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Abstract. In this paper we give some estimates for nonlinear harmonic measures on
trees. In particular, we estimate in terms of the size of a set D the value at the origin
of the solution to u(x) = F ((x, 0), . . . , (x,m−1)) for every x ∈ Tm, a directed tree with
m branches with initial datum f + χD. Here F is an averaging operator on Rm, x is a
vertex of a directed tree Tm with regular m-branching and (x, i) denotes a successor of
that vertex for 0 ≤ i ≤ m− 1.

1. Introduction

Let us first recall some well known facts for the classical p−Laplacian. Let Ω be the unit
ball in RN , N > 1. We say that u is p−harmonic (p−superharmonic/p−subharmonic)
in Ω (1 < p <∞) if u ∈ W 1,p(Ω) and∫

Ω

|∇u|p−2∇u∇ψ dx = 0, (≥ 0/ ≤ 0)

whenever ψ ∈ C∞0 (Ω) (ψ ≥ 0). Let E be a subset of ∂Ω. Consider the following class

Up(E) =
{
v : v ≥ 0 and p− superharmonic s. t. lim inf

x∈Ωx→y
v(y) ≥ χE(y)∀y ∈ ∂Ω

}
.

The p−harmonic measure of the set E relative to the domain Ω is the function ωp(·, E)
whose value at any x ∈ Ω is given by ωp(x,E) = inf{v(x) : v ∈ Up(E)}. We simply
denote ωp(E) when x = 0. For a deeper discussion about of p−harmonic measure, we
refer the reader to [2, 3, 5, 6, 11, 12, 16].

In this context, the following problem for the p−Laplacian remains open, see [24].

Boundary Comparison Principle. For δ > 0 consider Iδ a spherical cap with length
δ/2. Given ε > 0, find δ = δ(ε,M, p) > 0 such that

|u(0)− v(0)| < ε

for all p−harmonic functions u and v in Ω that extend to Ω, are bounded ‖u‖∞ ≤ M,
‖v‖∞ ≤M, and satisfy u(y) = v(y) for all y ∈ ∂Ω \ Iδ.

Closely related to this problem is the following:

p−harmonic Measure Estimates. Does there exist α > 0 such that

ωp(Iδ) ∼ δα as δ → 0?

In [17], the authors study the second question in the case p = ∞. They showed that

ω∞(Iδ) ∼ δ
1
3 . Similar ideas can be used to obtain the result for 1 < p <∞, see [18].

In this work we provide answers to both problems for the F -harmonic function in a
directed tree where F is an averaging operator on Rm, see below for a precise definition.
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Regular trees are discrete models of the unit ball of RN and hence our results can be
seen as a contribution in order to the study of the previously mentioned open problem.

We remark that for the linear case, p = 2, the solutions to these problems are well
known and the starting point for their study is the mean value property for harmonic
functions. One of the main interests of the present work is to show what kind of results
can be proved when the mean value property under consideration is nonlinear.

Now, let us introduce briefly some definitions and notations needed to make precise the
statements of our main results (but we refer the reader to Section 2 where more details
can be found). Let F : Rm → R be a continuous function. We call F an averaging
operator if it satisfies the following:

F (0, . . . , 0) = 0 and F (1, . . . , 1) = 1;

F (tx1, . . . , txm) = tF (x1, . . . , xm);

F (t+ x1, . . . , t+ xm) = t+ F (x1, . . . , xm),

for all t ∈ R;
F (x1, . . . , xm) < max{x1, . . . , xm},

if not all xj’s are equal; F is nondecreasing with respect to each variable; in addition, we
will assume that F is permutation invariant, that is, F (x1, . . . , xm) = F (xτ(1), . . . , xτ(m))
for each permutation τ of {1, . . . ,m} and that there exists 0 < κ < 1 such that

(1.1) F (x1 + c, . . . , xm) ≤ F (x1, . . . , xm) + cκ

for all (x1, . . . , xm) ∈ Rm and for all c > 0.

As examples of averaging operators we mention the following: The first example is
taken from [9]. For 1 < p < +∞, the operator F p(x1, . . . , xm) = t from Rm to R defined
implicity by

m∑
j=1

(xj − t)|xj − t|p−2 = 0

is a permutation invariant averaging operator. Next, we consider, for 0 ≤ α ≤ 1 and
0 < β ≤ 1 with α + β = 1

F0(x1, . . . , xm) =
α

2

(
max

1≤j≤m
{xj}+ min

1≤j≤m
{xj}

)
+
β

m

m∑
j=1

xj,

F1(x1, . . . , xm) = αmedian
1≤j≤m

{xj}+
β

m

m∑
j=1

xj,

F2(x1, . . . , xm) = αmedian
1≤j≤m

{xj}+
β

2

(
max

1≤j≤m
{xj}+ min

1≤j≤m
{xj}

)
,

where

median
1≤j≤m

{xj} :=

ym+1
2

if m is even,
ym

2
+ y(m

2
+1)

2
if m is odd,

with {y1, . . . , ym} a nondecreasing rearrangement of {x1, . . . , xm}. F0, F1 and F2 are
permutation invariant averaging operators. Note that F0 and F1 verify (1.1) but F2 does
not.

Associated with an averaging operator F we have an equation on a tree. In what follows
x is a vertex of a directed tree Tm with regular m-branching and (x, i) is a successor of
that vertex for all 0 ≤ i ≤ m−1 (see Section 2 for more details). A function u : Tm → R is
called F -subharmonic function if the inequality u(x) ≤ F (u(x, 0), . . . , u(x,m− 1)) holds
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for all x ∈ Tm and F -superharmonic if the opposite inequality holds for all x ∈ Tm. We
say that u is F -harmonic if u is both F -subharmonic and F -superharmonic, that is, u is
a solution to the equation

u(x) = F (u(x, 0), . . . , u(x,m− 1)).

Let f : [0, 1]→ R be a bounded function, c > 0 and E ⊂ ∂Tm. We define UF (f, E, c)
as the set of all F−superharmonic functions u such that

lim inf
k→+∞

u(xk) ≥ f(π) + cχE(π),

for all π = (x1, . . . , xk, . . . ) ∈ ∂Tm.
Finally, we need the notion of solution to the Dirichlet Problem, (DP) in the sequel.

Given a bounded function f : [0, 1] → R, u is a solution to the Dirichlet Problem with
boundary data f if it is F -harmonic and verifies

lim
k→+∞

u(xk) = f(π), ∀π = (x1, . . . , xk, . . . ) ∈ ∂Tm.

Now, we are ready to state the main result of this paper.

Theorem 1.1. Let F be a permutation invariant averaging operator with the property
(1.1), f : [0, 1] → R be a continuous function, I be a subinterval of [0, 1] with measure
|I| and c > 0. If u is the solution of (DP) with boundary data f , then

0 ≤ inf
{
w(∅)− u(∅) : w ∈ UF (f, I, c)

}
≤ 2c (m|I|)γ

for any γ ≤ − logm(κ).

Note that the obtained bound depends precisely both on the tree (m is the parameter
that controls the branching of the tree), the interval where the perturbation of f takes
place (through its measure), the size of the perturbation (given by c) and on the operator
F (κ appears in (1.1)).

We immediately deduce, taking f ≡ 0 and c = 1, the following result.

Corollary 1.2 (p−harmonious Measure Estimates). If I is a subinterval of [0, 1], then

0 ≤ ωF (I) ≤ 2 (m|I|)γ

for all γ ≤ − logm(κ).

Finally, we state the Boundary Comparison Principle.

Corollary 1.3 (Boundary Comparison Principle). Let F be a permutation invariant
averaging operator that satisfies the property (1.1). Given ε > 0 and M > 0, there exists
δ = δ(ε,M,m) > 0 so that, if f, g : [0, 1]→ R are continuous functions, f = g in [0, 1]\I,
and ‖f‖∞ + ‖g‖∞ ≤M, where I is a subinterval of [0, 1] with |I| = δ, then

|u(∅)− v(∅)| < ε

where u and v are the solutions of (DP) with boundary data f y g respectively

Let us end the introduction with a brief comment on previous bibliography. For
nonlinear mean values on a finite graph we refer to [15] and references therein. For
equations on trees like the ones considered here, see [1, 9, 10] and [22, 23], where it is
proved the existence and uniqueness of a solution using game theory. Here we use ideas
from these references. Nonlinear mean value properties that characterize solutions to
PDEs can be found, for example, in [14], [21], [7] and [8]. These mean value properties
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reveal to be quite useful when designing numerical schemes that approximate solutions
to the corresponding nonlinear PDEs, see [19, 20].

Organization of the paper. In Section 2 we collect some preliminary facts concern-
ing trees, averaging operators, F−harmonic functions and F−harmonic measures; in
Section 3 we prove existence and uniqueness for the Dirichlet problem and a comparison
principle; Finally in Section 4 we prove Theorem 1.1 and Corollary 1.3.

2. Preliminaries

We begin with a review of the basic results that will be needed in subsequent sections.
The known results are generally stated without proofs, but we provide references where
the proofs can be found. Also, we introduce some of our notational conventions.

2.1. Directed Tree. Let m ∈ N be at least 3. In this work we consider a directed
tree Tm with regular m−branching, that is, Tm consists of the empty set ∅ and all finite
sequences (a1, a2, . . . , ak) with k ∈ N, whose coordinates ai are chosen from {0, 1, . . . ,m−
1}. The elements in Tm are called vertices. Each vertex x has m successors, obtained by
adding another coordinate. We will denote by S(x) the set of successors of the vertex x.
A vertex x ∈ Tm is called an n−level vertex (n ∈ N) if x = (a1, a2, . . . , an). The set of
all n−level vertices is denoted by Tnm.
Example 2.1. Let κ ∈ N be at least 3. A 1/κ−Cantor set, that we denote by C1/κ, is the
set of all x ∈ [0, 1] that have a base κ expansion without the digit 1, that is x =

∑
ajκ

−j

with aj ∈ {0, 1, . . . , κ − 1} with aj 6= 1. Thus C1/κ is obtained from [0, 1] by removing
the second κ−th part of the line segment [0, 1], and then removing the second interval
of length 1/κ from the remaining intervals, and so on. This set can be thought of as a
directed tree with regular m−branching with m = κ− 1.

For example, if κ = 3, we identify [0, 1] with ∅, the sequence (∅, 0) with the first interval
right [0, 1/3], the sequence (∅, 1) with the central interval [1/3, 2/3] (that is removed), the
sequence (∅, 2) with the left interval [2/3, 1], the sequence (∅, 0, 0) with the interval [0, 1/9]
and so on.

∅

0

0

0 1 2

1

0 1 2

2

0 1 2

1

0

0 1 2

1

0 1 2

2

0 1 2

2

0

0 1 2

1

0 1 2

2

0 1 2

A branch of Tm is an infinite sequence of vertices, each followed by its immediate
successor. The collection of all branches forms the boundary of Tm, denoted by ∂Tm.

We now define a metric on Tm ∪ ∂Tm. The distance between two sequences (finite or
infinite) π = (a1, . . . , ak, . . . ) and π′ = (a′1, . . . , a

′
k, . . . ) is m−K+1 when K is the first

index k such that ak 6= a′k; but when π = (a1, . . . , aK) and π′ = (a1, . . . , aK , a
′
K+1, . . . ),

the distance is m−K . Hausdorff measure and Hausdorff dimension are defined using this
metric. We have that Tm and ∂Tm have diameter one and ∂Tm has Hausdorff dimension
one. Now, we observe that the mapping ψ : ∂Tm → [0, 1] defined as

ψ(π) :=
+∞∑
k=1

ak
mk
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is surjective, where π = (a1, . . . , ak, . . . ) ∈ ∂Tm and ak ∈ {0, 1, . . . ,m− 1} for all k ∈ N.
Whenever x = (a1, . . . , ak) is a vertex, we set

ψ(x) := ψ(a1, . . . , ak, 0, . . . , 0, . . . ).

We can also associate to a vertex x = (a1, . . . , ak) an interval Ix of length 1
mk

as follows

Ix :=

[
ψ(x), ψ(x) +

1

mk

]
.

Observe that for all x ∈ Tm, Ix ∩ ∂Tm is the subset of ∂Tm consisting of all branches
that start at x. With an abuse of notation, we will write π = (x1, . . . , xk, . . . ) instead of
π = (a1, . . . , ak, . . . ) where x1 = a1 and xk = (a1, . . . , ak) ∈ S(xk−1) for all k ∈ N≥2.

Finally we will denote by Txm the set of the vertices y ∈ Tm such that Iy ⊂ Ix.

2.2. Averaging Operator. The following definition is taken from [1]. Let F : Rm → R
be a continuous function. We call F an averaging operator if it satisfies the following set
of conditions:

(i) F (0, . . . , 0) = 0 and F (1, . . . , 1) = 1;
(ii) F (tx1, . . . , txm) = tF (x1, . . . , xm) for all t ∈ R;

(iii) F (t+ x1, . . . , t+ xm) = t+ F (x1, . . . , xm) for all t ∈ R;
(iv) F (x1, . . . , xm) < max{x1, . . . , xm} if not all xj’s are equal;
(v) F is nondecreasing with respect to each variable.

Remark 2.2. It holds that, if (x1, . . . , xm), (y1, . . . , ym) ∈ Rm, then

xj ≤ yj + max
1≤j≤m

{xj − yj}

for all j ∈ {1, . . . ,m}. Let F be an averaging operator. Then, by (iii) and (v),

F (x1, . . . , xm) ≤ F (y1, . . . , ym) + max
1≤j≤m

{xj − yj} .

Therefore
F (x1, . . . , xm)− F (y1, . . . , ym) ≤ max

1≤j≤m
{xj − yj} .

Remark 2.3. If F is an averaging operator then, using (ii) and (iii),

F (a, . . . , a, b) = F (a, . . . , a, a+ (b− a))

= a+ F (0, . . . , 0, b− a)

= a+ (b− a)F (0, . . . , 0, 1)

= a(1− F (0, . . . , 0, 1)) + bF (0, . . . , 0, 1)

for all a, b ∈ R.

For the proof of the following proposition see [9].

Proposition 2.4. If F is an averaging operator then

(1) F (1− x1, . . . , 1− xm) = 1− F (x1, . . . , xm) for all (x1, . . . , xm) ∈ Rm;
(2) There exists b > 0 such that whenever F (x1, . . . , xm) ≥ 0 and max{x1, . . . , xm} ≤

1, then min{x1, . . . , xm} ≥ −b.

In Section 4 we require, in addition, for F to be permutation invariant, that is,

F (x1, . . . , xm) = F (xτ(1), . . . , xτ(m))

for any permutation τ of {1, . . . ,m}.



6 L. M. DEL PEZZO, C. A. MOSQUERA AND J. D. ROSSI

Remark 2.5. If F is a permutation invariant averaging operator then we have that

F (1, 0, . . . , 0,−1) = F (−1, 0, . . . , 0, 1) = −F (1, 0, . . . , 0,−1).

Therefore F (1, 0, . . . , 0,−1) = 0.

In Section 4, we will also need the following assumption: F is a permutation invariant
averaging operator with the property that there exists 0 < κ < 1 such that

(2.2) F (x1 + c, . . . , xm) ≤ F (x1, . . . , xm) + cκ,

for all (x1, . . . , xm) ∈ Rm and for all c > 0.

Remark 2.6. If F is a permutation invariant averaging operator with the property (2.2),
then

F (x1 + c, x2 + c, x3, . . . , xm) ≤ F (x1, x2 + c, x3, . . . , xm) + cκ
= F (x2 + c, x1, x3, . . . , xm) + cκ ≤ F (x2, x1, x3, . . . , xm) + 2cκ
= F (x1, . . . , xm) + 2cκ

for all (x1, . . . , xm) ∈ Rm and for all c > 0. In fact by iterating this argument and using
Property (iii), we get 1 < mκ.

Now we give some examples.

Example 2.7. This example is taken from [9]. For 1 < p < +∞, the operator

F p(x1, . . . , xm) = t

from Rm to R defined implicity by
m∑
j=1

(xj − t)|xj − t|p−2 = 0

is a permutation invariant averaging operator.

Example 2.8. For 0 ≤ α ≤ 1 and 0 < β ≤ 1 with α + β = 1, let us consider

F0(x1, . . . , xm) =
α

2

(
max

1≤j≤m
{xj}+ min

1≤j≤m
{xj}

)
+
β

m

m∑
j=1

xj,

F1(x1, . . . , xm) = αmedian
1≤j≤m

{xj}+
β

m

m∑
j=1

xj,

F2(x1, . . . , xm) = αmedian
1≤j≤m

{xj}+
β

2

(
max

1≤j≤m
{xj}+ min

1≤j≤m
{xj}

)
,

where

median
1≤j≤m

{xj} :=

ym+1
2

if m is even,
ym

2
+ y(m

2
+1)

2
if m is odd,

with {y1, . . . , ym} a nondecreasing rearrangement of {x1, . . . , xm}.
It holds that F0, F1 and F2 are permutation invariant averaging operators. Moreover,

F0, F1 and F2 satisfy (2.2) with κ0 = α/2 + β/m, κ1 = α + β/m and κ2 = α + β/2, due to
the fact that for any c > 0

maxY + minY ≤ maxX + minX + c,

median Y ≤ median X + c,

where Y = {x1 + c, x2, . . . , xm} and X = {x1, x2, . . . , xm}.
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2.3. F -harmonic Functions. In this subsection we will present the definition and some
properties of F -harmonic functions.

Let F be an averaging operator. A function u : Tm → R is called F -subharmonic
function if the inequality

u(x) ≤ F (u(x, 0), . . . , u(x,m− 1))

holds for all x ∈ Tm and F -superharmonic if the opposite inequality holds for all x ∈ Tm.
We say that u is F -harmonic if u is both F -subharmonic and F -superharmonic.

Example 2.9. For 1 < p < +∞, a function u : Tm → R is p-harmonic if

m−1∑
j=0

(u(x, j)− u(x))|u(x, j)− u(x)|p−2 = 0, ∀x ∈ Tm

that is
F p(u(x, 0), . . . , u(x,m− 1)) = u(x), ∀x ∈ Tm.

Thus the p-harmonic functions and F p-harmonic functions are the same.

Example 2.10. A function u : Tm → R is called (α, β)-harmonious if

u(x) =
α

2

(
max

1≤j≤m
{u(x, j)}+ min

1≤j≤m
{u(x, j)}

)
+
β

m

m∑
j=1

u(x, j), ∀x ∈ Tm

that is
F0(u(x, 0), . . . , u(x,m− 1)) = u(x), ∀x ∈ Tm.

These functions are related to game theory, see [13] for the continuous case and [22, 23]
for trees.

Remark 2.11. Let F be an averaging operator and u be a F -harmonic function. Then

(1) au+ b is a F -harmonic function for all a, b ∈ R;
(2) u+ = max{u, 0} and u− = max{−u, 0} are F -subharmonic functions.

Next, we collect some properties.

Lemma 2.12. Let F be an averaging operator. If u is a bounded above F -subharmonic
function and there exists x ∈ Tm such that u(x) = maxy∈Tm u(y) then u(y) = u(x) for
any y ∈ Txm.

Proof. Let M = u(x) = maxy∈Tm u(y). We first observe that it is sufficient to show that
u(y) = M for all y ∈ S(x). Since u is a F -subharmonic function and F is an averaging
operator, we have that

M = u(x) ≤ F (u(x, 0), , . . . , u(x,m− 1)) ≤ max
y∈S(x)

u(y) ≤M.

Then
F (u(x, 0), . . . , u(x,m− 1)) = max

y∈S(x)
u(y) = M.

Therefore, by property (iv), we have that u(x, i) = M for all 0 ≤ i ≤ m−1, i.e. u(y) = M
for all y ∈ S(x). �

In the same manner, we can prove the following lemma.

Lemma 2.13. Let F be an averaging operator. If u is a bounded below F -superharmonic
function and there exists x ∈ Tm such that u(x) = miny∈Tm u(y) then u(y) = u(x) for
any y ∈ Txm.
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If F is an averaging operator then F is a continuous function and therefore the following
result holds.

Lemma 2.14. Let F be an averaging operator and {un}n∈N be a sequence of F -harmonic
functions. If

u(x) = lim
n→+∞

un(x)

for all x ∈ Tm, then u is a F -harmonic function.

The Fatou set F(u) of a function u is the set of the branches π = (x1, . . . , xk, . . . ) on
which

lim
k→+∞

u(xk)

exists and is finite, and BV (u) is the set of the branches π = (x1, . . . , xk, . . . ) on which
u has finite variation

∞∑
k=1

|u(xk+1)− u(xk)|.

Clearly BV (u) ⊆ F(u).

In [9, Theorem A], the authors show that: If F is an averaging operator and Hm
F is

the set of bounded F -harmonic functions on Tm, then

min
HmF

dimF(u) = min
HmF

dimBV (u) = logm(τ(m,F )),

where

τ(m,F ) = min

{
m∑
j=1

exj : F (x1, . . . , xm) = 0

}
and dim denotes the usual Hausdorff dimension.

In [10], for the classical p-harmonic functions on trees (Example 2.9), the authors prove
that

lim
m→+∞

min
Hm
Fp

dimF(u) = lim
m→+∞

min
Hm
Fp

dimBV (u) = 1.

While from [4], for the (α, β)-harmonious functions on trees (Example 2.10), we have
that

lim
m→+∞

min
HmF0

dimF(u) = lim
m→+∞

min
HmF0

dimBV (u) =
1

2
+
β

2
.

In the case F = F1, we observe that the minimum τ(m,F1) is attained at

xi =

{
−m+(1−s)(1−α)

m
log γ if 1 ≤ i ≤ s− 1,

(s−1)(1−α)
m

log γ if s ≤ i ≤ m,

where

γ =
m+ (1− s)(1− α)

(m− s+ 1)(1− α)
and s =

{
[m

2
] + 1 if m is odd ,

m
2

if m is even .

Therefore
min
HF1

dimF(u) = min
HF1

dimBV (u)

= logm

(
m

1− α

(
(m− s+ 1)(1− α)

m+ (1− s)(1− α)

)1− s−1
m

(1−α)
)
.
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Finally, in the case F = F2, the minimum τ(m,F2) is attained at

xj =
1− α

2
log η, 1 ≤ j ≤ m− 1, xm = −1 + α

2
log η, if 0 ≤ α ≤ m− 2

m
,

x1 = −1 + α

2
log η, xj =

1− α
2

log η, 2 ≤ j ≤ m, if
m− 2

m
< α < 1,

where

η =
1 + α

(m− 1)(1− α)
.

Then

min
HF2

dimF(u) = min
HF2

dimBV (u) = logm

(
2(m− 1)(1 + α)−

1+α
2

((m− 1)(1− α))
1−α
2

)
.

Thus, we can compute the following limits as the number of branches go to infinity,

lim
m→+∞

min
HF1

dimF(u) = lim
m→+∞

min
HF1

dimBV (u) = 1,

lim
m→+∞

min
HF2

dimF(u) = lim
m→+∞

min
HF2

dimBV (u) =
1

2
+
α

2
.

2.4. F -harmonic Measure. Let F be an averaging operator, f : [0, 1] → R be a
bounded function, c > 0 and E ⊂ ∂Tm.

We define UF (f, E, c) as the set of all F−superharmonic functions u such that

lim inf
k→+∞

u(xk) ≥ f(π) + cχE(π),

for all π = (x1, . . . , xk, . . . ) ∈ ∂Tm.
When f ≡ 0 and c = 1, we say that UF (0, E, 1) is the upper class of E, and

ωF (x,E) := inf {u(x) : u ∈ UF (0, E, 1)}

is the F -harmonic measure function for E. We call ωF (E) := ωF (∅, E) the F -harmonic
measure of E.

Let E be a subset of ∂Tm, following the arguments in [6], we have that

(a) 0 ≤ ωF (·, E) ≤ 1 on Tm;
(b) ωF (E) ≤ ωF (G) when E ⊂ G;
(c) ωF (·, E) is F−harmonic on Tm;
(d) If E is compact, then limk→+∞ ωF (xk, E) = 0 for π = (x1, . . . , xk, . . . ) ∈ ∂Tm \ E;
(e) If E is compact, then ωF (E) + ωF (∂Tm \ E) = 1.

Moreover, if E and G are disjoint compact sets on ∂Tm and ωF (E) = ωF (G) = 0, then
ωF (E ∪G) = 0. Lastly if E1 ⊇ E2 ⊇ · · · ⊇ Ej ⊇ · · · are compact sets then

lim
j→+∞

ωF (Ej) = ωF

(
∞⋂
j=1

Ej

)
.

In [9], the authors show that F -harmonious measures on trees lack many desirable
properties of set valued functions find in classical analysis. More precisely, if F is a
permutation invariant averaging operator, not equal to the usual average, then ωF is not
a Choquet capacity, union of sets of ωF measure zero can have positive ωF measure and
there exist sets of full ωF measure having small dimension. See also [1].
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3. The Dirichlet Problem

We now introduce what we understand by the Dirichlet problem in this work.

Dirichlet Problem (DP). Given an averaging operator F and a bounded function
f : [0, 1]→ R, find a F -harmonic function u such that

lim
k→+∞

u(xk) = f(π) ∀π = (x1, . . . , xk, . . . ) ∈ ∂Tm.

We say that u is a supersolution of (DP) if u is a F -superharmonic function and

lim inf
k→+∞

u(xk) ≥ f(π) ∀π = (x1, . . . , xk, . . . ) ∈ ∂Tm.

We say that u is a subsolution of (DP) if −u is a supersolution of (DP) with boundary
data −f.

3.1. Existence. In this subsection, following [4, Section 4], we give a proof of existence
of solutions of (DP) when the boundary data is a continuous function.

Let f : [0, 1]→ R be a bounded function and n ∈ N, we define fn : [0, 1]→ R as

fn(t) :=
mn−1∑
j=0

f (j/mn)χInj
(t)

where Inj := [j/mn, (j+1)/mn) for all j ∈ {0, . . . ,mn − 1} and In(mn−1) := [(mn−1)/mn, 1].
Note that this function is piecewise constant.

Our next goal is to construct a F -harmonic function un such that un(x) = fn(x) for
all x ∈ Tkm for any k ≥ n.

We first observe that, for all j ∈ {0, . . . ,mn − 1} there exists xnj ∈ Tnm such that

Ixnj = Inj. Then, for all k ∈ {1, . . . , n}, we take {x(n−k)j}m
n−k−1

j=0 ⊂ Tm such that

S(x(n−k)j) = {x(n−k+1)τ : 1 + (j − 1)m ≤ τ ≤ jm} ∀j ∈ {0, . . . ,mn−k − 1}.

Let un : Tm → R be such that

(3.3) un(y) := f (j/mn) ,

for all y ∈ Txnjm for some j ∈ {1, . . . ,mn − 1}, and

un(x(n−k)j) := F (un(x(n−k)j, 0), . . . , un(x(n−k)j,m− 1)),

for any k ∈ {1, . . . , n} and for all j ∈ {0, . . . ,mn−k − 1}.
It is easy to check that un is a F -harmonic function. Moreover, {un}n∈N is uniformly

bounded on Tm due to the fact that f is bounded.

Remark 3.1. Let f be a continuous function on [0, 1]. Then, given ε > 0 there exists
δ = δ(ε) > 0 such that

|f(x)− f(y)| ≤ ε

2
+

2‖f‖∞
δ
|x− y|,

for all x, y ∈ [0, 1]. Therefore, for any n ∈ N and j ∈ {0, . . . ,mn − 1} we have that

|fn(x)− f(y)| ≤ ε

2
+

2‖f‖∞
δmn

,

for all x, y ∈ Inj. Then {fn}n∈N converges uniformly to f.

We are now ready to state our existence result for the Dirichlet problem.
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Theorem 3.2. Let F be an averaging operator and f : [0, 1] → R be a continuous
function. Then the sequence {un}n∈N converges uniformly to a solution u of (DP) with
boundary data f. Moreover, if f is a Lipschitz function we have a bound for the error, it
holds that

|un(x)− u(x)| ≤ L

mn
,

for all x ∈ Tm, where L is the Lipschitz constant of f.

Proof. The proof is divided into 3 steps.

Step 1. First, we prove that {un}n∈N is an uniformly Cauchy sequence. Let h, k, n ∈ N
and x ∈ Thm. If n ≤ k ≤ h, there exist i ∈ {0, . . . ,mn − 1} and j ∈ {0, . . . ,mk − 1} such
that un(x) = fn(x) = f (i/mn) and uk(x) = fk(x) = f (j/mk) . Moreover, Ix ⊂ Ixkj ⊂ Ixni .
Then, given ε > 0, by Remark 3.1, there exists δ = δ(ε) > 0 such that

|un(x)− uk(x)| ≤ ε

2
+

2‖f‖∞
δmn

, ∀x ∈ Thm.

Thus, there exists n0 such that if k ≥ n ≥ n0,

|un(x)− uk(x)| ≤ ε, ∀x ∈ Thm.
Then for any x ∈ Th−1

m , by the above inequality,

uk(y)− ε ≤ un(y) ≤ uk(y) + ε, ∀y ∈ S(x).

Therefore, since un is a F -harmonic function and using (iii) and (v), we have

uk(x)− ε ≤ un(x) ≤ uk(x) + ε ∀x ∈ Th−1
m ,

that is,
|un(x)− uk(x)| ≤ ε ∀x ∈ Th−1

m .

In the same manner, in (h− 1)-steps, we can see that

|un(x)− uk(x)| ≤ ε ∀x ∈ Tm.
Therefore {un}n∈N is an uniformly Cauchy sequence.

Step 2. Now we show that

u(x) := lim
n→+∞

un(x) ∀x ∈ Tm

is a solution of (DP) with boundary data f. By step 1, {un}n∈N converges uniformly to
u. Therefore, by Lemma 2.14, u is a F -harmonic function. Then, we only need to show
that

lim
k→+∞

u(xk) = f(π) ∀π = (x1, . . . , xk, . . . ) ∈ ∂Tm.

Let π = (x1, . . . , xk, . . . ) ∈ ∂Tm and ε > 0. Since {un}n∈N converges uniformly to u,
there exists n0 = n0(ε) such that

(3.4) |un(xj)− u(xj)| ≤
ε

2
, ∀j ∈ N

if n ≥ n0.

On the other hand, we can observe that there exists n1 = n1(ε) such that

|fn(π)− f(π)| ≤ ε

2

if n ≥ n1. Then, since un(x) = fn(x) for all x ∈ Thm for any h ≥ n, if n ≥ n1 we have
that

(3.5) |un(xj)− f(π)| ≤ ε

2
∀j ≥ n.
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Finally, taking n ≥ max{n0, n1} and j ≥ n, by (3.4) and (3.5), we get

|u(xj)− f(π)| ≤ |u(xj)− un(xj)|+ |un(xj)− f(π)| ≤ ε.

Step 3. We observe that if f is a Lipschitz function, in the same manner as in step 1,
we obtain that, if k, n ∈ N,

|un(x)− uk(x)| ≤ L

mn
∀x ∈ Tm.

Therefore,

|un(x)− u(x)| ≤ L

mn
∀x ∈ Tm,

where L is the Lipschitz constant of f. This completes the proof. �

3.2. Uniqueness. The comparison principle and the uniqueness of our Dirichlet prob-
lem follow immediately from the following lemma.

Lemma 3.3. Let F be an averaging operator and f, g : [0, 1]→ R be bounded functions.
If u is a subsolution of (DP) with boundary data f and v is a supersolution of (DP)
with boundary data g then

sup
x∈Tm

{u(x)− v(x)} ≤ sup
x∈[0,1]

{f(x)− g(x)} .

Proof. Let M = supx∈Tm {u(x)− v(x)} . Then, given ε > 0 there exists xk0 ∈ Tm such
that

M − ε ≤ u(xk0)− v(xk0)

≤ F (u(xk0 , 0), . . . , u(xk0 ,m− 1))− F (v(xk0 , 0), . . . , v(xk0 ,m− 1)).

Using Remark 2.2, we get

M − ε ≤ max
y∈S(xk0 )

{u(y)− v(y)} .

Thus, taking xk1 ∈ S(xk0) such that max
y∈S(xk0 )

{u(y)− v(y)} = u(xk1)− v(xk1), we have

that

M − ε ≤ u(xk1)− v(xk1).

Continuing this reasoning, we obtain by induction that for all j ≥ 1 there exists xkj ∈
S(xkj−1

) such that

(3.6) M − ε ≤ u(xkj)− v(xkj).

Now, since

lim sup
k→+∞

u(xk) ≤ f(π) and lim inf
k→+∞

v(xk) ≥ g(π)

for all π = (x1, . . . , xk, . . . ) ∈ ∂Tm, by (3.6), we have that

M − ε ≤ f(π0)− g(π0)

where π0 = (xk0 , . . . , xkj , . . . ). Therefore

M − ε ≤ sup
x∈[0,1]

{f(x)− g(x)} .

Since ε is arbitrary, the proof is complete. �

The above lemma implies the comparison principle for solutions of (DP).
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Theorem 3.4 (Comparison Principle). Let F be an averaging operator and f, g : [0, 1]→
R be bounded functions. If v is a supersolution (resp. subsolution) of (DP) with boundary
data g, u is a solution of (DP) with boundary data f and f ≤ g (resp. f ≥ g), we have
that u ≤ v (resp. u ≥ v).

Now, we arrive to the main result of this section.

Theorem 3.5. Let F be an averaging operator and f : [0, 1]→ R be a bounded function.
There exists a unique bounded solution of (DP) with boundary data f.

Proof. Theorem 3.2 gives a solution of (DP) and the comparison principle implies the
uniqueness. �

Remark 3.6. Observe that the sequence {un}n∈N given by (3.3) converges uniformly to
the unique solution of (DP).

4. F -harmonic Measure Estimates

In this section we give some estimates for F -harmonic measures. First we introduce
some definitions.

Definition 4.1. Let F be an averaging operator, f : [0, 1]→ R be a continuous function,
u : Tm → R the solution of (DP) with boundary data f, c > 0 and n ∈ N. Given

I =
⋃k1
j=k0

[
j
mn
, j+1
mn

]
with 0 ≤ k0 ≤ k1 ≤ mn − 1, we define v(f,I,c) = v : Tm → R by

v(x)=


u(x) + c if x ∈ K,
u(x) if x ∈ Tym with y ∈ Tnm \ {xj}

k1
j=k0

,

F (v(x, 0), . . . , v(x,m− 1)) if x ∈ Tjm, 0 ≤ j ≤ n− 1,

where {xj}k1j=k0 is the unique set of vertices of Tnm such that I =
⋃k1
j=k0

Ixj and K =⋃k1
j=k0

Txjm .

Remark 4.2. The function v(f,I,c) is F -harmonic.

We now prove some technical results.

Lemma 4.3. Let F be a permutation invariant averaging operator with the property
(2.2), f : [0, 1] → R be a continuous function and c > 0. If I =

⋃k1
j=k0

[
j
mn
, j+1
mn

]
with

0 ≤ k0 ≤ k1 ≤ mn − 1 and k0 + k1 6= mn − 1, then

(4.7) v(f,I,c)(∅) = inf {w(∅) : w ∈ UF (f, I, c)} .

Proof. Let {xj}k1j=k0 ⊂ Tnm such that

I =

k1⋃
j=k0

Ixj .

Given w ∈ UF (f, I, c), we have that:

• For each j ∈ {k0, k0+1, . . . , k1}, v(f,I,c) and w are the solution and a supersolution
of (DP) on Txjm with boundary data f + cχI , respectively;

• For any z ∈ Tnm \ {xj}
k1
j=k0

, v(f,I,c) and w are the solution and a supersolution of
(DP) on Tzm with boundary data f, respectively.
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Thus, by the comparison principle,

v(f,I,c)(x) ≤ w(x), ∀x ∈ Tym
for any y ∈ Tnm. Therefore, using that v(f,I,c) is F -harmonic, w is F -superharmonic and
(v), we have that

v(f,I,c)(x) ≤ w(x),

for all x ∈ Tm. In particular

v(f,I,c)(∅) ≤ w(∅).

Since w ∈ UF (f, I, c) is arbitrary, we obtain that

v(f,I,c)(∅) ≤ inf {w(∅) : w ∈ UF (f, I, c)} .

To prove the opposite inequality, we will construct a sequence {wl}l∈N ⊂ UF (f, I, c)
such that

v(f,I,c)(∅) = lim
l→+∞

wl(∅).

To this end, we need to study three cases.

Case 1. First we study the case k0 = 0.

Let l ∈ N. We define Il :=
[
k1+1
mn

, k1+1
mn

+ 1
mn+l

]
and wl(x) := v(f,I∪Il,c)(x). Observe that

wl is a F -harmonic function such that

lim inf
k→+∞

wl(xk) ≥ f(π) + cχI(π) ∀π = (x1, . . . , xk, . . . ) ∈ ∂Tm.

Then wl ∈ UF (f, I, c) for all l ∈ N. Moreover, by (v), {wl}l∈N is a nonincreasing sequence
and

wl(x) ≥ v(f,I,c)(x)

for all x ∈ Tm and l ∈ N.
Finally, we will prove the following inequality

(4.8) v(f,I,c)(∅) ≤ wl(∅) ≤ v(f,I,c)(∅) + cκn+l

for all l ∈ N.
Let l ∈ N and z1 ∈ Tn+l−1

m such that Il = Iz0 where z0 = (z1, 0). Then, for any x ∈ Tn+r
m

with r ∈ Nl, we have that

wl(x) =

{
v(f,I,c)(x) if x ∈ Tym with y ∈ Tn+l

m \ {z0},
v(f,I,c)(x) + c if x ∈ Tz0m .

Then

(4.9) wl(x) = v(f,I,c)(x) ∀x ∈ Tn+l−1
m \ {z1},

and, by (v), (2.2) and the fact that v(f,I,c) is F -harmonic, we get

(4.10)

wl(z1) = F (wl(z1, 0), wl(z1, 1), . . . , wl(z1,m− 1))

= F (v(f,I,c)(z0) + c, v(f,I,c)(z1, 1), . . . , v(f,I,c)(z1,m− 1))

≤ F (v(f,I,c)(z1, 0), v(f,I,c)(z1, 1), . . . , v(f,I,c)(z1,m− 1)) + cκ

= v(f,I,c)(z1) + cκ.

Let z2 ∈ Tn+l−2
m such that z1 = (z2, 0). Then, by (4.9),

wl(x) = v(f,I,c)(x) ∀x ∈ Tn+l−1
m \ {z2},
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and, using that wl is F -harmonic, (4.10), (v), (2.2) and the fact that v(f,I,c) is F -harmonic,
we get

wl(z2) = F (wl(z2, 0), wl(z2, 1), . . . , wl(z2,m− 1))

= F (wl(z1), v(f,I,c)(z2, 1), . . . , v(f,I,c)(z2,m− 1))

≤ F (v(f,I,c)(z1) + cκ, v(f,I,c)(z2, 1), . . . , v(f,I,c)(z2,m− 1))

≤ F (v(f,I,c)(z2, 0), v(f,I,c)(z2, 1), . . . , v(f,I,c)(z2,m− 1)) + cκ2

= v(f,I,c)(z2) + cκ2.

By repeating this procedure n+ l−2 times we can obtain (4.8). Therefore taking limit
as l→ +∞ in (4.8), we have that

lim
l→+∞

wl(∅) = v(f,I,c)(∅).

Case 2. k1 = mn − 1. The proof of this case is similar to the previous one.

Case 3. Finally we will study the case 0 < k0 ≤ k1 < mn − 1.

Let l ∈ N. We define I1
l = [ k0

mn
− 1

mn+l
, k0
mn

], I2
l = [k1+1

mn
, k1+1
mn

+ 1
mn+l

] and wl(x) :=
v(f,I1l ∪I∪I

2
l ,c)
. As in case 1, wl ∈ UF (f, I, c) for all l ∈ N and

wl(x) ≥ v(f,I,c)(x)

for all x ∈ Tm and l ∈ N.
We will prove the following inequality

v(f,I,c)(∅) ≤ wl(∅) ≤ v(f,I,c)(∅) + 2cκn+l,

for all l ∈ N.
Let l ∈ N and z1

1 , z
2
1 ∈ Tn+l−1

m such that I1
l = Iz10 and I2

j = Iz20 where z1
0 = (z1

1 ,m
n − 1)

and z2
0 = (z2

1 , 0). Observe that z1
1 6= z2

1 .

Then, for any x ∈ Tn+r
m with r ∈ Nl, we have that

wl(x) =

{
v(f,I,c)(x) if x ∈ Tym with y ∈ Tn+l

m \ {z1
0 , z

2
0},

v(f,I,c)(x) + c if x ∈ Tz
1
0
m ∪ Tz

2
0
m .

Then

(4.11) wl(x) = v(f,I,c)(x) ∀x ∈ Tn+l−1
m \ {z1

1 , z
2
1}

and,by (v), (2.2), using that F is a permutation invariant averaging operator and the
fact that v(f,I,c) is F -harmonic, we get

(4.12)

wl(z
j
1) = F (wl(z

1
1 , 0), wl(z

1
1 , 1), . . . , wl(z

1
1 ,m− 1))

= F (v(f,I,c)(z
1
1 , 0), v(f,I,c)(z

1
1 , 1), . . . , v(f,I,c)(z

1
0) + c)

≤ F (v(f,I,c)(z
1
1 , 0), v(f,I,c)(z

1
1 , 1), . . . , v(f,I,c)(z

1
1 ,m− 1))) + cκ

= v(f,I,c)(z
1
1) + cκ

and
wl(z

2
1) = F (wl(z

2
1 , 0), wl(z

1
1 , 1), . . . , wl(z

2
1 ,m− 1))

= F (v(f,I,c)(z
2
0) + c, v(f,I,c)(z

2
1 , 1), . . . , v(f,I,c)(z

2
1 ,m− 1))

≤ F (v(f,I,c)(z
2
1 , 0), v(f,I,c)(z

2
1 , 1), . . . , v(f,I,c)(z

2
1 ,m− 1)) + cκ

= v(f,I,c)(z
2
1) + cκ.
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Let z1
2 , z

2
2 ∈ Tn+l−2

m such that z1
1 = (z1

2 ,m− 1) and z2
1 = (z2

2 , 0). Then, by (4.11),

wl(x) = v(f,I,c)(x) ∀x ∈ Tn+l−1
m \ {z1

2 , z
2
2}.

Using that wl is F -harmonic, (4.12), (v), (2.2), F is a permutation invariant averaging
operator and the fact that v(f,I,c) is F -harmonic, we get

wl(z
1
2) = F (wl(z

1
2 , 0), wl(z

1
2 , 1), . . . , wl(z

1
2 ,m− 1))

= F (v(f,I,c)(z
1
2 , 0), v(f,I,c)(z

1
2 , 1), . . . , wl(z

1
1))

≤ F (v(f,I,c)(z
1
2 , 0), v(f,I,c)(z

1
2 , 1), . . . , v(f,I,c)(z

1
1) + c)

≤ F (v(f,I,c)(z
1
2 , 0), v(f,I,c)(z

1
2 , 1), . . . , v(f,I,c)(z

1
2 ,m− 1)) + cκ2

= v(f,I,c)(z
1
2) + cκ2

and, by (4.12),

wl(z
2
2) = F (wl(z

2
2 , 0), wl(z

2
2 , 1), . . . , wl(z

2
2 ,m− 1))

= F (v(f,I,c)(z
2
1), v(f,I,c)(z

2
2 , 1), . . . , wl(z

2
2 ,m− 1))

≤ F (v(f,I,c)(z
2
1) + c, v(f,I,c)(z

2
2 , 1), . . . , v(f,I,c)(z

2
2 ,m− 1)

≤ F (v(f,I,c)(z
2
2 , 0), v(f,I,c)(z

2
2 , 1), . . . , v(f,I,c)(z

2
2 ,m− 1)) + cκ2

= v(f,I,c)(z
2
2) + cκ2.

There exists z ∈ Tkm, 0 ≤ k ≤ n + l − 1, such that z1
2 , z

2
2 ∈ Tzm and there exists

{zij}n+l−1
j=3 , i = 1, 2, such that

zij ∈ S(zij+1) ∀j ∈ {2, . . . , n+ l − k − 1} ∀i ∈ {1, 2},

z1
n+l−k = z2

n+l−k = z and z1
n+l−k−1 6= z1

n+l−k−1.

Arguing as before, for any j ∈ {0, . . . , n+ l − k − 1} we have that

wl(x) = v(f,I,c)(x), ∀x ∈ Tn+l−j
m \ {z1

j , z
2
j },

wl(z
i
j) ≤ v(f,I,c)(z

i
j) + cκj, i ∈ {1, 2}.

Therefore
wl(x) = v(f,I,c)(x), ∀x ∈ Tkm \ {z},

and using that wl is F -harmonic, (v), Remark 2.6, that F is a permutation invariant
averaging operator and the fact that v(f,I,c) is F -harmonic, we get

wl(z) ≤ v(f,I,c)(z) + 2cκn+l−k.

Then, the following inequality

v(f,I,c)(∅) ≤ wl(∅) ≤ v(f,I,c)(∅) + 2cκn+l,∀l ∈ N
can be proved in the same way as in the case 1. Therefore

lim
l→+∞

wl(∅) = v(f,I,c)(∅).

The proof is now complete. �

Lemma 4.4. Let F be a permutation invariant averaging operator with the property
(2.2), f : [0, 1] → R be a continuous function, I =

[
k
mn
, k+1
mn

]
with k ∈ {0, . . . ,mn − 1}

(n ∈ N) and c > 0. If u is the solution of (DP) with boundary data f , then

(4.13) 0 ≤ v(f,I,c)(∅)− u(∅) ≤ c|I|γ

for all γ ≤ − logm(κ).
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Proof. In a similar way to the proof of Lemma 4.3 (case 1), we can prove that

(4.14) u(∅) ≤ v(f,I,c)(∅) ≤ u(∅) + cκn.

On the other hand, it is easy to check that

(4.15) κn ≤
(

1

mn

)γ
for all γ ≤ − logm(κ). Therefore, by (4.14), (4.15) and using that c > 0, the inequality
(4.13) holds. �

Now we consider the case where I =
[
k
mn
, k+1
mn

]
∪
[
k+1
mn
, k+2
mn

]
with k ∈ {0, 1, . . . ,mn−2}

(n ∈ N).

Lemma 4.5. Let F be a permutation invariant averaging operator with the property
(2.2), f : [0, 1] → R be a continuous function, I =

[
k
mn
, k+1
mn

]
∪
[
k+1
mn
, k+2
mn

]
with k ∈

{0, 1, . . . ,mn− 2} (n ∈ N) and c > 0. If u is the solution of (DP) with boundary data f,
then

0 ≤ v(f,I,c)(∅)− u(∅) ≤ 21−γc|I|γ

for all γ ≤ − logm(κ).

Proof. In a similar way to the proof of Lemma 4.3 (case 3), we can show that

(4.16) 0 ≤ v(f,I,c)(∅) ≤ u(∅) + 2cκn.

Then, by (4.15) and (4.16), we have that

0 ≤ v(f,I,c)(∅)− u(∅) ≤ 2c

(
1

mn

)γ
= 21−γc

(
2

mn

)γ
for all γ ≤ − logm(κ). Thus

0 ≤ v(f,I,c)(∅)− u(∅) ≤ 21−γc|I|γ

for all γ ≤ − logm(κ). �

Now, we are able to prove Theorem 1.1.

Proof of Theorem 1.1. We begin by taking

n = min

{
l ∈ N : ∃k ∈ {0, . . . ,ml − 1} such that

[
k

ml
,
k + 1

ml

]
⊂ I

}
.

Observe that

(4.17)
1

mn
≤ |I| < 2

mn−1

and there exists kn−1 ∈ {0, . . . ,mn−1 − 2} such that

I ( Jn−1 :=

[
kn−1

mn−1
,
kn−1 + 1

mn−1

]
∪
[
kn−1 + 1

mn−1
,
kn−1 + 2

mn−1

]
.

Then UF (f, Jn−1, c) ⊂ UF (f, I, c) and therefore

inf {w(∅)− u(∅) : w ∈ UF (f, I, c)} ≤ inf {w(∅)− u(∅) : w ∈ UF (f, Jn−1, c)} .
Then, by Lemma 4.3 and Theorem 3.4, we have that

inf {w(∅)− u(∅) : w ∈ UF (f, I, c)} ≤ inf {w(∅)− u(∅) : w ∈ UF (f, Jn−1, c)}
= v(f,Jn−1,c)(∅)− u(∅)
≤ 21−γc|Jn−1|γ,
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for all γ ≤ − logm(κ). Therefore, using the fact that

|Jn−1| =
2m

mn

and (4.17), we have that

0 ≤ inf {w(∅)− u(∅) : w ∈ UF (f, I, c)} ≤ 2c(m|I|)γ,
for all γ ≤ − logm(κ). �

If F is a permutation invariant averaging operator with the property that there exists
0 < η < 1 such that

(4.18) F (x1 + c, x2, . . . , xm) ≥ F (x1, x2, . . . , xm) + cη

for all (x1, . . . , xm) ∈ Rm and for all c > 0, arguing as in Theorem 1.1, we can show the
following result.

Theorem 4.6. Let F be a permutation invariant averaging operator with the property
(4.18), f : [0, 1] → R be a continuous function, I be a subinterval of [0, 1] and c > 0. If
u is the solution of (DP) with boundary data f , then

inf {w(∅)− u(∅) : w ∈ UF (f, I, c)} ≥ c

(
|I|
2m

)θ
for all θ ≥ − logm(η).

Example 4.7. The permutation invariant averaging operator F0 and F1 satisfy (4.18)
with η = β

m
.

Finally, we prove Corollary 1.3.

Proof of Corollary 1.3. We begin by observing that g ≤ f+MχI due to ‖f‖∞+‖g‖∞ ≤
M. Then, by Theorem 3.4, v(∅) − u(∅) ≤ w(∅) − u(∅) for all w ∈ UF (f, I,M). Then
v(∅)− u(∅) ≤ inf{w(∅)− u(∅) : w ∈ UF (f, I,M)}. Therefore, using Theorem 1.1,

v(∅)− u(∅) ≤ 2M(m|I|)γ

for all γ ≤ − logm(κ). By a similar argument, we have that

u(∅)− v(∅) ≤ 2M(m|I|)γ,
for all γ ≤ − logm(κ). Thus,

|v(∅)− u(∅)| ≤ 2M(m|I|)γ = 2M(mδ)γ, ∀γ ≤ − logm(κ).

Finally, taking δ < 1
m

(
ε

2M

) 1
γ , we get |v(∅)−u(∅)| < ε, which completes the proof. �
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[1] V. Alvarez, J. M. Rodŕıguez and D. V. Yakubovich, Estimates for nonlinear harmonic ”measures”
on trees. Michigan Math. J. 49 (2001), no. 1, 47–64.

[2] P. Aviles, J. J. Manfredi, On null sets of P -harmonic measures, Partial differential equations
with minimal smoothness and applications (Chicago, IL, 1990),33–36, IMA Vol. Math. Appl., 42,
Springer, New York, 1992.

[3] A. Björn, J. Björn and N. Shanmugalingam, A problem of Baernstein on the equality of the p-
harmonic measure of a set and its closure, Proc. Amer. Math. Soc. 134 (2006), no. 2, 509–519
(electronic).

[4] L. M. Del Pezzo, C. A. Mosquera and J.D. Rossi, The unique continuation property for a nonlinear
equation on trees, To appear in J. London Math. Soc.

[5] S. Granlund, P. Lindqvist and O. Martio, F -harmonic measure in space, Ann. Acad. Sci. Fenn.
Ser. A I Math. 7 (1982), no. 2, 233–247.



NONLINEAR HARMONIC MEASURES ON TREES 19
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