IMPROVED BUCKLEY’S THEOREM ON LCA GROUPS

VICTORIA PATERNOSTRO AND EZEQUIEL RELA

ABSTRACT. We present sharp quantitative weighted norm inequalities
for the Hardy-Littlewood maximal function in the context of Locally
Compact Abelian Groups, obtaining an improved version of the so-called
Buckley’s Theorem. On the way, we prove a precise reverse Holder
inequality for Muckenhoupt Ao weights and provide a valid version of
the “open property” for Muckenhoupt A, weights.

1. INTRODUCTION AND MAIN RESULTS

The study of weighted norm inequalities for maximal type operators is
one of the central topics in harmonic analysis that began with the celebrated
theorem of Muckenhaupt [Muc72]. It states that the class of weights (non-
negative locally integrable functions) characterizing the boundedness of the
Hardy-Littlewood maximal function M on the weighted space LP(R", wdz)
is the so-called Muckenhaupt A, class (see below for the precise definitions).
It is important to remark that Muckenhaupt’s result is qualitative, that is,
it does not provide any precise information of how the operator norm of M
depends on the underlying weight in w € A,. The first quantitative result
on the boundeness for the maximal function in R™ dates back to the 90’s,
is due to Buckley [Buc93] and gives the best possible power dependence on
the A, constant [w]4,. More precisely, Buckley proved that

1

(11) HMHLP(R",de})ﬁLP(R",wdl‘) < C[w]fa 1<p<oo.

Recently a simpler and elegant proof was presented by Lerner [Ler08] who
used a very clever argument composing weighted versions of the maximal
function. Later, finer improvements have been found. In particular, there
is in [HPR12] a sharp mixed bound valid in the context of spaces of homo-
geneous type.

Our purpose here is to obtain sharp quantitative norm estimates in the
context of Locally Compact Abelian groups (LCA groups). The modern
approach to this problem is to use a sharp version of the reverse Holder
inequality (RHI) with a precise quantitative expression for the exponent to
derive a proper open property for the A, claseses. Then an interpolation
type argument allows to prove the desired bound.

In the rest of the introduction we first described in details the context
where we will work in and then properly state the results that we will prove.

1991 Mathematics Subject Classification. Primary: 42B25. Secondary: 43A70.
Key words and phrases. Locally compact abelian groups; Reverse Holder inequality;
Muckenhoupt weights; Maximal functions.
Both authors are partially supported by grants UBACyT 20020130100403BA,
CONICET-PIP 11220150100355 and PICT 2014-1480.
1



2 VICTORIA PATERNOSTRO AND EZEQUIEL RELA

1.1. Muckenhoupt weights and maximal function on LCA groups.
In the euclidean setting the standard way to introduce A, weights is by
considering averages over cubes, balls or more general families of convex
sets. In any case, the family is built using some specific metric. In our
context of LCA groups we lack of such concept. However there are many
LCA groups where we do have the possibility of consider a family of base sets
satisfying the other fundamental property of the basis of cubes or balls: any
point has a family of decreasing base sets shrinking to it and, in addition,
the whole space can be covered by the increasing union of such family.

In order to properly defined the A, classes let us fix an LCA group G
with a measure p that is inner regular and such that pu(K) < oo for every
compact set K C G. Notice that p does need to be the Haar measure
because we do not assume g to be translation invariant. The reader can
find a comprehensive treatment of Harmonic Analysis on LCA groups in
[HR70, HR79, Rud62]. The general assumption on the group will be that
it admits a sequence of neighborhoods of 0 with certain properties that we
described in the next definition (cf. [EG77, Section 2.1]).

Definition 1.1. A collection {U;};cz is a covering family for G if

(1) {Ui}iez is an increasing base of relatively compact neighborhoods of
0, UiEZ UZ' =G and ﬂz UZ‘ = {0}
(2) There exists a positive constant D > 1 and an increasing function
0 : Z — Z such that for any : € Z and any z € G
e i <0(i)
o U;—U; C Ug(,’)
o w(@+ Upuy) < Dp(z + U;).

We will refer to the third condition as the doubling property of the measure
w with respect to 8 and we will call D the doubling constant. In the case
of R™ equipped with the natural metric and measure, we can consider the
family of dyadic cubes of sidelength 2° or the euclidean balls B(x,2%) for
1 € Z. The doubling constant of the Lebesgue measure in this context is 2"
and the function # can be taken to be 0(i) =i + 1. Therefore, the intuition
here is that the index 7 in the above definition can be seen as a sort of radius
or size of the given set U;.

For each x € GG, the set = + U; will be called base set and the collection
of all base sets will be denoted by

(1.2) B:={z+U;:ze€G,icl}.

The notion of base sets allows to define a direct analogue of the Hardy
Littlewood maximal function:

(13 M@= swp [ fldui= sw o [ |f] du.
zeUeBJU zeves MU) Ju
As we already mentioned, our purpose here is to prove sharp weighted
norm inequalities for this operator in LP(G,wdu), where w is a weight on
G . Firstly, recall that the celebrated Muckenhoupt’s Theorem asserts that
the class of weights characterizing the boundedness of M on LP(R", wdz),
p > 1 is the Muckenhoupt A, class defined in R" by
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p—1
(1.4) (W] 4, (R7 de) = SUD <][ wdu) (][ w!™P d,u) < 00.
Q Q Q

Here p’ denotes the conjugate exponent of p defined by the condition
% + % = 1. In the case of LCA groups the analogue of (1.4) is obtained
by replacing the cubes by base sets. More precisely, a weight w is an A, =
Ap(G, dp) weight if

09 b= o (f ) (o) <

The limiting case of (1.5), when p = 1, defines the class Aj; that is, the
set of weights w such that

[w]a, := sup <][ wdu) esssup(w ™) < 400,
ves \Ju U

which is equivalent to w having the property
Muw(z) < [w]a,w(x) p-ae. x €G.

As in the usual setting of R” we will also often refer to o := w!™?" as the
dual weight for w. It is easy to verify that w € A, if and only if 0 € Ay.
The family of A, classes is increasing and this motivates the definition of
the larger class Ao as the union As = (J,51 Ap. There are many charac-
terizations of the class Ay, (see [DMRO16] or the more classical reference
[Gra04]). Some of them are given in terms of the finiteness of some Ao, con-
stant suitably defined. The classical definition consists in taking the limit

on the A, constant as p goes to infinity, namely:

(1.6) () = sUD (][ wdu) exp . Tog(w ™.

veB
However, the modern tendency is to consider the so-called Fujii-Wilson con-
stant implicitly introduced by Fujii in [Fuj78], and later rediscovered by Wil-
son, [Wil87, Wil08], and here we choose to follow this approach by defining
the A, constant as

1
(1.7) [l = sup /U M(wxw) dp,

where w(U) = [, w dp.

1.2. Our contribution. As we have already seen, there is a proper -and
natural- way to define the A, and A classes on an LCA groups having
covering families. In contrast with the case p < oo, it is not immediate that
the weight w belongs to As when any of constants defined on (1.6) and
(1.7) is finite. In fact, a weight w is in A (that is, in some A,) if and only
if it satisfies the reverse Holder inequality which says that

1/r
<][ w” du) < C][Aw du
U U

for some r > 1 and where U is an open set defined in terms of U (in the
euclidean case U = U and in the case of spaces of homogeneous type, it is
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a dilation of U). This is a very well known result in the qualitative case,
but it was proved recently in [HPR12] a sharp quantitative result in terms
of [w]a,, in the context of spaces of homogeneous type.

Our first result is the following version of the RHI. Note that, as in
[HPR12], we are able to precisely describe the exponent 7 in term of the
constant [w]a_

Theorem 1.2 (Sharp weak reverse Holder inequality). Let w € Ay,. Define
the exponent r(w) as

1
4DY0w]y, — 1’

where D is the doubling constant. Then, for a fired U = xg + U;, € B, we
have that the following inequality holds

1/r(w)
(1.8) <][ w ) d,u) < 2D2][Aw du,
U U

where U is the union of the base sets {x + U; : x € U, i <ip}.

r(w) =1+

Once we have proven such RHI, we are able to provide a quantitative open
property for A, classes. It is very well known that the A, classes are open in
the sense that if w € A, for some p > 1, then w also belongs to some A4,_.
for some € > 0. But the best possible ¢ in this property is not completely
characterized. Another related interesting and still open question (even in
the euclidean setting) is to determine, given a weight w € A, the smallest
p > 1 such that w € A,. There are some estimates in [HP16] but there is
no proof of its sharpness.

Here we will deduce from Theorem 1.2 an open property for A, classes
in LCA groups with some control on the constants. More precisely, given
w € Ay for 1 < p < oo we will obtain that w € A,_. for ¢ = ﬁ with

C =4D'". Further, [w]a, . < 2P~ 'D*~2[w],, (se Lemma 3.1).

In a recent article [Saul5] Sauer proved a weighted bound for the maxi-
mal function for LCA groups following Lerner’s approach. Additionally, it
is asked there if is it possible to obtain the sharp result from Buckley in
this general setting. In our main theorem we answer this question by the
affirmative and moreover, we provide a better mixed bound. By a mixed
bound we understand a bound that depends on [w]4, and [w] 4., of the form
o([w]a,[w]a,,) where ¢ is some nonegative function, typically a power func-
tion. Since we always have that [w]a,, < [w]a,, usually mixed type bounds
are sharper than estimates involving only the A, constant.

A result in this direction was obtained in [HPR12] where the authors
proved an improvement of Buckley’s result (1.1) in terms of mixed bounds
for spaces of homogeneous type, namely

1

1M| 1,1z, < C ([wla,lo]an)? < Clw]}

P
Our main result provides an extension of the above estimate to the context
of LCA groups and we will obtain it as a consequence of the RHI and the
open property. We remark here that the lack of geometry in this setting
constitutes a major obstacle to overcome.
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Theorem 1.3. Let M be the Hardy-Littlewood maximal function defined in
(1.3) and let 1 < p < oco. Then there is a structural constant C > 0 such
that

(1.9) 1M £l 2y < C ([wla,lo]a)

In particular,

3=

1

(1.10) 1M Loy < Cluwly "

1.3. Outline. The paper is organized as follows. In Section 2 we give some
preliminary results. We prove the engulfing property in this context that
will be used several times along the paper. We also define the local maximal
function, prove a crucial covering lemma (Lemma 2.7) and show a localiza-
tion property of the local maximal function. In Section 3 we give the proofs
of the results described in Section 1.2

2. PRELIMINARIES

In this section we provide some properties of covering families that we will
use. Furthermore, we will introduce a local maximal function which will be
crucial to prove the RHI.

As we already mentioned in the introduction the family of dyadic cubes
of sidelength 2¢ or the euclidean balls B(x,2%) for i € Z are covering families
for G = R. Other examples are presented below.

Example 2.1.

(1) When G = T = {e*™ : t € [-3,3)} with the Haar measure consider
Up C G defined as Uy = T and for k € N, U, = {0} and U_; = {e?™ :
It] < #} Then, {Ug }rez is a covering family for T with 6(k) = k+ 1 and
D =2.

(2) For G = Z take U; = {k € Z : |k| < 27!} for i > 1 and U; = {0}
otherwise. Then {U;}iez is a covering family for Z with 0(i) = i + 1 and
D =2.

(3) Let G be an LCA group with Haar measure p and let H be a com-
pact and open subgroup of G with u(H) = 1. Consider an expansive au-
tomorphism A : G — G with respect to H, which means that H C AH
and ;.o A'H = {0}. If additionally, G = |J;cz A'H, then {A'H};cz
is a covering family for G. Indeed. Since H C AH and H is a group,
A'H — A'H = A'H C A™"'H 50 0(i) = i + 1. To see that the doubling
property is satisfied, note that 4 defined as pa(B) := u(AB) for B C G
a Borel set, is a Haar measure on G. Thus, there is a positive number «
such that pg = ap. The constant « is the so-called modulus of A and is
denoted by a = |A|. Then, p(A"™ H) = us(A'H) = |A|u(A'H) for i € Z.
Observe that G/H is discrete and AH/H is finite, so AH is the union of
finitely many cosets of the quotient G/H, say {H + 5]’]’5:1- Therefore,
|A| = |A|p(H) = p(AH) = r and since H C AH, r > 2. Thus we can take
D = |A| > 2. A structure of this type is considered in [BB04] for construct-
ing wavelets on LCA groups with open and compact subgroups.

For a concrete example of this situation, consider the p-adic group G = Q,
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where p > 2 is a prime number consisting of all formal Laurent series in p
with coefficients {0, 1,...,p — 1}, that is,

Qy = Z anp™ : ng € Z, an € {0,1,...,p—1}

n>ng

As a compact and open subgroup we can consider H = Z, which is

Ly = Zanp” ca, €{0,1,....,p—1}
n>0
Take A : Q, — Q, the automorphism defined as A(x) = p~'z. Then, A
is expansive with respect to Z, and it can be easily checked that Q, =
Uiez A"Zy. Then, {AZp};cz is a covering family for Q, and in this case,
D = Al =p.

Let {U;}icz be a fixed covering family for G. From now on, we assume
the sets U; to be symmetric. This is not a restriction at all because one can
always consider the new family of base sets formed by the difference sets
U; — U; which increases the doubling constant from D to D?. We denote
2Ui = UZ’ - Ui == Ui + Ui.

Any covering family has the so-called engulfing property:

Lemma 2.2. Let U,V be two base sets such that U = 2+U; and V = y+Uj
withi < j and z,y € G. IfUNV # 0, then x + U; Cy+ Upy-

Proof. There are two point u; € U; and u; € U; such that x 4 u; = y + u;.
Then z = y+u; —uj € y+ U; —U;j C y+ Upy) and therefore  + U; C
Y + Ugjy + Up(jy C y + Upgz(jy (recall that we assume that the base sets are
symmetric). O

Remark 2.3. For a given V' € B, where B is the base of G defined as in (1.2)
we will denote by j(V') € Z the maximum integer such that V' =z + Uj(y,
for some = € G. To see that such a number exists, let us define N(V) = {j €
Z:3xz € G,V =z 4 U;} and show that sup N(V) < co. If sup N(V') = oo,
we could find a sequence {z, }nen of points in G and a sequence of integer
indices {iy, }nen such that i, — oo as n — oo and

V=x,+U, for all n € N.

By compactness of V we can assume (relabelling) that the sequence con-
verges to some x € (G, which we can assume to be the origin. Now we
claim that, for any j € N, there is some m € N such that U; C z,, + Uj;,,
and from this fact would follow that u(V) = oo, but this implies that
oo = u(V) < u(V) < oo whis is a contradiction. To verify the claim,
fix U; and choose ng such that x,, € U; and i,, > j for all n > ng. Then we
have that

UiNazy + U, #0
for all n > ng. Furthermore, the above still holds if we replace z,, by any
Ty, With m > n > ng since z,, € U;j and x,,, € 7, + U;,,. Therefore by the
engulfing property (see e.g. Lemma 2.2) we obtain that

Uj Cxy + U92(in) Czrm+U,
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for any m such that i, > 62(i,).

In order to introduce the local maximal function, we first define a local
base for a fixed base set U.

Definition 2.4. Let U € B be a fixed base set and let k := j(U). The local
base By is defined as

(2.1) By :={y+Uj:yeUj<k}.
We also defined the enlarged set U by the formula

(2.2) U= J v

VeBy

Lemma 2.5. Let U = x+ Uy, be a fized base set in B and set k = j(U). We
then have the following geometric properties:

(a) If Ve By thenV C x + UO(k)

(b) For any z € U, we have that

ﬁ Cz+ UgQ(k),

where U is as in (2.2). As a consequence of this last property, we
obtain

() < plz +Upgy) < D2ul= + U)
for any z € U. In particular, since U = x + Uy, u(ﬁ) < D?u(U).

Proof. (a). Let V = y+U; with j < k and take any z € V. Then z = y+u;
with u; € U; C Ug. Since y € U we can write y = x + uy, u € Ug. Then
we have that z =z +u; +ux € x + Up + U C x + Uppy-

(b). Let Ve By, V =y+U; withy € U, j < k. By Lemma 2.2, since
VAU # 0, we have that V' C = + Uy Take any z € U, z = = + wy,
ug € Ug. Then

V C x—i—Ug(k) = z—uk—i—Ug(k) C Z—Uk—l—Ug(k) C Z—Ug(k)—f—Ug(k) C Z+U92(k).

O
We now define the local maximal function as follows
(2.3) Muf() = s 7)) dut:
yeVeBy

for any y € U and and My f(y) = 0 otherwise.

Remark 2.6. (a) In [HR70, Theorem 44.18], it is proven a version of the
Lebesgue Differentiation Theorem with respect to the Haar measure for
LCA groups having a D’-sequences (cf. [HR70, Definition 44.10]). A careful
reading of the proof of [HR70, Theorem 44.18] reveals that the result is
still true with the obvious changes for measures which are not translation
invariant. Thus, since a covering family is in particular a D’-sequence, we
have that the Lebesgue Differentiation Theorem holds in our context.

(b) As a consequence of the Lebesgue Differentiation Theorem, we have
the elementary but important property of the local maximal function:
f(z) < My f(x) p-almost everywhere xz € U.
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Consider now, for a fixed U € B, the level set for the local maximal
function acting on a weight w at scale A > 0:

(2.4) Oy = {x e U : Myw(z) > )\} .

A key instrument will be a Calderén-Zygmund decomposition of 2. We
will obtain it by using an adapted version of a covering lemma from [EG77,
Lemma 2.2.1]. Although the proof follows standard arguments, we include
it here for completeness. When w be a nonnegative and locally integrable
function on G and V' C G is relatively compact we denote the average of w
on V as wy; that is, wy = f,, w dp.

Lemma 2.7. Let U € B be a fized base set in G and let w be a nonnegative
and integrable function supported on U. For A > wg, define Qy as in (2.4).
If Q) is nonempty, there exists a finite or countable index set QQ and a family
{yi + Uy, ticq of pairwise disjoint base sets from By such that

(a) The sequence {;}icq is decreasing.

(b) U Yi + ani Cc Q) C U Yi + UgQ(ai).

i€qQ 1€Q
(¢) For any i € Q, we have that

A <][ w d.
yz+Ual

(d) Given r > oy for some i € Q, then
(2.5) ][ w dp < D2\,
yL+Ur

Proof. Suppose that there is no finite sequence of points in {2 such that the
conclusion holds (in that case, there is nothing to prove). For z € ), define

(2.6) a(a:):max{jeZ:HV:y—l—UjEBU,:UEV,][wd,u>)\}.
v

Since V' = y 4+ U; € By implies j < j(U), we have that a is well-defined.
Consider now, for each z € {2, a base set V,; € By, Vi := yz + Uy(y) such
that « € V.. In other words, one of the base sets in B containing the point x
where the map « attains its value. Observe that in particular, a(y,) > a(z).
We start by picking z; as a extremal point for «, that is a(z1) > a(z) for

all x € Q). Put a1 = a(x1) and y; := y,, such that V,, = y1 + U,,. Note
that, since a1 < a(y1) < a(z1) = a1, we also have that a(y;) = a1. Now
suppose that we have chosen the first n points y1, . . ., y, and their respective
base sets Uy, ..., Uy, such that

e the sets Vj :=y; + Uy,;, 1 < j < n are pairwise disjoint,

o o :=a(y;) > a(x) for all z € A;_q, where

(2.7) A=\ U+ Up@, 1<j<n
(<j

Since we are assuming that this procedure never ends, we have that A; # ()
for all 1 < j < n. Therefore we can choose z,411 € A, such that a4 :=
a(xpt1) > afx) for all z € A,. This means that there is base set V41 :=
Yn+1 + Ua,, ., and in particular wy, , > A and a(yn41) = ap41. Note that
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this construction produces a decreasing sequence {ay,}nen. Let’s see that
Vg NV = () for all 1 < j < m. Supposing that this is not the case, we
could find u € U,,,,, and v € Ua, for some j < n such that
Ynt+1 +u=y; +0.
Since xp41 € Vg1, we have that for some z € Ug,, .,
Tnt1 =Ynr1tz=yj+tv—u+tz€y;+Us —Us,y +Ua,,-
Since U,

ant1 C Uq; and trivially Ua; C Up(q,), we get that
Tn+l € Y; + ng(a].),

which is a contradiction by the choice of x4 1.
We are left to prove that this procedure exhausts the set 2. If not, there
is a point x € A,, with a(z) < «,, for all n > 1. Define the set S as

S:={y,:neN}L
Since R
Sc{zeU:alz)>alzr)}CcU

and U is contained in some base set (see item (b) in Lemma 2.5) we conclude
that S is relatively compact.
By monotonicity of o, we have that U,, C U,,. Therefore the set

F = U(yn + Uan) cS+ Ua1

is also relatively compact and this implies that u(F) < oo. Now consider
N € Z such that S C Uy and an integer r > 0 such that 6" (a(z)) > N.
Then we have that for any n € N, y, € S C Unv C Upr(n(s)) and thus
0 € yn + Ugr(a(e))- Further, we obtain that

Uv=0+Uny Cyn+ UGT(a(m)) +Un Cyn+ 2U9r(a(x)) Cyn+ UG’V‘Jrl(a(m)).
The doubling property shows that

/L(UN) < Dr+1#(yn + Ua(;t))
and this implies that

P(F) = iyn + Ua) =D p1(yn + Ua(y) = D™D " pu(Uy) = 0.

This contradicts the condition pu(F') < oo and we conclude with the proof
of items (a), (b) and (c) of the lemma.

We prove now item (d). Towards to control the average on y; + U, we
consider two cases: first we consider r < k := j(U). Then y; + U, € By and

by maximality we have ][ w dp < A. Indeed, if not we would have that
yi+Ur
a; = a(y;) > r > ;. Second, in case r > k, we have that 0%(r) > 6?(k) and

thus, by Lemma 2.5, y; + Ug2(,) D yi + Ug2(x) D U. Therefore, since w =0

a.e U, we have

][ wdug'u(U)][wdugD2)\.
yi+Uy w(yi +Ur) Jo

The lemma is now completely proven. O
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Now we present a localization argument for the local maximal function
My;. The idea is better understood when considering the usual dyadic max-
imal function Mé localized on a cube @ in R™. Suppose that the level set
W ={req: Mggw(x) > A} for A > wg is decomposed into dyadic sub-
cubes of @ such that @ = |J; @; and the cubes Q; are maximal with respect
to the condition wg, > A. Then the conclusion is that for any x € Q; the
equality Mg)w(x) = Mg(wXQi)(ac) holds. In this more general setting, the
analogous result is contained in the following lemma which has not a direct
proof as in the dyadic case.

For simplicity in the exposition, we introduce the following notation.
Given a base set of the form V = y 4 U; we denote by V* the dilation
of V- by 0, i.e. V* = y+ Uy. Further iterations of this operation are
defined recursively, that is, V** = (V*)* and V™ for n iterations of the
dilation operation.

Lemma 2.8. Let U € B be a fized base set and consider w = wxg a
nonnegative and integrable function on U where U is as in (2.2). For X >
wg let Q0 defined as above and let {Vi}iecq = {yi + Ua, tieq be the C-Z
decomposition of 2y given by Lemma 2.7. Then, for L = D% anyi € Q and
any v € V;** N Qry we have

(2.8) Myw(z) < My(wxya) ().

Proof. Let x € V;** N §ry. Then there exists V € By, V = y + U;, with
y € U and j < j(U) such that z € V and wy > LA. We claim that
j < 0%(y). To see that this is in fact true, suppose towards a contradiction,
that j > 6%(o;). Then, V C y; + Up2(j)- Indeed, if z € V then z = y +w
with w € U;. On the other hand, since x € V;"* NV, z = y; +u = y +v with
u € Up2(q,) and v € Uj. Then

z=y+v—vtw=r—vt+w=yY +u—v+w.
Since Ug2(q,) C Uj, we obtain that z € y; + U; + Up(j) C yi + Up2(j). As a

i + Up2(;
][ w dp < Myem)][ w dn.
v (V) vitUy2 )

consequence,
We note that since 6%(a;) < j, # € VN V;* C V N (y; + Uj) and then, by
the engulfing property we have that y; + U; C y + Upz(j). Thus, using the
doubling property of the measure p we obtain

1w +Up) o +Uy) _ ety +Ueq) _
py+0;) = uly+U;) = wly+U;) —
Furthermore, since 6%(j) > j > 6%(a;) > «;, by item (4) in Lemma (2.7)

we have that
][ w dp < DX
yi+U92(j)

and we can conclude that

L)\<][wdu<D6)\:L)\,
1%

which gives a contradiction. Hence, the claim j < 62(«;) holds.



BUCKLEY’S THEOREM IN LCA GROUPS 11

Now, using Lemma 2.2 we have that V C V;** and then

][ w dp :][ wxyae dp < M(wxya)(z)
V V 1 T

which proves inequality (2.8).

3. PROOF OF THE MAIN RESULTS

We present here the proof of Theorem 1.2.

Proof of Theorem 1.2. Step 1. We start with the following estimate for the
local maximal function. Let U = xg+ Uy, be a fixed base set. We claim that,

for g = m, we have that

(3.1) ]{J (Myw)'™** dp < 2fuw]a. (][U w du) "

Recall that we may assume that the weight w is supported on U. Let Qy
defined as in (2.4). We write the norm using the layer cake formula as follows

/A(MU"UJ)1+5 dp = / XTI Myw(€2y) dA
U 0

= / XTI Myw(Qy) d / XTI Mpw(Qy) dA
0
= IT+1II

The first term is easily controlled by using the A, constant of w (see

(1.7)):

ISMUw(ﬁ)w% = w%[MUw du
U

IN

s, / My (wxyv,,,.) di
U (k)
y+Us2(x)

< wlwlaw(y + Upw)
= wilw]a w(@)

where y € U and we used Lemma 2.5 and the definition of [w]4,_.
Now, for each A > wg we consider {V;}ieq the C-Z decomposition of {2y
from Lemma 2.7 to control I1. We have that

MUZU(Q,\) < Z MU’LU(Vi**).

For any ¢ € @ we write V;** = V3 U Vp with V7 := V;"* N Qpy and V5 :=
V**\ Qp where L = DS. Thus, by Lemma 2.8 and the A, property (1.7)
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we have
MUw(VZ‘**) = MUUJ du + MUU) d/J
i Va
< My (wxya«)(x) dp + LAp(Va)
1
< [wlanw(V™) + D(V) = ([w]acwys + LX) p(V)
< ([w]aAD? + LX) D*u(Vi) < 2[4 ADu(Vi),

where in the last inequality we have used (2.5) and the doubling property
of p. This gives

Myw(y) < > Myw(V;i™) < 2{w]a AD Y u(Vi

< 2Qw|a ADYOu(Qy).

Thus,

II < 2[w]AmD10/ eXTu(S2)) dA
0

/ Myw' ™€ dp.

= 2 D
[w]a e+1

Therefore, gathering all the estimations and averaging over U , we have that
(1 — 2[w] A, DlO c )][ Myw'edy < w

Choosing ¢ < W we get that 1 —2[w]a,, D' 55 > 1 and we obtain

the desired estimate (3.1).
Step 2. Now we proceed to prove the main estimate (1.8). By Remark
2.6 we have that w(z) < Myw(x) holds on U. Then we obtain

/ w'™e dp < / (Myw)*w dp < /A(MUw)Ew dps.
U U U
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Once again we use the layer cake formula combined with the C-Z decompo-
sition of ) and proceeding in a similar way as above we obtain

/A(MUw)Ew dy = / X lw(Qy) dX
U 0

:/ Xl /mfl Qy) dA
0

< w(ﬁ)w%+/w N IZ (V")

< w(ﬁ)w% + DQ/A 8)\€ZM Vi)

< w(ﬁ)w% +D* / N Z w(V;
Wi i

<

w(@)ws + D / AT dA

0
D*e
e+1

< w(ﬁ)w% +

/A(MUw)1+€ d/,L
U

Therefore, averaging over U, using that p(U) < D2u(U) and (3.1) we have

6 1+e
][w1+e dp < D2 + 2Defw]a,, <][ w du) ,
U v e+1 i

2D%[w] 4, < 2D 0¢[w)
e+1 — e+1

1+e
][ wlte dp < 2D? <]4w d,u) .
U U

We present now some classical applications of the RHI to weighted norm
inequalities for maximal functions. One crucial property of A, classes is the
well known open condition. In the next lemma we provide a quantitative
version of it.

Aco < 2 and we conclude

By our previous choice of ¢,
that

O

Lemma 3.1. For 1 < p < oo, let w € A, . Then, for e = with

C =4D" and o = wlfp/, we have that w € A,_.. Further,

p—1
Clolas

[w]a, . < 2p_1D4p_2[w]Ap.

Proof. Let w € Ap. The A,_. condition for w takes the form

, p—e—1
sup <][ w d,u) (][ w'~P=e) d,u) < 0.
veB U U

Recall that the dual weight of w, ¢ = w!™? is also in As. Therefore it
satisfies a RHI with exponent r(o) given by Theorem 1.2. Choose € such
that 1 — (p—¢)’ = (1 — p')r(o), namely € = p( )1, which is equivalent to the
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p—1

E——_ Then we obtain
p—e—1

condition r(o) =

p—1

—e—1 p=1
<][ wt— =) dﬂ»>p ) = <][ o1=p)r(o) d,u> "
U U
p—1
<2D2][ o d,u> )
U

for any U € B. Now, for U = z + Uy, € B, recall that U™ = & + Up(;,) and
that U C U**. Then we have that

(o) (f ) " < el ) (fe0)”

with € = 2P~ D%~2 'We conclude that

[w]a, . <227 DP[w]a

IN

p*

O

In what follows we will need the fact that the maximal function M maps
1

LE(G) to itself with operator norm bounded by C [w]}, for some C' >
0. Without presenting any details on weak norms and Lorentz spaces, we
include here a quantitative estimate on the size of level sets of the maximal
function.

Lemma 3.2. Let 1 < ¢ < oo and let M the maximal function defined in
(1.3). Then, for any f € LL,(G), we have that

(3.2) ?\li% Mw({z € G: Mf(x) > \}) < DQq[w]AquH%gﬂ.

Proof. For any locally integrable function f and any A > 0 let Q) be the
level set Q) :={x € G : M f(z) > A}. We also define some sort of truncated
maximal operator as follows: for any K € Z, let Mk the averaging operator
given by

(33) Micf@) = sw 1)

VEBK(CC) 14
where the supremum is taken over the subfamily By of B consisting of all
base sets of the form y + U; with y € G and ¢ < K containing the point z,
ie.:

(3.4) Br(z) ={V=y+U:xeV,i< K}

For each K we consider the corresponding level set Qf\( ={zr € G :
Mg f(z) > A}. We clearly have that the family {Q{} is increasing in K and
also Q) = [Jx Q. We therefore may compute the value of w(f,) as the
limit of w(QL). In addition, we recall that the group G is o-compact since
G =U, ez U,. We will use again a limiting argument to compute w(Qf ) as
the limit of w(QE NU,) with 7 — +oc.

Now for K € Z fixed, choose r € Z such that r > K. A simple Vi-
tali’s covering lemma can be applied now to Qﬁ{ NU,. We want to select a
countable subfamily of disjoint base sets whose dilates cover Qf\( NU,. More
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precisely, suppose that the set Qﬁ( N U, is nonempty. For each x € Qf\( NU,
there exists a base set V, of the form V, =y, + U;, such that

(3.5) ]{/ F()] > A

Since we have that i, < K for all z € Qf\( N Uy, there is some i; = max{i,}.
We start the recursive selection procedure by picking one of this largest
base sets as Vi = y1 + U;,. Now suppose that the first Vi, Vs, ..., V) sets
have been selected. We pick Vi verifying that Vi1 = yr+1 + U, ., where
k1 =max{iy 1y, + U, NV; =0,5=1,...,k}.

This process generates a sequence of disjoint base sets {Vi}. We note
that the index sequence {i;} goes to —oo as k goes to infinity. If not, since
it is decreasing, there would be some iy = i for all £ > ky. Then we have
that Vy N U, # 0 and i, < K < r and by the engulfing property, Vj, C U*
for all k > ko. In particular, the set S = {yi : k > ko} C U}* is relatively
compact. Then, considering the set

k+1

F=|JVicS+U,
k>ko

and proceeding as in Lemma 2.7 we get a contradiction.
We claim now that

o nu, c | v
keN

To verify it, consider some = € Qf\( NU, and the corresponding V, = y,+U;, .
Suppose first that V, intersects some V). Let ko the smallest £ € N such
that V; N Vi # 0. Then we have that i, < i,, since iy, was selected as
the largest index among all the sets V,, disjoint from Vi,..., Vj,—1 (and by
hypothesis V,, is one of them). Then the engulfing property yields

We are left to consider the case when V, NV, = 0 for all kK € N. But in this
case, we would have that i, < i for all £ and this is a contradiction since
we saw that i, — —oo.

Summing up, we find a countable collection of base sets {V}} such that

fdu>x and  QfnU, clJVi
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Then we can compute

NwQ¥ NU,) < > XNw(Vi)

iww;*) (][V w i)’

<
k
w(Vk**) </ 1—q' )q_l < q >
< 2wy v de) ([, Wit de
< DM Vi: (/ wlq’du> (/ \f\qwdu>
w9 \ Sy e

< DMula, 3 [ 171t du
E Ve
< D*[ulalIf]Y,.
From this estimate we conclude that
Xtw(€,) < D[y, |I£]1%

for any A > 0.
O

Now we are able to present the proof of the sharp version of Buckley’s
Theorem for the maximal function M on LP(G), p > 1.

Proof of Theorem 1.3: The idea is to use a sort of interpolation type argu-
ment, exploiting the sublinearity of the maximal operator M and the weak
type estimate for M from Lemma 3.2. For any f € L,(G) and any ¢t > 0,
define the truncation fi := fx{s/>s- Then, an easy computation of the
averages defining M gives that

{reG:Mf(x)>2t} C{x € G: Mfi(x)>t}.
Now we compute the L, norm as follows
IMfIGe o = /0 ptPlw({z € G Mf(z) > t})dt
= 2p/ ptPlw({z € G M f(x) > 2t})dt
0

< 2° /Ooptplw({x € G : Mfi(x) > t})dt
0

We recall the open property for Muckenhaupt weights: any w € A, also
belongs to A, for some explicit € > 0 (see Lemma 3.1). Using the estimate
of Lemma, 3.2 for ¢ = p — £, we obtain
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o
MWy < 2020 uls, . [ [ @) dud
2PpD2P=E) [y] 4 .
- = [ 1r@le do
€ G

p22p—1D6p—2[w]AP »
(36) S € Hf”LZ(G)’
where in the last inequality we have used Lemma 3.1. Noticing that in
Lemma 3.1, € = ﬁ we finally conclude from (3.6) that

3=

IM fll ) < C ([wla,lo]an)

and the proof of (1.9) is complete.

£l 2z @)

Finally, since [o]a, < [o]a, = [w]gp_l, (1.10) follows from (1.9).
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