From algebraic actions to C*-algebras and back again

Chris Bruce

University of Glasgow

South Atlantic Non-Commutative Geometry Seminar

Joint work with Xin Li

- The definition
- The C*-algebra
- The inverse semigroup
- The groupoid model
- Properties of the groupoid
 - Topologically freeness
 - Hausdorffness and minimality
 - Pure infiniteness and consequences for the C*-algebra
- Comparison of C*-algebras
- Example classes

Algebraic actions

- The definition
- The C*-algebra
- The inverse semigroup
- The groupoid model
- Properties of the groupoid
 - Topologically freeness
 - Hausdorffness and minimality
 - Pure infiniteness and consequences for the C*-algebra
- Comparison of C*-algebras
- Example classes

Let S be a left-cancellative monoid (e.g., S a submonoid of a group).

Definition.

An algebraic S-action is an action of S on a group G by injective group endomorphisms, i.e., a monoid homomorphism

 $\sigma \colon S \to \operatorname{End}(G), \quad s \mapsto \sigma_s,$

such that σ_s is injective for all $s \in S$.^a

^aWe shall usually assume our action is faithful and that there exists $s \in S$ with $\sigma_s G \lneq G$.

Remark.

If $\sigma: S \curvearrowright G$ is an algebraic S-action with G abelian, then we get a dual action $\hat{\sigma}: S \curvearrowright \widehat{G}$ by continuous, surjective endomorphisms of the compact group \widehat{G} .

Chris Bruce (University of Glasgow) From algebraic actions to C*-algebras and back again

Algebraic actions of groups on <u>abelian</u> groups have been studied by Kitchens, Schmidt, Lind, etc. Algebraic actions of <u>semigroups</u> have not received much attention.

Example (Full shifts).

If $\boldsymbol{\Sigma}$ is any non-trivial group, then the canonical action

$$\sigma \colon S \curvearrowright \bigoplus_{S} \Sigma, \quad \sigma_s(x)_t = \begin{cases} x_{s^{-1}t} & \text{if } t \in sS, \\ e_{\Sigma} & \text{if } t \notin sS, \end{cases}$$

for $x = (x_t)_t \in \bigoplus_S \Sigma$ is an algebraic action called the full S-shift over Σ .

Example.

Let R be an integral domain. The multiplicative monoid $R^{\times} := R \setminus \{0\}$ acts on the (additive group of) R by multiplication, and $\sigma : R^{\times} \curvearrowright R$ is an algebraic action.

Chris Bruce (University of Glasgow) From algebraic actions to C*-algebras and back again

Each algebraic $S\text{-}action\ \sigma\colon S \curvearrowright G$ gives rise to a C*-algebra as follows: There is an isometric representation

$$\kappa \colon S \to \mathsf{Isom}(\ell^2 G), \quad \kappa(s)\delta_x = \delta_{\sigma_s(x)},$$

where $\{\delta_x : x \in G\}$ is the canonical orthonormal basis for $\ell^2 G$.

Definition.

We let

$$\mathfrak{A}_{\sigma} := C^*(\{\kappa(s) : s \in S\} \cup \{\lambda(g) : g \in G\}),$$

where $\lambda: G \to \mathcal{U}(\ell^2 G)$ is the left regular representation of G.

Algebraic actions: Context and motivation

Such C*-algebras from algebraic actions have been considered, e.g., for

- algebraic N-actions (Hirshberg, Cuntz–Vershik, and Vieira).
- examples from rings (Cuntz, Cuntz–Li, and Li);
- special actions of right LCM monoids (Stammeier and Brownlowe–Larsen–Stammeier);
- actions of congruence monoids on rings of algebraic integers (B. and B.-Li).

Example.

- For the shift $\sigma \colon \mathbb{N} \curvearrowright \bigoplus_{\mathbb{N}} \mathbb{Z}/n\mathbb{Z}$, we have $\mathfrak{A}_{\sigma} \cong \mathcal{O}_n$.
- For $\sigma \colon R^{\times} \curvearrowright R$, we see that $\mathfrak{A}_{\sigma} = \mathfrak{A}[R]$ is the (reduced) ring C*-algebra of R.

Our motivation is to provide a unified framework for studying C*-algebras from algebraic actions of semigroups, so that we can systematically analyze new example classes, e.g., shifts.

Chris Bruce (University of Glasgow)

From algebraic actions to C*-algebras and back again

Recall that a *partial bijection* of G is a bijective map

 $f\colon \mathsf{dom}(f)\to\mathsf{im}(f),$

where dom(f), im $(f) \subseteq G$. The set \mathcal{I}_G of all partial bijections on G is an inverse semigroup with respect to composition and inversion.

Definition (B.-Li).

Let I_{σ} be the inverse semigroup generated by the partial bijections

$$\sigma_s \colon G \to \sigma_s G, \quad x \mapsto \sigma_s(x) \quad (\text{for } s \in S)$$

and

$$\mathbb{t}_g \colon G \to G, \quad x \mapsto \mathbb{t}_g(x) := gx \quad (\text{for } g \in G).$$

There is a faithful representation

$$\Lambda \colon \mathcal{I}_G \to \mathsf{Plsom}(\ell^2 G), \quad \Lambda_\phi \delta_x = \begin{cases} \delta_{\phi(x)} & \text{ if } x \in \mathsf{dom}(\phi), \\ 0 & \text{ if } x \notin \mathsf{dom}(\phi). \end{cases}$$

We view Λ as a representation of I_{σ} . We have:

•
$$\Lambda_{\sigma_s} = \kappa(s)$$
 in $\operatorname{Isom}(\ell^2 G)$ for all $s \in S$;

•
$$\Lambda_{\mathbb{t}_g} = \lambda(g)$$
 in $\mathcal{U}(\ell^2 G)$ for all $g \in G$;

•
$$\mathfrak{A}_{\sigma} = \overline{\operatorname{span}}(\{\Lambda_{\phi} : \phi \in I_{\sigma}\}).$$

Remark.

From this, we see that there should be a close relationship between the C*-algebras associated with I_{σ} and the concrete C*-algebra \mathfrak{A}_{σ} .

Chris Bruce (University of Glasgow)

From algebraic actions to C*-algebras and back again

16 May 2023

Definition (B.–Li).

We let

$$\mathcal{C}_{\sigma} := \{ \sigma_{s_1}^{-1} \sigma_{t_1} \cdots \sigma_{s_m}^{-1} \sigma_{t_m} G : s_i, t_i \in S, m \in \mathbb{Z}_{>0} \}.$$

Members of C_{σ} are called *S*-constructible subgroups. The idempotent semilattice of I_{σ} is then $\mathcal{E}_{\sigma} = \{gC : g \in G, C \in \mathcal{C}_{\sigma}\} \cup \{\emptyset\}$; its members are called *S*-constructible cosets.

Remark.

Each non-trivial element of I_{σ} is a composition of the form

$$gC \xrightarrow{\mathbb{t}_{g^{-1}}} C \xrightarrow{\varphi} D \xrightarrow{\mathbb{t}_h} hD,$$

where $\varphi = \sigma_{s_1}^{-1} \sigma_{t_1} \cdots \sigma_{s_m}^{-1} \sigma_{t_m}$ for some $s_i, t_i \in S$ and $C, D \in \mathcal{C}_{\sigma}$, $g, h \in G$.

Example.

For the full S-shift $S \curvearrowright \bigoplus_S \Sigma$, we have

$$\mathcal{C}_{\sigma} = \left\{ \bigoplus_{X} \Sigma : X \in \mathcal{J}_{S} \right\},\$$

where \mathcal{J}_S is the semilattice of constructible right ideals of S.

Example.

For $\sigma: R^{\times} \curvearrowright R$, C_{σ} is the semilattice of constructible ring-theoretic ideals of R. E.g., if $R = \mathcal{O}_K$ is the ring of integers in a number fields K, then

$$\mathcal{C}_{\sigma} = \{I : (0) \neq I \trianglelefteq \mathcal{O}_K\}$$

consists of all non-zero ideals of \mathcal{O}_K .

The canonical commutative subalgebra of \mathfrak{A}_σ is given by

$$\mathfrak{D}_{\sigma} := \overline{\operatorname{span}}(\{\Lambda_{\phi} : \phi \in \mathcal{E}_{\sigma}\}) = \overline{\operatorname{span}}(\{1_{gC} : g \in G, C \in \mathcal{C}_{\sigma}\}).$$

Proposition (B.–Li).

The spectrum $\partial \widehat{\mathcal{E}}_{\sigma} := \operatorname{Spec}(\mathfrak{D}_{\sigma})$ can be identified with the space of non-zero characters $\chi : \mathcal{E}_{\sigma} \to \{0,1\}$ such that for $gC, g_iC_i \in \mathcal{E}_{\sigma}^{\times}$, where $i \in F$ and $\#F < \infty$, we have $\chi(gC) = 1$ and $gC = \bigcup_{i \in F} g_iC_i \implies \chi(g_iC_i) = 1$ for some $i \in F$.

Remark.

In general, $\partial \widehat{\mathcal{E}}_{\sigma}$ is a completion of (a quotient of) G.

Chris Bruce (University of Glasgow)

From algebraic actions to C*-algebras and back again

16 May 2023

Algebraic actions: The groupoid model

- → The inverse semigroup I_{σ} acts canonically on $\partial \widehat{\mathcal{E}}_{\sigma}$ by partial homeomorphisms, and we form the associated transformation groupoid $\mathcal{G}_{\sigma} := I_{\sigma} \ltimes \partial \widehat{\mathcal{E}}_{\sigma}$.
- → There is a canonical, surjective *-homomorphism $\rho: C^*(\mathcal{G}_{\sigma}) \to \mathfrak{A}_{\sigma}$.

Remark.

The groupoid \mathcal{G}_{σ} is the tight groupoid of I_{σ} in the sense of Exel.

Example.

For the N-action $\sigma \colon \mathbb{N} \curvearrowright \mathbb{Z}$ given by $\sigma(m) = 2m$, we have

$$\mathcal{C}_{\sigma} = \{2^k \mathbb{Z} : k \in \mathbb{N}\} \text{ and } \partial \widehat{\mathcal{E}}_{\sigma} \cong \mathbb{Z}_2 := \varprojlim_n \mathbb{Z}/2^n \mathbb{Z}.$$

In this case, $\mathcal{G}_{\sigma} \cong (\mathbb{Z}[1/2] \rtimes \langle 2 \rangle) \ltimes \mathbb{Z}_2$.

Algebraic actions

- The definition
- The C*-algebra
- The inverse semigroup
- The groupoid model

Properties of the groupoid

- Topologically freeness
- Hausdorffness and minimality
- Pure infiniteness and consequences for the C*-algebra

Comparison of C*-algebras

Example classes

Definition (B.–Li).

The algebraic action $\sigma \colon S \curvearrowright G$ is said to be exact if

$$\bigcap_{C \in \mathcal{C}_{\sigma}} C = \{e\}.$$

For example, $\sigma \colon S \curvearrowright G$ is exact whenever we have $\bigcap_{s \in S} \sigma_s G = \{e\}$.

Remark.

Our notion of exactness is a generalization of Rohlin's notion of exactness for a single endomorphism.

Proposition (B.-Li).

The groupoid \mathcal{G}_{σ} is topologically free if $\sigma \colon S \curvearrowright G$ is exact.

Chris Bruce (University of Glasgow) From algebraic actions to C*-algebras and back again

Example (Toral endomorphisms (Krzyżewski, Handelman)).

Let $\sigma \colon \mathbb{N} \curvearrowright \mathbb{Z}^d$ be the algebraic \mathbb{N} -action defined by a matrix $a \in M_d(\mathbb{Z}) \cap GL(\mathbb{Q})$. Then $\mathcal{C}_{\sigma} = \{a^n \mathbb{Z}^d : n \in \mathbb{N}\},$

and $\bigcap_{n=0}^{\infty} a^n \mathbb{Z}^d = \{0\}$ if and only if the minimal polynomial of a has no prime factors in $\mathbb{Z}[x]$ whose constant term lies in $\{\pm 1\}$.

Example.

- $S \curvearrowright \bigoplus_S \Sigma$ is exact if and only if S contains a non-invertible elements.
- The action $\sigma \colon R^{\times} \curvearrowright R$ is exact if and only if R is not a field.

We have technical (but checkable!) conditions (H) and (M) on our action $\sigma \colon S \curvearrowright G$ that characterize when \mathcal{G}_{σ} is Hausdorff and minimal, respectively.

Example.

- If G is a finite rank, torsion-free abelian group, then $\sigma \colon S \curvearrowright G$ satisfies (H) and (M).
- The shift S ~ ⊕_S Σ satisfies (M) if and only if S is left reversible and satisfies (H) whenever S is right reversible.
- $\sigma: R^{\times} \curvearrowright R$ satisfies (M) if and only if R is not a field and satisfies (H) if and only if R is not a field.

It turns out that pure infiniteness is automatic in the minimal setting:

Theorem (B.–Li).

If \mathcal{G}_{σ} is minimal (i.e., if $\sigma \colon S \curvearrowright G$ satisfies (M)), then \mathcal{G}_{σ} is purely infinite.

The main consequence for our C*-algebras is the following:

Corollary (B.–Li).

Assume S and G are countable and that $\sigma \colon S \curvearrowright G$ is exact and satisfies (M). Then, $C^*_{ess}(\mathcal{G}_{\sigma})$ is simple and purely infinite.

Algebraic actions

- The definition
- The C*-algebra
- The inverse semigroup
- The groupoid model
- Properties of the groupoid
 - Topologically freeness
 - Hausdorffness and minimality
 - Pure infiniteness and consequences for the C*-algebra

Comparison of C*-algebras

Example classes

Comparison of C*-algebras

Let χ_e be the character on \mathcal{E}_{σ} given by $\chi_e(C) = 1$ for all $C \in \mathcal{C}$.

Theorem (B.–Li).

If $\sigma: S \curvearrowright G$ is exact and $(\mathcal{G}_{\sigma})_{\chi_e}^{\chi_e}$ is amenable, then there exists a canonical *-isomorphism $C^*_{\mathsf{ess}}(\mathcal{G}_{\sigma}) \cong \mathfrak{A}_{\sigma}$.

Remark.

- In nice cases, $(\mathcal{G}_{\sigma})_{\chi_e}^{\chi_e}$ is an enveloping group of S and amenability of \mathcal{G}_{σ} is equivalent to amenability of the group $(\mathcal{G}_{\sigma})_{\chi_e}^{\chi_e}$.
- We also obtain exotic examples, e.g., for the shift $\sigma \colon \mathbb{F}_2^+ \curvearrowright \bigoplus_{\mathbb{F}_2^+} \Sigma$ over any non-amenable group Σ , we have surjective, <u>non-invertible</u> *-homomorphisms

$$C^*(\mathcal{G}_{\sigma}) \to \mathfrak{A}_{\sigma} \to C^*_r(\mathcal{G}_{\sigma})$$

whose composition is the identity on $C_c(\mathcal{G}_{\sigma})$.

Algebraic actions

- The definition
- The C*-algebra
- The inverse semigroup
- The groupoid model
- Properties of the groupoid
 - Topologically freeness
 - Hausdorffness and minimality
 - Pure infiniteness and consequences for the C*-algebra

Comparison of C*-algebras

Example classes

Our theorems apply to several large example classes, including:

- The C*-algebra of the shift when S is left reversible and embeds in a group.
- C*-algebras associated with exact actions on torsion-free, finite rank abelian groups.
- The ring C*-algebra of an integral domain that is not a field (known by Cuntz-Li).
- Many C*-algebras for actions of the form S ∩ R, where S ⊆ R[×] is a submonoid (e.g., the case where S is a congruence monoid in a ring of integers).
- Ring C*-algebras of many non-commutative rings.

Theorem (B.–Li, 2023).

Let K and L be number fields with rings of integers \mathcal{O}_K and \mathcal{O}_L . The following are equivalent:

- (a) $\mathcal{O}_K \cong \mathcal{O}_L$ as rings (equivalently, $K \cong L$);
- (b) the actions $\sigma : \mathcal{O}_K^{\times} \curvearrowright \mathcal{O}_K$ and $\tau : \mathcal{O}_L^{\times} \curvearrowright \mathcal{O}_L$ are isomorphic;
- (c) there is a *-isomorphism $\alpha \colon \mathfrak{A}_{\sigma} \xrightarrow{\cong} \mathfrak{A}_{\tau}$ such that $\alpha(\mathfrak{D}_{\sigma}) = \mathfrak{D}_{\tau}$;

(d) the groupoids \mathcal{G}_{σ} and \mathcal{G}_{τ} are isomorphic.

- → This is in stark contrast with a result by Li and Lück which says that $\mathfrak{A}[\mathcal{O}_K] \cong \mathfrak{A}[\mathcal{O}_L]$ independent of K and L.
- \blacktriangleright We have an isomorphism $\mathfrak{D}_{\sigma} \cong \mathfrak{D}_{\tau}$ independent of K and L.
- ➡ Thank you for your attention!