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Abstract. In this paper we study the problem of minimizing the Sobolev

trace Rayleigh quotient ‖u‖p
W1,p(Ω)

/‖u‖p
Lq(∂Ω)

among functions that vanish

in a set contained on the boundary ∂Ω of given boundary measure.
We prove existence of extremals for this problem, and analyze some partic-

ular cases where information about the location of the optimal boundary set

can be given. Moreover, we further study the shape derivative of the Sobolev
trace constant under regular perturbations of the boundary set.

1. Introduction

Sobolev inequalities have proved to be a fundamental tool in order to study
differential equations. Among Sobolev inequalities, one that have capture a great
deal of attention in recent years is the Sobolev trace inequality that states

S

(∫
∂Ω

|u|q dHN−1

)p/q
≤
∫

Ω

|∇u|p + |u|p dx,

for every u ∈W 1,p(Ω) for some constant S > 0, 1 ≤ q ≤ p∗, where p∗ is the critical
exponent in the Sobolev trace immersion, i.e. p∗ = p(N − 1)/(N − p) if 1 < p < N
and p∗ =∞ if p ≥ N (the equality q = p∗ does not hold in the limit case p = N).
Here Hs denotes, as usual, the s−dimensional Hausdorff measure, Ω ⊂ RN is a
smooth bounded domain (Lipschitz will be enough for most of our arguments).

In these inequalities, a fundamental role are played by the optimal constants and
their associated extremals. That is, respectively, the largest possible constant S in
the above inequality defined as

S = Sp,q(Ω) := inf
u∈X

∫
Ω
|∇u|p + |u|p dx(∫

∂Ω
|u|q dHN−1

)p/q
and extremals, which are functions w ∈ X where the above infimum is attained.
Here X is the space of admissible functions, X := W 1,p(Ω) \W 1,p

0 (Ω).

It is a well known fact that if 1 < p < N and 1 ≤ q ≤ p∗ or p ≥ N and
1 ≤ q < ∞ then the constant S is positive. For the existence of extremals, the
only case which is nontrivial is the critical one, 1 < p < N and q = p∗ where the
immersion W 1,p(Ω) ⊂ Lp∗(∂Ω) is no longer compact. (see, for instance [10, 11]).

The critical case (i.e. 1 < p < N and q = p∗) was analyzed in [12] and [16]. In
those papers the authors show that, under very mild assumptions on the domain
Ω (e.g. the existence of a boundary point of positive mean curvature) there exist
extremals for S.

Motivated by some problems in shape optimization for stored energies under
prescribed loadings, in [15] the authors study a variant of the trace inequality (see
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[15] for further discussion on the problem): Given a set A ⊂ Ω, minimize the
Rayleigh quotient over the class of functions that vanishes on A, i.e.

S(A) := inf
u∈XA

∫
Ω
|∇u|p + |u|p dx(∫

∂Ω
|u|q dHN−1

)p/q
where

XA := {u ∈ X : u = 0 a.e. on A}.
In the above mentioned paper [15], existence of extremals for S(A) is proved in the
subcritical case q < p∗ (see [16] for the critical case) and moreover the following
shape optimization problem is studied: Minimize S(A) among measurable sets
A ⊂ Ω such that HN (A) = αHN (Ω) for some fixed 0 < α < 1. A set A∗ that
minimizes S(A) is called an optimal set.

In [15] the existence of optimal sets is established and some geometric properties
of optimal sets are analyzed. Moreover, in the case p = 2 the interior regularity of
optimal sets is studied in [14]. See [13], where some asymptotic behavior of optimal
sets are studied (see also, Section 4). Further, in [8] and in [4] the so-called shape
derivative for S(A) is computed with respect to regular deformations on the set A.

One observes that, in all the above mentioned works, the sets where the test
functions are forced to vanish are interior sets, i.e. A ⊂ Ω of positive Lebesgue
measure. However, the important case of boundary sets, i.e. Γ ⊂ ∂Ω was not
treated previously. Hence, the main objective of this work is to fill this gap.

So, in this paper we study the best Sobolev trace constant from W 1,p(Ω) into
Lq(∂Ω) for functions that vanish on a subset Γ of ∂Ω, i.e.

(1.1) S(Γ) := inf
u∈XΓ

∫
Ω
|∇u|p + |u|p dx(∫

∂Ω
|u|q dHN−1

)p/q
where

XΓ := {u ∈ X : u = 0 HN−1 − a.e. Γ}.

Here, we consider exponents 1 ≤ q < p∗, so that the immersion W 1,p(Ω) ⊂
Lq(∂Ω) turns out to be compact. Therefore, the existence of extremals for S(Γ)
follows by direct minimization.

The critical case, could be treated by the same method employed in [16]. How-
ever, we will not do it in this article.

Next, we study the following optimization problem: Given 0 < α < 1, we look
for the value

(1.2) S(α) := inf
{
S(Γ) : Γ ⊂ ∂Ω,HN−1(Γ) = αHN−1(∂Ω)

}
.

A set Γ∗ ⊂ ∂Ω is called an optimal boundary hole, when it realizes the above
infimum, i.e. S(Γ∗) = S(α) and HN−1(Γ∗) = αHN−1(∂Ω).

One of the main issues of this paper is to show the existence and geometric
properties of optimal boundary holes.

Organization of the paper. The rest of the paper is organized as follows. After
a short section 2 were we collect some preliminary remarks, in section 3 we establish
the existence of optimal boundary holes. In section 4, we analyze the simpler case
where the domain Ω is a euclidean ball given a complete characterization of optimal
boundary holes for this simpler geometry. In order to have a better understanding
of more complex geometries, in section 5 we use a dimension reduction technique
to deal with domains that are stretched in some directions. Finally, in section 6, we
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compute the so–called shape derivative of S(Γ) for regular deformations of a fixed
boundary hole Γ.

2. Preliminary remarks

In this very short section, we give some preliminary observations that will be
helpful in the remaining of the paper.

First, observe that if u is an extremal for S(Γ) then u turns out to be a week
solution to the following Euler–Lagrange equation

(2.1)


−∆pu+ |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν = λ|u|q−2u on ∂Ω \ Γ,

u = 0 on Γ,

where ∆pu = div(|∇u|p−2∇u) is the usual p−Laplacian, ∂
∂ν is the outer unit normal

derivative and λ is a positive constant that depends on the normalization of u. This
is u ∈ XΓ and∫

Ω

|∇u|p−2∇u∇φ+ |u|p−2uφ dx = λ

∫
∂Ω

|u|q−2uφ dHN−1,

for every φ ∈ XΓ. Observe that, if ‖u‖Lq(∂Ω) = 1, then λ = S(Γ).

As a consequence of (2.1), we have the following remarks.

Remark 2.1. By the regularity results of [21], an extremal u of S(Γ), verify that

u ∈ C1,δ
loc (Ω) for some 0 < δ < 1.

Moreover, by [20], if ∂Ω \ Γ ∈ C1,η, then the regularity up to the boundary is

u ∈ C1,γ
loc (Ω \ Γ) for some 0 < γ < 1.

Remark 2.2. If u is an extremal of S(Γ), then we have that |u| is also an extremal
of S(Γ). Thus, using that |u| is a week solution of (2.1) and the maximum principle
(see [24]), we have that u has constant sign. Therefore, we can always assume that

u > 0 in Ω and u ≥ 0 on ∂Ω.

Moreover, by Hopf’s Lemma (see [24]) and the boundary regularity we obtain that
nonnegative solutions u to (2.1) verify

u > 0 in Ω \ Γ.

Finally, we need the following lemma on pointwise convergence for Sobolev func-
tions. We believe that this result is well-known but we were unable to find it in the
literature.

Lemma 2.3. Let {fn}n∈N ⊂ W 1,p(Ω) with 1 < p < N be such that fn → 0 as
n → ∞ in W 1,p(Ω). Then, there exists a subsequence {fnj}j∈N ⊂ {fn}n∈N and a

set B ⊂ Ω such that capp(B) = 0 and

fnj (x)→ 0, as j →∞ for x ∈ Ω \B.

Proof. The lemma is a consequence of Lemma 1 and Theorem 1 in Section 4.8 of [6].
In fact, by Lemma 1 in Section 4.8 of [6], we have, for α > 0, the Tchebyshev–type
inequality

capp(Mf > α) ≤ C

αp
‖f‖pW 1,p(Ω),
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where C is a positive constant that depends only on N , p and Mf is the Hardy-
Littlewood maximal function. So, if fn → 0 in W 1,p(Ω), there exists a subsequence,
{fnj}j∈N such that

capp(Mfnj > 1/j) <
C

2j
.

Let us define Aj := {Mfnj > 1/j} and let Bm := ∪∞j=mAj . Therefore,

capp(Bm) ≤
∞∑
j=m

capp(Aj) < C

∞∑
j=m

1

2j
.

Now, if x ∈ Ω \ Bm, Mfnj (x) < 1/j and by Theorem 1, section 4.8 of [6], it
follows that |fnj (x)| < 1/j, so fnj → 0 as j →∞ in Ω \Bm for all m ∈ N.

Since capp(Bm)→ 0 as m→∞ the result follows. �

3. The existence an optimal boundary hole

In this section, following ideas from [15], we first prove that S(Γ) is lower semi-
continuous with respect to the hole (Theorem 3.1). Then, we prove the existence
of an optimal boundary hole.

Theorem 3.1. Let {Γε}ε>0 be a family of positive HN−1−measurable subsets of
∂Ω and Γ0 ⊂ ∂Ω be a positive HN−1− measurable set, such that

χΓε
∗
⇀ χΓ0

∗ −weakly in L∞(∂Ω),

where χA is the characteristic function of the set A. Then,

S(Γ0) ≤ lim inf
ε→0+

S(Γε).

Proof. Let {Γn}n∈N be a subsequence of {Γε}ε>0 such that

L = lim inf
ε→0

S(Γε) = lim
n→∞

S(Γn).

For each n ∈ N, we consider un ∈ XΓn to be an extremal of S(Γn), such that

un ≥ 0 and ‖un‖Lq(∂Ω) = 1.

Therefore, the sequence {un}n∈N is bounded in W 1,p(Ω) and hence there exists a
function u ∈W 1,p(Ω), such that, for a subsequence still denoted by {un}n∈N,

un ⇀ u, weakly in W 1,p(Ω),(3.1)

un → u, strongly in Lp(Ω),(3.2)

un → u, strongly in Lq(∂Ω).(3.3)

In particular, we have that u ≥ 0, ‖u‖Lq(∂Ω) = 1 and

‖u‖W 1,p(Ω) ≤ lim inf
n→∞

‖un‖W 1,p(Ω).

Moreover, for each n ∈ N, un = 0 HN−1−a.e. on Γn. Thus, as

χΓn
∗
⇀ χΓ0

∗ −weakly in L∞(∂Ω)

and by (3.3), we have

0 = lim
n→∞

∫
Γn

un dHN−1 =

∫
Γ0

udHN−1.

Therefore, since u ≥ 0, we have that u = 0 HN−1−a.e. on Γ0. Thus u is an
admissible function in the characterization of S(Γ0) and

S(Γ0) ≤ ‖u‖pW 1,p(Ω) ≤ lim inf
n→∞

‖un‖pW 1,p(Ω) = L.

This finishes the proof. �
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Remark 3.2. There isn’t any monotonicity assumption on the family {Γε}ε>0.

The continuity of S(Γ) with respect to the topology of Theorem 3.1 does not
hold, as is shown in the following example.

Example 3.3. We take 1 < p ≤ N . The case for p > N is easier by the compact
embedding of W 1,p(Ω) into continuous functions.

Let Ω be a bounded domain in Rn that satisfies the interior ball condition for
all x ∈ ∂Ω. Let x0 ∈ ∂Ω and let E ⊂ ∂Ω be set of zero HN−1−measure such that
capp(E) > 0 and there exists r > 0 such that B(x0, r) ∩ E = ∅. Then, we take
Γ = B r

2
(x0) ∩ ∂Ω and Γn = Γ ∪ En where En = ∪x∈EB(x, 1

n ) ∩ ∂Ω for all n ∈ N.
Observe that

χΓ 1
n

∗
⇀ χΓ ∗ −weakly in L∞(∂Ω).

Let un be a positive normalized extremal for S(Γn). If we assume that S(Γn) →
S(Γ) as n→ +∞, we have that there exist u ∈W 1,p(Ω) such that, for a subsequence
still denote {un}n∈N, un → u strongly in W 1,p(Ω) and un → u strongly in Lq(∂Ω).
Therefore u is a positive normalized extremal for S(Γ). Moreover, by the Hopf’s
Lemma, un > 0 on ∂Ω \ Γn and u > 0 on ∂Ω \ Γ.

On the other hand, by Lemma 2.3, there exists a subsequence {unj}j∈N of

{un}n∈N and a set B ⊂ Ω such that capp(B) = 0 and unj (x) → u as j → ∞
for x ∈ Ω \ B. Then, as unj (x) = 0 for all x ∈ E and j ∈ N, and capp(E) > 0, we
have that u(x) = 0 for all x ∈ E, contrary to u > 0 on ∂Ω \ Γ.

Next we prove the existence of an optimal boundary hole. For this, we first need
to show the following lemma.

Lemma 3.4. For each α ∈ (0, 1), S(α) has also the following characterization:

S(α) := inf

{
‖v‖pW 1,p(Ω)

‖v‖pLq(∂Ω)

: v ∈ X, HN−1({v = 0}) ≥ αHN−1(∂Ω)

}
.

Proof. Let α ∈ (0, 1) and

S̃(α) := inf

{
‖v‖pW 1,p(Ω)

‖v‖pLq(∂Ω)

: v ∈ X, HN−1({v = 0}) ≥ αHN−1(∂Ω)

}
.

We want to prove that S(α) = S̃(α). For this, we proceed in two steps.

Step 1. First, we show that S̃(α) ≤ S(α).

Let Γ be a subset of ∂Ω such that HN−1(Γ) = αHN−1(∂Ω). Let u ∈ XΓ be a
nonnegative extremal for S(Γ).

Observe that, u is an admissible function in the characterization of S̃(α) and

S̃(α) ≤
‖u‖pW 1,p(Ω)

‖u‖pLq(Ω)

= S(Γ).

Consequently, we have that S̃(α) ≤ S(α).

Step 2. Now, we show that S(α) ≤ S̃(α).

Let {vn}n∈N be a minimizing sequence of S̃(α), i.e. vn ∈ X,

S̃(α) = lim
n→∞

‖vn‖pW 1,p(Ω)

‖vn‖Lq(∂Ω)
and HN−1({vn = 0}) ≥ αHN−1(∂Ω) ∀n ∈ N.
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Thus, for each n ≥ 1, we take

Γn ⊂ {vn = 0}
such that Γn is HN−1−measurable and HN−1(Γn) = αHN−1(∂Ω). Thus, we have

S(α) ≤ S(Γn) ≤
‖vn‖pW 1,p(Ω)

‖vn‖pLq(Ω)

∀ n ∈ N.

then, passing to the limit in the above inequality when n→∞, we have

S(α) ≤ lim
n→∞

S(Γn) = lim
n→∞

‖vn‖pW 1,p(Ω)

‖vn‖pLq(Ω)

= S̃(α).

The proof is complete. �

Now, we establish the main results of this section.

Theorem 3.5. Let 0 < α < 1. Then, there exist:

(a) A set Γ0 ⊂ ∂Ω, such that HN−1(Γ0) = αHN−1(∂Ω) and S(α) = S(Γ0);
(b) A function u ∈ X with HN−1({u = 0}) ≥ αHN−1(∂Ω), such that

S(α) =
‖u‖pW 1,p(Ω)

‖u‖pLq(∂Ω)

.

Proof. We divide the proof into two steps.

Step 1. First, we prove (b).

Let {vn}n∈N be a nonnegative normalized minimizing sequence for S(α), i.e. for
each n ≥ 1,

0 ≤ vn ∈ X, ‖vn‖Lq(∂Ω) = 1, HN−1({vn = 0}) ≥ αHN−1(∂Ω),

and

lim
n→∞

‖vn‖pW 1,p(Ω) = S(α).

Thus the sequence {vn}n∈N is bounded in W 1,p(Ω) and, therefore there exists a
function u ∈W 1,p(Ω) and a subsequence still denote {vn}n∈N such that

vn ⇀ u weakly in W 1,p(Ω),(3.4)

vn → u strongly in Lp(Ω),(3.5)

vn → u strongly in Lq(∂Ω),(3.6)

vn → u HN−1-a.e. in (∂Ω).(3.7)

From (3.6) and (3.7), we have that ‖u‖Lq(∂Ω) = 1 and

HN−1({u = 0}) ≥ lim sup
n→∞

HN−1({vn = 0}) ≥ αHN−1(∂Ω).

Thus, u is an admissible function in the definition of S(α), and therefore

S(α) ≤ ‖u‖pW 1,p(Ω).

The reverse inequality is clear, since from (3.4)

‖u‖pW 1,p(Ω) ≤ lim
n→∞

‖vn‖pW 1,p(Ω) = S(α).

Step 2. We show that (b) implies (a).

By (b), there exists u ∈ X such that HN−1({u = 0}) ≥ αHN−1(∂Ω) and

S(α) =
‖u‖pW 1,p(Ω)

‖u‖pLq(∂Ω)

.
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Thus, there exists a set Γ0 ⊂ {x ∈ ∂Ω: u(x) = 0} HN−1−mesurable such that

HN−1(Γ0) = αHN−1(∂Ω).

Then we have that

S(Γ0) ≤
‖u‖pW 1,p(Ω)

‖u‖pLq(∂Ω)

= S(α),

and HN−1(Γ0) = αHN−1(∂Ω). Therefore

S(α) = S(Γ0).

This finishes the proof. �

In the next Theorem we make a refinement of Theorem 3.5 and prove, under
further regularity assumptions on ∂Ω, that for any extremal u ∈ X, it holds that
HN−1({u = 0}) = αHN−1(∂Ω) (i.e. Γ0 = {u = 0} with the notation of the above
proof).

Theorem 3.6. Let u ∈ X be an extremal of S(α). Then, if Ω satisfies the interior
ball condition, we have that

HN−1({u = 0}) = αHN−1(∂Ω).

Proof. Let u ∈ X be an extremal of S(α), i.e. HN−1({u = 0}) ≥ αHN−1(∂Ω) and

S(α) =
‖u‖pW 1,p(Ω)

‖u‖pLq(∂Ω)

.

By contradiction, suppose the thesis were false, then

HN−1({u = 0}) > αHN−1(∂Ω).

Since Hs is a Borel regular measure (0 ≤ s < ∞), see [6], there exists a closed set
Γ0 ⊂ {x ∈ ∂Ω: u(x) = 0} such that

HN−1({u = 0}) > HN−1(Γ0) > αHN−1(∂Ω).

Consequently, it follows that
S(α) ≤ S(Γ0).

On the other hand, the function u is admissible in the characterization of S(Γ0),
hence

S(Γ0) ≤
‖u‖pW 1,p(Ω)

‖u‖pLq(∂Ω)

= S(α).

Therefore, S(α) = S(Γ0) and so u is also an extremal of S(Γ0). Thus u is a week
solution of the following problem

(3.8)


−∆pu+ |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u
∂ν = λ |u|q−2u on ∂Ω \ Γ0,

u = 0 on Γ0,

where λ depends on the normalization of u. Moreover, by Remark 2.1, u ∈ C1,γ
loc (Ω∪

(∂Ω \ Γ0)) for some 0 < γ < 1 and we can assume that u > 0 in Ω.

Now, by our assumption on Ω we can apply Hopf’s Lemma (cf. Remark 2.2), to
get

∂u

∂ν
> 0 on {x ∈ ∂Ω: u(x) = 0} \ Γ0.

That is a contradiction. �

Corollary 3.7. The set function S is strictly increasing with respect to α.
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Proof. It is clear that S(α) is nondecreasing. Now, if we suppose that there exists
0 < α < β < 1, such that S(α) = S(β), then an extremal for S(β) is also an extremal
for S(α). But, if u is an extremal for S(β), then

HN−1({u = 0}) = βHN−1(∂Ω) > αHN−1(∂Ω),

which is a contradiction to Theorem 3.6. Thus, S is strictly increasing. �

4. Example: the unit ball

Now, we study symmetry properties of optimal holes in the special case where
Ω is the unit ball, Ω = B(0, 1). First, we recall some of the definitions and results
concerning spherical caps. We address the reader to [19, 23].

Spherical Symmetrization. Given a measurable set A ⊂ RN , the spherical sym-
metrization A∗ of A is constructed as follows: for each positive r, take A∩∂B(0, r)
and replace it by the spherical cap of the same HN−1−measure and center reN .
This can be done for almost all r. The union of these caps is A∗. Now, the spherical
symmetrization u∗ of a given measurable function u ≥ 0 defined on Ω is constructed
by symmetrizing the super-level sets so that, for all t, {u∗ ≥ t} = {u ≥ t}∗. See
[19, 23].

The following theorem is proved in [19] (see also [23]).

Theorem 4.1 ([19]). Let u ∈W 1,p(B(0, 1)) and let u∗ be its spherical symmetriza-
tion. Then u∗ ∈W 1,p(B(0, 1)) and

(4.1)

∫
B(0,1)

|∇u∗|p dx ≤
∫
B(0,1)

|∇u|p dx,∫
B(0,1)

|u∗|p dx =

∫
B(0,1)

|u|p dx,∫
∂B(0,1)

|u∗|q dHN−1 =

∫
∂B(0,1)

|u|q dHN−1.

In this case we can prove the following.

Theorem 4.2. Let Ω = B(0, 1) and let 0 < α < 1. Then, there exists an optimal
boundary hole which is a spherical cap. Moreover, when p = 2, Γ is an optimal
boundary hole if, and only if Γ is a spherical cap (up to sets of zero HN−1−measure).

Proof. Fix α ∈ (0, 1), by the Theorem 3.5, there exists a function u ∈ X such that
HN−1({u = 0}) = αHN−1(∂B(0, 1)) and

S(α) =
‖u‖pW 1,p(B(0,1))

‖u‖pLq(∂B(0,1))

.

Let u∗ be the spherical symmetrization of u. Then u∗ is an admissible function in
the definition of S(α) and, by Theorem 4.1,

S(α) ≤
‖u∗‖pW 1,p(B(0,1))

‖u∗‖pLq(∂B(0,1))

≤
‖u‖pW 1,p(B(0,1))

‖u‖pLq(∂B(0,1))

= S(α).

Therefore

(4.2) S(α) =
‖u∗‖pW 1,p(B(0,1))

‖u∗‖pLq(∂B(0,1))

.
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Moreover, Γ := {x ∈ ∂B(0, 1) : u∗(x) = 0} is a spherical cap and, since HN−1({u =
0}) = αHN−1(∂B(0, 1)), we have that HN−1(Γ) = αHN−1(∂B(0, 1)). Then, using
(4.2), we get that

S(α) = S(Γ).

Now consider p = 2. Let Γ be an optimal boundary hole and let u be an extremal
of S(Γ). In this case, it is proved in [5] that if equality holds in (4.1) then for each
0 < r ≤ 1 there exists a rotation Rr such that

(4.3) u |∂B(0,r)= (u∗ ◦Rr) |∂B(0,r) .

We can assume that the axis of symmetry eN was taken so that R1 = Id. Therefore
u and u∗ coincide on ∂B(0, 1). Then the set {x ∈ ∂B(0, 1) : u(x) = 0} is an spherical
cap and, by Theorem 3.6, HN−1({u = 0}) = αHN−1(∂B(0, 1)). �

5. Dimension reduction

In this section, we are interested in the characterization of optimal boundary
holes, when we shrink some of the dimensions of the set Ω. This procedure of
dimension reduction is interesting for such domains Ω, where one of the directions
is smaller than other ones. We begin with a fundamental case when the set Ω is
given by a cartesian product, then we extend our results for more general domains.

The ideas in this section follow closely the ones in [9] where the behavior of the
best Sobolev trace constant for shrinking domains was analyzed and [13] where the
interior set problem was studied.

5.1. The product case. Let Ω1 and Ω2 be bounded domains respectively in Rn
and Rk, which are connected and have smooth boundaries. Set Ω = Ω1 × Ω2 and
for some 0 < µ < 1, define

(5.1) Ωµ = Ω1 × µΩ2 = {(x, µy) : (x, y) ∈ Ω}.

It is easy to see that ∂Ωµ = Ω1 × µ∂Ω2 ∪ ∂Ω1 × µΩ2 and

(5.2) HN−1(∂Ωµ) = µk−1Hn(Ω1) Hk−1(∂Ω2) + µkHn−1(∂Ω1) Hk(Ω2),

where we recall that N = n+ k. Moreover we see that, formally, Ω1 represents the
boundary of Ωµ in the limiting process. This fact will be made clear a posteriori.

Now let uµ be a function defined in Ωµ. We define, for each (x, y) ∈ Ω,

vµ(x, y) = uµ(x, µy).

Then, vµ is defined in Ω and enjoys the same regularity than uµ. More precisely,
we have the following

Lemma 5.1. If uµ ∈W 1,p(Ωµ), then vµ ∈W 1,p(Ω). Moreover,

HN−1 ({uµ = 0} ∩ ∂Ωµ) =µk−1 HN−1 ({vµ = 0} ∩ (Ω1 × ∂Ω2))

+ µk HN−1 ({vµ = 0} ∩ (∂Ω1 × Ω2)) .

Proof. The regularity of vµ is clear. On the other hand, since χB ≡ χA ◦Tµ, where

A = {(x, ζ) ∈ Ωµ ; uµ(x, ζ) = 0}, B = {(x, y) ∈ Ω ; vµ(x, y) = 0},
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and Tµ : Ω→ Ωµ Tµ(x, y) = (x, µy). We have that,

HN−1(A) =

∫
∂Ωµ

χA dHN−1

=

∫∫
Ω1×µ∂Ω2

χA dHk−1dx+

∫∫
∂Ω1×µΩ2

χA dHn−1dy

= µk−1

∫∫
Ω1×∂Ω2

χB dHk−1dx+ µk
∫∫

∂Ω1×Ω2

χB dHn−1dy

= µk−1HN−1 (B ∩ (Ω1 × ∂Ω2)) + µkHN−1 (B ∩ (∂Ω1 × Ω2)) .

The proof is now complete. �

In the remainder of this section, we consider subcritical exponents 1 ≤ q < p∗,
where p∗ is the critical exponent for the Sobolev embedding W 1,p(Ω1) ↪→ Lq(Ω1),
given by

p∗ =
pn

n− p
if 1 ≤ p < n or p∗ =∞ if p ≥ n.

Given α, µ ∈ (0, 1), we define

Sµ(α) := inf
{
S(Γ) : Γ ⊂ ∂Ωµ,H

N−1(Γ) ≥ αHN−1(∂Ωµ)
}

and

S(α) := inf

{
‖v‖pW 1,p(Ω1)

‖v‖pLq(Ω1)

: v ∈W 1,p(Ω1), Hn ({x ∈ Ω1 : v(x) = 0}) ≥ αHn(Ω1)

}
.

Observe that S(α) is the best Sobolev constant of the embedding W 1,p(Ω1) ⊂
Lq(Ω1) for functions that vanish on a subset of Ω1 of a given positive measure
greater than or equal to αHn(Ω1).

Remark 5.2. Arguing as in section 2 (cf. with [15] where the interior set case is
studied), we can prove that for every 0 < α < 1 there exists vα ∈ W 1,p(Ω1) such
that

Hn({x ∈ Ω1 : vα(x) = 0}) = αHn(Ω1) and S(α) =
‖vα‖pW 1,p(Ω1)

‖vα‖pLq(Ω1)

.

Moreover, S(α) is strictly increasing as a function of α.

Next, we give a characterization of the asymptotic, as µ→ 0+, behavior of Sµ(α).
In fact, we see that, properly rescaled, the limit behavior is given by S(α).

In order to do this, we need a couple of lemmas. The first one is easy and was
proved in [8].

Lemma 5.3 ([8], Lemma 3.1). Let Ω1 ⊂ Rn be a domain and let fj , f : Ω1 → R
be nonnegative measurable functions (j = 1, 2, . . . ) such that fj → f a.e. in Ω1.
Set Aj = {x ∈ Ω1 : fj(x) = 0} and A = {x ∈ Ω1 : f(x) = 0} and suppose that
Hn(Aj)→ Hn(A) as j → +∞. Then

lim
j→+∞

HN−1(Aj∆A) = 0.

The second lemma gives the right continuity of S(α) with respect to α.

Lemma 5.4. Let 1 ≤ p < n, 1 ≤ q < p∗ and 0 < α0 < 1. Then,

lim
α→α+

0

S(α) = S(α0).
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Moreover, if we denote by vα a nonnegative extremal for S(α) normalized such that
‖vα‖Lq(Ω1) = 1, then there exists a sequence {αj}j∈N, αj > 0 for every j ∈ N, such

that αj → α+
0 as j → +∞ and

(5.3) lim
j→+∞

vαj = v strongly in W 1,p(Ω1),

where v is a nonnegative extremal for S(α0).

Lastly, if Aj = {x ∈ Ω1 : vαj (x) = 0} and A = {x ∈ Ω1 : v(x) = 0}, we have that

(5.4) lim
j→+∞

Hn(Aj∆A) = 0.

Proof. For this, we proceed in three steps.

Step 1. First, we prove that S(α)→ S(α0) as α↘ α0.

We begin by observing that, since S(·) is increasing by Remark 5.2, there exists

(5.5) L = lim
α→α+

0

S(α) and L ≥ S(α0).

On the other hand, by Remark 5.2, there exists vα0 ∈ W 1,p(Ω1) an extremal of
S(α0) such that ‖vα0‖Lq(Ω1) = 1 and

Hn(Aα0
) = α0H

n(Ω1),

where Aα0 = {x ∈ Ω1 : vα0(x) = 0}.
Now we choose a smooth function η satisfying

η = 0 in B(0, 1),

η = 1 in Rn \B(0, 2),

0 ≤ η ≤ 1 and ‖∇η‖L∞(Rn) ≤ 2.

Take x0 ∈ Ω1 \ Aα0
a point of density one (see definition in Chapter 1.7 of [6])

and for each ε > 0, set ηε(x) = η(x−x0

ε ) and wε = ηεvα0
∈W 1,p(Ω). Observe that

(5.6) Hn ({x ∈ Ω1 : wε(x) = 0}) > α0H
n(Ω1),

for ε sufficiently small and

(5.7) lim
ε→0+

‖wε‖Lq(Ω1) = ‖vα‖Lq(Ω1) ∀q ∈ [1, p∗].

Moreover

‖∇wε‖Lp(Ω1) ≤ ‖∇ηεvα0 + ηε∇vα0‖Lp(Ω1)

≤ ‖∇ηεvα0
‖Lp(Ω1) + ‖∇vα0

‖Lp(Ω1)

≤ C

ε
‖vα0‖Lp(B(x0,2ε)\B(x0,ε)) + ‖∇vα0‖Lp(Ω1)

and, by Hölder’s inequality, we get that

(5.8) ‖∇wε‖Lp(Ω1) ≤ C‖vα0‖Lp∗ (B(x0,2ε)\B(x0,ε)) + ‖∇vα0‖Lp(Ω1),

where C is a constant independent of ε. Then, by (5.6), there exist δ > 0 such that

Hn ({x ∈ Ω1 : wε(x) = 0}) > αHn(Ω1) ∀0 < α− α0 < δ.

Therefore, wε is an admissible function in the definition of S(α) and, using (5.8),
we have that

S(α) ≤
‖wε‖pW 1,p(Ω1)

‖wε‖pLq(Ω1)

≤

(
C‖vα0‖Lp∗ (B(x0,2ε)\B(x0,ε)) + ‖∇vα0‖Lp(Ω1)

)p
+ ‖wε‖pLp(Ω1)

‖wε‖pLq(Ω1)
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for all α > α0. Then, by (5.5),

L ≤

(
C‖vα0

‖Lp∗ (B(x0,2ε)\B(x0,ε)) + ‖∇vα0
‖Lp(Ω1)

)p
+ ‖wε‖pLp(Ω1)

‖wε‖pLq(Ω1)

∀ε > 0.

Lastly, taking limit as ε→ 0+ and using (5.7) and (5.5), we get that

L ≤
‖vα0
‖pW 1,p(Ω1)

‖vα0‖
p
Lq(Ω1)

= S(α0) ≤ L.

Then, we have that

(5.9) lim
α→α+

0

S(α) = S(α0),

as we wanted to show.

Step 2. Now, we prove that (5.3) holds.

Let vα be a nonnegative extremal for S(α) normalized such that ‖vα‖Lq(Ω1) = 1.
Thus, by (5.9), we have that

(5.10) S(α0) = lim
α→α+

0

S(α) = lim
α→α+

0

‖vα‖pW 1,p(Ω1),

and therefore {vα} is bounded in W 1,p(Ω1). Then, there exists a sequence {αj}
such that αj → α+

0 as j → +∞ and

vαj ⇀ v weakly in W 1,p(Ω1),(5.11)

vαj → v strongly in Lp(Ω1),(5.12)

vαj → v strongly in Lq(Ω1),(5.13)

vαj → v Hn-a.e. in (Ω1),(5.14)

where v ∈W 1,p(Ω1). Since ‖vαj‖Lq(Ω1) = 1 for all j ∈ N, using (5.13), we have that
‖v‖Lq(Ω1) = 1 and by (5.14) v is nonnegative. By (5.10), (5.11) and (5.12), we get
that

(5.15) S(α0) = lim
j→+∞

‖vαj‖
p
W 1,p(Ω1) ≥ ‖v‖

p
W 1,p(Ω1),

and using (5.14), we have that

(5.16) α0H
n(Ω1) ≤ lim inf

j→+∞
Hn(Aj) ≤ lim sup

j→+∞
Hn(Aj) ≤ Hn(A),

where Aj = {x ∈ Ω1 : vαj (x) = 0} and A = {x ∈ Ω1 : v(x) = 0}. Then, v is an
admissible function in the definition of S(α0), and using (5.15), we get that

S(α0) ≤ ‖v‖pW 1,p(Ω1) ≤ S(α0).

Therefore v is an extremal for S(α0) and, by (5.10), we have

(5.17) lim
j→+∞

‖vαj‖W 1,p(Ω1) = ‖v‖W 1,p(Ω1).

Moreover, using (5.11) and (5.17), we can conclude that

lim
j→+∞

vαj = v strongly in W 1,p(Ω1).

Step 3. Lastly, we prove that (5.4) holds.

First, we prove that Hn(A) = α0H
n(Ω1). On the contrary, suppose that

Hn(A) > α0H
n(Ω1), then there exists j0 such that Hn(A) > αjH

n(Ω1) for all
j ≥ j0 and therefore

S(α0) = ‖v‖pW 1,p(Ω1) > S(αj) > S(α0)



OPTIMAL BOUNDARY HOLES 13

and we obtain a contradiction. Thus Hn(A) = α0H
n(Ω1) and by (5.16)

lim
j→+∞

Hn(Aj) = Hn(A).

Then, by (5.14) and Lemma 5.3, we have that

lim
j→+∞

Hn(Aj∆A) = 0.

This finishes the proof. �

We arrive now at the main result of this section.

Theorem 5.5. Let 0 < α, µ < 1, 1 ≤ p < n, and 1 ≤ q < p∗, then

lim
µ→0+

Sµ(α)

µ
k(q−p)+p

q

=
Hk(Ω2)

Hk−1(∂Ω2)
p
q

S(α).

Proof. We begin by proving

lim sup
µ→0+

Sµ(α)

µ
k(q−p)+p

q

≤ Hk(Ω2)

Hk−1(∂Ω2)
p
q

S(α).

Let

αµ = α

(
1 + µ

Hn−1(∂Ω1)Hk(Ω2)

Hn(Ω1)Hk−1(∂Ω2)

)
.

and take v ∈W 1,p(Ω1) such that

Hn (A) ≥ αµHn(Ω1),

where
A = {x ∈ Ω1 : v(x) = 0} .

Then, if we take u(x, y) = v(x) for all (x, y) ∈ Ωµ, we have that

HN−1 ({w = 0} ∩ ∂Ωµ) ≥ HN−1
(
{w = 0} ∩

(
Ω1 × µ∂Ω2

))
≥ HN−1 (A× µ∂Ω2)

= µk−1Hn(A)Hk−1(∂Ω2)

≥ µk−1αµH
n(Ω1)Hk−1(∂Ω2)

= αHN−1(∂Ωµ).

Therefore, u is an admissible function in the characterization of Sµ(α) (see Lemma
3.4), then

Sµ(α) ≤

∫∫
Ωµ
|∇w|p + |w|p dxdy(∫

∂Ωµ
|w|q dHN−1

) p
q

=
µkHk(Ω2)

∫
Ω1
|∇v|p + |v|p dx(

µk−1Hk−1(∂Ω2)
∫

Ω1
|v|qdx+ µkHk(Ω2)

∫
∂Ω1
|v|q dHn−1

) p
q

≤ µ
k(q−p)+p

q
Hk(Ω2)

Hk−1(∂Ω2)
p
q

∫
Ω1
|∇v|p + |v|p dx(∫
Ω1
|v|qdx

) p
q

.

Thus, taking infimum over all v ∈W 1,p(Ω1) such that

Hn ({x ∈ Ω1 : v(x) = 0}) ≥ αµHn(Ω1),

we get that
Sµ(α)

µ
k(q−p)+p

q

≤ Hk(Ω2)

Hk−1(∂Ω2)
p
q

S(αµ).
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Therefore, using Lemma 5.4,

(5.18) lim sup
µ→0+

Sµ(α)

µ
k(q−p)+p

q

≤ Hk(Ω2)

Hk−1(∂Ω2)
p
q

S(α).

On the other hand, for each µ there exist there exists an extremal uµ ∈W 1,p(Ωµ)
of Sµ(α) such that

(5.19)

∫∫
Ω1×∂Ω2

|vµ|qdxdHk−1 + µ

∫∫
∂Ω1×Ω2

|vµ|qdHn−1dy = 1,

where vµ(x, y) = uµ(x, µy).

Then,

Sµ(α) =

∫∫
Ωµ
|∇uµ|p + |uµ|p dxdy(∫

∂Ωµ
|uµ|q dHN−1

)p/q
=

∫∫
Ω

(
|(∇xvµ, µ−1∇yvµ)|p + |vµ|p

)
µk dxdy(

µk−1
∫∫

Ω1×∂Ω2
|vµ|qdxdHk−1 + µk

∫∫
∂Ω1×Ω2

|vµ|qdHn−1dy
) p
q

= µ
k(q−p)+p

q

(∫∫
Ω

|(∇xvµ, µ−1∇yvµ)|p + |vµ|p dxdy

)
.

Thus,

(5.20)
Sµ(α)

µ
k(q−p)+p

q

=

∫∫
Ω

|(∇xvµ, µ−1∇yvµ)|p + |vµ|p dxdy ∀µ ∈ (0, 1).

Let {µj}j∈N be a sequence such that µj → 0+ as j →∞ and

lim inf
µ→0+

Sµ(α)

µ
k(q−p)+p

q

= lim
j→+∞

Sµj (α)

µ
k(q−p)+p

q

j

.

To simplify the notation, we write vj instead of vµj for all j ∈ N.
Then, by (5.18), we have that {vj}j∈N is bounded in W 1,p(Ω). Therefore, there

exists a function v ∈ W 1,p(Ω) and a subsequence of {vj}j∈N (still denoted by
{vj}j∈N) such that

vj ⇀ v weakly in W 1,p(Ω),(5.21)

vj → v strongly in Lp(Ω),(5.22)

vj → v strongly in Lq(∂Ω).(5.23)

Observe that, by (5.23), we have that

vj → v strongly in Lq(∂Ω1 × Ω2),(5.24)

vj → v strongly in Lq(Ω1 × ∂Ω2),(5.25)

and, using (5.19), (5.24) and (5.25), we get∫∫
Ω1×∂Ω2

|v|q dxdHk−1 = 1,

from where we conclude that v 6≡ 0.

Now, using again (5.18) and (5.20), we have that there exists a constant C such
that ∫∫

Ω

|µ−1
j ∇yvj |

p dxdy ≤ C ∀j ∈ N,
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then {µ−1
j ∇yvj}j∈N is bounded in Lp(Ω) and∫∫

Ω

|∇yvj |p dxdy ≤ Cµpj → 0 as j →∞.

Therefore v does not depend on y, i.e. v = v(x) and

(5.26) 1 =

∫∫
Ω1×∂Ω2

|v|q dxdHk−1 = Hk−1(∂Ω2)

∫
Ω1

|v|qdx.

On the other hand, using that {µ−1
j ∇yvj}j∈N is bounded in Lp(Ω), there exist

w ∈ Lp(Ω) such that

µ−1
j ∇yvj ⇀ w weakly in Lp(Ω).

Then

lim inf
µ→0+

Sµ(α)

µ
k(q−p)+p

q

= lim
j→+∞

Sµj (α)

µ
k(q−p)+p

q

j

= lim
j→+∞

∫∫
Ω

|(∇xvj , µ−1
j ∇yvj)|

p + |vj |p dxdy

≥
∫∫

Ω

|(∇xv, w)|p + |v|p dxdy

≥ Hk(Ω2)‖v‖pW 1,p(Ω1),

and, by (5.26), we get

(5.27) lim inf
µ→0+

Sµ(α)

µ
k(q−p)+p

q

≥ Hk(Ω2)

Hk−1(∂Ω2)
p
q

‖v‖pW 1,p(Ω1)

‖v‖
p
q

Lq(Ω1)

.

Lastly, by (5.2), Lemma 5.1 and since uµj is an extremal for Sµj (α) for all j ∈ N,
we have that

αHn(Ω1)Hk−1(∂Ω2) ≤HN−1({vj = 0} ∩ (Ω1 × ∂Ω2))

+ µjH
N−1({vj = 0} ∩ (∂Ω1 × Ω2))

for all j ∈ N. Then, using (5.25), we get that

αHn(Ω1)Hk−1(∂Ω2) ≤ lim sup
j→+∞

HN−1({vj = 0} ∩ (Ω1 × ∂Ω2))

≤ HN−1({v = 0} ∩ (Ω1 × ∂Ω2))

= HN−1 (({v = 0} ∩ Ω1)× ∂Ω2)

= Hn(({v = 0} ∩ Ω1)Hk−1(∂Ω2).

Thus,

αHn(Ω1) ≤ Hn({v = 0} ∩ Ω1),

and v is an admissible function in the characterization of S(α). Then, using (5.18)
and (5.27), we have that

Hk(Ω2)

Hk−1(∂Ω2)
p
q

S(α) ≤ lim inf
µ→0+

Sµ(α)

µ
k(q−p)+p

q

≤ lim sup
µ→0+

Sµ(α)

µ
k(q−p)+p

q

≤ Hk(Ω2)

Hk−1(∂Ω2)
p
q

S(α).

The proof is now complete. �
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5.2. The case n = 1. When the limit problem is one-dimensional we can give a
more precise description of the situation. So in this subsection we consider the case
Ω1 = (a, b) ⊂ R, an interval.

In [13] the following Theorem regarding the limit problem for n = 1 is proved

Theorem 5.6 ([13], Theorem 1.2). The optimal limit constant S(α) is attained
only for a hole A∗ = (a, a+α(b− a)) or A∗ = (b−α(b− a), b), that is the best hole
is an interval concentrated on one side of the interval (a, b). Moreover, the optimal
limit constant is given by

S(α) =
(2π)p(p− 1)

(2α(b− a)p sin (πp ))p
+ 1.

As a consequence of this Theorem, we have the following Corollary on the ap-
proximate shape and location of optimal boundary holes

Corollary 5.7. For µ small enough the best boundary hole Γµ for the domain
Ωµ = (a, b)× µΩ2 with measure HN−1(Γµ) = αHN−1(∂Ωµ) looks like Γµ ' (a, a+
α(b− a))× ∂µΩ2 or like Γµ ' (b− α(b− a), b)× ∂µΩ2.

5.3. General geometries. We finish this section by observing that, once the prod-
uct case is studied, the extension of our results to more general domains Ω in RN
than a product is done by a standard procedure. Cf. with [9, 13].

So, in this case we let Ωµ = {(x, µy) : (x, y) ∈ Ω}.
We have the following

Theorem 5.8. Let Ω be a bounded and Lipschitz domain in RN . Let Ωx be the
x−section of Ω and P (Ω) be the projection of Ω onto de x variable, i.e.

Ωx := {y ∈ Rk : (x, y) ∈ Ω} and P (Ω) := {x ∈ Rn : Ωx 6= ∅}.

Then, if we call ρ(x) = Hk(Ωx) and β(x) = Hk−1(∂Ωx) we have that

lim
µ→0+

Sµ(α)

µ
k(q−p)+p

q

= S(α, ρ, β),

where

S(α, ρ, β) = inf


∫
P (Ω)

(|∇v|p + |v|p) ρ(x)dx(∫
P (Ω)

|v|qβ(x)dx
) p
q

: v ∈ A(α)


with

A(α) =
{
v ∈W 1,p(P (Ω), ρ) : Hn({x ∈ P (Ω): v(x) = 0}) ≥ αHn(P (Ω)

}
.

Here W 1,p(P (Ω), ρ) is the weighted Sobolev space,

W 1,p(P (Ω), ρ) =

{
v : P (Ω)→ R :

∫
P (Ω)

(|∇v|p + |v|p)ρ(x) dx < +∞

}
.

Proof. Once the product case is studied, the extension to general geometries is
analog to Theorem 1.1 in [9]. See also Theorem 1.3 in [13]. We omit the details. �
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6. Shape derivative

In this section, we are interested in the computation of the derivative of the set
function S(·) with respect to regular deformations of the set. The formula obtained
in this way could the be used in the (numerical) computation of optimal boundary
holes. This approach have been used with relevant success in similar problems. See
[3, 8, 17, 22] and references therein.

Since the domain of S(·) are sets contained at the boundary ∂Ω which is a
manifold of codimension one, we must take deformations of sets, which stays in ∂Ω.

We begin describing the kind of variations we are going to consider. Let
V : RN → RN be a Lipschitz field such that, V · ν = 0 on ∂Ω, where ν is the
outer unit normal vector to ∂Ω, and

spt(V ) ⊂ Ωδ := {x ∈ RN : dist(x, ∂Ω) < δ}

for some δ > 0 small, where spt(V ) is the support of V .

Now, we consider the flow associated to the field V . Let Φ: [0,∞)×RN → RN ,
satisfying

d

dt
Φt(x) = V

(
Φt(x)

)
, Φ0(x) = x,

where Φt(·) ≡ Φ(t, ·).
It is not difficult to see that, for each t fixed, Φt is a diffeomorphism. Indeed,

by construction of the flow, Φt is invertible with inverse given by Φ−t. In [17], the
following asymptotic formulas were proved

Φt(x) = x+ t V (x) + o(t),

DΦt(x) = Id+ tDV (x) + o(t),

DΦt(x)−1 = Id− tDV (x) + o(t),

JΦt(x) = 1 + t divV (x) + o(t),

JτΦt(x) = 1 + t divτV (x) + o(t),

for all x ∈ RN , where JΦt is the Jacobian of the flow and divτ denotes the tangential
component of the divergence operator.

So, given Γ ⊂ ∂Ω, we are allowed to define

(6.1) Γt := Φt(Γ) ⊂ ∂Ω,

and

(6.2) s(t) := S(Γt).

Observe that s(0) = S(Γ).

Remark 6.1. By construction, the flow preserves the topology of the initial domain.
Therefore, if Γ is a connected set, then Γt will be also connected. In fact, this is one
of the characteristic of the shape derivative, opposite, for instance, to the topological
derivative, see [1, 2, 7, 18], etc.

Our first result of this section shows that, s(t) is continuous with respect to t at
t = 0.

Theorem 6.2. With the previous notation,

lim
t→0+

s(t) = S(Γ).
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Proof. Let u ∈ XΓ and we consider v = u ◦ Φ−1
t ∈ XΓt . By the change of variables

formula, we have ∫
Ω

|v|p dx =

∫
Ω

|u|p dx+ t

∫
Ω

|u|p dx+ o(t),

and∫
Ω

|∇v|p dx =

∫
Ω

|∇u|p dx+t

∫
Ω

(
|∇u|p divV − p|∇u|p−2〈∇u,DV T∇uT 〉

)
dx+o(t).

Then, ∫
Ω

|∇v|p + |v|p dx =

∫
Ω

|∇u|p + |u|p dx+ tR(u) + o(t),

where

R(u) =

∫
Ω

(|u|p + |∇u|p) divV dx− p
∫

Ω

|∇u|p−2〈∇u,DV T∇uT 〉dx.

On the other hand, by the change of variables formula on manifolds, see [17], we
obtain ∫

∂Ω

|v|q dHN−1 =

∫
∂Ω

|u|q dHN−1 + t

∫
∂Ω

|u|q divτV dHN−1 + o(t).

Then,

(6.3)

s(t) ≤
∫

Ω
|∇v|p + |v|p dx(∫

∂Ω
|v|q dHN−1

) p
q

=

∫
Ω
|∇u|p + |u|p dx+ tR(u) + o(t)(∫

∂Ω
|u|q dHN−1 + t

∫
∂Ω
|u|q divτV dHN−1 + o(t)

) p
q

,

and therefore

lim sup
t→0+

s(t) ≤
∫

Ω
|∇u|p + |u|p dx(∫

∂Ω
|u|q dHN−1

) p
q

∀u ∈ XΓ.

Then

(6.4) lim sup
t→0+

s(t) ≤ S(Γ).

Now, let {tn}n∈N such that tn → 0+ as n→∞ and

(6.5) lim inf
t→0+

s(t) = lim
n→∞

s(tn).

For each n ∈ N, let vn be an positive normalized extremal of s(tn), i.e. vn ∈ XΓtn
,

vn > 0 in Ω, ‖vn‖Lq(∂Ω) = 1 and

(6.6) s(tn) =

∫
Ω

|∇vn|p + |vn|p dx.

Using (6.4) and (6.5), we have that {vn}n∈N is bounded in W 1,p(Ω) and therefore
there exists u ∈ W 1,p(Ω) and some subsequence of {vn}n∈N (still denote {vn}n∈N)
such that

vn ⇀ u, weakly in W 1,p(Ω),(6.7)

vn → u, strongly in Lp(Ω),(6.8)

vn → u, strongly in Lq(∂Ω).(6.9)

Then, u ≥ 0 and ‖u‖Lq(∂Ω) = 1 and

lim inf
t→0+

s(t) ≥
∫

Ω

|∇u|p + |u|p dx.
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On the other hand, since Φ−t → Id in the C1 topology when t→ 0 and using (6.9),
we have ∫

∂Ω

uχΓ dHN−1 = 0

and therefore u ∈ XΓ. Then, using (6.4)

S(Γ) ≤
∫

Ω

|∇u|p + |u|p dx ≤ lim inf
t→0+

s(t) ≤ lim sup
t→0+

s(t) ≤ S(Γ).

Thus,
lim
t→0+

s(t) = S(Γ).

The proof is now completed. �

Remark 6.3. Observe that, in the above prove, we really have that vn → u strongly
in W 1,p(Ω) when n→∞ because ‖vn‖W 1,p(Ω) → ‖u‖W 1,p(Ω) when n→∞ and by
(6.7).

Now we arrive at the main result of this section.

Theorem 6.4. If Γ ⊂ ∂Ω is a positive HN−1−measurable subset, we have that s(t)
is differentiable at t = 0 and

(6.10)
ds

dt
(0) = −p

q
S(Γ)

∫
∂Ω

|u|q divτV dHN−1 +R(u),

where

R(u) =

∫
Ω

(|u|p + |∇u|p) divV dx− p
∫

Ω

|∇u|p−2〈∇u,DV T∇uT 〉dx

and u is an extremal of S(Γ).

Proof. Let u be a positive normalized extremal of S(Γ). Then, using (6.3), we have
that

s(t) ≤ S(Γ) + tR(u) + o(t)(
1 + t

∫
∂Ω
|u|q divτV dHN−1 + o(t)

) p
q

.

Thus, for all t > 0

s(t)− S(Γ)

t
≤S(Γ)

t

1−
(
1 + t

∫
∂Ω
|u|q divτV dHN−1 + o(t)

) p
q(

1 + t
∫
∂Ω
|u|q divτV dHN−1 + o(t)

) p
q

+
R(u) + o(1)(

1 + t
∫
∂Ω
|u|q divτV dHN−1 + o(t)

) p
q

,

Therefore

(6.11) lim sup
t→0+

s(t)− S(Γ)

t
≤ −p

q
S(Γ)

∫
∂Ω

|u|q divτV dHN−1 +R(u).

On other hand, let {tn}n∈N be a positive sequence such that tn → 0+ when
n→∞, and

lim inf
t→0+

s(t)− S(Γ)

t
= lim
n→∞

s(tn)− S(Γ)

tn
.

Observe that, by Lemma 6.2, we have that s(tn) → S(Γ). We can now proceed
analogously to the proof of Lemma 6.2, and we find a subsequence of {tn}n∈N (still
denote {tn}n∈N) such that

vn → u strongly in W 1,p(Ω),

where vn is an positive normalized extremal of s(tn) for all n ∈ N and u is an
positive normalized extremal of S(Γ), see also Remark 6.3.
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Thus, taking un = vn ◦ Φtn ∈W
1,p
Γ (Ω), we get

S(Γ) ≤ s(tn)− tnR(vn) + o(tn)(
1− tn

∫
∂Ω
|vn|q divτV dHN−1 + o(tn)

) p
q

.

Then

s(tn)− S(Γ)

tn
≥ s(tn)

tn

(
1− tn

∫
∂Ω
|cn|q divτV dHN−1 + o(tn)

) p
q − 1(

1− tn
∫
∂Ω
|vn|q divτV dHN−1 + o(t)

) p
q

+
R(vn) + o(1)(

1− tn
∫
∂Ω
|vn|q divτV dHN−1 + o(tn)

) p
q

.

Therefore

(6.12)

lim inf
t→0+

s(t)− S(Γ)

t
= lim
n→∞

s(tn)− S(Γ)

tn

≥ −p
q
S(Γ)

∫
∂Ω

|u|q divτV dHN−1 +R(u).

Thus, by (6.11) and (6.12), we have that s(t) is differentiable at t = 0 and (6.10)
holds. �

Remark 6.5. One observes that, we do not need in our approach the derivative of
the eigenfunctions.

Remark 6.6. It would be desirable to obtain a simplification of Formula (6.10). In
many problems (cf. [8, 17, 22], etc) this can be done by using, in an appropriate
way, the equation satisfied by u. In our case, the obstruction we have encountered
in order to do that, is the lack of regularity of u at the boundary. A similar problem
was found in [3] where the authors attempt to overcome this difficulty by working
on a subset Ωδ ⊂ Ω and then passing to the limit (however, the results are not
completely satisfactory). In our case, since we cannot control the normal derivative
of u in Ωδ, this approach does not seems to be feasible.
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