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Lecture 3 - Outline:

1. Morita equivalence of star products (lecture 2 reminder)
2. B-field symmetries of Poisson structures

3. Kontsevich’s classes of Morita equivalent star products
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Theorem
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Description in terms of Kontsevich's classes?

ax(M,z) o FPois(M) SN Def(M) o Pie(M) = HX(M, Z)
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B-field or gauge symmetries:
view QF (M) as symmetries of Poisson structures (Severa-Weinstein '01).

Best understood in terms of TM @ T*M ...

B € Q%(M) such that (1 + Bmr) invertible, then
™’ =n(1+ Bm)™!
is new Poisson structure

E.g., wl—wl!l(l+Bw ) !'=(w+B)!
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Things are nicer in the formal world:
Th — hﬂ'l + hQT‘-Q + ... 1n hX2<M>HFLH
B e Q*(M), Br,=o(h),

(1 4+ Bmy,) always invertible: (1 + Bmy) ™t =57 (—=1)*(Bm,)"

n=>0
B-field action:
m, — mp = mu(1 + Bmy) !t = hary + o(h)

Theorem (B., Dolgushev, Waldmann, ’09)
This action descends to

H?*(M,C) x FPois(M) — FPois(M),  [m] > [77]



3. Morita equivalence via Kontsevich’s classes



3. Morita equivalence via Kontsevich’s classes

H*(M,C) o FPois(M) N Def(M)  © pic(M) = H2(M, )



3. Morita equivalence via Kontsevich’s classes

H*(M,C) o FPois(M) N Def(M)  © pic(M) = H2(M, )

Theorem



3. Morita equivalence via Kontsevich’s classes

H*(M,C) o FPois(M) N Def(M)  © pic(M) = H2(M, )

Theorem

y(#]) = Ku([rP]), where B = 27%1@)

Conclusion: Upon integrality, B-fields quantize to Morita equivalence



3. Morita equivalence via Kontsevich’s classes

H*(M,C) o FPois(M) N Def(M)  © pic(M) = H2(M, )

Theorem

y(#]) = Ku([rP]), where B = 277%1@)

Conclusion: Upon integrality, B-fields quantize to Morita equivalence

General description of characteristic classes of Morita equivalent star
products.



3. Morita equivalence via Kontsevich’s classes

H*(M,C) o FPois(M) N Def(M)  © pic(M) = H2(M, )

Theorem

y(#]) = Ku([rP]), where B = 277%1@)

Conclusion: Upon integrality, B-fields quantize to Morita equivalence

General description of characteristic classes of Morita equivalent star
products.

Symplectic case: Fedosov-Deligne classes

c(x) — c(x,) € 2miH*(M, Z)
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