Módulos, Práctica 1

Algunas definiciones.

En esta práctica todos los anillos tienen unidad. Sea A un anillo. El centro de A es el subconjunto

$$\mathcal{Z}(A) := \{ a \in A \mid ax = xa, \text{ para todo } x \in A \}.$$

Un elemento $a \in A$ se dice *inversible* si tiene inversa bilátera (i.e. existe $b \in A$ tal que ab = ba = 1). Decimos que A es anillo de división si todo elemento no nulo es inversible. Cuando no se aclare otra cosa, A-módulo significará A-módulo a izquierda.

Un A-módulo M se dice fiel si $aM = 0, a \in A \Longrightarrow a = 0.$

Ejercicios

- 1. Sean K un cuerpo y $n \in \mathbb{N}$. Probar lo siguiente.
 - Sean $V \subseteq K^n$ un subespacio vectorial e I_V el subconjunto de $M_n(K)$ formado por todas las matrices cuyas filas pertenecen a V. Probar que I_V es un ideal a izquierda de $M_n(K)$.
 - Probar que todo ideal a izquierda de $M_n(K)$ es de la forma del definido en el ítem anterior. (Sugerencia: tomar V como el conjunto formado por todas las filas de todas las matrices del ideal y probar que es un subespacio).
 - Probar que $M_n(K)$ es simple (i.e. no tiene ideales biláteros no triviales).
 - Probar que $\mathcal{Z}(M_n(K)) = K \cdot I$.
- 2. Hallar todos los ideales de \mathbb{Z} y de $\mathbb{Q}[X]$.
- 3. Sean $a, b \in \mathbb{Z}$. Probar que $\langle a, b \rangle = \langle \operatorname{mcd}(a, b) \rangle$.
- 4. Sea $d \in \mathbb{Z}$ libre de cuadrados.
 - a) Probar que si $a + b\sqrt{d} = a' + b'\sqrt{d}$ con $a, b, a', b' \in \mathbb{Z}$, entonces a = a' y b = b'.
 - b) Probar que si d es impar, $\{a + b\sqrt{d} \mid a \equiv b \pmod{2}\}$ es un ideal de $\mathbb{Z}[\sqrt{d}]$.
- 5. Hallar un ideal de $\mathbb{Z}[X]$ que no pueda generarse por un único elemento.
- 6. Sea A un anillo. Probar que A es un anillo de división si y sólo si los únicos ideales a izquierda de A son 0 y A.
- 7. Determinar en cada uno de los siguientes casos si la acción \cdot de A sobre M define en M una estructura de A-módulo a izquierda.
 - a) $A = \mathbb{R}$, $M = \mathbb{C}$, $a \cdot m = am$.

- b) $A = \mathbb{R}$, $M = \mathbb{R}^n$, $a \cdot m = am$, $(n \in \mathbb{N})$.
- c) $A = M_n(\mathbb{R}), M = \mathbb{R}^n, a \cdot m = am, (n \in \mathbb{N}).$
- d) $A = M_n(\mathbb{R}), \quad M = \mathbb{R}, \quad a \cdot m = \det(a) \, m, \quad (n \in \mathbb{N}).$
- e) $A = \mathbb{R}[X], M = \mathbb{R}^n, a \cdot (m_1, m_2, \dots, m_n) = (a(1)m_1, a(2)m_2, \dots, a(n)m_n), (n \in \mathbb{N}).$
- f) $A = \mathbb{Z}_{nk}$, $M = \mathbb{Z}_n$, $a \cdot m = r_n(am)$, $(n, k \in \mathbb{N})$.
- 8. Decidir cuáles de los A-módulos del ejercicio anterior son fieles.
- 9. Sean A y B anillos, M un B-módulo $y \varphi : A \to B$ un morfismo de anillos. Probar que la acción $a \cdot m = \varphi(a) \cdot m$ define sobre M una estructura de A-módulo, que denotamos φ^*M .
- 10. Determinar en cada uno de los siguientes casos si S es un submódulo del A-módulo M.
 - a) $A = \mathbb{R}$, $M = \mathbb{C}$, $S = \mathbb{R}i$.
 - b) $A = \mathbb{Z}, M = M_n(\mathbb{Z}), S = \{(a_{ij}) \in M \mid \det(a_{ij}) = 0\}, (n \in \mathbb{N}).$
 - c) A un anillo cualquiera, $M = A^n$, $S = \{(a_1, \dots, a_n) \in M \mid a_1 + \dots + a_n = 0\}$, $(n \in \mathbb{N})$.
 - d) $A = \mathbb{Z}[X], M = \mathbb{Z}[X], S = \{ f \in M \mid f = 0 \text{ o deg}(f) \le n \}.$
- 11. Sean M un A-módulo, S un subconjunto de M y N un submódulo de M. Probar que $(N:S)=\{a\in A\mid as\in N\;\forall s\in S\}$ es un ideal a izquierda de A.
- 12. Probar que para todo $n \in \mathbb{N}$ existe en el \mathbb{Z} -módulo \mathbb{Z} un sistema de generadores minimal con n elementos.
- 13. Sean $n, m \in \mathbb{N}$, 2 < n < m. Probar en cada uno de los siguientes casos que f es un morfismo de A-módulos.
 - a) $A = \mathbb{Z}$, $f: \mathbb{Z} \to \mathbb{Z}$, f(a) = 2a.
 - b) $A = \mathbb{R}, f: \mathbb{C} \to \mathbb{C}, f(z) = \overline{z}$
 - c) A un anillo cualquiera, $f: A^n \to A^m$, $f(a_1, \ldots, a_n) = (a_1, \ldots, a_n, 0, \ldots 0)$.
 - d) A un anillo cualquiera, $f: A^m \to A^n$, $f(a_1, \ldots, a_m) = (a_1, \ldots, a_n)$.
 - e) A un anillo cualquiera, $f: A^n \to A^2$, $f(a_1, \ldots, a_n) = (a_1 + a_n, a_n)$.
 - f) A un anillo cualquiera, $f: A^n \to A^n$, $f(a_1, \dots, a_n) = (a_1, a_1 + a_2, \dots, a_1 + \dots + a_n)$.
 - g) A un anillo cualquiera, fijo $a_0 \in A$, $f: A[X] \to A$, $f(g) = g(a_0)$.
- 14. En cada uno de los ítems del ejercicio anterior, hallar el núcleo, la imagen y determinar si f es monomorfismo, epimorfismo, sección, retracción y/o isomorfismo.
- 15. Sean V y W dos \mathbb{Q} -módulos y $f:V\to W$ una función. Probar que f es un morfismo de \mathbb{Q} -módulos si y sólo si es un morfismo de grupos.

- 16. Sean M y N dos A-módulos a izquierda. Probar lo siguiente.
 - (a) $Hom_A(M,N)$ tiene estructura de (A)-módulo a izquierda vía: $(a \cdot f)(m) = a \cdot f(m)$.
 - (b) $Hom_A(A, N) \simeq N$ como (A)-módulos.
 - (c) Si además M es un bim'odulo es decir M es también un A-módulo a derecha y (am)b=a(mb), $(a,b\in A,m\in M)$ entonces $Hom_A(M,N)$ tiene estructura de A-módulo a izquierda mediante la acción (a*f)(m)=f(ma).
 - (d) Observar que A es un A-bimódulo y probar que la acción de A en $Hom_A(A, N)$ mediante * extiende a la acción de (A) del ítem (a).
 - (e) $Hom_A(A, N) \simeq N$ como A-módulos.
- 17. Caracterizar en cada uno de los siguientes casos el A-módulo cociente M/S.
 - a) $M = A^n$, $S = \{(a_1, \dots, a_n) \in M \mid a_1 + \dots + a_n = 0\}$.
 - b) $M = A[X], S = \{ f \in M \mid f(1) = 0 \}.$
 - c) $M = M_n(A)$, $S = \{(a_{ij}) \in M \mid a_{i1} = 0 \ \forall \ 1 \le i \le n\}$.
- 18. Sean M,N A-módulos y $f:M\to N$ una función. Probar que f es un morfismo si y sólo si el gráfico de f, $\Gamma(f)=\{(x,f(x))\mid x\in M\}$ es un submódulo de $M\oplus N$.
- 19. Sea k un cuerpo. Una k-álgebra es un anillo A junto con un morfismo de anillos $\iota: k \to (A)$. Probar lo siguiente.
 - a) Si A es una k-álgebra, la fórmula $\lambda \cdot a := \iota(\lambda)a$, $(\lambda \in k, a \in A)$ define en A una estructura de k-espacio vectorial con la propiedad: $(\lambda \cdot a)b = a(\lambda \cdot b)$, $(\lambda \in k, a, b \in A)$.
 - b) Si A es una anillo con una estructura de k-espacio vectorial que verifica la propiedad del ítem anterior, entonces A es una k-álgebra vía el morfismo $\iota: k \to (A)$, $\iota(\lambda) := \lambda \cdot 1$.
 - c) Si A es una k-álgebra y M es un módulo entonces el producto: $\lambda*m:=\iota(\lambda)m$ define en M una estructura de k-espacio vectorial. Más aún, para esta estructura se tiene que la imagen del morfismo canónico $\rho:A\to \operatorname{End}_{\mathbb{Z}}M$, a \mapsto (m \mapsto am) está contenida en el subanillo $\operatorname{End}_k M\subset\operatorname{End}_{\mathbb{Z}}M$.
 - d) Sea M un grupo abeliano. Probar que es lo mismo darle una estructura de A-módulo a M que darle una estructura de k-espacio vectorial y dar un morfismo de anillos $\rho: A \to \operatorname{End}_k(M)$ que además es k-lineal.
- 20. Sean A y B k-álgebras. Un morfismo de k-álgebras $f:A\to B$ es un morfismo de anillos que es también una transformación k-lineal. Probar lo siguiente.
 - a) Las aplicaciones ι y ρ del ejercicio anterior son morfismos de k-álgebras.

b) Sea $\rho:A\to \operatorname{End}_k(A)$ el morfismo de k-álgebras que le corresponde al A-módulo A via la correspondencia dada más arriba. Probar que ρ es inyectivo. Concluir que toda k-álgebra de dimensión finita es isomorfa a una subálgebra de $M_n(k)$ para algún $n\leq \dim_k A$.

21. Sea M un A-módulo.

- a) Probar que si $f \in End_A(M)$ verifica $f^2 = f$, entonces $M = \ker f \oplus \operatorname{im} f$.
- b) Probar que si M_1 y M_2 son submódulos de M tales que $M=M_1\oplus M_2$, entonces existe $f\in End_A(M)$ tal que $f^2=f$, $M_1=\ker f$ y $M_2=\operatorname{im} f$.