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Lecture 3 - Outline:

1. Morita equivalence of star products (lecture 2 reminder)

2. B-field symmetries of Poisson structures

3. Kontsevich’s classes of Morita equivalent star products
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Theorem

Star products ? and ?′ are Morita equivalent iff [?], [?′] lie in the
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Description in terms of Kontsevich’s classes?

Ȟ2(M,Z) � FPois(M)
K∗−→ Def(M) 	 Pic(M) = Ȟ2(M,Z)
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B-field or gauge symmetries:

view Ω2
cl(M) as symmetries of Poisson structures (Severa-Weinstein ’01).

Best understood in terms of TM ⊕ T ∗M ...

B ∈ Ω2
cl(M) such that (1 + Bπ) invertible, then

πB := π(1 + Bπ)−1

is new Poisson structure

E.g., ω−1 7→ ω−1(1 + Bω−1)−1 = (ω + B)−1
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Things are nicer in the formal world:

π~ = ~π1 + ~2π2 + ... in ~X 2(M)[[~]]

B ∈ Ω2(M), Bπ~ = o(~),

(1 + Bπ~) always invertible: (1 + Bπ~)−1 =
∑∞

n=0(−1)n(Bπ~)n

B-field action:

π~ 7→ πB
~ = π~(1 + Bπ~)−1 = ~π1 + o(~)

Theorem (B., Dolgushev, Waldmann, ’09)

This action descends to

H2(M,C)× FPois(M)→ FPois(M), [π~] 7→ [πB
~ ]
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Theorem

ΦL([?]) = K∗([πB
~ ]), where B =

2π

i
c1(L)

Conclusion: Upon integrality, B-fields quantize to Morita equivalence

General description of characteristic classes of Morita equivalent star
products.
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H2(M,C) � FPois(M)
K∗−→ Def(M) 	 Pic(M) = Ȟ2(M,Z)

Theorem

ΦL([?]) = K∗([πB
~ ]), where B =

2π

i
c1(L)

Conclusion: Upon integrality, B-fields quantize to Morita equivalence

General description of characteristic classes of Morita equivalent star
products.

Symplectic case: Fedosov-Deligne classes

c(?)− c(?′ϕ) ∈ 2πiH2(M,Z)
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