AN OPTIMIZATION PROBLEM FOR THE FIRST EIGENVALUE
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ABSTRACT. In this paper we analyze an eigenvalue problem related to the
nonlocal p—laplace operator plus a potential. After reviewing some elemen-
tary properties of the first eigenvalue of these operators (existence, positivity
of associated eigenfunctions, simplicity and isolation) we investigate the de-
pendance of the first eigenvalue on the potential function and establish the
existence of some optimal potentials in some admissible classes.

1. INTRODUCTION
In this paper we study the following non-linear non-local eigenvalue problem
{ (=Ap)*u+ V(2)|ulP?u = AuP"2u in Q,

(1.1) .
u=0 in R"\ Q,

where 0 C R™, n > 1, is a smooth bounded domain, 0 < s < 1 < p < oo, and
A € R. The potential V' is in L9((2), max{1, 3} < ¢ < oo, and (=A,)" is the
fractional p-Laplacian operator, which for smooth functions with compact support
(actually C?(R™) N L°(R™) is enough) is given by

12) (B uw) = py. [ M) ),

o =y

Observe that, in the case p = 2, (—A2)® = (—A)? is the usual fractional Laplace
operator.

First, we devoted the paper to the study of problem (1.1). For this eigenvalue
problem we prove the existence of a first eigenvalue and then analyze properties of
the associated eigenfunction.

Once the existence of this first eigenvalue is established we arrive at the main
point of this article, that is the optimization of this first eigenvalue with respect to
the potential function V.

This type of problems appears naturally in the study of the fractional Shrédinger
equation. The eigenvalues and eigenfunctions of (1.1) are the associated fundamen-
tal states of the system. This is of particular interest in the case p = 2. See [13].
We want to stress that all the results in this paper are new even in the linear case
that corresponds to p = 2.

The problem that we want to address is the following. Suppose that we know
that the potential V' posseses some bound (say ||V, < M), then what can be said
about the fundamental state of the system? That is, if we only know the information

n
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of ||Vl for some g > 1, then what bounds can we have for the first eigenvalue of
(1.1) and what information can we deduce of the associated eigenfunction.

In the classical linear setting, that is when p = 2 and when the fractional lapacian
is replaced by the standard laplacian operator, this problem was first studied in [3]
and then extended to the p—laplacian operator in [9].

As far as we know, no investigation was done so far in the fractional setting.

Organization of the paper. After this short introduction, we include a section
(Section 2) where some preliminaries on fractional Sobolev spaces that are used
throughout the paper are collected.

In Section 3 we analyzed problem (1.1) and show the existence of a first eigen-
value, together with a nonnegative associated eigenfunction. Moreover, we show
the simplicity and isolation of this eigenvalue.

In Section 4, we study some properties about the dependence of the principal
eigenvalue on the potential function V.

Finally, in Section 5, we prove the main results of the paper that is the study of
the optimization problem for (1.1) where V is restricted to belong to some ball in
L.

2. PRELIMINARIES

2.1. Fractional spaces. Let us recall some well known facts about fractional
spaces. Among the many references in this subject, let us mention [1, 7, 11], which
are enough for our purposes. Throughout this section we consider 0 < s < 1 and
1 < p < oo to be fixed. Given an open set 2 C R™, the fractional Sobolev space
W#P(§) is defined by
WeP(Q) = {u € LP(Q): M € LP(Q x Q)}
T —=y|r

This space is endowed with the norm

D=

e = [ulwer = ([l + 2 ,0) "

1
p
ol = sy = ( [ fl7 )
—u(y) ’
p P
P dzdy)
= ([

is called the Gagliardo seminorm. If 2 = R"™, we shall omit the set in the notation:

[Ju

where

and

lullsp = llullsprn, ullp = [Jullprs  and  [ulsp = [u]s prn-

With the above norm, W#P(Q) is a reflexive Banach space, see [1, 7].

The previous fractional space is a good candidate to find “weak solutions” to
problem (1.1). However, to deal with the boundary condition, we preliminarily
restrict ourselves to two special subspaces:

(i) WSP(€2): the closure in W*P(Q) of the space C2°(Q);
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(ii) WS’P(Q): the space of all u € W#P(Q) such that @ € W*P(R"), where @ is
the extension by zero of u, outside of 2. This space is endowed with the norm

ll 7y = Nl = il gy

Remark 2.1. From now on, given u € /V\Vlsvp(Q) we implicitly suppose that it is
defined in the whole space R™ extending by zero outside of §2; moreover, we denote
this extension by the same letter u.

The next result relate the spaces in (i) and (ii). For the proof we refer the reader
to [11, Corollary 1.4.4.5].

Theorem 2.2. Let Q) C R"™ be bounded open set with Lipschitz boundary. If s # %,
then .
WP (Q) = WP(Q).

Furthermore, when 0 < s < % we have
Wo(Q) = WHP(Q) = W*P(Q).

The following results are fractional versions of the classical embedding theorems,
they can be found in [7, Corollary 4.53 and Theorem 4.54], see also [1]. Before state
them, let us recall the concept of extension domain.

Definition 2.3 (Extension domain). We say that an open set 2 C R™ is an exten-
sion domain for W*? if there exists a positive constant C' = C(n, s, p, Q) such that:
for every function u € W*P(Q) there exists @ € W*P(R") with a(x) = u(z) for all
z € Qand ||t]sp < C|lul|s,pn- Some important examples of extension domains are
the bounded domains with Lipschitz boundary, see [11, Section 1.2].

Let us recall also the definition of the fractional Sobolev conjugate of p:
n

p:: n—sp
o0 if sp > n.

if sp < n,

Theorem 2.4. Let QQ C R"™ be an extension domain for W*P. Then we have:

o if sp < n, WP(Q) is continuously embedded in L1(QY) for any q € [p, pi];
o if sp=mn, WP(Q) is continuously embedded in L1(QY) for any q € [p, 00);
o If sp >n, WSP(Q) is continuously embedded in C%*(Q) for any a € (0, s—

ol

Theorem 2.5. Let Q C R™ be a bounded extension domain for W*P. Then we
have:
o if sp < n, the embedding of W*P(Q) into L1(QY) is compact for every q €
[1,p7);
o if sp > n, the embedding of W*P(Q) into C**(Q) is compact for o €
(07 §— %)

Remark 2.6. let Q@ C R™ be a bounded extension domain. Observe that the
embedding W*P(2) into LP() is compact for all p € (1,00). Additionally, if
max{1, -} < ¢ < oo then

pq <p; ifsp<n,
pq <oo if sp>n,
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where p’ is the conjugate exponent of p, i + 1% = 1. Thus, by Theorem 2.5, we

have that the embedding of W*?(Q) into L4 (Q) is compact.

In order to work with weak solutions to (1.1) we need to find the weak formulation

of the operator (—A,)° defined in (1.2).

So first we need to extend the definition of (—A,)*® to the space W*P(R™) with

values in the dual (W*?(R")) = W~# (R").

This computation is rather direct and we include the details for the sake of

completeness.

Proposition 2.7. The operator (—A,)° defined in C°(2) as (1.2) can be extended

uniquely to W”’(Q) with values in the dual space (Ws’p(Q))’ =W (Q) by

u(z) —u(y) P2 (u(z) —u v(x) —v
(oL [ =)~ ) oe) o)

o=y

Proof. Take u € C°(Q2). Now, for every € > 0 we define

(—A,) u(z) :/|— i lu(x) — u(y) P> (u(x) — u(y)) dy.

: o =y

Now, (=A,)%u € L¥' (). In fact,

K—Awymm|s/" [u@) —u(y)P~"

|lxz—y|>e |{E - y‘n+8p

1

_ P v’
e gy p—
|lz—y|>e |$_y| P |z—y|>e |1‘—y| P

and so

P
7

[ (_Ap):qu’ < Cepnys [u]$,p,

1
nwn P —
C = s
€,0,1,8 < sp ) €
Finally, if v € C2°(Q),

(o= [ (-a,

where

Jeu(z)o(z) dz

R n
. o=yl

Analogously,

[ [ ) o)y,
lz—y|>e

«_@ﬁw@:_/;/_b|ww—umw%wm—mmw@dmy

o =y

Therefore

<(A@@m>;/n/>>W@)QMMP%M@MMXM@MMLMM'

o=y

From this last equality, the result follows passing to the limit € | 0.
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2.2. A minimum principle. Let 2 be bounded extension domain for W#%P, and
Ve L9(Q) with ¢ € (1,00) N ({5, 00). We say that u € W*P(Q) is a weak super-
solution to

01 (=A) u+V(z)|ulf2u=0 inQ,

21) u=0 inR"\Q,

if

(2.2) H(u,v) —|—/ V(2)|ulPPuvde >0 Vv e /V\V/S’p(ﬂ),v >0,
Q

where H: WP (R™) x WP(R™) — R is defined as
M=} [ =) ) =) g,

o =y

Observe that by virtue of Proposition 2.7 this is equivalent as saying that u €
W#P(Q) is a distributional super-solution to (2.1).

Notice that u,v € Ws’p(ﬂ) are defined in the whole space, since we consider
them to be extended by zero outside of €2, see Remark 2.1. With this convention
in mind, observe that

H(u,u) = %[U]’;p for all u € W*P(Q).

Let us now prove a minimum principle for weak super-solutions of (2.1). To
this end, we follow the ideas in [4] and prove first the next logarithmic lemma (see
[8, Lemma 1.3]). Although this is not the more general version of the logarithmic
lemma (c.f. with [8, Lemma 1.3]) it will suffices our purposes and simplifies the
presentation.

Lemma 2.8. Let Q be bounded extension domain for WP, and V € L1(Q) with

q € (1,00) N (Sﬂp, o0). Suppose that u is a nonnegative weak super-solution of (2.1).

Then for any B, = B,.(x) such that Ba, C Q and 0 < < 1

// 1 (u(x) + 5) P
log
B, xB, [T — Y|P u(y) +6

dzdy < Cr" P + ”VHl;Bzm
where C' depends only on n,s, and p.
Proof. Let § > 0 and ¢ € C§°(B3r) be such that
2

0<¢<1, ¢=1inB, and |D¢|<Cr'in Bz C Bo,.
2
Taking v = (u + §)1 7P¢P as test function in (2.2) we have that
uP~1
— e ¥ < 1=-pypy.
23) L, VO G de < M o))
_ _ 1 u(z) +0
’Hu,u+51pq§p§07“”5p7// 10( )
(w0 e o Tr— o |8 )+ o
where C' depends only on n, s, and p.

Then, by (2.3) and using that 0 < u?~!(u + §)'"P¢? < 1 in Bs,, the lemma
2
holds. g

2
In the proof of Lemma 1.3 in [8], it is showed that

P
dxdy,




6 L. DEL PEZZO, J. FERNANDEZ BONDER AND L. LOPEZ RIOS

Proceeding as in the proof of Theorem A.1 in [4] and using the previous lemma,
we get the following minimum principle.

Theorem 2.9. Under the hypothesis of the previous lemma, if u is a nonnegative
weak super-solution of (2.1) and u Z 0 in all connected components of Q, then u > 0
a.e in ).

Proof. We argue by contradiction and we assume that Z = {x € Q: u(x) = 0} has
positive measure. Since u #Z 0 in all connected components of 2, there are a ball
Br = Br(zo) C Q and r € (0, B/2) such that |[B,NZ| > 0 and v #Z 0 in B,.

For any 6 > 0 and = € R", we define

o) = o (14 42).

Observe that, if y € B, N Z then

(2r)ntsp u(z) +6\ |
F. P = |F, P <L Ve € B
Byl = |Fs(@) ~ Bl < s g ()| v
Then
(2r)”+5p (u(ac) + 6) P
F, log | ——— dy Vzx € B,
O = 1Z08T Jy, e [ \aw ve )| ¥
Therefore
27“ n+sp ( )+6 p
Fs(x)|Pdx < // ( > dxdy
Jy wsowas < s [, = e s
By, Lemma 2.8, there is a constant C' independent of § such that
"+ |Viis,,)
F, Pdx < 2
[ s < T
Taking § — 0 in the above inequality, we obtain
v =01in B,
which is a contradiction since v # 0 in B,.. Thus u > 0 in 2. d

3. THE FIRST EIGENVALUE

Throughout this section, £ C R" shall be a bounded extension domain boundary
and V' € L9(Q), q € (1,00) N ({5,00). We say that a function v € W*P(Q) is a
weak solution of (1.1) if

(3.1) H(u,v) + / V(z)|ulP2uvde = A |u|P~2uw da
Q R
for all v € W‘“’(Q). In this context, we say that A € R is an eigenvalue provided

there exists a nontrivial weak solution u € W*P (©) of (1.1). The function u is a
corresponding eigenfunction.

Remark 3.1. If u is an eigenfunction associated to A then uw # 0 in all connected
components of ). Suppose, by contradiction, that there is Z a connected compo-
nents of 2 such that v =0 in Z. Taking ¢ € C°(Z) as a test function in (3.1), we
get

H(u, ¢) = 0.
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Therefore

p—1 ¢(y) T = o'}
/Q\Z(u(x)) /Z|9C — y|n+spdyd 0 V¢eCr(2).

Then v = 0 in €2, which is a contradiction since u # 0 in €.
Thus, by Remark 3.1 and Theorem 2.9, we have that
Lemma 3.2. If u is a nonnegative eigenfunction associated to \ then u > 0 in Q.

Now, our goal is to prove that the lowest (first) eigenvalue of (1.1) is

. 1 Trs
(3.2) A(V) = inf {Z[U]Z;’p + /Q V(z)|u|P de: v e WHP(Q) and |Ju|l, = 1} .
The next lemma implies that A\(V') is well defined.

Lemma 3.3. Let Q C R" be a bounded extension domain. Then, given € > 0,
there is a constant C. > 0 such that

Avwwwm

<elulf, + CelVllgallul

forallu e W“’(Q).

Proof. The lemma is trivial for V' = 0, so let us suppose that V' # 0. Assume
by contradiction that there exist £g > 0 and a sequence {uy}rey C W*P(Q) such
l[ukllpg =1 and

eolurlt , + K[V galluglh < ‘/ﬂ V(x)|uglP de| for all k € N.

Then, by Hoélder inequality,

golurls, + klIVIIgalurlly < IV

gallullh, forall k € N.
Therefore {uy,}ren is bounded in W*P(Q) and
(3.3) ur — 0 in LP(R™).

Now, as Ws’p(Q) is continuously embedded in W*P(2), and this compactly in
LP?' () (by Theorem 2.5 and Remark 2.6), there exist a subsequence (still denoted
by {uk}ren), and some u € LP () such that uj, — w in LPY (). Then [ul,y = 1,
which contradicts (3.3) and completes the proofs. O

Using the previous lemma and standard compactness argument, see [9, Theo-
rem 2.7], it follows that there is an eigenfunction associated to A(V'), as the next
theorem states.

Theorem 3.4. Let 0 C R" be a bounded extension domain. Then there exists
u € W*P(Q) such that ||ull, =1 and

V) = 5lult, + [ V@l da.

Moreover, u is an eigenfunction associated to A(V').
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Remark 3.5. Any eigenfunction u constructed in the previous theorem can be chosen
to be positive. Indeed, as ||u(z)]| — |u(y)|| < |u(z) — u(y)| for all z,y € R™, then

gy + [ V@l d < 502, + [ V@l de = V)

This implies that |u| is an eigenfunction associated to A(V'). And by Lemma 3.2, we
|u| > 0. Actually, Theorem 3.7 below shows that all the eigenfunctions associated
to A(V') have constant sign.

A key ingredient in the next sections is the simplicity of the first eigenvalue
A(V). In order to prove this result we need the following Picone-type identity (see
Lemma 6.2 in [2]).

Lemma 3.6. Let p € (1,00). Foru,v: Q — R such that w > 0 and v > 0, we have
L(u,v) >0 in Q xQ,

where
L(u,v)(2,y) = |u(z) —u(y) [ —[v(x) —o(y) [P~ (v(x) —v(y)) (

The equality holds if and only if w = kv in Q for some constant k.

uP (x) uP(
vP~1l(z) Pl

Theorem 3.7. Let Q C R™ be a bounded extension domain. Assume that u is a
positive eigenfunction corresponding to \(V') (see Remark 3.5). Then if X\ > 0 is
such that there is a nonnegative eigenfunction v of (1.1) with eigenvalue X, then
A= AV) and there is k € R such that v = ku a.e. in Q.

Proof. Since \(V) is the first eigenvalue we have that A(V) < A. On the other
hand, by Lemma 3.2, v > 0 in €.

Let m € N and v,, == v + % We begin by proving that w,, = uP/vE; 1 €
W#P(Q). First observe that that w, = 0 in R”\ Q and w,, € L?(Q2), due to
u € L>(Q), see Lemma A.1. Now, for all (z,y) € R"™ x R™ we have

e —w) e ()~ )
| m( ) m(y)| U%—l(x) vp_l(x)v%_l(y)
|vh ! (2) — vh ' (y)]
b (@)l (y)
< pmP 7 (WP () + uP T (y) lu(@) — u(y)|
e A2 + )
o Dl
< 2pmP 7 ull55 u(z) - u(y)|
» 1 1
=l s+ i)
< C(m, p, [Julloc) (Ju(x) — uly)| + |v(z) = v(y)])
As u,v € Ws’p(Q), we deduce that wm € Ws’p(Q) for all m € N.

Recall that u,v € W*P(Q) are two eigenfunctions of problem (1.1) with eigen-
value A(V) and A respectively. Then, by using the previous lemma, we deduce

< mP 7 uP (@) — uP(y)] + [lullk

[vm () = vm (y)]

[v(z) = v(y)|
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//QXQ |;L—Um|n+sp) dzdy
- 2//Rann \x— |n(+sl' dady
v(z) —v(y)P Z(v(x) —v uP (2 P
5//]1{"““ = |($)|— y7§+£p) 2 <v§1§(i’) - vﬁzgl(ll)/)> dady

P P
< )\(V)/ u? dx —/ V(z)uP de — )\/ Pt gfl dx—&—/ V(a?)vp_l% dz.
Q 0 Q Um Q Um,

Taking m — oo and using Fatou’s lemma and the dominated convergence theorem,

we infer that )
dxdy =0
Jhew w50
(recall that A ,(V) < A).

Therefore, by the previous lemma, L(u,v)(x,y) = 0 a.e. and u = kv for some
constant k > 0. O

that

Remark 3.8. As a consequence of the previous theorem, A(V') is simple and there
is a unique associated positive eigenfunction v € W*P(Q) such that |lul/, = 1.

To conclude this section, we prove that A(V') is isolated. To this end, we follow
the ideas in [14] and first provide a lower bound for the measure of the nodal sets.

Lemma 3.9. Let Q C R™ be be a bounded extension domain. If u is an eigenfunc-
tion associated to A > A(V'), then

1 1
PN 1 p
min { A, 400 @ 4 < oy,

where v € (pg’,pt), AN\) = (C(A + 1+ |[V]lg0)) !, C is a constant independent
of V., X and u, and |Q4| is the Lebesgue measure of Qr = {x € R™: uy(x) # 0}.

Proof. According to Theorem 3.7, u; and u_ are not trivial. We shall prove the
inequality for |24, the proof of the other inequality is similar.

Observe that uy € W*P(Q) and
s () = up ()7 < u(@) = uy) P~ (ul@) = uy))(us(2) = ue(y))

for all (z,y) € R™ x R™. Let us recall Remark 2.1 to keep in mind that v is defined
by zero outside of 2. Then, using Holder’s inequality, we have

1[ ]SpSH(uau-i-)

2
:)\/uﬁdx—/ V(z)uf dz
Q Q
(3.4) < )\/Quﬂ dx—f—/QV,(sc)uﬂdx

< Al + 1V gellug g

1_p
/
Q|4 T) [Jui |7

<|A|ﬂ+|1—r Ve
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On the other hand, by Theorem 2.4, there is a constant C' independent on u
such that

lutllr < Cllugllsp-

Thus, by Holder inequality, we have
lui I < C ([url?, + llurlp)
_p
< C (Jus]t, + llus 219417

This and (3.4) implies that

sl <20 (04 DI + 1V gl ) el
that is
120 (M + Dl 7 + ||V||Lq(m|ﬂ+|“) .
Therefore

1 1
P 1 p
min{ AN 0=, A0 @ b < 0.

O

Theorem 3.10. Let Q2 C R"™ be a connected bounded extension domain. Then the
first eigenvalue \(V') is isolated.

Proof. By definition A(V) is left-isolated. To prove that A\(V) is right-isolated, we
argue by contradiction. We assume that there exists a a sequence of eigenvalues
{ Ak tren such that Ay \, AM(V) as k — oo. Let uy be an eigenfunction associated to

Ak with [Jug||, = 1. Then, thanks to Lemma 3.3, {ux}ren is bounded in /V[7‘W(Q)
and therefore we can extract a subsequence (that we still denoted by {ug }ren) such
that
ur — u weakly in W“’(Q),
w, — u in LP7 (R™),
up — uw in LP(R™).

Observe that uf — u? in L9 (R™) since uy — u in LP7 (R™). Then |lull, =1, and

1 1
Z{yl? < liminf = [u.lP
[ty < Hminf 5hne,

Jim )\k/ |uk(x)\pda:—/ V(@) jug P da
Rn Q

- k—o0
:/\(V)/n |u(:z:)|pdx—/QV(x)|u\pd:z:.

Hence, u is an eigenfunction associated to A(V'). By Theorem 3.7, we can assume
that v > 0.

On the other hand, by the Egorov’s theorem, for any £ > 0 there exists a subset
U of Q such that |U.| < € and up — w > 0 uniformly in Q \ U.. This contradicts
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the previous lemma. Indeed,

1
s S -
0< lim min{ AN) 77 AN) '@ 7 ) < lim [{z € R™: uy, < 0},
k—o0 k— o0
where r € (pq’, p%). O

4. THE FUNCTIONAL A(V)

In this section we shall provide some useful properties of the functional

A L4(Q) - R, max{l, 2} < q< oo.

3
that associate to every V € L(Q) the positive number A(V') given by (3.2).

From now on, 2 C R™ denotes a bounded extension domain and V is a function
in L9(€2), with max{1, 7} < ¢ < oco.
Lemma 4.1. The functional X is concave in LI(2). Moreover, for any M > 0
there exists a constant C = C(s,p,q, M) such that

AV)y<cC
for all V € LYQ) such that ||V g0 < M.

Proof. Given V,W € L4(2), we have by definition that
1
AV) < 5, + [ V@l
Q

AW) < 5lulz, + [ Wl da.

for all u € /WV/S”’(Q) with [Ju|, = 1. Then, for any ¢t € (0,1) and V,W € L(Q),

= N = N

—_

(V) + (1 = DA(W) < i[u]i‘;p—k/(tV(x)—k (1= W () u? da
Q

for all u € W*P(Q) such that |lull, = 1. After recalling the definition of the
functional A, we deduce then that
IA(V) + (1= )AW) <A@V + (1 — )W),

that is, A is concave.
Let us now prove that A is locally bounded in L(2). Indeed, given M > 0 and

V e L1(Q) with ||V]|g0 < M, fix a function ¢ € CX(Q) C W*P() such that
ll¢]l, = 1. Thus,

1
AV) < 5l0l2, + [ Viaop da
1
< 16 + VIl 612,

1
< SR, + MSl5,.

O

Our next aim is to show that X is continuous. We’ll need the following estimate,
related to that in Lemma 3.3. The only difference with Lemma 3.3 is the fact that
here we need the constants to be uniform with respect to the potential function V.
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Lemma 4.2. Given M > 0, for any € > 0 there is a constant C; > 0 such that

< efuffy + CellVigallully

/Q V(a)[ul? de

for all u € W*P(Q) and V € LI(Q) such that IVliga) < M.

Proof. Suppose by contradiction that for all £ € N there exist €9 > 0 and a sequence
{(ug, Vi) }ken C W2P(Q) x L1(Q) such that ||uk||pq/ =1, ||V 0 <M and

/ Vie(z) |ug [P dx
Q

Then, by Hoélder’s inequality, we have that

eolurlt , + k|| Villgalluelly < [[Villgallukly, < M,

(4.1) > eoluklt , + K|Vl g:allukllp for all k € N.

.
lukllpse < llukllpg el ?e,
for all k € N. Therefore {(ug, Vi) }ren is bounded in Ws’p(Q) x L1(Q)) and
(4.2) lim ||V
k—o0

;9 |ukH£ =0.

Thus, there exist a subsequence (still denoted by {(ux, Vk)}ren) and some (u, V) €
WeP(Q) x L1(R), such that
Vie = V weakly in L(9),
(4.3) up — u weakly in W5P(9),
u, — win LP9 (R™).
This implies that ||ullpq =1, [|V]|g0 < M and
fusl” = Juf? in L7 (R"),
up — u in LP(R™).

Using (4.2), we deduce that |V|gallull, = 0. As ||u|lpy =1, then V = 0.
Therefore Vi, — 0 in L4(Q2). Using this and (4.3) in (4.1), we deduce that

< i inffus 2, <0,
which implies that « = 0. This contradiction completes the proof. O
Lemma 4.3. The functional \ is continuous.

Proof. Let V € L1(Q) and {Vj}ren be a sequence in L?(£2) such that

(4.4) Vi — V in LY(Q).

Let us prove that A(Vy) = A(V) as k — oo.

Let {u}ren be a sequence in W*P(Q) such that |Jug||, =1 and

1
AVg) = i[uk]f;p + /Q Vie(x)|ug|P dz for all k € N.

Then, for any k € N and u € W*?(Q) such that lullLr ) =1,

)\(Vk) < %[U]I;’p + ‘/Q Vk(x)|u‘p dz.
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Thus, using (4.4), we deduce that

lim sup A(Vi) < ;[ P +/Qv<x)\u|pdx

k—o0

for all u € W”’(Q) with [Ju||, = 1. Hence
(4.5) limsup A(V3) < A(V).

k—o0

Now, let us take a subsequence { V4, }jen of {Vi}ren so that

(4.6) lim A\(Vj,) = likm inf A(V).
—00

j—o0

By (4.4), we can assume that for any j € N we have that ||V, ||eq) < M for some
suitable constant M. Then, by Lemmas 4.1 and 4.2, there exist positive constants
C and D independent of j such that

C> )\(ij)
1
= §[ukj]€,p +/ Vk_[ (.’I;)‘U/kJV) dx
Q

k2, — 31k, 1~ DIV, ol 1
Therefore
[ug, %, < 4(C + DM)
for all j € N. Then, {uy, };en is bounded iIfl\jV\[;S’p(Q) and there exist a subsequence
(still denoted by {us, }jen) and some v € W*P(Q) such that
up, — u weakly in W“’(Q),
ug; — u strongly in LP(R"),
uy,; — u strongly in e (R™).

Thus ||u|l, = 1 and

uij — uP strongly in L7 (R™),

Now, using (4.4) and (4.6), we have that

k—o0

liminf A(V}) = hm A(Wi,) = _lim +/ Vi, ()| ug, [P dz
Q

> lulf, + /v lul? dar > A(V),
This and (4.5), imply that

lim A(Vg) = A(V);

k—o0

and the proof is complete. ([l

Remark 4.4. Let V € L1(), and {V} } ren be a sequence in L7(€2) such that Vj, — V.
Suppose that {ug}reny € W*P(Q), is the sequence of the positive eigenfunctions
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associated to A(Vj) with |luk|l, = 1. Then, proceeding as in the proof of the
previous lemma, it is possible to extract a subsequence {uy; } jen such that

up, — u weakly in WS”’(Q),

uy,; — u strongly in LP(R"),

ug, — u strongly in L9 (R™).

Therefore

1
)\(V) = lim )\(Vk) = 'lim *[uk]}: +/ Vk.(m)|uk,\p dz
J oo 2 jls,p o J i

j—o0

> gl + [ Viohlr do

Z 5usp
> V).
Then u is the positive eigenfunction of A(V') normalized by ||u||, = 1; additionally

[ug, %, — [u]f,. Thereby uy;, — u in Ws’p(Q). In fact, proceeding as before, we

observe that all subsequence of {uy}rey has a subsequence that converges to u in
W#P(Q). We conclude that up, — uw in WP (Q).

With the continuity of the functional A on hand, let us go further and prove
a differentiability property. Recall that for V' € L7(2) such that ||V]|;0 = 1 the
tangent space of 0B(0,1) ={V € LI(Q): |V]|go =1} at V is

Tv(0B(0,1)) = {W € LI(): /Q V|92V W da = 0} .

Given W € Ty (0B(0,1)) and a: (—1,1) — L?(Q) a differentiable curve such that
a(t) € 0B(0,1) forallte (—1,1),
a(0)=V and d(0)=W,
we define X: (=1,1) = R by A(t) = A(V}), where V; = a(t). By the previous lemma
A is continuous. Moreover:

Lemma 4.5. \ is differentiable at t = 0 and
N(0) = / W () ul? da,
Q

where u s the positive eigenfunction associated to A(V') normalized by ||ul|, = 1.

Proof. We begin the proof by observing that

() = 3(0) = Ma(®) = XV) < [ (hla) = V@)luP da
then
. S\(t) - :\(O)
limsup ———= < [ W(x)|ulP dz,
(4.7) o Nt tX 0 /Q
liminfw > /QW(x)\uV’ dz.

t—0—
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Let {tx}ren be a sequence in (0, 1) such that t; — 07 and
lim A =AM e A = AO)

k—o0 t t—0+ t

Since A(tx) — A(0), by Remark 4.4, we have that
u, — u in WHP(Q),

where u, and u are the positive normalized eigenfunctions associated to A(V;, ) and
A(V), respectively. Then

LA =N A) = A0)

t—0+ t k—o0
(4.8) > lim thkw dz

k—o0 Q tk
= [ W(x)ul?dz.
Q
Similarly, we can see that
(4.9) lim sup At = A < / W (z)|ul? dz.
t—0- t Q

Putting together (4.7), (4.8) and (4.9), we conclude that

SO0
tim 20— _/QW()Hd.

t—0

5. THE OPTIMIZATION PROBLEMS

In this section we prove the existence and characterizations of optimal potentials
for the first eigenvalue of (1.1). As in the previous section,  C R™ denotes a

bounded extension domain and V is a function in L?(Q2), with ¢ € (1,00)N (%, 00).
Let us begin with the optimization problem when the potential function V is

restricted to a bounded closed convex subset of L7((2).

Theorem 5.1. Let C be a bounded closed convex subset of L4(Q2). Then there exist
a unique V* € C such that

A(V*) = max{\(V): V € C}
and Vi € C (not necessarily unique) such that
(5.1) A(Vi) = min{\(V): V € C}.
Proof. First we show that there is a unique V* € C such that

A(V*) = max{\(V): V € C}.
Let {Vi}ren C C be such that

kli_}rgo A(Vi) = sup{A(V): V € C}.
Since C is bounded, there exist a subsequence (still denoted by {Vi}ren) and

V* € L9(Q) such that
(5.2) Vie = V™ weakly in LI(Q).
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In fact, since C is closed convex subset of L?(Q) it follows that C is weakly closed
and so V* € C. Then

(5.3) A(V*) <sup{A(V): V eC}.
On the other hand, for any € > 0 there exists u € W“’(Q) such that
1
AV*) +e> §[u]§’p +/ V*(x)|ulP de.
Q

Then, using that |u[? € L7 () (since ¢ > 3p) and (5.2), we deduce that

V) +e2 50, + [ Vi@l da

[u]f , + lim /Vk(x)|u|pdx
’ k—o0 Q

> lim A(Vg)
k— o0

=sup{\(V): V e C}.

N = N

Therefore,

A(V*) > sup{\(V): V € C}.
The previous equation and (5.3) imply
A(V*) = max{\(V): V € C}.
Suppose now that there exist V7, V5 € C such that

(5.4) A(V1) = A(Ve) = max{A(V): V € C}.
. . Vi+Vs . .
Since C is convex, we have that V3 = 5 € C. Moreover, since A is concave
and (5.4),
A(Vy) > w — max{A\(V): V € C}
Then
(5.5) A (Vl ;‘é) — A(V) = A(Va) = max{A(V): V € C}.

On the other hand, by Remark 3.8, there exist w1, us, us € W“’(Q) such that wu;
is the unique positive eigenfunction associated to A(V;) normalized by ||u|l, = 1,
i=1,2,3. We claim that u; = us = uz. Suppose by contradiction that u; # w3 or
U 7& us. Then

V V-
M) = s, + [ 2O g
Q
— 1 1 P V pd 1 p V pd
=3 §[U3]s,p+ ; 1()]us] x+§[u3]s,p+ A 2()|us|P da

A(V1) + A(Va)
S R
=max{\(V): V € C},

which contradicts (5.5).
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Therefore,
H(ug,v) + /Q Vi(2)|ut|P~2ugv da = H(ug,v) + /Q Vo () ur [P~ 2usv doe
for all v € W“’(Q), that is
/Q(Vl(l") — Va(z))|Jur [P 2urvdaz = 0

for all v € W*P(Q). Then V; = V3.
Finally we show that there is V. € C such that
A(Vi) = min{A(V): V € C}.
Let {Vi}ren C C be such that
klln;o A(Vi) = inf{\(V): V € C}.

As before, we have that there exist a subsequence (still denoted by {Vj}ren) and
V. € C such that

(5.6) Vi — Vi weakly in LI(Q).
Then
(5.7) A(V) > inf{\(V): V € C}.

Let {uy}ren C W*P(Q) be such that lukll, =1 and
1
)\(Vk) = §[uk]§’p —|—/ Vk(l')|uk|pd(£
Q

Then, by (5.7) and Lemma 4.2, there exist positive constants C' and D independent
of k such that

1
€2 M) = 5lunlt, + [ Vi@l da
Q

1
[urlip — Jlunlip = DlIVillgsalluelp.

Therefore
[ur]f, < 4(C+ Dsup{[|V|][g0: V € C})
for all k € N. Then, {ug }ren is bounded in W”’(Q) and there exist a subsequence

(still denoted by {u}ren) and u € W*P(Q) such that
wp, — u weakly in WP (1),
ugp — u strongly in LP(R™),

uj, — u strongly in LP? (R™).

Then, ||u||, =1 and, using (5.6), we have that

1
A(Ve) > inf{\(V): V eC} = klim A(Vi) = lim Sfuglf, +/ Vie()|ug|P de
—00 Q

7k~>o<>2

zwm+4wmwmzxm.

1
2

The next result is a characterization of the minimal potential V.
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Lemma 5.2. Let u, be the positive eigenfunction associated to A(Vi) such that
lluslly = 1. Then Vi is the unique minimizer of linear operator

L(V) = / V(z)|u.l? de
Q
relative to V € C.

Proof. We first prove that V, is a minimizer. By (5.1), we have that

1 1
Sl [ Vi@l de = A0V) < A0V) < glnlz, + [ Vi P s
for all V' € C. Therefore

/ V()P da < / V(@)|ulPdz forall V € C.
Q Q
To prove the uniqueness, let W € C such that

W(z)|ue|P dz =min{L(V): V € C} = / Vi(@)|ux|P da.
Q Q

AV = 5llzy + [ Vi@l de = 5, + [ WP de = x9),

Thus, by (5.1), A(Vi) = A(W) and therefore u, is an eigenfunction associated to
A(W). Then

/ (Vi) — W (@)t P2 da = 0
Q
forallv e W“’(Q). Since u, > 0 in €2, we conclude that V, = W a.e. in Q. O

5.1. Optimization problems in a closed ball. Let us now consider the case

C = B(0,1) :== {V € LYQ): |V||ga < 1}, the unit closed ball in L(Q2). In this

setting further characterizations of the extremal potentials can be provided.
Indeed, by Theorem 5.1, there exists a unique V* € B(0,1) such that

max{\(V): V € B(0,1)} = \(V*) < %[u]g,p +/ V*(z)|ulP dz
Q

[V*(z)
Q ||V*||q;52

1
< 5[“}?717 + |ulP da

for all u € W‘”’(Q). Then

max{A\(V): V € B(0,1)} = A(V*) < A <‘|/V”q|9) .

Since % € 0B(0,1), then, by Theorem 5.1, V* is nonnegative and V* €
dB(0,1). Moreover, by Lemma 4.5, we have that

/ W(z)lu*|de =0 forall W € Ty«(0B(0,1)),
Q

where u* is the positive eigenfunction of A(V*) normalized by |u*|, = 1.
This procedure proves the validity of the following result.
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Theorem 5.3. Let V* € B(0,1) be the unique potential that satisfies
AV*) = max{\(V): V € B(0,1)},
according to Theorem 5.1. Then V* is nonnegative, V* € 0B(0,1) and

/ W(z)|u*|dx =0 for all W € Ty« (0B(0,1)),
Q

where u* is the positive eigenfunction of N(V*) normalized by ||u*|, = 1.
Similarly, we have that
Theorem 5.4. There exists Vi, € 0B(0,1) such that
A(Vi) = min{\(V): V € B(0,1)}.

Moreover, Vi is nonpositive, |Vi|lg:0 =1 and
/ W (z)|us|dxe =0 for all W € Ty, (0B(0,1)),
Q

where u, is the positive eigenfunction of A(V.) normalized by |u.|, = 1.

Corollary 5.5. In the notation of Theorem 5.3 and 5.4, we have = supp(V*) =
supp(Vi) and there exist two constants C* and C, such that

u*(2)|P = C*|[V*(2)|",
Jus(@)P = Cu| Vi) 17,
for a.e. x €.

Proof. See the proofs of Proposition 3.10 and Theorem 3.11 in [9]. (]

5.2. Optimization problems in the class of rearrangements of a given
potential. Let V € LY(Q) and R(Vy) be the set of rearrangements of V;, that is
VeR(Vp) iff V: Q — R is a measurable function and

Hz € Q: V(x) >t} = [{z € Q: Vy(z) >t}
for any t € R.

Remark 5.6. If V e R(Vp) then V € L1(Q) and ||V ;0 = ||Vollg;- See, for instance,
[6, Lemma 2.1].

Let R(Vp) be the the weak closure of R(Vp). In [6, Theorem 6], the author proves
that R(Vp) is convex, see also [5, 15]. Hence R(V}) is strongly closed. Then, by

Remark 5.6, we have that R(Vp) is a bounded closed convex subset of LI(€).
Thus, by Theorems 5.1, we have that

e There exists a unique V* € R(Vp) so that

AV =max{A\(V): Ve R(Vp) };

e There exists Vi, € R(Vp) so that

A(Vi) = min{\(V): V € R(W)}.
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By [6, Theorems 1 and 4], there is W € R(V}) so that
L(W)=min{L(V): V € R(Vy)}.

Then, by Lemma 5.2, we have that V, = W a.e in Q. Hence V., € R(V;). Moreover,
by Lemma 5.2 and Theorem 5 in [6], there is a decreasing function ¢: R — R so
that Vi, = @ o |u.|P. Therefore we prove the next result.

Theorem 5.7. Let Vi € L1(Q). There is a rearrangement Vi of Vo in Q such that
A(Vi) = min{\(V): V € R(W)}.

Moreover there exists a decreasing function ¢: R — R so that Vi, = @ o |u|P, where
uy is the positive eigenfunction associated to A(Vi) such that |ju.||, = 1.

APPENDIX A. REGULARITY OF FRACTIONAL P-EIGENFUNCTIONS
We begin by proving that the eigenfunctions are bounded.

Lemma A.1. Let Q C R” be a bounded extension domain and V € L1(Q) with
q € (L,00) N (55, 00). If uis an eigenfunction associated to X then u € L>(R™).

Proof. In this proof we follow ideas from [10].

If ps > n, by Theorem 2.5, then the assertion holds. Then let us suppose that
sp < n. We will show that if ||uy|pe < 0 then uy is bounded, where § > 0 must
be determined.

For k € Ny we define the function wuy by

up = (u—1+27%) .
Observe that, uy = uy and for any k € Ny we have that uz € W*P(Q),
Ukt < ug a.e. R™,
(A1) u < (2" — Duy in {ugy1 > 0},
{ups1 >0} C {uy > 27D},
Now, since
[v4(2) = v+ WP < Jv(z) — o) P2 (v(z) = v(H))(v4+(2) — v (y)) Yo,y €R",

for any function v: R™ — R, we have that

1
o lwn]lp < H(u, uprs)
:)\/ uP " wg dx—/ V(2)uP tugqq da
Q Q

< \)\|/up_1wk+1 dsc—i—/ V_(z)uP tugq da,
) Q

for all k € Ng. Then, by (A.1) and Hélder inequality, we have that

1
§[U,k+1]€,pg |/\|/up71wk+1 dx+/ Vo (z)uP " ugy do

Q Q
(A2) <@ -1 (Wil + [ V- (o a )

1
< (2Rt —q)pt <|/\|Qq + ||V||q;9> (29 1%
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for all £ € Np.
On the other hand, in the case sp < n, using Hoélder’s inequality, Theorem 2.4,
(A.1), and Chebyshev’s inequality, for any k € Ny we have that
1 p
{up1 > 0}¢ P
sp_1
< Cluga s p{ursr > 0} 9
(A.3) sp 1
< Clugs1]? [{ug > 27+ 0 "

i By < a2

*
s

721

< Clualt, (2407 ulip, )",
where C' is a constant independent of k. Then, by (A.2) and (A.3), for any k € Ny

we have that

1+«
(A4) Jupsaly < © (2407 el )

where C' is a constant independent of k¥ and a = ¢'(*% — %) > 0.
Similarly, in the case sp = n, taking r > pq’ and proceeding as in the previous
case sp < n (with r in place of p¥), we have that (A.4) holds with « =1 — 2= > 0.

T

Therefore if sp < n then there exist a > 0 and a constant C' > 1 such that

1+«
lugsa < C* (huelll, )

1 ,

for any k € No. Hence, if |luo|}, = llut |}, < Ce® = 4P then ux — 0 in LP7 (Q).
On the oher hand u; — (u—1)4 a.e in R™, then (u—1); = 0 in R™. Therefore u4
is bounded.

Finally, taking —u in place of u we have that u_ is bounded if ||u_|/,y < ¢.
Therefore u is bounded. O

Finally we show a regularity result.

Theorem A.2. Let Q C R" be a bounded extension domain, and V € L*(Q). If
w is an eigenfunction associated to \ then there is a € (0,1) such that u € C*(f2).

Proof. By Lemma A.1, we have that u € L>(Q). Then (A—V (x))|u[P~2u € L>=(Q).

Therefore, by [12, Theorem 1.1], there is « € (0, 1) such that u € C*(Q). O
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