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Abstract. In this paper we construct two algorithms to approximate the minimizer of a dis-
crete functional which comes from using a discontinuous Galerkin method for a variational
problem related to the p(x)-Laplacian. We also make some numerical experiments in dimension
two.

1. Introduction

This work is devoted to developing and analysing two algorithms to approximate the minimizer
of a discrete functional which comes from using a discontinuous Galerkin method for a nonlinear,
nonhomogeneous variational problem. This variational problem is related to an image processing
model of Chen, Levin and Rao [8], see also [3].

More precisely, we consider the following nonlinear variational problem:

(P)
Find u ∈ A :=

{
v ∈W 1,p(·)(Ω): v − uD ∈W 1,p(·)

0 (Ω)
}

such that

J(u) = min
v∈A

J(v),

where

J(v) :=

∫
Ω
|∇v|p(x) + |v − ξ|2 dx,

Ω is a bounded connected open set in RN with Lipschitz continuous boundary, p : Ω→ [p1, p2]

is a log-Hölder continuous function with 1 < p1 ≤ p2 ≤ 2, uD ∈ W
1,p(·)
0 (Ω) and ξ ∈ L2(Ω).

It is well-known that the functional J admits a unique minimizer u ∈ A. For the definitions
of the log-Hölder continuous function and the variable exponent Sobolev spaces W 1,p(·)(Ω) and

W
1,p(·)
0 (Ω), see Section 2.

Note that this functional is related to the so-called p(x)−Laplacian operator, that is

∆p(x) = div(|∇u|p(x)−2∇u).

This operator extends the classical Laplacian (p(x) ≡ 2) and the p−Laplacian (p(x) ≡ p, 1 < p <
+∞). The interest in this operator was originally motivated by the model for electrorheological
fluids, see [27, 28].
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In [12], the so-called discontinuous Galerkin method is considered to approximate the mini-
mizer of (P). More precisely, the authors study the following discrete functional,

Ih(vh) :=

∫
Ω
|∇vh +Rh(vh)|p(x) + |vh − ξ|q(x) dx+

∫
∂Ω
|vh − uD|p(x)h1−p(x) dS

+

∫
Γint

|[[vh]]|p(x)h1−p(x) dS,

where h is the local mesh size, h is the global mesh size, Γint is the union of the interior edges of
the elements, [[vh]] is the jump of the function between two edges, ∇vh denotes the elementwise
gradient of vh and Rh is the lifting operator, see Section 2 for a precise definition. Observe that
the boundary condition is weakly imposed by the second term of the functional.

With this setting, the discrete problem is to find a minimizer uh of Jh over the space Sk(Th)
of all the functions that are polynomials of degree at most k in each element, with k ≥ 1, see
Subsection 2.2 for details.

In [12], the authors prove the following result.

Theorem 1.1. Let Ω be a polyhedral domain, uD ∈W 2,2(Ω), and uh ∈ Sk(Th) be the minimizer
of Jh for any h ∈ (0, 1]. If u is the minimizer of J then

Ih(uh)→ J(u), Rh(uh)→ 0, uh → u strongly in W 1,p(·)(Ω), and∫
∂Ω
|uh − uD|p(x)h1−p(x) dS +

∫
Γint

|[[uh]]|p(x)h1−p(x) dS → 0

Since we want to implement this method for some examples, the next step is to find a good
approximation of the minimizer of the discrete functional.

The methods for finding minimizers of functionals, such as the BFGS Quasi- Newton, work
when the dimension of the space is small. However, we observe that these methods are to
slow when we refine the mesh. We also observe, in some numerical experiments, that the
decomposition– coordination–method (DCM), defined in [23, Chapter VI], is more suitable for
our problem.

The DCM is used to approximate the minimizers of functionals that can be written in the
form

J(v) = F (Bv) +G(v),

where F : H → R, G : V → R are convex functions, B : V → H is a linear operator and V and
H are topological vector spaces.

In this context, the problem of finding minimizers of J over V is equivalent to find (q0, v0) ∈
W := {(q, v) ∈ V ×H : Bv − q = 0} such that

(1.1) F (q0) +G(v0) = min
(q,v)∈W

{F (q) +G(v)}.

In the practical applications, under the following assumptions

(H1) F : H → R, G : V → R are lower semicontinuous functions and

dom(F ◦B) ∩ dom(G) 6= ∅;
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(H2) F is a convex Gateaux–diffentiable functional and

lim
|q|→∞

F (q)

|q|
=∞;

(H3) The rank of B is close in H;
(H4) B injective;

In [23] the authors prove that there exists a sequence {(un, qn)} ⊂ V ×H such that un solves a
linear differential equation, qn solves a non-linear equation, and

un → v0 = u strongly in V

qn → q0 = B(u) strongly in H

where u is the minimizer of J .

If we write the functional Ih in this form, we have that

Ih(v) = F (Bv) +G(v)

where here V = Sk(Th), H = Sl(Th)× Sl(Th), k, l ∈ N0 with l ≥ k − 1, Bv = Rh(v) +∇v,

F (q) =

∫
Ω
|q|p(x) dx and

G(v) =

∫
Ω
|v − ξ|q(x) dx+

∫
∂Ω
|v − uD|p(x)h1−p(x) dS +

∫
Γint

|[[v]]|p(x)h1−p(x) dS.

We can observe that, (H1), (H2), (H3) hold, but (H4) does not hold, that is B is not injective.
Moreover, G′ is not linear.

To prove the convergence of the method, it is not necessary the assumption that G′ is linear,
but it is useful for the implementation. For this reason and since we are interested in the case
p(x) ≤ 2, we define a new discrete functional

Jh(v) = F (Bv) +G(v)

where now

G(v) =

∫
Ω
|vh − ξ|2 dx+

∫
∂Ω
|vh − uD|2h

−2/p′(x) dS +

∫
Γint

|[[vh]]|2h−2/p′(x) dS,

and F and B are defined as before. In this manner, G′ is linear. Observe that, here we have to
change the power over the function h.

To overcome the lack of injectivity of the functional B, we will use that our functional G is
Gateaux-differentiable and convex.

Now, we are ready to state the main results of this paper.

Since we change the discrete functional we have to prove a result similar to Theorem 1.1.
More precisely, we prove the following theorem.

Theorem 1.2. Let Ω be a polygonal domain in RN , p : Ω → [p1, 2] (N/2 < p1 ≤ 2) be a log-
Hölder continuous and uD ∈ W 2,2(Ω). For each h ∈ (0, 1], let uh ∈ Sk(Th) be the minimizer of
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Jh. If u is the minimizer of J then

uh → u strongly in Ls(·)(Ω) ∀s ∈ K,
uh → u strongly in L2(∂Ω),

Jh(uh)→ J(u),

Rh(uh)→ 0,∫
∂Ω
|uh − uD|2h

−2/p′(x) dS +

∫
Γint

|[[uh]]|2h−2/p′(x) dS → 0,

∇uh → ∇u strongly in Lp(·)(Ω),

where K = {s ∈ L∞(Ω): 1 ≤ s(x) < p∗(x)− ε for some ε > 0}.

We define two algorithms that construct a sequence {unh}n∈N that approximates, for each
h ≥ 0 the minimizers of Jh and finally we prove the convergence of both algorithms.

Theorem 1.3. Let h ≥ 0 and (uh, ηh, λh) ∈ V ×H ×H be a saddle-point of Lr. If

(1.2) 0 < α0 ≤ ρn ≤ α1 < 2r

and (unh, η
n
h , λ

n
h) ∈ V ×H ×H is the solutions given by Algorithm 1 then

unh → uh in V,

ηnh → ηh = Buh in H,

λn+1
h − λnh → 0 in H,

λnh is bounded.

Moreover,

[[unh − uh]]→ 0 in L2(Γint),

unh → uh in L2(∂Ω),

R(unh)→ R(uh) in H,

∇unh → ∇uh in H.

Theorem 1.4. Let h ≥ 0 and (uh, ηh, λh) ∈ V ×H ×H be a saddle-point of Lr. If

(1.3) 0 < ρn = ρ < r
(1 +

√
5)

2

and (unh, η
n
h , λ

n
h) ∈ V ×H ×H is the solutions given by Algorithm 2 then

ηnh → ηh = Buh in H,

λn+1
h − λnh → 0 in H,

λnh is bounded .
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Moreover,

unh → uh in V,

[[unh − uh]]→ 0 in L2(Γint),

unh → u in L2(∂Ω),

R(unh)→ R(uh) in H,

∇unh → ∇uh in H.

Let us end the introduction with a brief comments on previous bibliography. In [4, 10], the
convergence of conforming finite element method approximations for the Dirichlet problem of the
p(·)−Laplacian is studied. Moreover, in [10], we study the convergence rate using the regularity
results obtained in [11].

Finally, we want to mention that in [3] and [8] the authors find an approximation of the
solutions by using an explicit finite difference scheme for the associated parabolic problem.

Outline of the paper. In Section 2, we state several properties of the variable exponent
Sobolev spaces, we give some definitions and properties related to the mesh and to the broken
Sobolev spaces; In section 3, we prove Theorem 1.2; In section 4, the decomposition-coordination
method is studied and the convergence of the algorithms are proved; Finally, in Section 5, we
give some numerical examples.

2. Preliminaries

We begin with a review of the basic results that will be needed in subsequent sections. The
results are generally stated without proof, although we attempt to provide good references where
the proofs can be found. Also, we introduce some of our notational conventions.

2.1. The spaces Lp(·)(Ω) and W 1,p(·)(Ω). We first introduce the spaces Lp(·)(Ω) and W 1,p(·)(Ω)
and state some of their properties.

Let p : Ω→ [p1, p2] be a measurable bounded function, called a variable exponent on Ω where
p1 := ess inf p(x) and p2 := ess sup p(x) with 1 ≤ p1 ≤ p2 <∞.

We define the variable exponent Lebesgue space Lp(·)(Ω) to consist of all measurable functions
u : Ω→ R for which the modular

%p(·)(u) :=

∫
Ω
|u(x)|p(x) dx

is finite. We define the Luxemburg norm on this space by

‖u‖Lp(·)(Ω) = ‖u‖p(·) := inf{k > 0: %p(·)(u/k) ≤ 1}.

This norm makes Lp(·)(Ω) a Banach space.

The following properties can be obtained directly from the definition of the norm. For the
proof see [21, Theorem 1.3 and Theorem 1.4 ].

Proposition 2.1. If u, un ∈ Lp(·)(Ω), ‖u‖p(·) = λ, then

(1) λ < 1 (= 1, > 1) iff

∫
Ω
|u(x)|p(x) dx < 1 (= 1, > 1);

(2) If λ ≥ 1, then λp1 ≤
∫

Ω
|u(x)|p(x) dx ≤ λp2 ;
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(3) If λ ≤ 1, then λp2 ≤
∫

Ω
|u(x)|p(x) dx ≤ λp1 ;

(4)

∫
Ω
|un(x)|p(x) dx→ 0 iff ‖un‖p(·) → 0.

For the proofs of the following two theorems we refer the reader to [26].

Theorem 2.2. Let q(x) ≤ p(x), then Lp(·)(Ω) ↪→ Lq(·)(Ω) continuously.

Theorem 2.3. Let p′(x) such that, 1/p(x) + 1/p′(x) = 1. Then Lp
′(·)(Ω) is the dual of Lp(·)(Ω).

Moreover, if p1 > 1, Lp(·)(Ω) and W 1,p(·)(Ω) are reflexive.

Now we give some well known inequalities.

Proposition 2.4. For any x fixed we have the following inequalities

|η − ξ|p(x) ≤ C(|η|p(x)−2η − |ξ|p(x)−2ξ)(η − ξ) if p(x) ≥ 2,

|η − ξ|2
(
|η|+ |ξ|

)p(x)−2
≤ C(|η|p(x)−2η − |ξ|p(x)−2ξ)(η − ξ) if p(x) < 2,

|η|p(x) ≤ 2p(x)−1(|η − ξ|p(x) + |ξ|p(x)) if p(x) ≥ 1.

The following properties will be used throughout the paper.

Proposition 2.5. Let Fn, F ∈ Lp(·)(Ω).

(1) If

Fn ⇀ F weakly in Lp(·)(Ω)

then ∫
Ω
|F |p(x) dx ≤ lim inf

n→∞

∫
Ω
|Fn|p(x) dx.

(2) If

Fn → F strongly in Lp(·)(Ω)

then ∫
Ω
|Fn|p(x) dx→

∫
Ω
|F |p(x) dx.

(3) If

Fn ⇀ F weakly in Lp(·)(Ω) and

∫
Ω
|Fn|p(x) dx→

∫
Ω
|F |p(x) dx

then
Fn → F strongly in Lp(·)(Ω).

Proof. For the proof of (1) and (3) see [16, Theorem 3.9 and Lemma 2.4.17]. Finally (2) follows
by [18, Proposition 2.3]. �

Let W 1,p(·)(Ω) denote the space of measurable functions u such that, u and the distributional

derivative ∇u are in Lp(·)(Ω). The norm

‖u‖W 1,p(·)(Ω) = ‖u‖1,p(·) := ‖u‖p(·) + ‖|∇u|‖p(·)
makes W 1,p(·)(Ω) a Banach space.

We define the space W
1,p(·)
0 (Ω) as the closure of C∞0 (Ω) in W 1,p(·)(Ω).

We now introduce the most important condition on the exponent in the study of variable
exponent spaces, the log-Hölder continuity condition.



THE DECOMPOSITION–COORDINATION METHOD FOR THE p(x)-LAPLACIAN 7

Definition 2.6. We say that a function α : Ω → R is log-Hölder continuous if there exists a
constant Clog such that

|α(x)− α(y)| ≤
Clog

log
(
e+ 1

|x−y|

) ∀x, y ∈ Ω.

For example, it was proved in [14, Theorem 3.7], that if one assumes that ∂Ω is Lipschitz

and p : Ω → [1,+∞) is log-Hölder continuous then C∞(Ω̄) is dense in W 1,p(·)(Ω). See also
[13, 17, 19, 26, 29].

We now state two Sobolev embedding Theorems. Here, p∗ and p∗ are the Sobolev critical
exponents for these spaces, i.e.

p∗(x) :=


p(x)N

N − p(x)
if p(x) < N,

+∞ if p(x) ≥ N,
and p∗(x) :=


p(x)(N − 1)

N − p(x)
if p(x) < N,

+∞ if p(x) ≥ N.

For the proofs of the following theorems see [15] and [20, Corollary 2.4], respectively.

Theorem 2.7. Let Ω be a Lipschitz domain. Let p : Ω → [1,∞) be a log-Hölder continuous

function. Then the embedding W 1,p(·)(Ω) ↪→ Lp
∗(·)(Ω) is continuous.

Theorem 2.8. Let Ω be a bounded Lipschitz domain. Suppose that p ∈ C0(Ω) with p1 > 1. If
r ∈ C0(∂Ω) satisfies the condition 1 ≤ r(x) < p∗(x) for all x ∈ ∂Ω, then there is a compact

boundary trace embedding W 1,p(·)(Ω) ↪→ Lr(·)(∂Ω).

2.2. The mesh Th and properties of W 1,p(·)(Th). We now give some definitions and properties
related to the mesh and to the broken Sobolev space.

Hypothesis 2.9. Let Ω be a bounded polygonal domain and (Th)h∈(0,1] be a family of partitions

of Ω into polyhedral elements. We assume that there exists a finite number of reference polyhedral
κ̂1, . . . , κ̂r such that for all κ ∈ Th there exists an invertible affine map Fκ such that, κ = Fκ(κ̂i).
We assume that each κ ∈ Th is closed and that diam(κ) ≤ h for all κ ∈ Th.

Now we give some notation,

Eh := {κ ∩ κ′ : dimH(κ ∩ κ′) = N − 1} ∪ {κ ∩ ∂Ω: dimH(κ ∩ ∂Ω) = N − 1},

Γint :=
⋃
{e ∈ Eh := dimH(e ∩ ∂Ω) < N − 1},

where dimH is the Hausdorff dimension.

We also assume that the mesh satisfies the following hypotheses.

Hypothesis 2.10. The family of partitions (Th)h∈(0,1] satisfies the Hypothesis 2.9 and

(a) There exist positive constants C1 and C2,independent of h, such that for each element
κ ∈ Th

C1h
N
κ ≤ |κ| ≤ C2h

N
κ .

(b) There exists a constant C1 > 0 such that for all h ∈ (0, 1] and for all face e ∈ Eh there
exists a point xe ∈ e and a radius ρe ≥ C1 diam(e) such that Bρe(xe)∩Ae ⊂ e, where Ae
is the affine hyperplane spanned by e. Moreover, there are positive constants such that

chκ ≤ he ≤ Chκ, chκ′ ≤ he ≤ Chκ′
where e = κ ∩ κ′.
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Now, we introduce the finite element spaces associated with Th. We define the variable broken
Sobolev space as

W 1,p(·)(Th) := {u ∈ L1(Ω): u|κ ∈W 1,p(·)(κ) for all κ ∈ Th},

and the subspaces

Uk(Th) :={u ∈ C(Ω): u|κ ∈ P k for all κ ∈ Th},

Sk(Th) :={u ∈ L1(Ω): u|κ ∈ P k for all κ ∈ Th},

where P k is the space of polynomials functions of degree at most k.

For each face e ∈ Eh, e ⊂ Γint we denote by κ+ and κ− its neighboring elements. We write
ν+, ν− to denote the outward normal unit vectors to the boundaries ∂κ±, respectively. The jump
of a function u ∈ W 1,p(·)(Th) and the average of a vector-valued function φ ∈ (W 1,p(·)(Th))N ,
with traces u±, φ± from k± are, respectively, defined as the vectors

[[u]] := u+ν+ + u−ν− and {φ} :=
φ+ + φ−

2
.

Let h : ∂Ω ∪ Γint → R a piecewise constant function define by

h(x) := diam(e) if x ∈ e,

where e ∈ Eh.

We consider the following seminorm on W 1,p(·)(Th),

|u|W 1,p(·)(Th) := ‖∇u‖Lp(·)(Ω) + ‖[[u]]h
−1
p′(x) ‖Lp(·)(Γint).

2.3. The lifting operator. Finally we define, as in [6] (see also [1]), the lifting operator.

Definition 2.11. Let l ≥ 0 and Rh : W 1,p(·)(Th)→ Sl(Th)N defined as,∫
Ω
〈Rh(u), φ〉 dx := −

∫
Γint

〈[[u]], {φ}〉 dS

for all φ ∈ Sl(Th)N .

This operator appears in the first term of the discretized functional Jh. As we can see from the
definition, this operator represents the contribution of the jumps to the distributional gradient.
This is the reason why it is crucial to add this term in order to have the consistency of the
method.

We point out that this lifting operator was first used in [2] in order to describe the contributions
of the jumps across the interelements of the computed solution on the (computed) gradient of
the solution in a mixed formulation of Navier-Stokes equations. It was also used in [5] where a
solid mathematical background for the method introduced in [2] was proposed.

Now, we state a bound of the Lp(·)(Ω)-norm of Rh(u) in terms of the jumps of u in Γint. For
the proof see [12].

Lemma 2.12. Let p : Ω → : [1,∞) be a log- Hölder continuous in Ω. Then, there exists a
constant C such that,

‖Rh(u)‖Lp(·)(Ω) ≤ C‖h
−1/p′(x)[[u]]‖Lp(·)(Γint) ∀u ∈W 1,p(·)(Th) ∀h ∈ (0, 1].
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3. Convergence of the discontinuous Galerkin FEM

In this section we prove the convergence of the discontinuous Galerkin FEM.

From now on, we make the following assumption: Let Ω be a bounded polygonal domain in
RN and p : Ω→ [p1, 2] (1 < p1 ≤ 2) be a log-Hölder continuous function.

Our next result follows by using Lemma 2.12 and the fact that L2(Γint) ⊂ Lp(·)(Γint).

Lemma 3.1. There exists a constant C such that

‖Rh(v)‖Lp(·)(Ω) ≤ C‖h
−1/p′(x)[[v]]‖L2(Γint)

for all v ∈W 1,p(·)(Th) and for all h ∈ (0, 1].

Now, we prove the coercivity of the functional.

Theorem 3.2. For each h ∈ (0, 1], let vh ∈W 1,p(·)(Th). If there exists a constant C independent
of h such that Jh(vh) ≤ C for all h ∈ (0, 1], then

sup
h∈(0,1]

(
‖vh‖L1(Ω) + |vh|W 1,p(·)(Th)

)
<∞.

Moreover,

sup
h∈(0,1]

∫
∂Ω
|vh − uD|p(x)h1−p(x) dS <∞.

Proof. Since Jh(vh) ≤ C, we have that∫
Γint

|[[vh]]|2h−2/p′(x) dS ≤ C

then, by Lemma 3.1, ‖Rh(vh)‖Lp(·)(Ω) is bounded. Therefore, using Proposition 2.4, we have

Jh(vh) + C ≥ C
∫

Ω
|∇vh|p(x) dx+

∫
∂Ω
|vh − uD|2h−

2/p′(x) dS +

∫
Γint

|[[vh]]|2h−2/p′(x) dS.

By the above inequality and the fact that L2 ⊂ Lp(·) we get∫
Ω
|∇vh|p(x) dx ≤ C,∫

∂Ω
|vh − uD|p(x)h1−p(x) dS ≤ C,∫
Γint

|[[vh]]|p(x)h1−p(x) dS ≤ C.

Finally, the proof follows as in the end of the proof of Theorem 6.2 in [12]. �

The following theorem was proved in [12].

Theorem 3.3. Let uh ∈ Sk(Th) be such that

sup
h∈(0,1]

(
‖uh‖L1(Ω) + |uh|W 1,p(·)(Th)

)
<∞ and sup

h∈(0,1]

∫
∂Ω
|uh − uD|p(x)h1−p(x) dS <∞.
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Then, there exist a sequence hj → 0 and a function u ∈W 1,p(·)(Ω) such that

uhj
∗
⇀ u weakly* in BV (Ω)

∇uhj +Rh(uhj ) ⇀ ∇u weakly in Lp(·)(Ω),

uhj → u strongly in Lp(·)(∂Ω),

uhj → u strongly in Ls(·)(Ω) ∀s ∈ K,
where K = {s ∈ L∞(Ω): 1 ≤ s(x) < p∗(x)− ε for some ε > 0}.

Before proving the convergence of the sequence of minimizers, we need an auxiliary lemma.

Lemma 3.4. Let h ∈ (0, 1] and uD ∈W 2,2(Ω). If v ∈W 2,2(Ω)∩A, then there exists vh ∈ U1(Th)
such that

‖vh − v‖H1(Ω) → 0 as h→ 0,

and
Jh(vh)→ J(v) as h→ 0.

Proof. Given v ∈ W 2,2(Ω) ∩ A, by standard approximation theory (see [9, Theorem 3.1.5]), we
have that there exists vh ∈ U1(Th) such that

‖vh − v‖H1(Ω) → 0

as h→ 0, and
‖v − vh‖L2(∂Ω) ≤ Ch‖D2v‖L2(Ω).

Since 1 < p1 ≤ p(x) ≤ 2, we have∫
∂Ω
|v − vh|2h−

2/p′(x) dS ≤ Ch−2/p1

∫
∂Ω
|v − vh|2 dS ≤ Ch

−2/p1h2‖D2v‖2L2(Ω) → 0

as h→ 0.

Finally, since vh ∈W 1,p(·)(Ω), we have that [[vh]] = 0 and Rh(vh) = 0. Then, using Proposition
2.5, we have

Jh(vh) =

∫
Ω
|∇vh|p(x) + |vh − ξ|2 dx+

∫
∂Ω
|vh − uD|2h

−2/p′(x) dS →
∫

Ω
(|∇v|p(x) + |v − ξ|2) dx

as h→ 0. The proof is complete. �

Now we prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 3.4, there exists wh ∈ U1(Th) such that Jh(wh) → J(uD).
Then

(3.4) Jh(uh) ≤ Jh(wh) ≤ C ∀h > 0.

By Theorem 3.2 and Theorem 3.3, we obtain that there exists a subsequence uhj of uh such that

uhj → u strongly in Ls(·)(Ω) ∀s ∈ K

uhj → u strongly in Lp(·)(∂Ω),

∇uhj +Rh(uhj ) ⇀ ∇u weakly in Lp(·)(Ω).

On the other hand, by (3.4) ∫
∂Ω
|uhj − uD|

2hj
−2/p′(x) dS ≤ C
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then ∫
∂Ω
|uhj − uD|

2dS → 0 as j → +∞,

that is uhj → uD strongly in L2(∂Ω). Therefore, since uhj → u strongly in Lp(·)(∂Ω), we have
that u = uD on ∂Ω, which proves that u ∈ A.

Now, since uhj → u strongly in L2(Ω) (due to s(x) ≡ 2 ∈ K) and ∇uhj + Rh(uhj ) ⇀ ∇u
weakly in Lp(·)(Ω) we have

J(u) ≤ lim inf
j→+∞

∫
Ω
|∇uhj +R(uhj )|

p(x) + |uhj − ξ|
2 dx ≤ lim inf

j→+∞
Jhj (uhj ) ≤ lim sup

j→+∞
Jhj (uhj ).

Let v ∈ A ∩W 2,2(Ω) and vhj as in Lemma 3.4, we obtain

J(u) ≤ lim inf
j→+∞

Jhj (uhj ) ≤ lim sup
j→+∞

Jhj (uhj ) ≤ lim
j+∞

Jhj (vhj ) = J(v).

By a density argument, we also have that

J(u) ≤ lim inf
j→+∞

Jhj (uhj ) ≤ lim sup
j→+∞

Jhj (uhj ) ≤ J(w)

for any w ∈ A. Therefore u is a minimizer of J. Moreover, if we take w = u, we have that
Jhj (uhj )→ J(u) as j → +∞. Thus,∫

Γint

|[[uhj ]]|
2hj

−2/p′(x) dS.→ 0 as j → +∞,

Then, by Lemma 3.1, we have that Rhj (uhj )→ 0 as j → +∞ and

∇uhj ⇀ ∇u weakly in Lp(·)(Ω).

On the other hand, since

∇uhj +Rhj (uh) ⇀ ∇u weakly in Lp(·)(Ω) and

∫
Ω
|∇uhj +Rh(uhj )|

p(x) dx→
∫

Ω
|∇u|p(x) dx,

by Proposition 2.5, ∇uhj +Rhj (uhj )→ ∇u strongly in Lp(·)(Ω). Therefore, since Rhj (uhj )→ 0

strongly in Lp(·)(Ω), we get that ∇uhj → ∇u strongly in Lp(·)(Ω).

Finally, since u is the unique minimizer, the hole sequence converges. �

Remark 3.5. In the above theorem, we ask that p1 > N/2 since in those cases we obtain p∗(x) > 2.
Observe that, when N ∈ {1, 2}, we are not adding any new assumption on p1.

4. The decomposition–coordination method

In this section we will study the decomposition–coordination method to approximate, for each
h, the minimizer of Jh.

Throughout this section, to simplify notation, we omit the subindex h, and e| · |d, ‖ · ‖, and
〈·, ·〉 denote the L2-norm, L2 ×L2-norm and the inner product associated to the L2 ×L2-norm,
respectively.

Let V = Sk(Th) and H = Sl(Th) × Sl(Th) where k, l ∈ N0 with l ≥ k − 1 we consider the
following functionals
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I F : H → R, F (q) :=

∫
Ω
|q|p(x) dx;

I G : V → R, G(v) :=

∫
Ω
|v − ξ|2 dx+

∫
Γint

|[[v]]|2h−2/p′(x) dS +

∫
∂Ω
|v − uD|2h−

2/p′(x) dS;

I B : V → H, Bv := R(v) +∇v.
Observe that

J(v) = F (Bv) +G(v),

F and G are convex and Gateaux–diffentiable functionals, B is a linear operator, and

dom(F ◦B) ∩ dom(G) 6= ∅.
In [23, Chapter VI], in a more general context, the author show that the problem

(4.5) min
v∈V

J(v) = min
v∈V
{F (Bv) +G(v)}

is equivalent to

(4.6) min
(v,q)∈W

{F (q) +G(v)},

where
W = {(v, q) ∈ V ×H : Bv = q}.

We then define for r ≥ 0 an augmented Lagrangian Lr associated with (4.6), by

Lr : V ×H ×H → R

Lr(v, q, λ) := F (q) +G(v) + 〈λ,Bv − q〉+
r

2
e|Bv − q|d2,

and we will say that (u, η, λ) ∈ V ×H ×H is a saddle point of Lr on V ×H ×H if

(4.7) Lr(u, η, µ) ≤ Lr(u, η, λ) ≤ Lr(v, q, λ) ∀(v, q, µ) ∈ V ×H ×H.
The following lemma establishes a fundamental relationship between the saddle points of Lr

and the solution of (4.5). For the proof see [23, Theorem 2.1– Chapter VI].

Lemma 4.1. Let (u, η, λ) be a saddle point of Lr, on V ×H ×H then u is the solution of (4.5)
and Bu = η.

Then, a method for solving (4.5) is to solve the saddle point problem (4.7).

Remark 4.2. Let (u, η, λ) be a saddle point of Lr, then

Lr(u, η, λ) ≤ Lr(v, q, λ) ∀(v, q, µ) ∈ V ×H ×H, (u, η) ∈ V ×H.
Therefore (u, η) is characterized by

G(v)−G(u) + 〈λ,B(v − u)〉+ r〈Bu− η,B(v − u)〉 ≥ 0, ∀v ∈ V , u ∈ V,
F (q)− F (η)− 〈λ, q − η〉+ r〈η −Bu, q − η〉 ≥ 0, ∀q ∈ H, η ∈ H.

Moreover, since F and G are convex and Gateaux–diffentiable, (u, η) is also characterized by

(4.8)
G′(u)(v − u) + 〈λ,B(v − u)〉+ r〈Bu− η,B(v − u)〉 ≥ 0, ∀v ∈ V , u ∈ V,

F ′(η)(q − η)− 〈λ, q − η〉+ r〈η −Bu, q − η〉 ≥ 0, ∀q ∈ H, η ∈ H,
where G′ and F ′ are the Gateaux-derivative of G and F, respectively.

For both characterizations, see [23, Chapter I and VI].
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4.1. Algorithms. To solve the saddle point problem (4.7) we will use an Uzawa type algorithm
and a variant of it. See [7, 22, 24].

Algorithm 1. Let λ0 ∈ H: then λn is known , we define (un, ηn, λn+1) ∈ V ×H ×H by

Lr(un, ηn, λn) ≤ Lr(v, q, λn) ∀(v, q) ∈ V ×H,
λn+1 = λn + ρn(Bun − ηn), ρn > 0.

Remark 4.3. Observe that the first inequality of this algorithm is equivalent to the following
system of two coupled variational inequalities,

(4.9)
G(v)−G(un) + 〈λn, B(v − un)〉+ r〈Bun − ηn, B(v − un)〉 ≥ 0, ∀v ∈ V, un ∈ V,

F (q)− F (ηn)− 〈λn, q − ηn〉+ r〈ηn −Bun, q − ηn〉 ≥ 0, ∀ q ∈ H, ηn ∈ H,

see [23, Chapter VI–Section 3].

The main difficulty of Algorithm 1 is that it requires the solution of the coupled system of
equations at each iteration. To overcome this difficulty, in [23] the authors propose the following
algorithm.

Algorithm 2. Let (η0, λ1) ∈ H × H; then (ηn−1, λn) known, we define (un, ηn, λn+1) ∈ V ×
H ×H by

(4.10)

G(v)−G(un) + 〈λn, B(v − un)〉+ r〈Bun − ηn−1, B(v − un)〉 ≥ 0, ∀v ∈ V, un ∈ V,
F (q)− F (ηn)− 〈λn, q − ηn〉+ r〈ηn −Bun, q − ηn〉 ≥ 0, ∀q ∈ H, ηn ∈ H,

λn+1 = λn + ρn(Bun − ηn), ρn > 0.

Observe that now the two first equations are uncoupled.

Remark 4.4. In [23], in a more general context, the convergence of both algorithms are proved.
More precisely, if F, G and B satiefy the assumptions (H1), (H2) and (H3), then

(4.11)

lim
n→+∞

‖Bu−n − η−n‖ = 0,

lim
n→+∞

〈F ′(ηn)− F ′(η), ηn − η〉 = 0,

lim
n→+∞

‖Bun − ηn‖ = 0,

lim
n→+∞

‖ηn − η‖ = 0,

Bun → η = Bu in H,

λn+1 − λn → 0 in H,

λn is bounded,

see Theroem 4.1 and Theorem 5.1 in [23, Chapter VI]. The assumption (H4) is only used to
concluded that un → u in V.

In our case, (H4) does not hold, that is B is not injective. To overcome the lack of this
assumption, we use that our functional G is Gateaux-differentiable and convex.

Proof of Theorem 1.3. By Remark 4.3 and using the same argument of Remark 4.2, un can be
characterized as

(4.12) G′(un)(v − un) + 〈λn, B(v − un)〉+ r〈Bun − ηn, B(v − un)〉 ≥ 0, ∀v ∈ V, un ∈ V,
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Let us denote u−n = un − u and η−n = ηn − η. By Remark 4.4, we have that (4.11) holds.

On the other hand, taking v = un in (4.8), v = u in (4.12) and summing we obtain

(G′(un)−G′(u))(u− un) + 〈λn − λ,B(u− un)〉+ r〈B(un − u) + η − ηn, B(u− un)〉 ≥ 0,

then

(G′(un)−G′(u))(un − u) + 〈λn − λ,B(un − u)〉+ r〈B(un − u)− (ηn − η), B(un − u)〉 ≤ 0.

Since (G′(un)−G′(u))(un − u) ≥ 0, by (4.11), we get

(G′(un)−G′(u))(un − u)=

∫
Ω
|un − u|2dx+

∫
Γint

|[[un − u]]|2h−2/p′(x)dS+

∫
∂Ω
|un − u|2h−2/p′(x)dS

→ 0 as n→ +∞,
then

(4.13)

un → u in V,

[[un − u]]→ 0 in L2(Γint),

un → u in L2(∂Ω).

Finally,

(4.14) ∇u−n → 0 in H.

due to

‖R(u−n)‖L2(Ω) ≤ C‖h−1/2[[u−n]]‖L2(Γint) → 0,

B(u−n)→ 0 in H.

The proof is now completed. �

Finally, we prove the convergence of Algorithm 2.

Proof of Theorem 1.3. We began by observing that, as in the proof of Theorem 1.3, by Remark
4.4, we obtain that (4.11) holds.

On the other hand, for this algorithm, we get that un satisfies that

(4.15) G′(un)(v − un) + 〈λn, B(v − un)〉+ r〈Bun − ηn−1, B(v − un)〉 ≥ 0, ∀v ∈ V
Therefore, taking v = un in (4.8), v = u in (4.15) and fallowing the lines of the proof of Theorem
1.3, we get (4.13) and (4.14). The proof is now completed. �

5. Numerical Results

In this section, we only implement the uncoupled Algorithm 2. For any h, we obtain a
sequence {unh} such that unh → uh as n→ +∞, where uh is the minimizer of Jh.

For simplicity, we take
Jh(v) = F (Bv) +G(v),

where

F (q) =

∫
Ω

|q|p(x)

p(x)
dx,

G(v) =
1

2

(∫
Ω
|v − ξ|2 dx+

∫
∂Ω
|v − uD|2h−

2/p′(x) dS +

∫
Γint

|[[v]]|2h−2/p′(x) dS

)
.
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Observe that, this new definition of F does not change any of the results that we prove in the
preceding sections.

If we take ρn = r then the algorithm is:

Given
(η0, λ1) ∈ H ×H,

then, (ηn−1
h , λnh) known, we define (unh, η

n
h , λ

n+1
h ) ∈ V ×H ×H by

(5.16)

∫
Ω

(unh − ξ)v dx+ r

∫
Ω

(
Bunh − ηn−1

h

)
Bv dx+

∫
Ω
λnhBv dx

+

∫
Γint

[[unh]][[v]]h−
2/p′(x)dS +

∫
∂Ω

(unh − uD)vh−
2/p′(x)dS = 0,

∫
Ω
|ηnh |p(x)−2ηnhΦ dx+ r

∫
Ω

(ηnh −Bunh)Φ dx =

∫
Ω
λnhΦ dx,(5.17)

λn+1
h = λnh + r(Bunh − ηnh),(5.18)

for all v ∈ Sk(Th) and for all Φ ∈ Sl(Th)× Sl(Th).

Remark 5.1. Since V,H, F,G,B, ρn and r satisfy the assumptions of Theorem 1.4, then the
conclusions of Theorem 1.4 hold, that is, unh → uh and ∇unh → ∇uh, as n→ +∞.

Observe that (5.16) can be replace by,

MUn = Fn,

where

Mij =

∫
Ω
ϕiϕj dx+ r

∫
Ω
BϕiBϕj dx+

∫
Γint

[[ϕi]][[ϕi]]h
−2/p′(x) dS +

∫
∂Ω
ϕiϕjh

−2/p′(x) dS,

Fnj =

∫
Ω
ϕjξ dx+

∫
∂Ω
ϕjuDh−

2/p′(x) dS +

∫
Ω

(rηn−1
h − λnh)Bϕj dx,

and {ϕj}j≤m is a basis of V with m = dim(V ). Thus

unh =

m∑
j=1

Unj ϕj .

On the other hand, we define ηn,κ = ηnh |κ, in the same way we define λn,κ and Bκu
n
h. We can

see from (5.17) that ηn,κ satisfies(
1

|κ|

∫
κ
|ηn,κ|p(x)−2 dx+ r

)
ηn,κ = λn,κ +Bκu

n
h.

Let p̄κ = p(x̄κ), where x̄κ is the varicenter of κ. Then using a quadrature rule for the first
term, we can approximate ηn,κ by the equation,

(|ηn,κ|p̄κ−2 + r)ηn,κ = λn,κ +Bκu
n
h,

thus |ηn,κ| solves

(|ηn,κ|p̄κ−2 + r)|ηn,κ| = |λn,κ +Bκu
n
h|,

and therefore

ηn,κ =
λn,κ +Bκu

n
h

|ηn,κ|p̄κ−2 + r
.
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Summarizing, each iteration of the algorithm can be reduced to the following:

Find (unh, η
n
h , λ

n+1
h ) ∈ V ×H ×H such that

unh =
m∑
j=1

Unj ϕj ,

ηn,κ =
λn,κ +Bκu

n
h

xp̄κ−2 + r
,

λn+1
h = λnh + r(Bunh − ηnh).

where Un solves,

(5.19) MUn = Fn

and x ∈ R≥0 solves

(5.20) xp̄κ−1 + rx = |λn,κ +Bκu
n
h|,

Observe that each step of the algorithm consists in solving the linear equation (5.19) and then
the one dimensional nonlinear equation (5.20).

We now apply the algorithm to a family of examples. For each h, we approximate uh by unh,
and finally we compute ‖unh − u‖L2(Ω).

Motivate by [25], where the authors analyse a P0 discontinuous Galerkin formulation for image
denosing, we test this algorithm in the following example; we have considered a rectangular
domain Ω = [−1 1] × [−1 1] and a uniform rectangular mesh, with constant finite elements
in all the rectangles. We denote by m the number of degrees of freedom in the finite element
approximation. We take r = 1.

We take the following function p(x),

p(x) =

1 +

(
b

2
(x1 + x2) + 1 + b

)−1

if b 6= 0,

2 if b = 0.

Observe that p2 = 2 and p1 = 1 + 1/1+2b , then p1 is close to one when b >> 0.

It is easy to see that the solution of (P) is

u(x) =


√

2eb+1

b

(
e
b
2

(x1+x2) − 1
)

if b 6= 0,

√
2e

2
(x1 + x2) if b = 0.

with ξ = u.

The experimental results for different values of b and m are shown in the following table.
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b 0 0.25 0.5
m L2−Error Iter. L2−Error Iter. L2−Error Iter.

100 0.5921 3 0.7519 46 0.9214 50
196 0.4603 3 0.5932 47 0.7313 52
484 0.3185 3 0.4220 48 0.5271 56
961 0.2366 3 0.3228 49 0.4087 59
2916 0.1430 3 0.2101 50 0.2744 63

Where Iter. is the number of iterations required in the algorithm in order to satisfy our
stopping criteria. Observe that as b grows, the number of iterations increases and the rate of
convergence decreases.

102 103

10−0.8

10−0.6

10−0.4

10−0.2

100

Total DOF

L
2
−

E
rr
o
r

b = 0

b = 0.25

b = 0.5

References

1. D.N Arnold, F. Brezzi, B. Cockburn, and Marini, Unified analysis of discontinuous galerkin methods for
elliptic problems, SIAM J. Num. Anal (2002), no. 39, 1749–1779.

2. F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution
of the compressible Navier-Stokes equations, J. Comput. Phys. 131 (1997), no. 2, 267–279.
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