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Abstract. We present a construction of the poset of real numbers as
an object in the theory of the category of categories. We follow an ax-
iomatization derived from the work of McLarty and give the object in
question the algebraic structure of a complete ordered field.
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1. Introduction

In his pioneering work [1], Lawvere proposed to base the foundations of math-
ematics upon a first order theory of the category of categories. Through sub-
sequent proposals such as [5] and [3] some technical difficulties (see [4]) have
been overcome and the ideas refined, setting a categorical framework within
which most of usual mathematics, including elementary set theory, could
be developed. Such a theory was strong enough to formulate the concept
of natural numbers and to develop from there real numbers and calculus.
Usual constructions of classical real numbers in categorical set theory involve
Cauchy sequences and Dedekind cuts; these can be formulated in any topos
and generally give rise to distinct real number objects (for an account of these
constructions see, for instance, [6] and [7]). Another construction is presented
in [8], also formulated for an arbitrary topos and that reduces to the classical
construction in the topos of sets. The aim of this article is to propose an
alternate construction for the classical case, mimicking Dedekind cuts but
working now in the setting of the category of categories. The construction
makes no use of sets and provides thus a categorical framework, different
from usual set/topoi-theoretic settings, in which calculus can be developed.



2 Christian Esṕındola

2. The axioms

We will work in a slightly stronger variant of the axiomatisation proposed
by Mclarty in [3], adding to those axioms the existence of a natural number
object (which amounts to the set theoretical axiom of infinity). These axioms
are:

CC0: The Eilenberg-MacLane axioms for a category, presented either
as a two-sorted first order theory with objects and arrows as variables or as
a one-sorted theory with only arrows as variables (see [1]).

CC1: The axioms of finite roots as well as the property of cartesian
closedness, that is, the existence of non isomorphic initial and terminal ob-
jects, 0 and 1, products, coproducts, equalizers, coequalizers and exponen-
tials.

CC2: The characterization of the category 2. Two different functors
0 : 1 → 2 and 1 : 1 → 2 are postulated, as well as exactly three different
endofunctors 2 → 2 (Id2, 0◦!2 and 1◦!2, where !2 is the unique functor
2 → 1), and the property of arrow extensionality (two functors from A to
B are equal if and only if their compositions with every functor 2 → A are
equal), which means that 2 is a generator.

CC3: The functor 1 + 1 → 2 obtained through the cocone 0 : 1 → 2
and 1 : 1 → 2 is not an epimorphism. This is equivalent to stating that the
two arrows from 2 to the pushout E of 1 + 1 → 2 along itself are different.
In addition we shall postulate that these are the only non-identity arrows of
E (although this latter assumption could be actually provable from the other
axioms).

CC4: The pushout 3 of 0 : 1 → 2 and 1 : 1 → 2 has exactly three
arrows; two of these are α, β satisfying α ◦ 1 = β ◦ 0 (commutativity of the
pushout) and a third γ : 2→ 3 satisfies γ ◦ 0 = α ◦ 0 and γ ◦ 1 = β ◦ 1.

CC5: Functorial comprehension. That is, any first order formula R relat-
ing arrows from a category A (i.e., functors from 2 to A) to those of category
B and satisfying functorial relations defines an actual functor F : A → B
such that R(f, g) ⇐⇒ Ff = g.

CC6: There exists a category with a non identity isomorphism arrow.

CC7: There is an unary predicate op that preserves identity functors,
domain, codomain and composites of functors, such that (Aop)op = A and
(Fop)op = F for every category A and every functor F.

CC8: 0op = 1 : 1 → 2 (this prevents the operator op from being the
identity).

CC9: There exists a natural number object N. That is, there are functors
0 : 1→ N and s : N→ N such that for every M and every pair of functors
a : 1→M and t : M→M there is a unique f : N→M such that f ◦ 0 = a
and fs = tf .

The axioms above are all provably independent of each other (with the
possible exception of the extra assumption in CC3) and serve as an alternative
to Lawvere’s theory.
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3. The real number object

The existence of a natural number object allows to develop the integers Z
and the rational numbers Qd through a series of applications of the axioms
above, as well as to define the usual operations of sum and product making
Qd have the properties of a field. The construction is the same as the one
carried out in any topos (see [7]) and proceeds as follows: consider the functor
+ : N × N → N and take its pullback P along itself, which gives two
functors A,B : P→ N×N. Then Z can be defined as the codomain of the
coequalizer T of the two functors (π1A, π2B), (π2A, π1B) : P→ N×N. This
construction allows to extend the operations on N to Z through the usual
definitions by noting that N can be regarded as a subobject of Z through the
monomorphism T ◦(IdN×0) : N×1→ Z; also, a total ordering can be defined
making Z an internal poset. To construct Qd we apply the same method as
above, considering the functor ×◦ (1×s) : Z×N→ Z, taking its pullback P′

along itself (which provides functors A′,B′ : P′ → Z×N) and finally taking
the coequalizer of the two functors (π1A

′, π2B
′), (π2A

′, π1B
′) : P′ → Z×N.

Again, operations on Z can be extended to Qd conveniently and a total
ordering can be defined making Qd an archimedean field.

The construction above gives a discrete category Qd (a category A is
said to be discrete if every functor F : 2 → A factors through 1). For the
construction of the real numbers we will nevertheless need to work with the
archimedean poset Q of rational numbers, which intuitively should be the
category whose objects are those of Qd and whose arrows correspond to
the ordering relation in Qd × Qd. To see that such a category is definable
within our axiom system, note that it is possible to define the corresponding
internal small category in the sense of [3], which is a pair of categories Ar,Ob
with functors Comp : Ar ×Ob Ar → Ob, ∆0,∆1 : Ar → Ob and Id :
Ob → Ar satisfying the usual relations of the poset Q. It is a consequence
of axioms CC3 and CC6 that whenever an internal small category is such
that every internal endomorphism is an (internal) identity arrow and each
internal isomorphism class of objects and internal classes of parallel arrows
admit a choice definable within our axioms, there exists an actual category
corresponding to the internal one (see Theorem 27 of [3], pp. 1252). In our
case there is evidently one object and one arrow in each nonempty class,
which allows us to deduce the existence of Q.

We can now state the following:

Definition 3.1. The poset of real numbers R is the full subcategory of non
constant cocontinuous functors in 2Qop

.

Of course, it needs to be checked that such a category is definable within
our system. This can be done through axiom CC5 and CC6, noting that axiom
CC6 implies that there is a full subcategory classifier Cl (see [3]) and then the
definition of such a full subcategory depends on the definition of a functor
S : 2Qop → Cl, which can be easily proven to exist through a convenient
application of CC5.
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Cocontinuous functors in AB can be defined, following [2], as those
functors such that for every D the following diagram:

AD

lim→

��

FD
// BD

lim→

��
A

F // B

commutes (here the functor lim→ is the left adjoint of the diagonal functor
∆ : A→ AD).

Slice categories and representable functors in 2Aop

(where A is a poset)
can be defined in our theory by applying CC5 together with axioms CC7

and CC8, and the usual calculations yield Yoneda’s lemma and its common
corollaries. In particular, there is a monic I : A → 2Aop

such that for every
functor F : A → B, where B is cocomplete, there exists a unique functor
F : 2Aop → B such that FI = F. We prove now the following:

Lemma 3.2. The functor F : A → B between posets is left adjoint of some
functor G : B→ A if and only if the cocontinuous extension F : 2Aop → 2Bop

is the transpose G∗ of some G : B→ A.

Proof. We have F a G if and only if [b,F(a)] = [G(b), a] with naturality
conditions on a, b. This means that F([−, a])(b) = G∗([−, a])(b) and therefore
F and G∗ are equal on the full subcategory of representable functors. Since
they are both cocontinuous, this is equivalent to stating that they are equal
on all 2Aop

. This completes the proof. �

Lemma 3.2 allows to extend the operations of Q to R by considering
the embedding Q → 2Qop

. Note, however, that representable functors are
not cocontinuous and therefore they do not provide the standard copy of
Q inside R. To find the right copy we first define the usual operations on
R. Given a real number a and a rational number r, consider the functor
Sr : Q→ Q defined on objects by summing r and consider the cocontinuous
extension Sr : 2Qop → 2Qop

. Since Sr has an inverse H = S−r, it is also a
right adjoint of Sr and, by lemma 3.2, Sr = H∗. But H∗ applies cocontinuous
functors in 2Qop

into cocontinuous functors in 2Qop

(since for a cocontinuous
F , H∗(F )(b) = F (H(b)) and F ◦H is cocontinuous since both F and H are),
and therefore applies real numbers into real numbers. This defines the functor
Sr : R→ R which intuitively means ”to sum the rational number r”.
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R

(Sr)|R

��

}}

}}

R}}

}}

(Sa)|R

		

Q // //

Sr

��

2Qop

Sr

��

Q // //

Sa

��

2Qop

Sa

��

R}}

}}
Q // // 2Qop

R

If we define now the functor Sa : Q → R by applying the object r into
a + r = Sr(a), it is now possible to define b + a as Sa(b) (note that we are
making use of CC5 here), where Sa is the unique cocontinuous extension,
that exists because R is cocomplete.

Remark 3.3. Cocompleteness of R, which follows in turn from cocompleteness
of 2 and the fact that a colimit of cocontinuous functors is cocontinuous,
expresses as a first order sentence that every bounded subcategory of real
numbers has a supremum (which is its colimit).

The arrows of R induce a total ordering that satisfies the trichotomy
law. To see this, note that a ≤ b if the canonical expression of a as colimit
of representable functors is a subcategory of that of b, that is, if for every
r such that there is an arrow [−, r] → a, there is also an arrow [−, r] → b.
Now, if a � b, there is some s such that there is an arrow [−, s] → a but
there is no arrow [−, s] → b, which implies that whenever there is an arrow
[−, t] → b, then there is also an arrow [−, t] → [−, s]. Hence there exists an
arrow b→ [−, s] and trichotomy holds.

There is also a copy of Q inside R, explicited as follows: consider a
functor i : Q → R defined on objects by i(r) = lim(s<r)[−, s] (we invoke
again CC5 and use the full subcategory classifier to define (s < r) as the full
subcategory of those rationals s in Q such that s < r). It can be seen to
be well defined, monic and to preserve the field operations; for example, we
have:

i(r) + i(r′) = lim
(s<r)

[−, s] + lim
(s′<r′)

[−, s′] = lim
(s<r)

(
[−, s] + lim

(s′<r′)
[−, s′]

)

= lim
(s<r)

(
lim

(s′<r′)
[−, s+ s′]

)
= lim

(s+s′<r+r′)
[−, s+ s′] = i(r + r′)

and similarly with the product.
An argument analogous to that of the sum can be used to define the

product of real numbers, although in this case we define first the functor
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Pr : Q→ Q for positive r, and then the functor Pa : Q≥0 → R for positive
a is extended to all Q through the usual definitions. This allows to define ba
for positive a and again the general definitions are extended conveniently.

Uniqueness of functors extensions to 2Qop

can be used to prove the
associative, commutative and distributive laws. For example, for a fixed a the
functors a+x and x+a are equal for rational x, and thus their cocontinuous
extensions are equal, that is, a+ b = b+ a for real numbers a, b.

It is now clear that a+0 = a1 = a. For example, if we define ([−, s]→ a)
(through the use of the full subcategory classifier) as the full subcategory of
representable functors [−, s] in R such that there is an arrow −, s] → a, we
have the following calculation:

a+ 0 = lim
([−,s]→a)

[−, s] + lim
(r<0)

[−, r] = lim
(r<0)

(
[−, r] + lim

([−,s]→a)
[−, s]

)

= lim
(r<0)

(
lim

([−,s]→a)
[−, r + s]

)
= lim

([−,r+s]→a)
[−, r + s] = a

where the last equality is justified by noting that given an arrow [−, d] → a
there is some rational s such that there are non identity arrows [−, d] →
[−, s]→ a, and defining r = d− s yields [−, d] = [−, r+ s]. This implies that
the double limit over the categories ([−, s]→ a) and (r < 0) can be expressed
as a single limit over the category ([−, r + s] → a), from which the equality
follows.

Define now the additive inverse of a as the colimit:

−a = lim
(a→[−,r])op

[−,−r] = lim
(a→[−,r])op

i(−r)

where (a→ [−, r]) is the full subcategory (we use again the full subcategory
classifier) of those representable functors [−, r] such that there is an arrow
a → [−, r] (note that a itself cannot be representable). Since each i(−r) is
cocontinuous, it follows that −a is cocontinuous as well, and since it is non
constant, it is therefore a real number. To prove that a+ (−a) = 0 note that,
by definition, we have:

a+ (−a) = lim
([−,s]→a)

[−, s] + lim
(a→[−,−r])op

[−, r]

= lim
(a→[−,−r])op

(
[−, r] + lim

([−,s]→a)
[−, s]

)

= lim
(a→[−,−r])op

(
lim

([−,s]→a)
[−, r + s]

)
= lim

(r+s<0)
[−, r + s] = 0

Here the last equality can be justified through the following argument: for
every pair (r, s) such that there are arrows a→ [−,−r], and [−, s]→ a there
is a non identity arrow [−, s] → [−,−r], and therefore a non identity arrow
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[−, r + s] → [−, 0], which proves r + s < 0. Conversely, let d be a rational
number, d < 0; then a+ d ≤ a (i.e., there is an arrow Sd(a)→ a). Moreover,
it can be seen using the archimedean property for Q that this is not the
identity arrow; for if it were, then for every rational r such that there is an
arrow [−, r] → a, there should be an arrow [−, r − d] → a (because R is
totally ordered), and inductively, an arrow [−, r−nd]→ a, which contradicts
archimedeanity since a is not the constant functor 1. It follows that there
must be some rational s such that there is an arrow [−, s] → a but there
is no arrow [−, s] → a + d. If we call r = −s + d, (and since R is totally
ordered), it follows that a < [−,−r] (i.e., there is an arrow a→ [−,−r]) and
r + s = d < 0.

It can also be verified that a is positive if and only if −a is negative.
The multiplicative inverse can be defined first for positive a as:

a−1 = lim
(a→[−,r])op

[−, 1/r] = lim
(a→[−,r])op

i(1/r)

which can be seen to be a real number as before. We have now:

aa−1 = lim
([−,s]→a)

[−, s] lim
(a→[−,1/r])op

[−, r]

= lim
(a→[−,1/r])op

(
[−, r] lim

([−,s]→a)
[−, s]

)

= lim
(a→[−,1/r])op

(
lim

([−,s]→a)
[−, rs]

)
= lim

(rs<1)
[−, rs] = 1

As before, we can justify the last equality through this argument: for every
pair (r, s) such that there are arrows a → [−, 1/r], and [−, s] → a there is
a non identity arrow [−, s] → [−, 1/r], and therefore a non identity arrow
[−, rs]→ [−, 1], which proves rs < 1. Conversely, let d be a rational number,
d < 1, and consider two cases:

a) d > 0 : Since ad < a (again using archimedeanity), it follows that
there must be some rational s such that there is an arrow [−, s] → a but
there is no arrow [−, s]→ ad. If we call r = d/s, then a < [−, 1/r], s < a and
rs = d < 1.

b) d ≤ 0 : Since a is not the constant functor 1, there exists a rational
q such that a < q. Then the choice r = 1/q, s = d/r yields a < [−, 1/r],
[−, s] < a and rs = d.

A similar argument can be given when a < 0, using now that a is not
the constant functor 0.

Finally, it can be verified that the total ordering on R is compatible
with the field operations. To check it, note that we have a > 0 if and only if
there is some positive rational r such that there is an arrow [−, r]→ a, from
which we deduce that positive real numbers are closed under addition and
multiplication, as well as compatibility with the sum and product.
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This establishes the existence of a category satisfying the properties of a
complete ordered field, and allows to develop calculus in a purely categorical
base.
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