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Leavi� path algebras and graded K -theory



Leavi� path algebras

Throughout the talk ` will be a commutative unital ring.

The Leavi� path algebra of a graph s, r : E1 → E0 is the associative `-algebra with
generators {v, e, e∗ : v ∈ E0, e ∈ E1} subject to the Cuntz-Krieger relations:

f ∗ · g = δf ,g · r(f ), (CK1)

v =
∑

e∈s−1(v)

e · e∗ (CK2)

for each f , g ∈ E1 and regular vertex v .
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Leavi� algebras and their Cuntz splices

Given n ≥ 1, the Leavi� algebra Ln is the Leavi� path algebra of the rose of n
petals,

Rn = • , Ln = L(Rn).

The Cuntz splice ofRn is the graph

Rn− = • • • .

We will write Ln− for its Leavi� path algebra. It is an open question to determine
whether Ln and Ln− are isomorphic.
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Leavi� path algebras and graded K -theory

The algebra L(E) is Z-graded by se�ing |v| = 0, |e| = 1, |e∗| = −1 for each v ∈ E0,
e ∈ E1.

In particular, for each m ≥ 2 this induces a grading over Cm ' Z/mZ,

L(E)[i] =
⊕
k∈Z

L(E)mk+i.

Given m ∈ N≥2 ∪ {∞}, the Cm-graded K -theory KCm−gr
0 (L(E)) of L(E) is the group

completion of the monoid of isomorphism classes of projective f.g. Cm-graded
modules.
The grading shi� of modules induces a Cm-module structure on KCm−gr

0 (L(E)).

Objective

We shall see that there are no unital maps Ln ↔ Ln− that preserve the Cm-grading.
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Leavi� path algebras and (graded) K -theory

The (graded) K -theory of L(E) can be computed in terms of the adjacency matrix
of E ,

AE ∈ Nreg(E)×E0

0 , (AE)v,w = #{e ∈ E1 : s(e) = v, r(e) = w}.

Theorem

If ` is regular supercoherent and the map Z→ K0(`) is an isomorphism, then for any
row-finite graph E we have

K0(L(E)) = coker(I − At
E). (Iv,w = δv,w).

From now on we will assume that ` satisfies the hypotheses of the previous
theorem (e.g. ` can be a PID).
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Leavi� path algebras and (graded) K -theory

Theorem

For any finite regular graph E and m ≥ 2 there is an isomorphism

KCm−gr
0 (L(E)) ' coker(I − (Am

E )
t), [L(E)] 7→ 1E :=

∑
v∈E0

[v].

The Cm-module structure is induced by multiplication by Am−1
E .

By a result of Ara, Hazrat, Li and Sims, this amounts to computing the K0 of the
"m-sheeted covering of E". For example, when m = 3 and E = R2 we have the
following picture:

•v  
•v2 •v3

•v1



Leavi� path algebras and (graded) K -theory

Theorem

For any finite regular graph E and m ≥ 2 there is an isomorphism

KCm−gr
0 (L(E)) ' coker(I − (Am

E )
t), [L(E)] 7→ 1E :=

∑
v∈E0

[v].

The Cm-module structure is induced by multiplication by Am−1
E .

By a result of Ara, Hazrat, Li and Sims, this amounts to computing the K0 of the
"m-sheeted covering of E". For example, when m = 3 and E = R2 we have the
following picture:

•v  
•v2 •v3

•v1



Leavi� path algebras and (graded) K -theory

Theorem

For any finite regular graph E and m ≥ 2 there is an isomorphism

KCm−gr
0 (L(E)) ' coker(I − (Am

E )
t), [L(E)] 7→ 1E :=

∑
v∈E0

[v].

The Cm-module structure is induced by multiplication by Am−1
E .

Write τ for the generator of Cm. We define the Bowen-Franks Cm-module of a
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Show there are no Cm-module mapsBFm(Rn)→ BFm(Rn−) sending 1Rn 7→ 1Rn−

and likewise in the opposite direction.
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Bowen-Franks Cm-modules

Example

Since the adjacency matrix ofRn is (n) ∈ M1(Z), we have

BFm(Rn) = coker(Z
1−nm−−−→ Z) ' Z/(nm − 1)Z

and 1Rn 7→ 1. The action on the right hand side is given by multiplication by nm−1.

We will now compute BFm(Rn−). SinceRn− = • • • , its

adjacency matrix is

ARn−
=

n 1 0
1 1 1
0 1 1

 .



Bowen-Franks Cm-modules

Example

Since the adjacency matrix ofRn is (n) ∈ M1(Z), we have

BFm(Rn) = coker(Z
1−nm−−−→ Z) ' Z/(nm − 1)Z

and 1Rn 7→ 1. The action on the right hand side is given by multiplication by nm−1.

We will now compute BFm(Rn−). SinceRn− = • • • , its

adjacency matrix is

ARn−
=

n 1 0
1 1 1
0 1 1

 .



Bowen-Franks Cm-modules

By definition

BFm(Rn−) = coker(I − τAt
Rn−

) = coker

1− n · τ −τ 0
−τ 1− τ −τ
0 −τ 1− τ

 .

This matrix can be thought of as the projection of the matrix I − X · At
Rn−
∈ Z[X ].

In particular, one can compute the Smith normal form of the la�er in Q[X ] and, as
it turns out, all operations can be performed in Z[X ].

From this we are able to obtain that

BFm(Rn−) '
Z[Cm]

〈ξn(τ)〉
, ξn(X) = X 3 + (2n− 1)X 2 − (n+ 2)X + 1

and 1Rn−
7→ 1− n · τ .
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There are no graded unital maps Ln− → Ln

By what we have seen, to see that there are no unital Cm-graded maps Ln ↔ Ln− it
su�ices to prove that there are no pointed Cm-module maps between

(Z/(nm − 1)Z, 1) and
(

Z[Cm]

〈ξn(τ)〉
, 1− n · τ

)
.

Proposition

Let m ∈ N≥2 ∪ {∞} and n ≥ 2. There are no Cm-graded unital maps Ln− → Ln.

Proof.

We may assume m <∞. A pointed Cm-module map φ : BFm(Rn−)→ BFm(Rn)
should satisfy 1 = φ([1− n · τ ]) = (1− n · τ)φ([1]) = (1− nm)φ([1]) = 0, a
contradiction.



There are no graded unital maps Ln− → Ln

By what we have seen, to see that there are no unital Cm-graded maps Ln ↔ Ln− it
su�ices to prove that there are no pointed Cm-module maps between

(Z/(nm − 1)Z, 1) and
(

Z[Cm]

〈ξn(τ)〉
, 1− n · τ

)
.

Proposition

Let m ∈ N≥2 ∪ {∞} and n ≥ 2. There are no Cm-graded unital maps Ln− → Ln.

Proof.

We may assume m <∞. A pointed Cm-module map φ : BFm(Rn−)→ BFm(Rn)
should satisfy 1 = φ([1− n · τ ]) = (1− n · τ)φ([1]) = (1− nm)φ([1]) = 0, a
contradiction.



There are no graded unital maps Ln− → Ln

By what we have seen, to see that there are no unital Cm-graded maps Ln ↔ Ln− it
su�ices to prove that there are no pointed Cm-module maps between

(Z/(nm − 1)Z, 1) and
(

Z[Cm]

〈ξn(τ)〉
, 1− n · τ

)
.

Proposition

Let m ∈ N≥2 ∪ {∞} and n ≥ 2. There are no Cm-graded unital maps Ln− → Ln.

Proof.

We may assume m <∞. A pointed Cm-module map φ : BFm(Rn−)→ BFm(Rn)
should satisfy 1 = φ([1− n · τ ]) = (1− n · τ)φ([1]) = (1− nm)φ([1]) = 0, a
contradiction.



There are no graded unital maps Ln → Ln−



A non-triviality criterion

For the nonexistence of maps Ln → Ln− we shall need a non-triviality criterion for
Bowen-Franks modules.

Lemma

Let E be a finite regular graph. Assume that all complex roots of χAE (X) ∈ Z[X ] are
real. If BF2(E) is finite and nontrivial, then∞ > |BFm(E)| > |BF2(E)| > 1 for all
m > 2.

Sketch of proof.

By the Smith normal form, we know that |χAm
E
(1)| = | det(I − (Am

E )
t)| is either

zero, in which case BFm(E) is infinite, or it coincides with |BFm(E)|.

Since the roots of χAm
E

are m-powers of the roots of χAE , the result follows from the
hypotheses on χAE and BF2(E).
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For each n,m ≥ 2 we haveBFm(Rn−) ≥ 3n2 − 2n− 1.



Some preliminary lemmas

Lemma

If there exists a Cm-graded unital map φ : Ln → Ln− , then

(1− nX)2 ∈ 〈Xm − 1, ξn(X)〉

Proof.

The existence of a Cm-module map φ : Z/(nm − 1)Z→ Z[X ]/〈Xm − 1, ξn(X)〉
mapping 1 7→ [1− n · X ] would imply that

[(1− n · X)2] = (1− n · τ)[(1− n · X)] = (1− n · τ)φ(1) = φ(1− nm) = 0.
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Lemma

For each n,m ≥ 2, put In,m := 〈Xm − 1, ξn(X)〉. If (1− nX)2 ∈ In,m, we have

In,m = 〈(X − 1)2,m(X − 1), (3n− 1)(x − 1) + n− 1〉.

Sketch of proof.

Step 1: (n− 1)2 ∈ In,m. There are pn(X), qn(X) ∈ Z[X ] such that

pn(X) · ξn(X) + qn(X) · (1− nX)2 = (n− 1)2,

and their coe�icients depend polynomially on n. We may find them interpolating.
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Step 3: since (X − 1)2 ∈ In,m, we may add it as a generator and reduce Xm − 1 and
ξn(X) modulo (X − 1)2.
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The main result

Theorem (A. - Cortiñas)

There are no Cm-graded unital maps Ln → Ln− for any n ≥ 2 and m ∈ N≥2 ∪ {∞}.

Sketch of proof.

Assuming (1− nX)2 ∈ 〈Xm − 1, ξn(X)〉, we have

BFm(Rn−) ' Z[X ]/〈(X − 1)2,m(X − 1), (3n− 1)(X − 1) + n− 1〉.

If there is a Cm-graded unital map, it is also Cd-graded for each d | m, so we may
assume that m is a prime.

A contradiction is then drawn by manipulating the ideal to contradict the lower
bound on |BFm(Rn−)|.
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