. We refer
to [10] for more details about general theory of viscosity solutions, and to [19] for
viscosity solutions related to the co—Laplacian and the p—Laplacian operators.
The following result can be shown as in [25, Proposition 2.4], therefore we omit the
proof here.

Lemma 6.3. A continuous weak solution to the equation

p.q

—Apu = Aaju|*2uvd . in Q,
u=0 on 09,

is a viscosity solution to (28).

Now, we have all the ingredients to compute the limit of (28) as p — oo in the
viscosity sense, that is, to identify the limit equation verified by any uniform limit
of Up g, Uso. For z,y € R, 2z € RY and S a symmetric real matrix, we define the
limit operator H,, by

Hoo(‘r7y7 z, S) = mln{_<S ' Z7Z>a |Z| - AOO(F7 Q)‘y|1—‘—2y|voo|(1—l—‘)Q(x)}.
Note that Huo (2, u, Vu, D?u) = 0 is the limit equation that we are looking for.

Theorem 6.4. A function us obtained as a limit of a subsequence of {u, 4} is a
viscosity solution to the problem

(29) Hoo(x,u,Vu,D?*u) =0 in $,
u=0 on 0f,

with Hoo defined in (6.1), and veo a uniform limit of v, 4.

Proof. In this proof we use ideas from [7]. We consider a subsequence {(pn, ¢n) }nen
such that p,, g, — o

Jim wp,, g, = Uoo, Jm vy, 4, = Voo
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uniformly in Q and (A, 4.)7? — A (T, Q). In what follows we omit the subscript
n and denote as up 4, Vp,q and A, 4 such subsequences for simplicity.

We first check that us is a super-solution of (29).To this end, we consider a point
zo € Q and a function ¢ € C%(Q) such that us(70) = ¢(z0) and us (z) > ¢(x) for
every x € B(xg, R), x # xg, with R > 0 fixed and verifying that B(z,2R) C .
We must show that

(30) HDO($0,¢($0),V¢($0),D2¢(3]0)) Z 0.

Let 2, 4 be a minimum point of u,, ; — ¢ in B(xo, R). Since u, ¢ — U uniformly
in B(xo, R), up to a subsequence x, ; — To.
In view of Lemma 6.3, u, , is a viscosity super-solution of (28), then

= V(@)1 (190(2p.0) PAd(.0) + (0~ 2)Ascb(@p0))
> aXp ql9(Tp.q) ‘a72¢(mp) |Up,q|ﬁ(xp,q)-

Assume that ¢(zg) = uso(zo) > 0 and |vs|(xzg) > 0. Then for p,q large,
d(Tpq) > 0 and |vp4|(zpe) > 0 so that the right hand side of (31) is positive.
It follows that |V¢(zpq)| > 0 and then we get

_ <|v¢(xpyq)|2A¢(mpyq)
(r—2)

(31)

+ Aooﬁb(xp,q))
(32) 1 P
ar 1 =2 1 B —14+4
2 ( T (Ap,g) P 10(@p,g)| 7 7 (2p,)|Vp.g| ? (Tp,g) [V (2p,q)] ") .
(p—2)»
Note that we have

: _ |v¢(xp,q)|2A¢(xp,q)
R

p,qg—0o0

N Am¢><xp,q>> — _Ad(ao) < oo

Hence

D=

. o 1 a-1 El 144
lim sup T (Apg)?® 7 (Tp,)|Vp,ql 7 (7)[VO(Tp,q)] r <
p.g—oo (p—2)»

Recalling that by assumption % — I and % — Q as p,q — 0o, we obtain

(33) Ao (T, Q)¢ (20) [voo| M T (o) < V(o)
and
(34) ~Ascd(@0) > 0,

which is (30).

Assume now that either ¢(zo) = too (o) = 0 or voo(xo) = 0. In particular, (33)
holds. Note first that if Vé(xg) = 0 then A ¢(zg) = 0 by definition so that (34)
holds. We now assume that |V¢(zg)| > 0 and write (32). The parenthesis in the
right hand side goes to 0 as p, ¢ — oo so that the right hand side goes to 0 and (34)
follows.

To complete the proof it just remains to see that u., is a viscosity sub-solution.
Let us consider a point zo € 2 and a function ¢ € C%(Q) such that u.(z0) = ¢(x0)
and ueo(2) < ¢(x) for every z in a neighbourhood of zy. We want to show that

Hoo (20, 3(0), Vo(20), D*¢(20)) < 0.
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We first observe that if V¢(xg) = 0 the previous inequality trivially holds. Hence,
let us assume that Vé(zp) # 0. Now, we argue as follows: assuming that

(35) [V (0)| — Ao (T, Q)" (20) [ve | 79 (o) > 0,
we will show that

As before, using that u, , is a viscosity sub-solution of (28), we get a sequence of
points z,, ; — o such that

B (|V¢|2A¢(mpyq)
(p—2)

al/p B P
< (<Ap,q>1/p|¢|a/p<xp7q>|vp7q|ﬁ/p<xp,q>|v¢<mp,q> 1+4/p) -

+ Aw¢(xp,q))
(37)

(r=2)
Using (35) we get

) al/p N B P
e <M<Ap,q>1“’|¢| P (@) 0p.al /P (2.0) [V B )| /> -

p,q—00

Hence, we conclude (36) taking limits in (37) and we obtain that

min{—Aoé(20), [Ve(@o)| — Moo (T, Q)" (0) 00| 7% (0)} < 0.

The fact that us = 0 on 02 is immediate from the uniform convergence of u, 4
since up 4 = 0 on 0N O

6.2. Passing to the limit in v, ,. Let

Fy(z,y,2,5) = —|2|"7* (|z[trace(S) + (¢ = 2)(S - 2,2)) — BApqlup,q|* 1yl 2y.

Now we deal with viscosity super and subsolutions of the partial differential equa-
tion

Fy(z,v,Vv,D?*v) =0 in,
(38) @ =0 on 0f).
v
Here, we have to pay special attention to the fact that v, , changes sign and to
the boundary condition 9vp.¢/or = 0 on 9. To this end, following [2], we introduce
the following definition of viscosity solution for the boundary value problem

(39) Fy(z,Vu,D*u) =0 in Q,
B(z,u,Vu) =0 on 092,

where B(z,u,z) = (z,v(x)).

Definition 6.5. A lower semi-continuous function u is a viscosity super-solution
if for every ¢ € C?(Q) such that u — ¢ has a strict minimum at the point zq € Q
with u(xzg) = ¢(xg) we have: If z¢ € 99 the inequality

max{B(xo, (o), Vo(x0)), Fy(xo, Vd(xo), D*¢(x0))} > 0

holds, and if g € 2 then we require
Fy(xo, Vo(x0), D*¢(x0)) > 0.
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Definition 6.6. An upper semi-continuous function wu is a sub-solution if for every
¢ € C?(Q) such that u — ¢ has a strict maximum at the point xy € Q with
u(zo) = ¢(xg) we have: If o € 082 the inequality

min{ F, (z0, Vo(x0), D*¢(0)), B(wo, d(x0), Vé(20))} <0
holds, and if xy € 2 then we require

Fy(x0, V(20), D*¢(20)) <0

As before, we have that any continuous weak solution of the second equation in
(1) is a viscosity solution of (39). This fact can be proved as in [14, 15, 30].
We can now pass to the limit p, ¢ — oo to obtain the equation satisfied by vx.

Theorem 6.7. A function v, obtained as a limit of a subsequence of {vp 4} is a
viscosity solution of the equation

Foo(z,v,Vv,D?*v) =0 inQ,
40
(40) @ =0 on 0.
ov
with F defined by

min {—(S - 2, 2), 2| — Aso (T, Q)2 |uoe|/2|v|* T} in {v > 0},
Foo(v,2,8) = { max {—(S - 2,2), —|2] = Aso(T, Q) ?|une|/?w[* T}  in {v <0},
—(S - z,2) in {v =0}.

Proof. We prove that v, is a super-solution of (40). The proof of the fact that it
is a sub-solution is similar. Fix some point 2o € Q and a smooth function ¢ such
that v — ¢ has a strict minimum at zo with ve(20) = ¢(x0). Since vp 4 = Vo
uniformly there exist z, , € argmax {v, ; — ¢} such that z, , — 2o as p,q — oo.

Assume first that =9 € Q, so that z,, € Q for p,q large. If Vo(zp) = 0 then
we have Ayd(xo) = 0. We assume now that V¢(zg) # 0. As u, 4 is a viscosity
solution of (38), we have

Fy(p, vp,g(Tp,q), VI (2p,q), D ( p)) = 0.

Dividing this inequality by (¢ — 2)|Vé(z, )| * we obtain
i a B_1 -2
q q
(1) Awcdlro) + (1) 2 1| V6 1) | 212 T0a) WpalTya)
|V¢> pa)l(q —2)72
If voo(mg) > 0 then, recalling that ( Ao (T, Q)72 it follows that

we must have 2@ /Q‘qfvéfgl‘)|/le“ (Io)l S 1. Gomg back to (41) we also get
If voo(z0) < O then we rewrite the equation as
qg—1

(=277 |Vé(2p)]

— a
Ao [Up.q(Tp.g)| @ [Vp,q(Tp.q)]

—[V(ap,) 7 (Ascd(@o) +0(1)) < 1.

Q[

If Aeo(1NQ) /Qlu‘vgfgl‘)l/q‘vm(”)l > 1 then we must have A ¢(zp) > 0. Otherwise
Moo (0.Q)Cuss (20)[/Pvee (20)| 7" o ¢

we have S o(zo)]
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If vo (z9) = 0, then vy, ¢(7y,4) — 0so that ‘”p,q(l"p,q)|q72”p,q(xp,q) < vpg(Tpg) =
It then follows that

|V¢(Ip,q)|q72A¢(xp,q) + (g - 2)‘v¢(xp,q)|q74Aoo(b(xp,q) > o(1).

Dividing this inequality by (¢ — 2)|Vé(z,4)|?"* and letting p, ¢ — oo we obtain

Assume now that zo € 9€2. We have to prove that

o { Pz, Vo). D%6(an). G () > 0.

If z, 4 € £ for some subsequence then we can proceed as before to get

Fuo(20, Vo(x0), D*¢(20)) > 0.

Assume that =, , € 0Q for every p, g large. If Vo (xo) = 0 then 9¢(z0)/a, = 0. Then
we need to deal with Vé(zg) # 0. We have

If

0
max {Fp(l'p,qa Vo(2p.q), D2¢(~Tp,q))a ai}(znq)} > 0.

Fy(@p,q, Vé(2p.q), D?¢(xp)) > 0 holds for a subsequence we are done as before.

Otherwise

SO

[
2
3
4
5
6
[7
8
[

[10

[11

[12
[13

[14

o)
8—;?(3:1,7,1) >0  for p,qlarge

that 9¢/ov(xo) = limy, 4— 0 9%/0v(xp 4) > 0. O
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