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Abstract. In this paper we study the H2 global regularity for solutions
of the p(x)−Laplacian in two dimensional convex domains with Dirichlet

boundary conditions. Here p : Ω→ [p1,∞) with p ∈ Lip(Ω) and p1 > 1.

1. Introduction

Let Ω be a bounded domain in R2 and let p : Ω→ (1,+∞) be a measur-
able function. In this work, we study the H2 global regularity of the weak
solution of the following problem

(1.1)

{
−∆p(x)u = f in Ω,

u = g on ∂Ω,

where ∆p(x)u = div(|∇u|p(x)−2∇u) is the p(x)−Laplacian. The hypothesis
over p, f and g will be specified later.

Note that, the p(x)−Laplacian extends the classical Laplacian (p(x) ≡ 2)
and the p−Laplacian (p(x) ≡ p with 1 < p < +∞). This operator has been
recently used in image processing and in the modeling of electrorheological
fluids, see [3, 5, 24].

Motivate by the applications to image processing problem, in [8], the
authors study two numerical methods to approximate solutions of the type
of (1.1). In Theorem 5.1, the authors prove the convergence in W 1,p(·)(Ω) of
the conformal Galerking finite element method. It is of our interest to study,
in a future work, the rate of this convergence. In general, all the error bounds
depend on the global regularity of the second derivatives of the solutions,
see for example [6, 22]. However, there appear to be no existing regularity
results in the literature that can be applied here, since all the results have
either a first order or local character.

The H2 global regularity for solutions of the p−Laplacian is studied in
[22]. There the authors prove the following: Let 1 < p ≤ 2, g ∈ H2(Ω),
f ∈ Lq(Ω) (q > 2) and u be the unique weak solution of (1.1). Then

• If ∂Ω ∈ C2 then u ∈ H2(Ω);
• If Ω is convex and g = 0 then u ∈ H2(Ω);
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• If Ω is convex with a polygonal boundary and g ≡ 0 then u ∈ C1,α(Ω)
for some α ∈ (0, 1).

Regarding the regularity of the weak solution of (1.1) when f = 0, in

[1, 7], the authors prove the C1,α
loc regularity (in the scalar case and also in

the vectorial case). Then, in the paper [15] the authors study the case where
the functional has the so called (p, q)− growth conditions. Following these
ideas, in [17], the author proves that the solutions of (1.1) are in C1,α(Ω) for
some α > 0 if Ω is a bounded domain in RN (N ≥ 2) with C1,γ boundary,
p(x) is a Hölder function, f ∈ L∞(Ω) and g ∈ C1,γ(Ω). While in [4], the
authors prove that the solutions are in H2

loc({x ∈ Ω: p(x) ≤ 2}) if p(x) is

uniformly Lipschitz (Lip(Ω)) and f ∈W 1,q(·)
loc (Ω) ∩ L∞(Ω).

Our aim, it is to generalized the results of [22] in the case where p(x) is
a measurable function. To this end, we will need some hypothesis over the
regularity of p(x). Moreover, in all our result we can avoid the restriction
g = 0, assuming some regularity of g(x).

On the other hand, to prove our results, we can assume weaker conditions
over the function f than the ones on [4]. Since, we only assume that f ∈
Lq(·)(Ω), we do not have a priori that the solutions are in C1,α(Ω). Then we
can not use it to prove the H2 global regularity. Nevertheless, we can prove
that the solutions are in C1,α(Ω), after proving the H2 global regularity.

The main results of this paper are:

Theorem 1.1. Let Ω be a bounded domain in R2 with C2 boundary, p ∈
Lip(Ω) with p(x) ≥ p1 > 1, g ∈ H2(Ω) and u be the weak solution of (1.1).
If

(F1) f ∈ Lq(x)(Ω) with q(x) ≥ q1 > 2 in the set {x ∈ Ω: p(x) ≤ 2};
(F2) f ≡ 0 in the set {x ∈ Ω: p(x) > 2}.

then u ∈ H2(Ω).

Theorem 1.2. Let Ω be a bounded domain in R2 with convex boundary,
p ∈ Lip(Ω) with p(x) ≥ p1 > 1, g ∈ H2(Ω) and u be the weak solution of
(1.1). If f satisfies (F1) and (F2) then u ∈ H2(Ω).

Using the above theorem we can prove the following,

Corollary 1.3. Let Ω be a bounded convex domain in R2 with polygonal
boundary, p and f as in the previous theorem, g ∈ W 2,q(x)(Ω) and u be the
weak solution of (1.1) then u ∈ C1,α(Ω) for some 0 < α < 1.

Observe that this result extends the one in [17] in the case where Ω is a
polygonal domain in R2.

Organization of the paper. The rest of the paper is organized as follows.
After a short Section 2 where we collect some preliminaries results, in Section
3, we study the H2− regularity for the non-degenerated problem. In Section
4 we prove Theorem 1.1. Then, in Section 5, we study the regularity of the
solution u of (1.1) if Ω is convex. In Section 6, we make some comments
on the dependence of the H2−norm of u on p1. Lastly, in Appendices A
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and B we give some results related to elliptic linear equation with bounded
coefficients and Lipschitz functions, respectively.

2. Preliminaries

We now introduce the space Lp(·)(Ω) and W 1,p(·)(Ω) and state some of
their properties.

Let Ω be a bounded open set of Rn and p : Ω → [1,+∞) be a mea-
surable bounded function, called a variable exponent on Ω and denote
p1 := essinf p(x) and p2 := esssup p(x).

We define the variable exponent Lebesgue space Lp(·)(Ω) to consist of all
measurable functions u : Ω→ R for which the modular

%p(·)(u) :=

∫
Ω
|u(x)|p(x) dx

is finite. We define the Luxemburg norm on this space by

‖u‖Lp(·)(Ω) := inf{k > 0: %p(·)(u/k) ≤ 1}.

This norm makes Lp(·)(Ω) a Banach space.

For the proofs of the following theorems, we refer the reader to [12].

Theorem 2.1 (Hölder’s inequality). Let p, q, s : Ω→ [1,+∞] be a measur-
able functions such that

1

p(x)
+

1

q(x)
=

1

s(x)
in Ω.

Then the inequality

‖fg‖Ls(·)(Ω) ≤ 2‖f‖Lp(·)(Ω)‖g‖Lq(·)(Ω)

for all f ∈ Lp(·)(Ω) and g ∈ Lq(·)(Ω)

Let W 1,p(·)(Ω) denote the space of measurable functions u such that, u

and the distributional derivative ∇u are in Lp(·)(Ω). The norm

‖u‖W 1,p(·)(Ω) := ‖u‖p(·) + ‖|∇u|‖p(·)

makes W 1,p(·)(Ω) a Banach space.

Theorem 2.2. Let p′(x) such that, 1/p(x) + 1/p′(x) = 1. Then Lp
′(·)(Ω)

is the dual of Lp(·)(Ω). Moreover, if p1 > 1, Lp(·)(Ω) and W 1,p(·)(Ω) are
reflexive.

We define the space W
1,p(·)
0 (Ω) as the closure of the C∞0 (Ω) in W 1,p(·)(Ω).

Then we have the following version of Poincare’s inequity (see Theorem 3.10
in [21]).

Lemma 2.3 (Poincare’s inequity). If p : Ω → [1,+∞) is continuous in Ω,

there exists a constant C such that for every u ∈W 1,p(·)
0 (Ω),

‖u‖Lp(·)(Ω) ≤ C‖∇u‖Lp(·)(Ω).
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In order to have better properties of these spaces, we need more hypothe-
ses on the regularity of p(x).

We say that p is log-Hölder continuous in Ω if there exists a constant Clog
such that

|p(x)− p(y)| ≤
Clog

log
(
e+ 1

|x−y|

) ∀x, y ∈ Ω.

It was proved in [10], Theorem 3.7, that if one assumes that p is log-Hölder

continuous then C∞(Ω̄) is dense in W 1,p(·)(Ω) (see also [9, 12, 13, 21, 25]).

We now state the Sobolev embedding Theorem (for the proofs see [12]).
Let,

p∗(x) :=

{
p(x)N
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N,

be the Sobolev critical exponent. Then we have the following,

Theorem 2.4. Let Ω be a Lipschitz domain. Let p : Ω → [1,∞) and

p log-Hölder continuous. Then the imbedding W 1,p(·)(Ω) ↪→ Lp
∗(·)(Ω) is

continuous.

3. H2−Regularity for the non-degenerated problem for any
dimension

In this section we assume that Ω is a bounded domain in RN , with N ≥ 2.

We want to study higher regularity of the weak solution of the regularized
equation,

(3.2)

{
−div

(
(ε+ |∇u|2)

p(x)−2
2 ∇u

)
= f in Ω,

u = g on ∂Ω,

where 0 < ε ≤ 1, and f ∈ Lip(Ω) and g ∈W 1,p(·)(Ω).

The existence of a weak solution of (3.2) holds by Theorem 13.3.3 in [12].

Remark 3.1. Given ε ≥ 0, p ∈ Cα0(Ω) for some α0 > 0, and g ∈ L∞(Ω) we
have the following results,

(1) Since f, g ∈ L∞(Ω), by Theorem 4.1 in [18], we have that u ∈ L∞(Ω).

(2) By Theorem 1.1 in [17], u ∈ C1,α
loc (Ω) for some α depending on p1, p2,

‖u‖L∞(Ω), ‖f‖L∞(Ω). Moreover, given Ω0 ⊂⊂ Ω, ‖u‖C1,α(Ω0) depends
on the same constants and dist(Ω0, ∂Ω).

(3) Finally, by Theorem 1.2 in [17], if ∂Ω ∈ C1,γ and g ∈ C1,γ(∂Ω) for
some γ > 0 then u ∈ C1,α(Ω), where α and ‖u‖C1,α(Ω) depend on
p1, p2, N, ‖u‖L∞(Ω), ‖p‖Cα0 (Ω), α0, γ.

We will first prove the H2-local regularity assuming only that p(x) is
Lipschitz. Then, we will prove the global regularity under the stronger
condition that ∇p(x) is Hölder.
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3.1. H2−Local regularity. While we where finishing this paper, we found
the work [4], where the authors give a different proof of the H2-local regular-
ity of the solutions of (3.2). Anyhow, we leave the proof for the completeness
of this paper.

Theorem 3.2. Let p, f ∈ Lip(Ω) with p1 > 1 and u a weak solution of
(3.2), then u ∈ H2

loc(Ω).

Proof. First, let us define for any function F and h > 0,

∆hF (x) =
F (x+ h)− F (x)

h
,

where h = hek where ek is a vector of the canonical base of RN .
Let η(x) = ξ(x)2∆hu(x) where ξ is a regular function with compact sup-

port. Therefore, if we take vε = (|∇u|2 + ε)1/2 and h < dist(supp(ξ), ∂Ω),
we have ∫

Ω
〈vε(x)p(x)−2∇u(x),∇η(x)〉 dx =

∫
Ω
f(x)η(x) dx∫

Ω
〈vε(x+ h)p(x+h)−2∇u(x+ h),∇η(x)〉 dx =

∫
Ω
f(x+ h)η(x) dx.

Subtracting, using that ∇η = 2ξ∇ξ∆hu + ξ2∆h(∇u) and dividing by h we
obtain,

I =

∫
Ω
〈∆h(vε(x)p(x)−2∇u),∆h(∇u)〉ξ2 dx

=− 2

∫
Ω
〈∆h(vε(x)p(x)−2∇u), ξ∇ξ∆hu〉 dx+

∫
Ω
ξ2∆hf∆hu dx

=2

∫
Ω

(∫ 1

0
(vε(x+ ht)p(x+ht)−2∇u(x+ ht) dt

)
∂

∂xk
(ξ∇ξ∆hu)dx

+

∫
Ω
ξ2∆hf∆hu dx

=II + III.

Now, let as fix a ball BR such that B3R ⊂⊂ Ω and take ξ ∈ C∞0 (Ω)
supported in B2R such that 0 ≤ ξ ≤ 1, ξ = 1 in BR, |∇ξ| ≤ 1/R and
|D2ξ| ≤ CR−2.

By Remark 3.1, there exist a constant C1 > 0 such that |∇u| ≤ C1 in
B3R, therefore we get

II ≤ 2

∫
B2R

C

R
|∆huxk |ξ dx+ 2

∫
B2R

C

R2
|∆hu| dx

≤ C

R

∫
B2R

|∆h(∇u)|ξ dx+ CRN−2.

On the other hand, since f is Lipschitz we have that,

|f(x+ h)− f(x)| ≤ C2h

for some constant C2 > 0. This implies that,

III ≤ C2R
N .
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Therefore, summing II and III, and using Young’s inequality, we have that
for any δ > 0

(3.3) I ≤ δ
∫
B2R

|∆h(∇u)|2ξ2 dx+ C,

for some constant C depending on R and δ.

On the other hand observe that I = I1 + I2 where,

I1 =
1

h

∫
B2R

〈(vε(x+h)p(x+h)−2∇u(x+h)−vε(x)p(x+h)−2∇u(x)),∆h(∇u)〉ξ2 dx,

and

I2 =
1

h

∫
B2R

〈
(
vε(x)p(x+h) − vε(x)p(x)

) ∇u(x)

vε(x)2
,∆h(∇u)〉ξ2 dx.

Using that p(x) is Lipschitz and the fact that |∇u(x)| ≤ C1 we have that,
for some b between p(x+ h) and p(x),

1

h

∣∣∣vε(x)p(x+h) − vε(x)p(x)
∣∣∣ =

∣∣∣∣vε(x)b log(vε(x))
p(x+ h)− p(x)

h

∣∣∣∣ ≤ C,
for some constant C > 0 depending on p1, p2, ε, C1 and the Lipschitz con-
stant of p(x).

Therefore, we have that

−I2 ≤ CC1ε
−1

∫
B2R

|∆h(∇u)|ξ2 dx.

By (3.3), the last inequality and using again Young’s inequality we have
that, for any δ > 0

(3.4) I1 ≤ δ
∫
B2R

|∆h(∇u)|2ξ2 dx+ C,

for some constant C > 0 depending on p1, p2, ε, C1 and the Lipschitz con-
stant of p(x).

To finish the proof, we have to find a lower bound for I1. By a well known
inequality, we have that

〈(vε(x+ h)p(x+h)−2∇u(x+ h)− vε(x)p(x+h)−2∇u(x)), (∇u(x+ h)−∇u(x))〉
≥ Cε|∇u(x+ h)−∇u(x)|2,

where

Cε =

{
εp(x+h)−2/2 if p(x+ h) ≥ 2,

(p(x+ h)− 1)εp(x+h)−2/2 if p(x+ h) ≤ 2.

Therefore, using that p1 > 1, we arrive at

I1 ≥
∫
B2R

Ch−2|∇u(x+ h)−∇u(x)|2ξ2 dx = C

∫
B2R

|∆h(∇u(x))|2ξ2 dx.

Finally combining the last inequality with (3.4) we have that,∫
BR

|∆h(∇u(x))|2 dx ≤ C(N, p, f, ε).

This proves that u ∈ H2
loc(Ω). �
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3.2. H2−Global Regularity. Now we want to prove that if f ∈ Lip(Ω)
and g ∈ C1,β(∂Ω), the regularized equation (3.2) has a weak solution u ∈
C2(Ω) ∩ C1,α(Ω) for an α ∈ (0, 1). We already know, by Remark 3.1, that
u ∈ C1,α(Ω). Then, we only need to prove that u ∈ C2(Ω).

Lemma 3.3. Let Ω be a bounded domain in RN with ∂Ω ∈ C1,γ , p ∈
C1,β(Ω) ∩Cα0(Ω), f ∈ Lip(Ω) and g ∈ C1,β(∂Ω). Then, the Dirichlet Prob-
lem (3.2) has a solution u ∈ C2(Ω) ∩ C1,α(Ω).

Proof. Observe that by Theorem 3.2, we know that the solution is inH2
loc(Ω).

Then for any Ω′ ⊂⊂ Ω we can derive the equation and look the solution of
(3.2) as the solution of the following equation,

(3.5)

{
Lεu = a(x) in Ω′,

u = u on ∂Ω′.

Here,

Lεu = aεij(x)uxixj

with

(3.6)
aεij(x) = δij + (p(x)− 2)

uxiuxj
v2
ε

, vε =
(
ε+ |∇u|2

) 1
2 ,

aε(x) = ln(vε)〈∇u,∇p〉+ fv2−p
ε .

The operator Lε is uniformly elliptic in Ω, since for any ξ ∈ RN

(3.7) min{(p1 − 1), 1}|ξ|2 ≤ aεijξiξj ≤ max{(p2 − 1), 1}|ξ|2.

On the other hand, by Remark 3.1, u ∈ C1,α(Ω). Then, aεij ∈ Cα(Ω), since

ε > 0. Using that f ∈ Lip(Ω), we have that a ∈ Cρ(Ω) where ρ = min(α, β).
If ∂Ω′ ∈ C2, as u is the unique solution of (3.5), by Theorem 6.13 in [19],
we have that u ∈ C2,ρ(Ω′). This ends the proof.

�

Remark 3.4. By the H2 global estimate for linear elliptic equations with
L∞(Ω) coefficients in two variables (see Lemma A.1 and (3.7)) we have
that,

‖u‖H2(Ω) ≤ C
(
‖aε‖L2(Ω) + ‖g‖H2(Ω)

)
where u is the solution of (3.2) and C is a constant independents of ε.

4. Proof of Theorem 1.1

Before proving the theorem, we will need a global bound for the derivatives
of the solutions of (3.2).

Lemma 4.1. Let f ∈ Lq(x)(Ω) with q′(x) ≤ p∗(x), g ∈ W 1,p(·)(Ω), ε > 0
and uε be the weak solution of (3.2) then

‖∇uε‖Lp(·)(Ω) ≤ C

where C is a constant depending on ‖f‖Lq(·)(Ω), ‖g‖W 1,p(·)(Ω) but not on ε.
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Proof. Let

J(v) :=

∫
Ω

1

p(x)
(|∇v|2 + ε)

p(x)/2 dx.

By the convexity of J and using (3.2) we have that,

J(uε) ≤ J(g)−
∫

Ω
(|∇uε|2 + ε)(p−2)/2∇uε(∇g −∇uε) dx

≤ C
(

1 +

∫
Ω
f(uε − g) dx

)
≤ C

(
1 + ‖f‖Lq(·)(Ω)‖uε − g‖Lq′(·)(Ω)

)
≤ C

(
1 + ‖f‖Lq(·)(Ω)‖∇uε −∇g‖Lp(·)(Ω)

)
,

where in the last inequality we are using that W 1,p(·)(Ω) ↪→ Lp
∗(·)(Ω) con-

tinuously and Poincare’s inequality.

Thus we have that there exist a constant independent of ε such that,∫
Ω
|∇uε|p(x) dx ≤ C(1 + ‖∇uε‖Lp(·)(Ω)),

and using the properties of the Lp(·)(Ω)− norms this means that

‖∇uε‖mLp(·)(Ω)
≤ C(1 + ‖∇uε‖Lp(·)(Ω)),

for some m > 1. Therefore ‖∇uε‖Lp(·)(Ω) is bounded independent of ε. �

To prove Theorem 1.1, we will use the results of Section 3. Therefore, we
will first need to assume that p ∈ C1.β(Ω) ∩ C(Ω).

Theorem 4.2. Let Ω be a bounded domain in R2 with C2 boundary, p ∈
C1.β(Ω)∩Cα0(Ω) with p(x) ≥ p1 > 1, g ∈ H2(Ω) and u be the weak solution
of (1.1). If f satisfies (F1) and (F2) then u ∈ H2(Ω).

Proof. Let fε ∈ Lip(Ω) and gε ∈ C2,α(Ω) such that

fε → f strongly in Lq(·)(Ω),

gε → g strongly in H2(Ω),

as ε → 0. Observe that, since f(x) = 0 if p(x) > 2, we can take fε ≡ 0 in
{x ∈ Ω: p(x) > 2}.

Now, let us consider the solution of (3.2) as the solution of{
aε11(x)∂

2uε
∂x21

+ 2aε12(x) ∂2uε
∂x1∂x2

+ aε22(x)∂
2uε
∂x22

= aε(x) in Ω,

uε = gε on ∂Ω,

where aε11, a
ε
22, a

ε
12, aε are defined as in Lemma 3.3, substituting f and g by

fε and gε respectively. By Lemma 3.3 we know that uε ∈ C2(Ω) ∩ C1,α(Ω).

First we will prove the {uε}ε∈(0,1] is bounded in H2(Ω). By Remark 3.4,
we have that

(4.8)
‖uε‖H2(Ω) ≤ C(‖aε(x)‖L2(Ω) + ‖gε‖H2(Ω))

≤ C(‖ ln(vε)∇uε∇p‖L2(Ω) + ‖fεv2−p‖L2(Ω) + ‖gε‖H2(Ω)).
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Taking Ω1 = {x ∈ Ω : |∇uε(x)| > 1}, using that p(x) is Lipschitz and
Hölder’s inequality, we have

(4.9) ‖ ln(vε)∇uε∇p‖L2(Ω) ≤ C‖ ln2(vε)∇uε‖
1/2

Lp
′(·)(Ω1)

‖∇uε‖
1/2

Lp(·)(Ω1)
+ C.

On the other hand, since q(x) ≥ q1 > 2, we have that q′(x) ≤ p∗(x).
Then, as ‖fε‖Lq(·)(Ω) and ‖gε‖H2(Ω) are bounded independent of ε, using

Lemma 4.1 we conclude that ‖∇uε‖Lp(·)(Ω) is uniformly bounded.

Observe that, for all s > 0 there exist a constant C > 0 such that

ln(vε) ≤ Cvs/2ε < C|∇uε|s/2 in Ω1,

thus

‖ ln2(vε)|∇uε|‖Lp′(·)(Ω1) ≤ C‖|∇uε|
1+s‖Lp′(·)(Ω1)

≤ C‖∇uε‖(1+s)

Lp
′(·)(1+s)(Ω1)

≤ C‖uε‖(1+s)
H2(Ω1)

.

In the last line, we are using that 2∗ =∞, since N = 2.

Then, by the last inequality, (4.8) and (4.9), we get

(4.10) ‖uε‖H2(Ω) ≤ C
(
‖uε‖

(1+s)/2
H2(Ω)

+ ‖fεv2−p
ε ‖L2(Ω) + 1

)
.

Taking

A1 = {x ∈ Ω : p(x) = 2} and A2 = {x ∈ Ω : p(x) < 2}
and using that fε ≡ 0 in {x ∈ Ω : p(x) > 2}, we have that

‖fεv2−p
ε ‖L2(Ω) ≤ ‖fε‖L2(A1) + ‖fεv2−p

ε ‖L2(A2).

Since ‖fε‖L2(A1) is bounded, to prove that {uε}ε∈(0,1] is bounded in H2(Ω),

we only have to find a bound of ‖fεv2−p
ε ‖L2(A2).

Let as define in A2 the function

q̃(x) =

{
1

2p(x)−3 + 1 if 1
q(x) + 3

2 ≤ p(x) < 2,
q(x)

2 + 1 if p(x) < 1
q(x) + 3

2 .

It is easy to see that 2 < q̃(x) ≤ q(x) for any x ∈ A2.

On the other hand, let us denote µ(x) = 2q̃(x)
q̃(x)−2 and γ(x) = µ(x)(2−p(x))

then

1 < 1 +
2

q2
≤ γ(x) ≤ max

{
2, 2 +

8

q1 − 2

}
∀x ∈ A2.

Now, using Hölder’s inequality with exponent q̃(x)/2, we have

(4.11) ‖fεv2−p
ε ‖L2(A2) ≤ C‖fε‖Lq̃(·)(A2)‖v

2−p
ε ‖Lµ(·)(A2).

Then, if ‖vε‖Lγ(·)(A2) ≤ 1 we have ‖v2−p
ε ‖Lµ(·)(A2) ≤ 1 and since q̃(x) ≤

q(x) we get

‖fεv2−p
ε ‖L2(A2) ≤ C.

If ‖v‖Lγ(·)(A2) ≥ 1 , we have

(4.12) ‖v2−p
ε ‖Lµ(·)(A2) ≤ ‖vε‖

2−p1
Lγ(·)(A2)

≤ C(1 + ‖∇uε‖2−p1Lγ(·)(A2)
),
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where in the last inequality we are using that ε ≤ 1.

Since 2∗ = ∞ and 1 < γ1 ≤ γ(x) ≤ γ2 < ∞ , by the Sobolev embedding
inequality, we have that

‖∇uε‖2−p1Lγ(·)(A2)
≤ C‖uε‖2−p1H2(A2)

≤ C‖uε‖2−p1H2(Ω)
.

Combining this last inequality with inequalities (4.12), (4.11), (4.10) and
the fact that q̃(x) ≤ q(x), we get

‖uε‖H2(Ω) ≤ C(‖uε‖
(1+s)/2
H2(Ω)

+ ‖uε‖2−p1H2(Ω)
+ 1).

Finally, we get that for any 0 < s < 1 there exist a constant C =
C(p, g, f, s) such that

‖uε‖H2(Ω) ≤ C.

Then, there exist a subsequence still denoted {uε}ε∈(0,1] and u ∈ H1(Ω) such
that

uε → u strongly in H1(Ω),

uε ⇀ u weakly in H2(Ω),

It is clear that u satisfies the boundary condition.

Lastly, by Proposition 3.2 in [2], there exist a constant M > 0 independent
of ε such that,

(4.13) |(ε+ |∇uε|2)
p(x)−2

2 ∇uε− (ε+ |∇u|2)
p(x)−2

2 ∇u| ≤M |∇(uε− u)|p(x)−1

for all x ∈ Ω. Then, passing to the limit in the weak formulation of (3.2)
and using the above inequality, we have that∫

Ω
|∇u|p(x)−2∇u∇ϕdx =

∫
Ω
fϕ dx

for any ϕ ∈ C∞0 (Ω). Therefore u ∈ H2(Ω) and solves (1.1). �

Now, we are able to prove the theorem.

Proof of Theorem 1.1. First, we consider the case p ∈ C1(Ω). Let pε ∈
C∞(Ω) such that pε → p in C1(Ω). Now, we define

(4.14) fε(x) =

{
f(x) if pε(x) ≤ 2,

0 if pε(x) > 2.

Observe that fε → f in Lq(·)(Ω) as ε→ 0.

Then, by Theorem 4.2, the solution uε of (1.1) (with pε and fε instead of
p and f) is bounded in H2(Ω) by a constant independent of ε. Therefore,
there exist a subsequence still denoted {uε}ε∈(0,1] and u ∈ H2(Ω) such that

(4.15)
uε → u in H1(Ω),

uε ⇀ u weakly in H2(Ω).
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It remains to prove that u is a solution of (1.1). Let ϕ ∈ C∞0 (Ω), then

(4.16)

∫
Ω
fεϕdx =

∫
Ω
|∇uε|pε(x)−2∇uε∇ϕdx

=

∫
Ω
|∇uε|p(x)−2∇uε∇ϕdx

+

∫
Ω

(|∇uε|pε(x)−2 − |∇uε|p(x)−2)∇uε∇ϕdx.

Therefore, using that H2(Ω) ↪→W 1,p(·)(Ω) compactly, we have that

(4.17)

∫
Ω
|∇uε|p(x)−2∇uε∇ϕdx→

∫
Ω
|∇u|p(x)−2∇u∇ϕdx.

On the other hand, we have

|∇uε(x)|pε(x)−1− |∇uε(x)|p(x)−1 = |∇uε(x)|bε(x) log(|∇uε(x)|)(pε(x)− p(x)),

where bε(x) = pε(x)θ+ (1− θ)p(x)− 1 for some 0 < θ < 1. Therefore, using
that 2∗ =∞ and that pε → p uniformly, we obtain

(4.18)

∫
Ω

(|∇uε|pε(x)−2 − |∇uε|p(x)−2)∇uε∇ϕdx→ 0.

Then, using that fε → f in Lq(·)(Ω), (4.16), (4.17) and the (4.18) we conclude
that u is a solution of (1.1).

Now, we consider the case p ∈ Lip(Ω). By Lemmas B.1 and B.2 there
exists pε ∈ C1(Ω) such that |Ω \ Ω0| < ε where

Ω0 = {x ∈ Ω: pε(x) = p(x) and ∇pε(x) = ∇p(x)}.

We define fε as in (4.14). Then, the solution uε of (1.1) with pε and fε
instead of p and f is bounded in H2(Ω) by a constant independent of ε.
Therefore there exist a subsequence still denoted {uε}ε∈(0,1] and u ∈ H2(Ω)
satisfying (4.15).

Lastly, we prove that u is a solution of (1.1). Let ϕ ∈ C∞0 (Ω). By Hölder
inequality, since 2∗ =∞ and by (3) of Lemma B.2 we have∫

Ω\Ω0

(|∇uε|pε(x)−2 − |∇uε|p(x)−2)∇uε∇ϕdx

≤ C(‖∇uε‖Lpε (Ω)‖1‖Lpε (Ω\Ω0) + ‖∇uε‖Lp(Ω)‖1‖Lp(Ω\Ω0))

≤ C‖uε‖H2(Ω)(‖1‖Lpε (Ω\Ω0) + ‖1‖Lp(Ω\Ω0)).

Then, since ‖uε‖H2(Ω) is bounded independent of ε and |Ω \ Ω0| < ε we
obtain that ∫

Ω\Ω0

(|∇uε|pε(x)−2 − |∇uε|p(x)−2)∇uε∇ϕdx→ 0.

Therefore, since (4.16), (4.17) again hold, using that fε → f in Lq(·)(Ω), and
the above equation, we conclude that u is a solution of (1.1). �
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5. The convex case

Lastly, we want to prove that the solution is in H2(Ω) if we only assume
that ∂Ω is convex. We want to remark here that this result generalize the
one in Theorem 2.2 in [22] in two ways. In that paper the authors consider
the case p = constant and g = 0. Instead, we are allowed to cover the case
where g is any function in H2(Ω) and p(x) ∈ Lip(Ω).

Remark 5.1. Let Ω be a convex set and p : Ω → [1,∞) be log−continuous
in Ω. Then, there exists a sequence {Ωm}m∈N of convex subset of Ω with
C2 boundary such that Ωm ⊂ Ωm+1 for any m ∈ N and |Ω \ Ωm| → 0.

(1) Then, there exists a constant C depending on p(x), |Ω| such that

‖v‖Lp(·)(Ωm) ≤ C‖∇v‖Lp(·)(Ωm) ∀v ∈W 1,p(·)
0 (Ωm),

for any m ∈ N. This follows by Theorem 3.3 in [21], using that
Ωm ⊂ Ωm+1 for any m ∈ N.

(2) The Lipschitz constants of Ωm (m ∈ N) are uniformly bounded (see
Remark 2.3 in [22]). Therefore, the extension operators

E1,m : W 1,p(·)(Ωm)→W 1,p(·)(Ω) and E2,m : H2(Ωm)→ H2(Ω)

define as Theorem 4.2 in [11] satisfy that ‖E1,m‖ and ‖E2,m‖ are
uniformly bounded.

(3) By (2) and Corollary 8.3.2 in [12], there exists a constant C inde-
pendent of m such that

‖v‖Lp∗(·)(Ωm) ≤ C‖v‖W 1,p(·)(Ωm) ∀v ∈W 1,p(·)(Ωm),

for any m ∈ N.
We want to remark that all the constants of the above inequalities are in-
dependent of p1 (see Section 6 for the applications).

Proof of Theorem 1.2. We begin taking {Ωm}m∈N as in Remark 5.1 and
um the solution of {

−∆p(x)um = f in Ωm,

um = g on ∂Ωm.

By Theorem 1.1, um ∈ H2(Ωm) for any m ∈ N. Moreover, um solves{
Lmum = amij (x)um,xixj = am(x) in Ωm,

um = g on ∂Ωm,

with

amij (x) = δij + (p(x)− 2)
um,xi(x)um,xj (x)

|∇um(x)|2
,

am(x) = ln(|∇um(x)|)〈∇um(x),∇p(x)〉+ f(x)|∇um(x)|2−p(x).

Then vm = um − g solves{
Lmvm = −Lmg + am(x) in Ωm,

vm = 0 on ∂Ωm.
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Thus, using that vm ∈ H2(Ωm) ∩H1
0 (Ωm) and since the coefficients amij (x)

are bounded independent of m, we can argue as in Theorem 2.2 in [22] and
obtain,
(5.19)

‖vm‖H2(Ωm) ≤ C‖ − Lmg + f |∇um|2−p(·) + ln(|∇um|)|∇um|‖L2(Ωm)

≤ C
(
‖|∇um|2−p(·)‖L2(Ωm) + ‖ ln(|∇um|)|∇um|‖L2(Ωm) + 1

)
where the constant C is independent of m.

As in Lemma 4.1 we can prove, using Remark 5.1 (1) and (3), that the
norms ‖∇um‖Lp(·)(Ωm) are uniformly bounded. Therefore, proceeding as in

Theorem 4.2 we obtain

(5.20)
‖ ln(|∇um|)|∇um|‖L2(Ωm) + ‖f |∇um|2−p‖L2(Ωm)

≤ C
(
‖∇um‖(1+s)/2

Lp
′(·)(1+s)(Ω1,m)

+ ‖∇um‖2−p1Lγ(·)(A2,m)
+ 1
)
,

with C independent of m, where

Ω1,m = {x ∈ Ωm : |∇um(x)| > 1} and A2,m = {x ∈ Ωm : p(x) < 2}.
Now, using Remark 5.1 (3) and (2), we have that for any r > 1 that

(5.21)

‖vm‖W 1,r(Ωm) ≤ ‖E2,mvm‖W 1,r(Ω)

≤ C‖E2,mvm‖H2(Ω)

≤ C‖vm‖H2(Ωm)

where C is independent of m.

Therefore, using (5.19), (5.20) and (5.21), we get

‖vm‖H2(Ωm) ≤C(‖vm‖(1+s)/2
H2(Ωm)

+ ‖vm‖2−p1H2(Ωm)
+ ‖g‖(1+s)/2

H2(Ωm)
+ ‖g‖2−p1

H2(Ωm)
+ 1)

≤C(‖vm‖(1+s)/2
H2(Ωm)

+ ‖vm‖2−p1H2(Ωm)
+ 1),

where the constant C is independent ofm. This proves that {‖vm‖H2(Ωm)}m∈N
is bounded.

Now we have, as in the proof of Theorem 2.2 in [22], that there exist a
subsequence still denote {vm}m∈N and a function v ∈ H2(Ω) ∩H1

0 (Ω) such
that,

vm → v strongly in H1(Ω′)

for any Ω′ ⊂⊂ Ω. Then u = v + g ∈ H2(Ω) and

um → u strongly in H1(Ω′)

for any Ω′ ⊂⊂ Ω. Thus, using (4.13), we have

(5.22) |∇um|p(x)−2∇um → |∇u|p(x)−2∇u strongly in Lp
′(·)(Ω′)

for any Ω′ ⊂⊂ Ω.

On the other hand, for any ϕ ∈ C∞0 (Ω) there exist m0 such that for all
m ≥ m0 ∫

Ωm

|∇um|p(x)−2∇um∇ϕdx =

∫
Ωm

fϕ dx.

Therefore, using (5.22) we have that u is a weak solution of (1.1). �
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Proof of Corollary 1.3. By the previous theorem we have that u ∈ H2(Ω),
then we can derive the equation (1.1) and obtain{

−aij(x)uxixj = a(x) in Ω,

u = g on ∂Ω,

where

aij(x) = δij + (p(x)− 2)
uxi(x)uxj (x)

|∇u(x)|2
,

a(x) = ln(|∇u(x)|)〈∇u(x),∇p(x)〉+ f(x)|∇u(x)|2−p(x).

Using that f ∈ Lq(·)(Ω) with q(x) ≥ q1 > 2 and following the lines in the
proof of Theorem 4.2, we have that a(x) ∈ Ls(Ω) with s > 2. Therefore, by
Remark A.3, we have that u ∈ C1,α(Ω). �

6. Comments

In the image processing problem it is of interest the case where p1 is
close to 1. By this reason, we are also interested in the dependence of the
H2−norm on p1.

If N = 2, g ∈ H2(Ω) and uε is the solution of (3.2), we have by Lemma
A.1, (3.6) and (3.7), that there exists a constant C independent of p1 and ε
such that

‖uε‖H2(Ω) ≤
C

(p1 − 1)κ
(
‖aε‖L2(Ω) + ‖g‖H2(Ω)

)
,

where κ = 1 if Ω is convex and κ = 2 if ∂Ω ∈ C2. Therefore, using that
the Poincare’s inequality and the embedding W 1,p(·)(Ω) ↪→ Lp

∗(·)(Ω) hold in
the case p1 = 1 and following the lines of Theorem 1.1 and Theorem 1.2 we
have that

‖u‖H2(Ω) ≤
C

(p1 − 1)κ
,

where the constant C is independent of p1.

Appendix A. Regularity results for elliptic linear equations
with coefficients in L∞

Let Ω be an bounded open subset of R2 and

Mu = aij(x)uxixj ,

such that aij = aji and for any ξ ∈ RN

(A.1) λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2,
and

(A.2) M1 ≤ a11(x) + a22(x) ≤M2 in Ω

where λ,Λ,M1 and M2 are positive constant.

In the next lemma, we will give a H2−bound for solutions of

(A.3)

{
Mu = f in Ω,

u = g on ∂Ω,
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In fact, the following result is proved in Theorem 37,III in [23], but it is not
explicit the dependence of the bounds on the ellipticity and the L∞−norm
of (aij(x)). Then, following the proof of the mentioned theorem we can prove

Lemma A.1. Let Ω be a bounded domain in R2, f ∈ L2(Ω) and g ∈ H2(Ω).
Then, if u is a solution of (A.3) and u ∈ H2(Ω) we have that

‖u‖H2(Ω) ≤
C

λκ
(
‖f‖L2(Ω) + ‖g‖H2(Ω)

)
,

where κ = 1 if Ω is convex and κ = 2 if ∂Ω ∈ C2 and C is a constant
independent of λ.

Proof. In this proof, we denote uij = uxixj for all i, j = 1, 2 and C is a
constant independent of λ.

First, we consider the case g ≡ 0. Using (A.1), we have that

(a11(x) + a22(x))(u2
12 − u11u22) =

2∑
i,j,k=1

aijukiukj −∆u
2∑

ij=1

aijuij

≥λ
2∑

ik=1

u2
ki −∆uf(x).

Then, using Young’s inequality, we get

λ

2(a11(x) + a22(x))

2∑
ik=1

u2
ki ≤

4

λ(a11(x) + a22(x))
f(x)2 + u2

12 − u11u22,

and by (A.2), we have that

(A.4)
2∑

ik=1

u2
ki ≤

C

λ2
f(x)2 +

C

λ
(u2

12 − u11u22),

Now, using (37.4) and (37.6) in [23], we have that for any u ∈ H2(Ω)

(A.5)

∫
Ω

(u2
12 − u11u22) dx = −

∫
∂Ω

(
∂u

∂ν

)2 H

2
ds

where H is the curvature of ∂Ω. If Ω is convex, then H ≥ 0 and therefore,
using (A.4) and (A.5) we have that

(A.6) ‖D2u‖L2(Ω) ≤
C

λ
‖f‖L2(Ω).

In the general case, we can use the following inequality

(A.7)

∫
∂Ω

(
∂u

∂ν

)2

ds ≤ C

(
(1 + δ−1)

∫
Ω
|∇u|2 dx+ δ

∫
Ω

2∑
ik=1

u2
ki dx

)
for any δ > 0. See equation (37.6) of [23].

Then, by (A.4), (A.5), using that H is bounded and (A.7) (choosing δ
properly) we arrive to

(A.8)

∫
Ω

2∑
ik=1

u2
ki dx ≤

C

λ2

(∫
Ω
f(x)2 dx+

∫
Ω
|∇u|2 dx

)
.
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On the other hand, using that Lu = f in Ω, (A.1) and the Poincare’s
inequality, we have

(A.9) ‖∇u‖L2(Ω) ≤
C

λ
‖f‖L2(Ω).

Therefore, by (A.8) and (A.9), we get

‖D2u‖L2(Ω) ≤
C

λ2
‖f‖L2(Ω).

Thus, by the last inequality, (A.9) and (A.6) the lemma is proved in the
case g = 0.

When g is any function in H2(Ω) the lemma follows taking v = u−g. �

The following theorem is proved in Corollary 8.1.6 in [20].

Theorem A.2. Let Ω be a convex polygonal domain in R2, M satisfying
(A.1) and u ∈ H2(Ω) ∩ H1

0 (Ω) be a solution of (A.3) with g = 0 and f ∈
Lp(Ω) with p > 2. Then ∇u ∈ Cµ(Ω) for some 0 < µ < 1.

Remark A.3. Observe that the above Theorem holds also if we consider any
g ∈W 2,p(Ω), since we can take v = u− g in (A.3) and use that W 2,p(Ω) ↪→
C1,1−2/p(Ω) .

Appendix B. Lipschitz Functions

Using the linear extension operator define in [14], we have the following
lemma

Lemma B.1. Let Ω be a bounded open domain with Lipschitz boundary and
f ∈ Lip(Ω). Then, there exists a function f : RN → R such that f is a
Lipschitz function, supRN f = infΩ f and infRN f = maxΩ f.

Lemma B.2. Let f : RN → R be Lipschitz function. Then for each ε > 0,
there exists a C1 function fε : RN → R such that

(1) |{x ∈ RN : fε(x) 6= f(x) or Dfε(x) 6= Df(x)}| ≤ ε.
(2) There exist a constant C depending only on N such that,

‖Dfε‖L∞(RN ) ≤ CLip(f).

(3) If 1 < f1 ≤ f(x) ≤ f2 in RN , we have

1 < fε(x) ≤ f2 + Cε
1
N in RN

with C a constant depending only on N.

Proof. Items (1) and (2) follow by Theorem 1, pag. 251 in [16].

To prove (3), let as define

Ω0 = {x ∈ RN : fε(x) = f(x) and Dfε(x) = Df(x)}
and let as suppose that there exist x ∈ RN \ Ω0 such that fε(x) = f2 + δ
with δ > 0. If x0 ∈ Ω0, by (2), we have

CLip(f)|x− x0| ≥ fε(x)− fε(x0) = f2 + δ − f(x0) ≥ δ.
Then Bρ(x) ⊂ RN \ Ω0 where ρ = δ(CLip(f))−1 and using (1) we get

δ ≤ Cε1/N , for some constant C independent of ε.

Analogously we can prove the other inequality. �
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