Research articles

  1.     

L. Del Pezzo and A. Salort.   The first non-zero Neumann p-fractional eigenvalue.  (2015)  Nonlinear Analysis, n 118, 130-143.  PDF  

  2.     

A. Salort.   Convergence rates in a weighted Fucik problem.  (2014)  Adv Nonlinear Studies, vol 14, no. 2, 427444.  PDF

  3.     

J. Fernández Bonder, J.P. Pinasco and A. Salort.   Convergence rate for quasilinear eigenvalues homogenization.  (2014)  JMAA, in press.  PDF

  4.     

J. Fernández Bonder, J.P. Pinasco and A. Salort.  Quasilinear eigenvalue problems.  (2014)  Rev. UMA, in press.  PDF

  5.     

J. Fernández Bonder, J.P. Pinasco and A. Salort.  Refined asymptotics for eigenvalues on domains of infinite measure.  (2010)  J. Math. Anal. Appl., 371 no. 1, 4156  PDF

  6.     

L. M. Del Pezzo, J. D. Rossi, N. Saintier and A. Salort.  An optimal mass transport approach for limits of eigenvalue problems for the fractional p−laplacian.  (2015)  preprint   Arxiv

  8.     

A. Salort.  Eigenvalues homogenization for the Fractional Laplacian operator.  (2014)   preprint   Arxiv

 

  7.     

A. Salort.  Refined convergence rates for a weighted Fucik problem by using optimal partitions.  (2015)   (in preparation)

 

  9.     

J. Fernández Bonder, J.P. Pinasco and A. Salort.  Eigenvalue homogenization problem with indefinite weights.  (2014)

10.     

A. Salort, J. Terra and N. Wolanski.  Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data: the subcritical case.  (2014)  preprint   Arxiv

11.     

J. Fernández Bonder, J.P. Pinasco and A. Salort.  Eigenvalue homogenization for quasilinear elliptic equations with different boundary conditions.  (2013)  preprint   Arxiv

12.     

J.P. Pinasco and A. Salort.  Asymptotic behavior of the curves in the fucik spectrum.  (2014)  (sent)

 

 

     

PhD Thesis:   Eigenvalue homogenization for quasilinear elliptic equations.  (2013)   PDF