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Leavitt path algebras

Throughout the talk ¢ will be a commutative unital ring.

The Leavitt path algebra of a graph s, r: E' — E° is the associative (-algebra with
generators {v, e, e* : v € E° e € E'} subject to the Cuntz-Krieger relations:



Leavitt path algebras

Throughout the talk ¢ will be a commutative unital ring.

The Leavitt path algebra of a graph s, r: E' — E° is the associative (-algebra with
generators {v, e, e* : v € E° e € E'} subject to the Cuntz-Krieger relations:

[ 8="drg-r(f), (CK1)
V= Z e-e (CK2)
ecs1(v)

for each f, g € E'" and regular vertex v.
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Leavitt algebras and their Cuntz splices

Given n > 1, the Leavitt algebra L, is the Leavitt path algebra of the rose of n
petals,

The Cuntz splice of R, is the graph

R0

We will write L,- for its Leavitt path algebra. It is an open question to determine
whether L, and L,- are isomorphic.
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Leavitt path algebras and graded K-theory

The algebra L(E) is Z-graded by setting |v| = 0, |e| = 1, |e*| = —1 for each v € E°,
ec E'.

In particular, for each m > 2 this induces a grading over C,, ~ Z/mZ,

L(E)[i] = @ L(E)mk-‘ri-

keZ

Given m € N>, U {00}, the C,-graded K-theory K" & (L(E)) of L(E) is the group
completion of the monoid of isomorphism classes of projective f.g. C,,-graded
modules.

The grading shift of modules induces a C,,-module structure on K " & (L(E)).

Objective

We shall see that there are no unital maps L,, <+ L, that preserve the C,-grading.
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The (graded) K-theory of L(E) can be computed in terms of the adjacency matrix
of E,
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Leavitt path algebras and (graded) K-theory

The (graded) K-theory of L(E) can be computed in terms of the adjacency matrix
of E,

AE S N(r)eg(E)XEO7 (AE)V,W — #{e S E1 . S(e) =V, r(e) = W}

If ¢ is regular supercoherent and the map Z — Ky(¢) is an isomorphism, then for any
row-finite graph E we have

Ko(L(E)) = coker(I — Af). (low=0yw)

From now on we will assume that ¢ satisfies the hypotheses of the previous
theorem (e.g. ¢ can be a PID).
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The C,,-module structure is induced by multiplication by A7~".



Leavitt path algebras and (graded) K-theory

For any finite regular graph E and m > 2 there is an isomorphism

K" ' (L(E)) ~ coker(I — (AF)"),  [L(E)] = 1g:= Y [v].

VEE?
The C,,-module structure is induced by multiplication by A7~".

By a result of Ara, Hazrat, Li and Sims, this amounts to computing the K; of the
"m-sheeted covering of E". For example, when m = 3 and E = R, we have the
following picture:
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Leavitt path algebras and (graded) K-theory

For any finite regular graph E and m > 2 there is an isomorphism

KB (L(E)) ~ coker(I — (D)), [L(E)] = 1e = D[]

vEE?

The C,,-module structure is induced by multiplication by A7~

Write 7 for the generator of C,,. We define the Bowen-Franks C,-module of a
finite graph E as BF,,(E) = coker(/ — 7 - AL).

Strategy

Show there are no C,,-module maps B ,(R,) — BFm(Ry-) sending 1z, = g __
and likewise in the opposite direction.
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Bowen-Franks C,,-modules

Since the adjacency matrix of R, is (n) € M(Z), we have

B n(Ro) = coker(Z =55 Z) ~ Z/(n™ — 1)Z

m—1

and 1, — 1. The action on the right hand side is given by multiplication by n

RS0

We will now compute B85 ,(R,-). Since R,,- = ts

adjacency matrix is
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By definition
1—n-7 -7 0
%Sm(Rn*) = COker(I — TA;.\,{ 7) — coker 7 1—7 .
0 —T 1—7

This matrix can be thought of as the projection of the matrix I — X - AL, € Z[X].
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Bowen-Franks C,,-modules

By definition
1—n-7 -7 0
%Sm(Rn*) = COker(I — TA;.\,{ 7) — coker 7 1—7 .
0 —T 1—7

This matrix can be thought of as the projection of the matrix I — X - AL, € Z[X].

In particular, one can compute the Smith normal form of the latter in Q[X] and, as
it turns out, all operations can be performed in Z[X].

From this we are able to obtain that

Z[Cy) ot (am— 11X — (
&) EL(X)=X+2n—1)X*—(n+2)X + 1

BFn(Ry)

and I, = 1—n-T.
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By what we have seen, to see that there are no unital C,-graded maps L, <> L,- it
suffices to prove that there are no pointed C,-module maps between

(Z/(n""—1)Z,1)  and (<§£(CT”1)]>,1 —n-T).
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There are no graded unital maps L,- — L,

By what we have seen, to see that there are no unital C,-graded maps L, <+ L, it
suffices to prove that there are no pointed C,-module maps between

(Z/(n""—1)Z,1)  and (<§£§;";]>,1 —n.T).

Proposition

Let m € N>, U {00} and n > 2. There are no C,,-graded unital maps L, — L,,.

Proof.

We may assume m < oo. A pointed C,-module map ¢: BF,(R,-) = BF.(R,)
should satisfy 1=¢([1—n-7]) = (1 —n-7)o([1]) = (1 — n™)e([1]) = 0, a

contradiction. ]
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Bowen-Franks modules.
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A non-triviality criterion

For the nonexistence of maps L, — L,- we shall need a non-triviality criterion for
Bowen-Franks modules.

Lemma

Let E be a finite regular graph. Assume that all complex roots of x a,(X) € Z[X] are
real. If BF,(E) is finite and nontrivial, then co > |BF,,(E)| > |BF,(E)| > 1 for all
m> 2,

Sketch of proof.

By the Smith normal form, we know that [xar(1)| = | det(/ — (AF)")] is either
zero, in which case BF,,(E) is infinite, or it coincides with |BF,,(E)]|.

Since the roots of XAr are m-powers of the roots of Y 4,, the result follows from the
hypotheses on x4, and BF,(E). O



A non-triviality criterion

For the nonexistence of maps L, — L,- we shall need a non-triviality criterion for
Bowen-Franks modules.

Lemma

Let E be a finite regular graph. Assume that all complex roots of x 4,(X) € Z[X] are
real. If BF,(E) is finite and nontrivial, then 0o > |BF,,(E)| > |BF.(E)| > 1 for all
m> 2.

Corollary

For each nym > 2 we have BF,(R,-) > 3n* —2n— 1.
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Some preliminary lemmas

Lemma

If there exists a C,-graded unital map ¢: L, — L,-, then

(1—nX)* € (X" —1,£,(X))

The existence of a C,,-module map ¢: Z/(n™ — 1)Z — Z[X]/(X™ — 1,£,(X))
mapping 1~ [1 — n- X] would imply that

(1= X)) = (1= n-7I(1 = - X)] = (1= n-7)6(1) = 61 — ") = 0.
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For each n,m > 2, put I, := (X" — 1,&,(X)). If (1 — nX)? € I, n, we have

Lom=((X=1)",m(X—1),3n—1)(x — 1) + n—1).

Sketch of proof.
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Some preliminary lemmas

Lemma

For each n,m > 2, put I, := (X" — 1,&,(X)). If (1 — nX)? € I, n, we have

Lom=((X=1)",m(X—1),3n—1)(x — 1) + n—1).

Sketch of proof.

Step 1: (n — 1)% € I, m. There are pa(X), go(X) € Z[X] such that
pn(X) - €a(X) + qn(X) - (1 = nX)? = (n— 1),

and their coefficients depend polynomially on n. We may find them interpolating.
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Some preliminary lemmas

Lemma

For each n,m > 2, put I, := (X" — 1,&,(X)). If (1 — nX)? € I, n, we have

Lom={((X—=1)>,m(X —=1),3n = 1)(x — 1) + n—1).

Sketch of proof.

Step 1: (n — 1)? € I, m. Remark: this proves that there are no graded maps L, — L,-.
Step 2: (n+ 1)X —2 € I, mand thus 1—nX = X — 1 (mod I, 1n).

Step 3: since (X — 1)? € I, m, we may add it as a generator and reduce X™ — 1 and
£,(X) modulo (X — 1)2.

[l
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There are no C,,-graded unital maps L, — L, foranyn> 2 and m € N>, U {co}.



The main result

Theorem (A. - Cortifas)
There are no C,,-graded unital maps L, — L, forany n > 2 and m € N>, U {o0}.

Sketch of proof.

Assuming (1 — nX)? € (X™ — 1,£,(X)), we have

BF (R ) = Z[X])/ (X — 12, m(X — 1), (30— 1)(X = 1) +n—1).

If there is a C,,-graded unital map, it is also C,-graded for each d | m, so we may

assume that mis a prime.
A contradiction is then drawn by manipulating the ideal to contradict the lower

bound on |BF,(R,-)|. O



