Práctica 2

Algunas definiciones.

Si R es un anillo conmutativo y M un R-módulo, el anulador de M es el ideal

$$Ann M = \{ a \in R : a \cdot m = 0 \forall m \in M \}$$

Notar que $\operatorname{Ann} M=0$ si y sólo si M es fiel. Si R es un dominio principal y M es infiel, entonces $\operatorname{Ann} M=Ra$ para algún $a\in R\setminus\{0\}$. En el caso $R=\mathbb{Z}$, llamamos exponente de M al único generador positivo de $\operatorname{Ann} M$. En el caso R=k[x], si M es infiel y $T:M\to M$ es la transformación k-lineal $T(m)=x\cdot m$, llamnamos polinomio minimal de T al único generador mónico de $\operatorname{Ann} M$.

Ejercicios

- 1. Sean R un dominio íntegro y M un R-módulo. Decidir si cada una de las siguientes afirmaciones es verdadera o falsa.
 - a) Si M es libre, entonces es sin torsión.
 - b) Si $f: M \longrightarrow N$ es un morfismo de R-módulos y M es de torsión entonces Im(f) es de torsión.
 - c) Si $f: M \longrightarrow N$ es un morfismo de R-módulos y M es sin torsión entonces Im(f) es sin torsión.
 - d) Si N es sin torsión entonces $Hom_A(M, N)$ es sin torsión.
 - e) Si M es de torsión y N es sin torsión entonces $Hom_A(M,N)=0$.
- 2. Calcular $t\left(\mathbb{R}/\mathbb{Z}\right)$ (la torsión de \mathbb{R}/\mathbb{Z} como \mathbb{Z} -módulo).
- 3. Sean R un dominio íntegro, $v_1, \ldots, v_n \in A^n$ y $P \in A^{n \times n}$ la matriz que tiene en la columna i el vector v_i . Probar lo siguiente.
 - (a) $\{v_1, \ldots, v_n\}$ es linealmente independiente si y sólo si $\det(P) \neq 0$.
 - (b) $\{v_1, \ldots, v_n\}$ genera A^n si y sólo si $\det(P)$ es inversible en R.
- 4. Sean R un anillo, M un R-módulo a izquierda y $S \subseteq M$ un submódulo. Probar que los siguientes enunciados son equivalentes.
 - (a) S es un sumando directo de M.
 - (b) La inclusión $\iota: S \hookrightarrow M$ tiene inversa a izquierda.
 - (c) La proyección al cociente $\pi: M \to M/S$ tiene inversa a derecha.

- 5. Sea $(a_1, \ldots, a_n) \in \mathbb{Z}^n$. Probar que $\mathbb{Z}(a_1, \ldots, a_n)$ es un sumando directo de \mathbb{Z}^n si y sólo si $mcd(a_1, \ldots, a_n) = 1$.
- 6. Sea K un cuerpo. Probar que el anillo de polinomios de Laurent $K[X, X^{-1}]$ es un dominio principal.
- 7. Sea R un dominio principal y sea M un R-módulo de tipo finito (es decir finitamente generado). Probar:
 - a) M es de torsión \iff $Hom_A(M,A) = 0$.
 - b) M es indescomponible (es decir, no tiene sumandos directos propios) $\iff M \simeq A$ o $\exists p \in A$ irreducible y $n \in \mathbb{N}$ tales que $M \simeq A/\langle p^n \rangle$.
- 8. Sea p un primo positivo. Clasificar todos los grupos abelianos de orden p^3 , p^4 y p^5 .
- 9. Clasificar los grupos abelianos de orden 18, 45, 100 y 180.
- 10. a) Sea G un grupo abeliano finito y sea p un primo positivo que divide al orden de G.

 Probar que el número de elementos de orden p en G es coprimo con p.
 - b) Para cada grupo abeliano G de orden p^2q^2 (donde p y q son primos distintos) determinar cuántos elementos de orden pq y cuántos elementos de orden pq^2 hay en G.
- 11. Caracterizar los grupos abelianos finitamente generados tales que:
 - a) Todo subgrupo propio de G es cíclico.
 - b) Todo subgrupo propio de G es de orden primo.
 - c) G posee exactamente 2 subgrupos propios no nulos.
 - d) G posee exactamente 3 subgrupos propios no nulos.
- 12. Descomponer los siguientes grupos abelianos como suma directa de grupos indescomponibles:
 - a) $\mathbb{Z}_4 \oplus \mathbb{Z}_6 \oplus \mathbb{Z}_9$.
 - b) $\mathbb{Z} \oplus \mathbb{Z}_{98} \oplus \mathbb{Z}$.
 - c) G un grupo abeliano de orden 36 que tiene exactamente 2 elementos de orden 3 y que no tiene elementos de orden 4.
- 13. Descomponer los siguientes cocientes como suma directa de grupos abelianos irreducibles:
 - a) \mathbb{Z}^4/S con $S = \{m \in \mathbb{Z}^4 \mid m_1 + m_2 + m_3 + m_4 = 0, m_1 + m_2 2m_3 = 0\}.$
 - b) \mathbb{Z}^3/S con $S = \{ m \in \mathbb{Z}^3 / m_1 \text{ es par, } m_1 + 5m_2 m_3 = 0 \}.$
- 14. Sean p, q y r primos positivos distintos. Determinar la cantidad de grupos no isomorfos de orden n, en cada uno de los siguientes casos:

- a) $n = p^6 q^3 r$.
- b) $n = p^3 q^4$.
- 15. a) Sea G un grupo abeliano de orden n. Probar que si d es un divisor de n, G posee subgrupos y grupos cocientes de orden d.
 - b) Sea $n \in \mathbb{N}$. ¿Para qué divisores d de n existe un grupo abeliano de orden n y exponente d?
 - c) Caracterizar los grupos abelianos finitos de orden menor o igual que 100 de exponente 9, 20 y 21.
 - d) Sea G un grupo abeliano y sea $x \in G$ un elemento tal que ord $(x) = \exp(G)$. Probar que $\langle x \rangle$ es un sumando directo de G.
- 16. a) Caracterizar los K[X]-módulos de dimensión 1, 2 y 3 sobre K, para $K=\mathbb{Q},\mathbb{R},\mathbb{C}$. Comparar.
 - b) Para $K=\mathbb{Q}, \mathbb{R}, \mathbb{C}$, caracterizar los K[X]-módulos de dimensión finita que tienen a X^2+X+1 por polinomio minimal.

17. Descomponer los

K[X]-módulos definidos por las siguientes matrices como suma directa de submódulos indescomponibles:

a)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$
c)
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & -2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}$$
b)
$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
d)
$$\begin{pmatrix} 1 & 0 & 1 & -1 \\ 1 & -1 & 2 & -1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 2 & -2 \end{pmatrix}.$$

3

Para cada matriz analizar $K = \mathbb{Q}, \mathbb{R}, \mathbb{C}$ por separado.