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Abstract. The classical error analysis for the Nédélec edge interpolation requires
the so-called regularity assumption on the elements. However, in [18], optimal error
estimates were obtained for the lowest order case, under the weaker hypothesis
of the maximum angle condition. This assumption allows for anisotropic meshes
that become useful, for example, for the approximation of solutions with edge
singularities.

In this paper, we prove optimal error estimates for the edge interpolation of any
order under the maximum angle condition. We also obtain sharp stability results
for that interpolation on appropriate families of elements.
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1. Introduction

The first family of Nédélec’s edge elements, introduced in [17], is a conforming
family of finite elements in H(curl ). After publication of [17] these finite elements
become broadly used in the approximation of elliptic partial differential equations
in mixed form, such as Maxwell equations, elasticity equations and their associated
eigenproblems [17, 14, 11, 9].

The error estimates for the numerical solutions obtained using these elements
depend on the approximation properties of the associated edge interpolation oper-
ator. The error analysis for this operator developed in [17] is based on the so-called
regularity assumption [10], and therefore the constants involved in the estimates
depend on the ratio between the outer and inner diameters. In this way, narrow or
anisotropic elements are excluded from that analysis.

Anisotropic meshes appear naturally in applications where the solution presents
edge singularities or boundary layers. As described in [8], such a situation is present
when considering the time-harmonic Maxwell equations in a Lipschitz polyhedron
with non-convex edges or corners. In this case, the poor regularity of the solution
causes some obstructions to optimal convergent approximations. One strategy to
overcome this difficulty is to use non-quasiuniform finite element meshes that are
more refined near some edges or corners. The possibility of using anisotropic ele-
ments can make the design of such meshes easier, reduce the number of elements
and take advantage of the best regularity properties of the solution: In fact, in
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many problems, the solutions have more regularity in the direction of the edges
than transversally to them.

The literature on anisotropic interpolation is nowadays rich. For the standard
Lagrange interpolation it is known, since the pioneering works [6, 15] and many
generalizations of them (see [5] and its references), that the regularity assumption
can be relaxed to a maximum angle condition in many cases. In [2], anisotropic
estimates are obtained for a generalized Lagrange interpolation with arbitrarily
high polynomial degree. These estimates hold uniformly for elements satisfying a
maximum angle condition.

We say that a tetrahedron satisfies the maximum angle condition with constant
ψ̄ < π (or shortly MAC(ψ̄)) if the angles between the faces and inside faces are
less than ψ̄. For a vector-valued function u regular enough, denote by Πlu the edge
interpolation of u of order l on the tetrahedron K (see section 2 for definitions).
Let us briefly describe the kind of estimates for Πl in which we are interested. In
Corollary 6.2 (we refer to section 6 for a complete statement) we prove that there
exists a constant C depending only on ψ̄ and l such that if K is a tetrahedron
satisfying a maximum angle condition with constant ψ̄ and if 1 ≤ m ≤ l, for all
u ∈ Wm+1,p(K) (see the restrictions on the values of p in the statement of the
Corollary) we have

(1) ‖u−Πlu‖Lp(K) ≤ C hm+1
∥∥Dm+1u

∥∥
Lp(K)

,

with h the diameter of K. We say that the estimate is uniform for elements sat-
isfying a maximum angle condition, because the constant C does not blows up
if the maximum angle of the element remains bounded above away from π. We
remark that the aspect ratio of the element may degenerate while the maximum
angle remains controlled.

Our estimates are also of anisotropic type. Indeed, in Theorem 6.1 we prove
that if an element K satisfies MAC(ψ̄), then it is possible to choose three edges
of K, `1, `2, and `3, with lengths h1, h2, and h3, such that if 1 ≤ m ≤ l and
u ∈ Wm+1,p(K) (see the restrictions on the values of p in the statement of the
Theorem) we have the estimate

(2) ‖u−Πlu‖Lp(K) ≤ C

{ ∑

i+j+k=m+1

hi
1h

j
2h

k
3

∥∥∥∥∥
∂m+1u

∂ξi
1∂ξj

2∂ξk
3

∥∥∥∥∥
Lp(K)

+ hm+1‖Dmcurl u‖Lp(K)

}

where ξi = `i/‖`i‖, h is the diameter of K, and where the constant C depends again
only on the maximum angle of the element K and on l (we refer again to section 6
for a complete statement of the result). It is important to note that the matrix made
up of ξi, i = 1, 2, 3, as columns, as well as its inverse, have norms bounded only in
terms of ψ̄, so, the directions are “uniformly” independent. This estimate is not
affected by the relative order of the lengths h1, h2 and h3, allowing for elements that
are arbitrarily narrow in some directions. Note also that in front of each derivative
in the right hand side we have the lengths in the directions corresponding to that
derivative. Then, this is an appropriate estimate when approximating anisotropic
solutions, that is, solutions with different behaviors along different directions. We
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observe that we have the diameter h only in front curl u, but in applications, curl u
may be better suited than the solution u itself.

Our work generalizes a result of [18], where the author proves anisotropic error
estimates for the edge interpolation of lowest order under the maximum angle con-
dition. Related results can be founded also in [8], but there the authors consider
elements satisfying a stronger condition on the elements (that, as showed in [3], is
equivalent to the regular vertex property of [1], which we describe below). More-
over their estimates (for tetrahedral meshes) are uniform and anisotropic, in the
above sense, only for the lowest order of the interpolation and for functions having
constant curl .

We remark that our technique differs significatively from the methods followed
in [18] and [8]: firstly, we obtain anisotropic stability estimates for the edge inter-
polation operator. Then, we combine them with known polynomial approximation
results [12], in a classical way, obtaining the desired interpolation error estimates.
We need appropriate estimates for Πl in reference elements in order to obtain,
through standard scaling arguments, stability estimates with constants that do not
degenerate for narrow elements. In particular, as can be easily checked, by rescal-
ing the inequality ‖Πlu‖Lp(K̂) ≤ C‖u‖W 1,p(K̂) (p > 2) for a reference element K̂,
we obtain estimates with constants that go to infinity when the element becomes
narrower (see section 3).

Let us finally mention, only to make a comparison with results for related oper-
ators, that in [3], uniform error estimates under the maximum angle condition for
the Raviart-Thomas interpolation are obtained, but such estimates are anisotropic
only for elements satisfying the regular vertex property. We say that an element
satisfies a regular vertex property with constant c̄, if it has a vertex, such that the
matrix M ∈ R3×3 that has as columns the unitary vectors with the directions of the
edges sharing that vertex, verifies |det M | > c̄. This is a stronger property than the
maximum angle condition. In fact, an example in [3] shows that uniform anisotropic
error estimates for the Raviart-Thomas interpolation can not hold uniformly under
a maximum angle condition.

The plan of the paper is as follows: in the next section we introduce the edge
interpolation and some basic facts that we use later. In section 3 we collect an-
alytical aspects of the maximum angle condition. In sections 4 and 5 we obtain
sharp stability results for the edge interpolation on suitable families of elements,
which allow us to prove, in section 6, the main theorem concerning the anisotropic
interpolation error estimates.

2. Preliminaries

Throughout the paper, we use the standard notation for Lebesgue and Sobolev
spaces, Lp(D) and W k,p(D), on a domain D ⊂ Rd (d=1,2,3), for their norms
‖ · ‖Lp(D) and ‖ · ‖W k,p(D), and for the seminorm | · |W k,p(D). We will use, without
explicit mention, the estimates for the traces of functions in W 1,p(D) on faces (for
arbitrary p ≥ 1) or edges (for p > 2) when D ⊂ R3 is a Lipschitz domain.

Bold characters, such as u,v, denote vector-valued functions in R3, with compo-
nents ui, vi, i = 1, 2, 3, and x = (x1, x2, x3) denotes the variable in R3. We will use
the standard operator curl (·) = ∇×· for vector-valued functions. When necessary,
we will denote functions defined in elements K̃ or K̂, by ũ or û, the variables in
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those elements by x̃ or x̂ and the differential operators with respect to these vari-
ables by, for instance, c̃url or ĉurl . For the norm of vector-valued functions in
[Lp]3 or [W k,p]3 we use the same notation, ‖ · ‖Lp(D) and ‖ · ‖W k,p(D), respectively,
as for scalar functions.

The space of polynomials of degree less than or equal k on a domain D ⊂ Rd

is denoted by Pk(D) (the explicit dependence on D indicates, in particular, the
number of variables of the polynomials). By P̃k we denote the space of homogeneous
polynomials of degree k.

Let l ≥ 1 be a natural number, and let K ⊂ R3 be a tetrahedron. Now, we
introduce the first Nédélec family of edge elements [17] on K, Nl(K), of degree l.
It is the subspace of [Pl(K)]3 given by (see for example [14])

Nl(K) = [Pl−1(K)]3 ⊕ Sl(K)

where
Sl(K) =

{
p ∈ [P̃l(K)]3 : p(x) · x ≡ 0

}
.

Remark 2.1. It is not difficult to check that

Nl(K) = [Pl−1(K)]3 ⊕ [P̃l−1(K)]3 × x.

If we set Ql(K) = [P̃l−1(K)]3 × x then we have

(3) Sl(K) = Ql(K).

In fact, consider the maps Φ : [P̃l(K)]3 → P̃l+1(K), with Φ(p) = p · x and Ψ :
[P̃l−1(K)]3 → Ql(K), with Ψ(q) = q× x. Then Sl(K) = kerΦ and since that Φ is
surjective we have

dim Sl(K) = dim{[P̃l(K)]3} − dim P̃l+1 = l(l + 2).

But, Ψ is also surjective, and, as we can easily check,

kerΨ = {x q : q ∈ P̃l−2(K)},
hence dimkerΨ = dim P̃l−2(K). Therefore

dim Ql(K) = dim[P̃l−1(K)]3 − dim P̃l−2(K) = l(l + 2).

Then Sl(K) and Ql(K) have the same dimension and, since Ql(K) ⊆ Sl(K), we
have (3).

Now we define the associated edge interpolation operator

Πl : [W 1,p(K)]3 → Nl(K),

with p > 2. Let v ∈ [W 1,p(K)]3. For each edge e of K and q ∈ Pl−1(e) we set

Fe(v, q) =
∫

e

v · t q

(t denotes a unitary tangent field on e). For each face f of K and q ∈ [Pl−2(f)]2

we set
Ff (v,q) =

∫

f

v × n · q

(n denotes the exterior normal field to K on f). Finally, for all q ∈ [Pl−3(K)]3 we
set

FK(v,q) =
∫

K

v · q.
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The edge interpolation of v, Πlv ∈ Nl(K), is defined by∫

e

Πlv · t q = Fe(v, q), ∀q ∈ Pl−1(e), ∀e edge of K,(4)
∫

f

Πlv × n · q = Ff (v,q), ∀q ∈ [Pl−2(f)]2, ∀f face of K,(5)
∫

K

Πlv · q = FK(v,q), ∀q ∈ [Pl−3(K)]3.(6)

It is well known [14, 17] that the degrees of freedom (4)-(6) define a unique element
Πlv ∈ Nl(K).

The next result will be used in sections 4 and 5 in order to obtain stability
estimates for the operator Πl on different families of elements.

Proposition 2.1. Let K be a tetrahedron. Suppose that u and w are functions in
[W 1,p(K)]3, with p > 2, satisfying

|Fe(w, q)| ≤ Ce(q)N(u) ∀q ∈ Pl−1(e), ∀e edge of K,

|Ff (w,q)| ≤ Cf (q)N(u) ∀q ∈ [Pl−2(f)]2, ∀f face of K,

|FK(w,q)| ≤ CK(q)N(u) ∀q ∈ [Pl−3(K)]3

where N(u) is some norm or seminorm of u, and Ce, Cf and CK are positive
functionals defined on Pl−1(e), [Pl−2(f)]2 and [Pl−3(K)]3, respectively. Then we
have the estimate

‖Πlw‖L∞(K) ≤ CN(u)
with C depending on l and K, but being independent of u and w.

Proof. Let
{qK

i : i = 1, . . . , dim{[Pl−3(K)]3}}
be a basis of Pl−3(K)3. Similarly, for each edge e and each face f of K, let

{qe
i : i = 1, . . . , dim Pl−1(e)}

and
{qf

i : i = 1, . . . , dim{[Pl−2(f)]2}}
be bases of Pl−1(e) and [Pl−2(f)]2, respectively. Then, for [v ∈ W 1,p(K)]3, Πlv is
defined by∫

e

Πlv · t qe
i = Fe(v, qe

i ), i = 1, . . . , dim Pl−1(e), ∀e edge of K,

∫

f

Πlv × n · qf
i = Ff (v,qf

i ), i = 1, . . . , dim{[Pl−2(f)]2},∀f face of K,

∫

K

Πlv · qK
i = FK(v,qK

i ), i = 1, . . . , dim{[Pl−3(K)]3}.

Now, we can consider the dual basis associated with these equations. We denote
this basis by

∪e {ve
i : i = 1, . . . , dimPl−1(e)}

⋃

∪f

{
vf

i : i = 1, . . . , dim{[Pl−2(f)]2}
} ⋃

{
vK

i : i = 1, . . . , dim{[Pl−3(K)]3}} .
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Thus, for example, for each 1 ≤ i ≤ dimPl−3(K)3, the function vK
i ∈ Nl(K) is

defined by the conditions

Fe(vK
i , qK

j ) = 0 j = 1, . . . , dim Pl−1(e), ∀e edge of K,

Ff (vK
i ,qf

j ) = 0, j = 1, . . . , dim{[Pl−2(f)]2}, ∀f face of K,

FK(vK
i ,qK

j ) = δij , j = 1, . . . , dim{[Pl−3(K)]3},
and the functions ve

i and vf
i are defined similarly.

Then, Πlw can be written as

Πlw =
∑

e




dim Pl−1(e)∑

i=1

F (w, qe
i )v

e
i


+

∑

f




dim{[Pl−2(f)]2}∑

i=1

F (w,qf
i )vf

i


 +

dim{[Pl−3(K)]3}∑

i=1

F (w, qK
i )vK

i .

So, using the assumption of the Proposition we have

‖Πlw‖L∞(K) ≤

∑

e




dim Pl−1(e)∑

i=1

Ce(qe
i )‖ve

i ‖L∞(K)


 +

∑

f




dim{[Pl−2(f)]2}∑

i=1

Cf (qf
i )‖vf

i ‖L∞(K)


 +

dim{[Pl−3(K)]3}∑

i=1

CK(qK
i )‖vK

i ‖L∞(K)


 N(u)

=: C(l, K)N(u),

as we wanted to prove. ¤

3. The maximum angle condition

The maximum angle condition for tetrahedral meshes was first introduced in
[16], as a generalization of the Synge’s condition for triangles. We introduce now
the definition of this condition and then we present a related result that becomes
useful for the rest of the paper.

Definition 3.1. A tetrahedron K satisfies the “maximum angle condition” with a
constant ψ̄ < π (or shortly MAC(ψ̄)) if the maximum angle between faces and the
maximum angle inside the faces are less than or equal ψ̄.

In order to obtain an analytical equivalent condition, we introduce the following
families of tetrahedra. In what follows, ei, i = 1, 2, 3, will denote the canonical
vectors in R3.

Definition 3.2. A tetrahedron K belongs to the family F1 if its vertices are at 0,
h1e1, h2e2 and h3e3, where hi > 0 are arbitrary lengths (see Figure 1).

Definition 3.3. A tetrahedron K belongs to the family F2 if its vertices are at 0,
h1e1 + h2e2, h2e2 and h3e3, where hi > 0 are arbitrary lengths (see Figure 1).
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In what follows, for a vector ξ ∈ R3, ‖ξ‖ denotes its euclidean norm, and for a
matrix M ∈ R3×3, ‖M‖ denotes the corresponding matrix norm.

The next theorem is proved in [3](see also [16]).

Theorem 3.1. For each 0 < ψ̄ < π there exists a constant C = C(ψ̄) with the
following property: if K is a tetrahedron satisfying MAC(ψ̄), then there exists an
element K̃0 ∈ F1∪F2 that can be mapped onto K through an affine transformation
F0(x̃) = M0x̃ + p0 with ‖M0‖, ‖M−1

0 ‖ ≤ C.

We will present a statement of the previous Theorem that is more appropriated
for our purposes.

Theorem 3.2. For each 0 < ψ̄ < π, there exists a constant C = C(ψ̄) with the
following property: for a tetrahedron K satisfying MAC(ψ̄), it is possible to choose
a vertex p0 and three of its edges, `i, i = 1, 2, 3, such that, if ξi and hi, i = 1, 2, 3
denote the unitary vectors associated to `i and the lengths of `i, respectively, and if
M is the matrix made up of ξ1, ξ2 and ξ3 as its columns, then the map x̃ → M x̃+p0

applies K̃ onto K and ‖M‖, ‖M−1‖ ≤ C, where K̃ is the tetrahedron with vertices
either {0, h1e1, h2e2, h3e3} or {0, h1e1 + h2e2, h2e2, h3e3}.

We shall obtain Theorem 3.2 from Theorem 3.1, but we want to observe that it
could be proved directly following the same ideas of [3].

Proof. Suppose K verifies MAC(ψ̄) and let K̃0, F0, p0 and M0 be as in the state-
ment of the Theorem 3.1, with ‖M0‖, ‖M−1

0 ‖ ≤ C(ψ̄).
If K̃0 ∈ F1, we suppose that its vertices are at 0, h0,1e1, h0,2e2 and h0,3e3, while

if K̃0 ∈ F2 suppose that they are at 0, h0,1e1 + h0,2e2, h0,2e2 and h0,3e3. In any
case we define `i = hi,0M0ei. Then, we have

`1 = F0(h1,0e1)− F0(0) = F0(h1,0e1 + h2,0e2)− F0(h2,0e2),
`2 = F0(h2,0e2)− F0(0),
`3 = F0(h3,0e3)− F0(0),

that is, the vectors `i represent three edges of K̃0. Let ξi be unitary vectors asso-
ciated with `i, i = 1, 2, 3 (that is, ξi = `i/‖`i‖). By setting hi = ‖`i‖, i = 1, 2, 3,
we consider the tetrahedron K̃ defined as follows: if K̃0 ∈ F1, we take K̃ ∈ F1

as the tetrahedron with vertices at 0, h1e1, h2e2 and h3e3, while if K̃0 ∈ F2 we
take K̃ ∈ F2 with vertices at 0, h1e1 + h2e2, h2e2 and h3e3. Finally we define the

h
2
 

h
1
 

h
3
 

h
2
 

h
3
 

h
1
 

Figure 1. Elements in the family F1 (left) and F2 (right).
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matrix M made up of the vectors ξ1, ξ2 and ξ3 as its columns, and consider the
map F (x̃) = M x̃ + p0.

It is clear that F (hiei) = F0(hi,0ei), i = 1, 2, 3, and so F (K̃) = K. Furthermore,

if Λ = diag
(

h1,0
h1

,
h2,0
h2

,
h3,0
h3

)
, we have M = M0Λ. Since

hi,0

hi
= ‖M−1

0 ξi‖, hi

hi,0
= ‖M0ei‖, i = 1, 2, 3

we have ‖Λ‖ ≤ C(ψ̄) and ‖Λ−1‖ ≤ C(ψ̄), and therefore

‖M‖ ≤ C(ψ̄)2, ‖M−1‖ ≤ C(ψ̄)2.

Therefore we have the assertion with the constant C given by C(ψ̄)2 (where C(ψ̄)
comes from Theorem 3.1). ¤

Remark 3.1. We observe that the constant C(ψ̄) of Theorem 3.2 blows up when
ψ̄ → π. In fact, for h3 > 0 consider the tetrahedron K(h3) with vertices at
0, (1, 0, 0), (0, 1, 0) and ( 1

2 , 1
2 , h3). One can easily check that ψ̄(h3) → π if h3 → 0,

where ψ̄(h3) denotes the maximum angle of K(h3). Let K̃(h3) ∈ F1∪F2 be mapped
onto K(h3) by an affine transformation Fh3(x̃) = M(h3)x̃ + p0(h3), as stated in
Theorem 3.2. From ‖M(h3)−1‖ ≤ C(ψ̄(h3)) we obtain |det(M(h3)−1)| ≤ 6C(ψ̄)3

or

|det M(h3)| ≥ 1
6C(ψ̄)3

.

Then we have
1

6C(ψ(h3))3
≤ | detM(h3)| = |K(h3)|

|K̃(h3)|
,

where |K| denotes the volume of the tetrahedron K. But, since |K(h3)| = h3
6 and

|K̃(h3)| remains bounded away from 0 because the lengths of the edges of K(h3) are
greater than

√
2

2 (see Theorem 3.2), then we have

1
6C(ψ(h3))3

→ 0 when h3 → 0,

that proves our assertion.

To obtain uniform error estimates for the edge interpolation on elements satisfy-
ing a maximum angle condition, we use, in section 6, uniform stability estimates for
the operator Πl on elements in F1 ∪F2. These stability estimates can be obtained
by rescaling the corresponding inequality for reference elements in F1 and in F2.
Let K̂1 be the element obtained by taking h1 = h2 = h3 = 1 in Definition 3.2, and
K̂2 the one corresponding to Definition 3.3, that we take as reference elements in
F1 and F2, respectively.

Clearly, we have the following inequalities (p > 2)

(7) ‖Πlu‖Lp(K̂i)
≤ Ĉ‖u‖W 1,p(K̂i)

∀u ∈ [W 1,p(K̂i)]3, i = 1, 2,

where if i = 1 (resp. i = 2) then Πl is the edge interpolation on K̂1 (resp. K̂2).
Let K be an element in F1 ∪ F2, and let now Πl be the edge interpolation on K .
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Then, it is easy to check that by rescaling inequalities (7) we obtain, for example
for the first component Πl,1u of Πlu, with u ∈ [W 1,p(K)]3, the estimate

(8) ‖Πl,1u‖Lp(Ki) ≤ Ĉ
1
h1




3∑

i=1

hi‖ui‖Lp(K) +
3∑

i,j=1

hihj

∥∥∥∥
∂ui

∂xj

∥∥∥∥
Lp(K)




(see the proofs of Theorems 4.3 or 5.3) where hi are as in Definitions 3.2 or 3.3.
The presence of, for example, the factor h2h3/h1 may turn useless the estimate
when narrow elements are considered, where h1, h2 and h3 are of different orders
of magnitude.

To avoid the appearance of problems like the one described, we obtain, in the
next two sections, stability estimates on the reference elements sharper than the
ones given in (7).

4. Stability of Πl on elements in the family F1

Let K̂1 be the tetrahedron {(x1, x2, x3) ∈ [0, 1]3 : x1 + x2 + x3 ≤ 1}. For
i = 1, . . . , 4, we denote by fi the face having normal ni, where n1 = (−1, 0, 0), n2 =
(0,−1, 0), n3 = (0, 0,−1) and n4 = 1√

3
(1, 1, 1). Also, for i = 1, . . . , 6, denote by

ei the edge tangent to ti, where t1 = (1, 0, 0), t2 = (0, 1, 0), t3 = (0, 0, 1), t4 =
1√
2
(0,−1, 1), t5 = 1√

2
(1, 0,−1) and t6 = 1√

2
(−1, 1, 0). Let Π̂l be the edge interpo-

lation operator on the element K̂1.

Lemma 4.1. Let u = (0, u2(x2, x3), u3(x2, x3)),v = (v1(x1, x3), 0, v3(x1, x3)) and
w = (w1(x1, x2), w2(x1, x2), 0) be functions in [W 1,p(K̂1)]3 with p > 2. Then we
have

Π̂lu = (0, p2(x2, x3)− s1(x2, x3)x3, p3(x2, x3) + s1(x2, x3)x2),

Π̂lv = (q1(x1, x3) + s2(x1, x3)x3, 0, q3(x1, x3)− s2(x1, x3)x1),

Π̂lw = (r1(x1, x2)− s3(x1, x2)x2, r2(x1, x2) + s3(x1, x2)x1, 0),

where p2, p3, s1 ∈ Pl−1(f1), q1, q3, s2 ∈ Pl−1(f2), and r1, r2, s3 ∈ Pl−1(f3).

Proof. We prove only the first equality, since the other equations follow similarly.
Let p̄2(x2) be the L2-projection of u2(x2, 0) on the space Pl−1(e2), and let p̄3(x3)
be the L2-projection of u3(0, x3) on the space Pl−1(e3). Furthermore, let p̂2, p̂3 ∈
Pl−2(f1) and s1 ∈ Pl−1(f1) such that
∫

e4

[−x3(p̂2 − s1) + x2(p̂3 + q1)] q =
∫

e4

[−(u2 − p̄2) + (u3 − p̄3)] q, ∀q ∈ Pl−1(e4),
∫

f1

x3(p̂2 − s1)q =
∫

f1

(u2 − p̄2) q ∀q ∈ Pl−2(f1)(9)
∫

f1

x2(p̂3 + s1)q =
∫

f1

(u3 − p̄3) q ∀q ∈ Pl−2(f1).

Assuming, for the moment, that there exist such p̂2, p̂3 and s1, we define

p2 = p̄2 + x3 p̂2, p3 = p̄3 + x2 p̂3.

Then, after some computations, we can check that p2, p3 and s1 satisfy the first
equation in the statement of the lemma.
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So, it remains only to prove that the system (9) has a solution p̂2, p̂3, s1 as
required. We will prove that there exist a unique such solution with p̂2, p̂3 ∈
Pl−2(f1) and s1 ∈ P̃l−1(f1). For that purpose, being dim P̃l−1(f1) = dim Pl−1(e4),
it suffices to prove that if

∫

e4

[−x3(p̂2 − s1) + x2(p̂3 + s1)] q = 0 ∀q ∈ Pl−1(e4),(10)
∫

f1

x3(p̂2 − s1)q = 0 ∀q ∈ Pl−2(f1)(11)
∫

f1

x2(p̂3 + s1)q = 0 ∀q ∈ Pl−2(f1),(12)

then p̂2, p̂3 and s1 vanish. Let z = (x3(p̂2−s1), x2(p̂3+s1)). Then z ∈ [Pl−1(f1)]2+
(−x3, x2)P̃l−1(f1), that is, z is in the space of edge elements in a 2-dimensional space
(see [14]). Using the Green formula on f1 we have for all q ∈ Pl−1(f1)∫

f1

curl z q = −
∫

f1

z · curl q +
∫

∂f1

z · tq.

Note that z·t ≡ 0 on e2 and e3, while on e4 we have z·t = 1√
2
[−x3(p̂2−s1)+x2(p̂3+

s1). Since q|e4 ∈ Pl−1(e4), there follows from equation (10) that
∫

e4
z · tq = 0. So

∫

∂f1

z · tq = 0.

Also, since curl q = (− ∂q
∂x3

, ∂q
∂x2

) ∈ [Pl−2(f1)]2, it follows from equations (11) and
(12) that ∫

f1

z · curl q = 0.

Hence ∫

f1

curl z q = 0 ∀q ∈ Pl−1(f1),

and since curl z ∈ Pl−1(f1) we conclude that curl z ≡ 0. It follows that z = ∇p
with p ∈ Pl(f1), so z ∈ [Pl−1(f1)]2 (see, for example, [14], p. 263). But then,
s1 ∈ P̃l−1(f1) must vanish. Therefore, equations (11) and (12) imply that p̂2 and
p̂3 also vanish, as we wanted. ¤

In what follows, for a function v ∈ [W 1,p(K̂1)]3 we denote the i-component of
Π̂lv by Π̂l,iv. So Π̂lv = (Π̂l,1v, Π̂l,2v, Π̂l,3v).

Theorem 4.2. Let u ∈ [W 1,p(K̂1)]3, with p > 2, such that curlu ∈ [W 1,1(K̂1)]3.
Denote curlu by θ = (θ1, θ2, θ3). Then we have

∥∥∥Π̂l,1u
∥∥∥

L∞(K̂1)
≤ C

(
‖u1‖W 1,p(K̂1)

+ ‖θ2‖W 1,1(K̂1)
+ ‖θ3‖W 1,1(K̂1)

)

∥∥∥Π̂l,2u
∥∥∥

L∞(K̂1)
≤ C

(
‖u2‖W 1,p(K̂1)

+ ‖θ1‖W 1,1(K̂1)
+ ‖θ3‖W 1,1(K̂1)

)

∥∥∥Π̂l,3u
∥∥∥

L∞(K̂1)
≤ C

(
‖u3‖W 1,p(K̂1)

+ ‖θ1‖W 1,1(K̂1)
+ ‖θ2‖W 1,1(K̂1)

)

where the constant C is independent on u.
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Proof. We prove the first inequality, the others follow analogously. Due to the den-
sity of [C∞(K̂1)]3 in the space of functions in [W 1,p(K̂1)]3 with curl in [W 1,1(K̂1)]3,
with the norm ‖ · ‖W 1,p(K̂1)

+ ‖curl (·)‖W 1,1(K̂1)
, that can be proved following, for

instance, the techniques developed in chapter 3 of [4], we can assume that the

function u is smooth on K̂1. Let w = (u1, u2 − u2(0, x2, x3), u3 − u3(0, x2, x3)).
By Lemma 4.1 we have Π̂l,1u = Π̂l,1w. But, Π̂lw is defined by conditions (4)-(6)

on K̂1. Define

N(u) = ‖u1‖W 1,p(K̂1)
+ ‖θ2‖W 1,1(K̂1)

+ ‖θ3‖W 1,1(K̂1)
.

Then, by Proposition 2.1 it is sufficient to prove that

|Fei
(w, q)| ≤ Cei(q)N(u) ∀q ∈ Pl−1(ei), i = 1 . . . , 6,(13)

|Ffi
(w,q)| ≤ Cfi(q)N(u) ∀q ∈ [Pl−2(fi)]2, i = 1 . . . , 4,(14)

|FK̂1
(w,q)| ≤ CK̂1(q)N(u) ∀q ∈ [Pl−3(K̂1)]3.(15)

For simplicity, we will denote the constants Cei(q), Cfi(q) or CK̂1(q) always by
C(q) or C(q) without explicit reference to the edges, faces or element.

Note that w1 = u1 and w2|f1 = w3|f1 ≡ 0, and the second and third components
of curlw coincide with θ2 and θ3, respectively.

We begin proving inequalities (13). We have

Fe1(w, q) =
∫

e1

u1 q ∀q ∈ Pl−1(e1),

Fe2(w, q) = 0 ∀q ∈ Pl−1(e2),
Fe3(w, q) = 0 ∀q ∈ Pl−1(e3),
Fe4(w, q) = 0 ∀q ∈ Pl−1(e4),

Fe5(w, q) =
1√
2

∫

e5

(w1 − w3) q ∀q ∈ Pl−1(e5),

Fe6(w, q) =
1√
2

∫

e6

(−w1 + w2) q ∀q ∈ Pl−1(e6)

Clearly, we have estimate (13) for i = 1, . . . , 4. It remains to consider the cases
i = 5 and i = 6.

A polynomial q ∈ Pl−1(e5) can be written as q = q(x3), and we can see it as a
polynomial in Pl−1(f2). For such a polynomial, using the Green formula in f2, we
have (we denote by (n1, n3) the unitary outward normal in the plane x1x3 to ∂f2)

∫

f2

θ2 q = −
∫

f2

(
w1

∂q

∂x3
− w3

∂q

∂x1

)
+

∫

∂f2

(w1n3 − w3n1)q

= −
∫

f2

w1
∂q

∂x3
−

∫

e1

w1 q +
1√
2

∫

e5

(w1 − w3) q,

so
1√
2

∫

e5

(w1 − w3) q =
∫

f2

θ2 q +
∫

e1

u1 q +
∫

f2

u1
∂q

∂x3
.

Then, we see that

|Fe5(w, q)| ≤ C(q)
(
‖u1‖W 1,p(K̂1)

+ ‖θ2‖W 1,1(K̂1)

)
.
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Similarly, we can prove that

|Fe6(w, q)| ≤ C(q)
(
‖u1‖W 1,p(K̂1)

+ ‖θ3‖W 1,1(K̂1)

)
.

So we have proved inequalities (13).
Now consider the estimates (14). We have

Ff1(w,q) = 0 ∀q = (q1, q2) ∈ [Pl−2(f1)]2,

Ff2(w,q) =
∫

f2

w1 q1 + w3 q2 ∀q = (q1, q2) ∈ [Pl−2(f2)]2,

Ff3(w,q) =
∫

f2

w1 q1 + w2 q2 ∀q = (q1, q2) ∈ [Pl−2(f3)]2,

Ff4(w,q) =
∫

f4

(w1 − w3) q1 + (w1 − w2) q2 ∀q = (q1, q2) ∈ [Pl−2(f4)]2

(we remark that we are taking suitable basis on each face in order to have these
formulas). We estimate Ff2(w,q). Given q2 ∈ Pl−2(f2) we define q̄2 ∈ Pl−1(f2) by

q̄2(x1, x3) = −
∫ 1−x3

x1

q2(t, x3) dt.

Then, using again the Green Formula and keeping in mind that w3 = 0 on e3,
∂q̄2
∂x1

= q2 and q̄2|e5 = 0, we obtain
∫

f2

θ2 q̄2 = −
∫

f2

(
w1

∂q̄2

∂x3
− w3 q2

)
−

∫

e1

w1 q̄2.

Therefore, ∫

f2

w3 q2 =
∫

f2

(
θ2q̄2 + u1

∂q̄2

∂x3

)
−

∫

e1

u1q̄2.

So,

|Ff2(w,q)| ≤ C(q)
(
‖u1‖W 1,p(K̂1)

+ ‖θ2‖W 1,1(K̂1)

)
,

as we wanted. In a similar way, we obtain

|Ff3(w,q)| ≤ C(q)
(
‖u1‖W 1,p(K̂1)

+ ‖θ3‖W 1,1(K̂1)

)
.

On the other hand, since w3|f1 ≡ 0, we have for each q1 ∈ Pl−2(f4)∫

f4

w3 q =
∫

f1

w3(1− x2 − x3, x2, x3) q1(x2, x3)

=
∫

f1

∫ 1−x2−x3

0

∂w3

∂x1
(t, x2, x3) q1(x2, x3) dt dx2 dx3

=
∫

K̂1

∂w3

∂x1
q1

= −
∫

K̂1

θ2 q1 +
∫

K̂1

∂w1

∂x3
q1.

where we have extended q1 from f1 to K̂1 in the natural way. Hence
∫

f4

(w1 − w3) q1 ≤ C(q1)
(
‖u1‖W 1,p(K̂1)

+ ‖θ2‖L1(K̂1)

)
.
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Similarly, we have
∫

f4

(w1 − w2) q2 ≤ C(q2)
(
‖u1‖W 1,p(K̂1)

+ ‖θ3‖L1(K̂1)

)

and then we obtain

|Ff4(w,q)| ≤ C(q)
(
‖u1‖W 1,p(K̂1)

+ ‖θ2‖W 1,1(K̂1)
+ ‖θ3‖W 1,1(K̂1)

)
.

Therefore we obtained (14).
Finally, we prove inequalities (15). We have for q = (q1, q2, q3) ∈ [Pl−3(K̂1)]3

FK̂1
(w,q) =

∫

K̂1

(w1q1 + w2q2 + w3q3)

Using again that w2|f1 ≡ 0 we have
∫

K̂1

w2 q2 =
∫

K̂1

∫ x1

0

∂w2

∂x1
(t, x2, x3) q2(x) dt dx

=
∫ 1

0

∫ 1−x2

0

∫ 1−x2−x3

0

∂w2

∂x1
(t, x2, x3)

∫ 1−x2−x3

t

q2(x) dx1 dt dx3 dx2

=
∫

K̂1

∂w2

∂x1
q̄2

=
∫

K̂1

θ3q̄2 +
∫

K̂1

∂u1

∂x2
q̄2

where

q̄2(t, x2, x3) =
∫ 1−x2−x3

t

q2(x1, x2, x3) dx1.

So, we see that
∣∣∣∣
∫

K̂1

w2 q2

∣∣∣∣ ≤ C(q2)
(
‖u1‖W 1,p(K̂1)

+ ‖θ3‖L1(K̂1)

)
.

Analogously, we have
∣∣∣∣
∫

K̂1

w3 q3

∣∣∣∣ ≤ C(q3)
(
‖u1‖W 1,p(K̂1)

+ ‖θ2‖L1(K̂1)

)
.

Clearly, we have arrived at

|FK̂1
(w,q)| ≤ C(q)

(
‖u1‖W 1,p(K̂1)

+ ‖θ2‖L1(K̂1)
+ ‖θ3‖L1(K̂1)

)
.

Hence, we have proved the first estimate of the assertion. ¤

Now we can state the main result of this section, concerning the stability estimate
for the edge interpolation operator on elements in the family F1.

Theorem 4.3. Let K̃ ∈ F1 be the tetrahedron generated by {0, h1e1, h2e2, h3e3}.
Denote by Π̃l the edge interpolation operator of order l in K̃. Then, there exists a
constant C independent of h1, h2 and h3 such that for all ṽ ∈ [W 1,p(K̃)]3, p > 2,
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with curl ṽ ∈ [W 1,1(K̃)]3, we have

‖Π̃lṽ‖L∞(K̃) ≤ C

{
|K̃|− 1

p

(
‖ṽ‖Lp(K̃) +

3∑

i=1

hi

∥∥∥∥
∂ṽ
∂x̃i

∥∥∥∥
Lp(K̃)

)

+ h |K̃|−1




∥∥∥c̃url ṽ
∥∥∥

L1(K̃)
+

3∑

i=1

hi

∥∥∥∥∥
∂c̃url ṽ

∂x̃i

∥∥∥∥∥
L1(K̃)




}

where h is the diameter of K̃.

Proof. Consider the map x → x̃ = Bx with B = diag(h1, h2, h3) that maps K̂1

onto K̃. Let ṽ ∈ [W 1,p(K̃)]3, p > 2, with curl ṽ ∈ [W 1,1(K̃)]3 and define v̂ by
setting v̂(x̂) = Btṽ(x̃). We also set θ̃(x̃) = c̃url ṽ(x̃) and θ̂(x̂) = ĉurl v̂(x̂). It is
known that, if Π̂l denotes the edge interpolation on K̂1, then Π̂lv̂(x̂) = BtΠ̃lṽ(x̃).
So, using the first estimate in Theorem 4.2 we have

‖Π̃l,1ṽ‖L∞(K̃) =
1
h1
‖Π̂l,1û‖L∞(K̂)

≤ C
1
h1

[
‖v̂1‖W 1,p(K̂1)

+ ‖θ̂2‖W 1,1(K̂1)
+ ‖θ̂3‖W 1,1(K̂1)

]
.

Now, from this, taking into account that θ̂2(x̂) = h1h3θ̃2(x̃) and θ̂3(x̂) = h1h2θ̃3(x̃),
we obtain

‖Π̃l,1ṽ‖L∞(K̃) ≤ C|K̃|− 1
p

(
‖ṽ1‖Lp(K̃) +

3∑

i=1

hi

∥∥∥∥
∂ṽ1

∂x̃i

∥∥∥∥
Lp(K̃)

)
+

C|K̃|−1h3


‖θ̃2‖L1(K̃) +

3∑

i=1

hi

∥∥∥∥∥
∂θ̃2

∂x̃i

∥∥∥∥∥
L1(K̃)


 +

C|K̃|−1h2


‖θ̃3‖L1(K̃) +

3∑

i=1

hi

∥∥∥∥∥
∂θ̃3

∂x̃i

∥∥∥∥∥
L1(K̃)


 .

The corresponding estimates for Π̃l,2v̂ and Π̃l,2v̂ can be analogously proved, thus
obtaining the assertion. ¤

Remark 4.1. By a simple application of Hölder’s inequality we obtain from the
previous lemma that for all ṽ ∈ [W 1,p(K̃)]3, p > 2, with curl ṽ ∈ [W 1,p(K̃)]3, we
have

‖Π̃lṽ‖Lp(K̃) ≤ C

{
‖ṽ‖Lp(K̃) +

3∑

i=1

hi

∥∥∥∥
∂ṽ
∂x̃i

∥∥∥∥
Lp(K̃)

+ h
∥∥∥c̃url ṽ

∥∥∥
Lp(K̃)

+ h

3∑

i=1

hi

∥∥∥∥∥
∂c̃url ṽ

∂x̃i

∥∥∥∥∥
Lp(K̃)

}
.

This is an anisotropic inequality, that should be confronted with (8) at the end of
section 3.
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5. Stability of Πl on elements in the family F2

Now we consider the reference element K̂2 with vertices at (0, 0, 0), (1, 1, 0), (0, 1, 0)
and (0, 0, 1). For i = 1, . . . , 4, let now fi, be the faces of K̂2 with normal ni, where
n1 = (−1, 0, 0), n2 = 1√

2
(1,−1, 0), n3 = (0, 0,−1) and n4 = 1√

2
(0, 1, 1), and for

i = 1, . . . , 6, let ei, i = 1, . . . , 6, be the edges with tangential vectors ti, with
t1 = 1√

2
(1, 1, 0), t2 = (0, 1, 0), t3 = (0, 0, 1), t4 = 1√

2
(0,−1, 1), t5 = 1√

3
(1, 1,−1)

and t6 = (1, 0, 0). We alert the reader that we are redefining some notation used
in the previous section.

In this section, we denote by Πl the edge interpolation operator on K̂2, and as
before, Π̂l the one operator on K̂1.

We can use the estimates proved in the previous section to obtain results con-
cerning the stability of Πl on K̂2. In fact, the reference element K̂2 is the image of
the element K̂1, considered in the previous section, by the mapping x̂ → x = Ax̂,
where

A =




1 0 0
1 1 0
0 0 1


 .

Let u ∈ [W 1,p(K̂2)]3 (p > 2) with curl u ∈ [W 1,1(K̂2)]3, and define û ∈ [W 1,p(K̂1)]3

by setting û(x̂) = Atu(x). Then, we have Π̂lû(x̂) = AtΠlu(x) or

Πl,1u(x) = Π̂l,1û(x̂)− Π̂l,2û(x̂)

Πl,2u(x) = Π̂l,2û(x̂)

Πl,3u(x) = Π̂l,3û(x̂).

We set θ(x) = curl u(x) and θ̂(x̂) = ĉurl û(x̂). Then, some easy computations
show that

θ̂1(x̂) = θ1(x)

θ̂2(x̂) = θ2(x)− θ1(x)

θ̂3(x̂) = θ3(x),

so, we have

‖θ̂1‖L1(K̂1)
= ‖θ1‖L1(K̂2)

‖θ̂2‖L1(K̂1)
≤ ‖θ1‖L1(K̂2)

+ ‖θ2‖L1(K̂2)

‖θ̂3‖L1(K̂1)
= ‖θ3‖L1(K̂2)

3∑

k=1




∥∥∥∥∥
∂θ̂1

∂x̂k

∥∥∥∥∥
L1(K̂1)

+

∥∥∥∥∥
∂θ̂2

∂x̂k

∥∥∥∥∥
L1(K̂1)


 ≤ 4

3∑

k=1

(∥∥∥∥
∂θ1

∂xk

∥∥∥∥
L1(K̂2)

+
∥∥∥∥

∂θ2

∂xk

∥∥∥∥
L1(K̂2)

)

3∑

k=1




∥∥∥∥∥
∂θ̂1

∂x̂k

∥∥∥∥∥
L1(K̂1)

+

∥∥∥∥∥
∂θ̂3

∂x̂k

∥∥∥∥∥
L1(K̂1)


 ≤ 2

3∑

k=1

(∥∥∥∥
∂θ1

∂xk

∥∥∥∥
L1(K̂2)

+
∥∥∥∥

∂θ3

∂xk

∥∥∥∥
L1(K̂2)

)
.
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Then, for instance, from the third inequality of Theorem 4.2, we have

‖Πl,3u‖L∞(K̂2)
=

∥∥∥Π̂l,3û
∥∥∥

L∞(K̂1)

≤ C

(
‖û3‖W 1,p(K̂1)

+
∥∥∥θ̂1

∥∥∥
W 1,1(K̂1)

+
∥∥∥θ̂2

∥∥∥
W 1,1(K̂1)

)

≤ C
(
‖u3‖W 1,p(K̂2)

+ ‖θ1‖W 1,1(K̂2)
+ ‖θ2‖W 1,1(K̂2)

)
.

Analogously, we have

‖Πl,2u‖L∞(K̂2)
≤ C

(
‖u2‖W 1,p(K̂2)

+ ‖θ1‖W 1,1(K̂2)
+ ‖θ3‖W 1,1(K̂2)

)
.

We can not obtain an analogous (and suitable for our purposes) estimate for the
first component of Πlu by this simple change of variables. For that, we need the
next lemma.

Lemma 5.1. Let v2 and v3 be regular functions defined on the triangle {(x, y) ∈
[0, 1]2 : x + y ≤ 1}. If v : K̂2 → R3 is given by v = (0, v2(x2, x3), v3(x2, x3)) then
Πl,1v = 0.

Proof. Consider the map x̂ → x = Ax̂ used previously, which applies K̂1 onto K̂2.
Let v be as in the statement of the Lemma, and let v̂ defined by v̂(x̂) = Atv(x).
So, we have, v̂(x̂) = (v2(x̂1 + x̂2, x̂3), v2(x̂1 + x̂2, x̂3), v3(x̂1 + x̂2, x̂3)).

Now, let f be the triangle in the plane x1x3 with vertices at (0, 0), (1, 0) and (0, 1),
and define r(x1, x3) = (v2(x1, x3), v3(x1, x3)). Let Π2

l r be the 2-dimensional edge
interpolation of r of order l, that is, Π2

l r is the function in [Pl−1]2 + Pl−1(−x3, x1),
verifying

∫ 1

0

Π2
l,1r(x1, 0) q(x1) =

∫ 1

0

v2(x1, 0) q(x1) ∀q ∈ Pl−1([0, 1]),
∫ 1

0

Π2
l,2r(0, x3) q(x3) =

∫ 1

0

v3(0, x3) q(x3) ∀q ∈ Pl−1([0, 1]),
∫ 1

0

(Π2
l,1r−Π2

l,2r)|(x1,1−x1) q(x1) =
∫ 1

0

(v2 − v3)|(x1,1−x1) q(x1) ∀q ∈ Pl−1([0, 1]),
∫

f

Π2
l,1r q =

∫

f

v2 q ∀q ∈ Pl−2(f)
∫

f

Π2
l,2r q =

∫

f

v3 q ∀q ∈ Pl−2(f).

Then, it is easy to check that

Π̂lv̂(x̂) = (Π2
l,1r(x̂1 + x̂2, x̂3), Π2

l,1r(x̂1 + x̂2, x̂3),Π2
l,2r(x̂1 + x̂2, x̂3)).

So, since Πlv(x) = A−tΠ̂lv̂(x̂), we obtain Πl,1v = 0 as we wanted. ¤

Now we are ready to estimate Πl,1u. As in the proof of Theorem 4.2 we as-

sume the function u is smooth on K̂2, and obtain the final result by standard
density arguments. Define the vector-valued function w(x) = (u1(x), u2(x) −
u2(x2, x2, x3), u2(x) − u2(x2, x2, x3)). Then w2 = w3 = 0 on f2. Also the sec-
ond and third components of curl u and curlw coincide.
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From the last lemma, we have Πl,1u = Πl,1w. Then, we have to obtain estimates
for Πlw in terms of u. As in the previous section, we will use Proposition 2.1. We
will prove that

|Fei(w, q)| ≤ C(q)N(u) i = 1 . . . , 6, ∀q ∈ Pl−1(ei),(16)
|Ffi(w,q)| ≤ C(q)N(u) i = 1 . . . , 4, ∀q ∈ [Pl−2(fi)]2,(17)

|FK̂2
(w,q)| ≤ C(q)N(u) ∀q ∈ [Pl−3(K̂2)]3(18)

with

N(u) = ‖u1‖W 1,p(K̂2)
+ ‖θ2‖W 1,1(K̂2)

+ ‖θ3‖W 1,1(K̂2)
.

We begin by proving (16). We have

Fe1(w, q) =
1√
2

∫

e1

u1q ∀q ∈ Pl−1(e1)

Fe2(w, q) =
∫

e2

(u2(0, x2, 0)− u2(x2, x2, 0))q(x2) ∀q ∈ Pl−1(e2)

Fe3(w, q) = 0 ∀q ∈ Pl−1(e3)

Fe4(w, q) =
1√
2

∫

e4

[(u2(0, x2, x3)− u2(x2, x2, x3))−

(u3(0, x2, x3)− u3(x2, x2, x3))] q(x2) ∀q ∈ Pl−1(e4)

Fe5(w, q) =
1√
3

∫

e5

u1(x2, x2, x3) q ∀q ∈ Pl−1(e5)

Fe6(w, q) =
∫

e6

u1(x1, 1, 0) q ∀q ∈ Pl−1(e6).

For i = 1, 3, 5, 6 inequalities (16) are trivially obtained. Now consider i = 2. We
have

√
2 Fe2(w, q) = −

∫ 1

0

∫ x2

0

∂u2

∂x1
(t, x2, 0)q(x2) dt dx2

= −
∫ 1

0

∫ x2

0

[
∂u2

∂x1
(t, x2, 0)− ∂u1

∂x2
(t, x2, 0)

]
q(x2) dt dx2 −

∫ 1

0

∫ x2

0

∂u1

∂x2
(t, x2, 0)q(x2) dt dx2

For the second term in the last line, we have
∫ 1

0

∫ x2

0

∂u1

∂x2
(t, x2, 0)q(x2) dt dx2 =

∫ 1

0

∫ x2

0

∂u1

∂x2
(x1, x2, 0)q(x2) dx1 dx2

=
∫ 1

0

∫ 1

x1

∂u1

∂x2
(x1, x2, 0)q(x2) dx2 dx1

=
∫ 1

0

[u1(x1, 1, 0)q(1)− u1(x1, x1, 0)q(x1)] dx1 −
∫ 1

0

∫ 1

x1

u1(x1, x2, 0)q′(x2) dx2 dx1.
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Then
∣∣∣∣
∫ 1

0

∫ x2

0

∂u1

∂x2
(t, x2, 0)q(x2) dt dx2

∣∣∣∣ ≤ C(q)
(‖u1‖Lp(f3) + ‖u1‖Lp(e1) + ‖u1‖Lp(e6)

)

≤ C(q)‖u1‖W 1,p(K̂2)
.

So, we obtain

|Fe2(w, q)| ≤ C(q)
(
‖θ3‖W 1,1(K̂2)

+ ‖u1‖W 1,p(K̂2)

)
.

Now consider the case i = 4. We write
√

2 Fe4(w, q) =
∫

e4

(u2(0, x2, x3)− u2(x2, x2, x3)) q(x2)−
∫

e4

(u3(0, x2, x3)− u3(x2, x2, x3)) q(x2)

=: Ie
41 − Ie

42.

We have

Ie
41 = −

∫ 1

0

∫ x2

0

∂u2

∂x1
(t, x2, 1− x2)q(x2) dt dx2

= −
∫ 1

0

∫ x2

0

[
∂u2

∂x1
(t, x2, 1− x2)− ∂u1

∂x2
(t, x2, 1− x2)

]
q(x2) dt dx2 −

−
∫ 1

0

∫ x2

0

∂u1

∂x2
(t, x2, 1− x2)q(x2) dt dx2

= −
∫ 1

0

∫ x2

0

[
∂u2

∂x1
(t, x2, 1− x2)− ∂u1

∂x2
(t, x2, 1− x2)

]
q(x2) dt dx2 −

−
∫ 1

0

∫ 1

x1

∂u1

∂x2
(t, x2, 1− x2)q(x2) dx2 dt

Analogously for Ie
42 we have

Ie
42 = = −

∫ 1

0

∫ x2

0

∂u3

∂x1
(t, x2, 1− x2)q(x2) dt dx2

= −
∫ 1

0

∫ x2

0

[
∂u3

∂x1
(t, x2, 1− x2)− ∂u1

∂x3
(t, x2, 1− x2)

]
q(x2) dt dx2 −

−
∫ 1

0

∫ 1

x1

∂u1

∂x3
(t, x2, 1− x2)q(x2) dx2 dt

So, we arrive at

Fe4(w, q) = −
∫

f4

(θ3 + θ2) q(x2)−
∫

f4

[
∂u1

∂x2
(x1, x2, 1− x2)− ∂u1

∂x3
(x1, x2, 1− x2)

]
q(x2)

=: −
∫

f4

(θ3 + θ2) q(x2)− Ie
43.
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But for Ie
43 we have

Ie
43 =

∫ 1

0

∫ 1

x1

d

dx2
[u1(x1, x2, 1− x2)] q(x2) dx2 dx1

=
∫ 1

0

[u1(x1, 1, 0)q(1)− u1(x1, x1, 1− x1)q(x1)]dx1 −

−
∫ 1

0

∫ 1

x1

u1(x1, x2, 1− x2)q′(x2) dx2 dx1.

So

Fe4(w, q) = −
∫

f4

(θ2 + θ3)q(x2) +
∫

f4

u1 q′(x2)− q(1)
∫

e6

u1 +
∫

e5

u1 q,

and therefore

|Fe4(w, q)| ≤ C(q)
(
‖θ2‖W 1,1(K̂2)

+ ‖θ3‖W 1,1(K̂2)
+ ‖u1‖W 1,p(K̂2)

)
.

We proved (16).
Now we consider the face conditions. We have for q = (q1, q2) ∈ [Pl−2(f1)]2

Ff1(w,q) = If
11 + If

12,

where

If
11 :=

∫

f1

[u3(0, x2, x3)− u3(x2, x2, x3)] q1(x2, x3) dx2dx3

If
12 :=

∫

f1

[u2(0, x2, x3)− u2(x2, x2, x3)] q2(x2, x3) dx2dx3

It follows that

If
11 =

∫

f1

[u3(0, x2, x3)− u3(x2, x2, x3)] q1(x2, x3) dx2dx3

= −
∫

f1

∫ x2

0

∂u3

∂x1
(x1, x2, x3)q1(x2, x3) dx1 dx2dx3

= −
∫

K̂2

(
∂u3

∂x1
− ∂u1

∂x3

)
q1(x1, x3)dx−

∫

K̂2

∂u1

∂x3
q1(x1, x3)dx

So we obtain
|If

11| ≤ C(q)
(
‖θ2‖L1(K̂2)

+ ‖u1‖W 1,p(K̂2)

)
.

Analogously, we have

|If
12| ≤ C(q)

(
‖θ3‖L1(K̂2)

+ ‖u1‖W 1,p(K̂2)

)
,

and so

|Ff1(w,q)| ≤ C(q)
(
‖θ2‖L1(K̂2)

+ ‖θ3‖L1(K̂2)
+ ‖u1‖W 1,p(K̂2)

)
.

Taking into account that w2 and w3 vanish on f2, we have for q = (q1, q2) ∈
[Pl−2(f2)]2

Ff2(w,q) =
1√
2

∫

f2

u1 q2.

We see that the right side can be bounded in terms of ‖u1‖W 1,p(K̂2)
.
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On f3 we have for q = (q1, q2) ∈ [Pl−2(f3)]2

Ff3(w,q) = −
∫

f3

(u2(x1, x2, 0)− u2(x2, x2, 0)) q1 +
∫

f3

u1(x1, x2, 0) q2

=: −If
31 + If

32.

We have

If
31 := −

∫ 1

0

∫ x2

0

∫ x2

x1

∂u2

∂x1
(t, x2, 0) q1(x1, x2) dt dx1dx2

= −
∫ 1

0

∫ x2

0

∫ x2

x1

(
∂u2

∂x1
− ∂u1

∂x2

)∣∣∣∣
(t,x2,0)

q1(x1, x2) dtdx1dx2 −
∫ 1

0

∫ x2

0

∫ x2

x1

∂u1

∂x2
(t, x2, 0)q1(x1, x2) dtdx1dx2

= −
∫ 1

0

∫ x2

0

∫ t

0

(
∂u2

∂x1
− ∂u1

∂x2

)∣∣∣∣
(t,x2,0)

q1(x1, x2) dx1dtdx2 −
∫ 1

0

∫ x2

0

∫ t

0

∂u1

∂x2
(t, x2, 0)q1(x1, x2) dx1dtdx2

= −
∫

f3

θ3 q̃1 −
∫

f3

∂u1

∂x2
q̃1

where

(19) q̃1(t, x2) =
∫ t

0

q1(x1, x2) dx1.

On the other hand we have
∫

f3

∂u1

∂x2
q̃1 =

∫ 1

0

∫ 1

x1

∂u1

∂x2
(x1, x2, 0) q̃1(x1, x2) dx2dx1

=
∫ 1

0

[
u1(x1, x2, 0)q̃1(x1, x2)|1x2=x1

dx1 −
∫ 1

x1

u1(x1, x2, 0)
d

dx2
q̃1(x1, x2) dx2

]
dx1

=
∫ 1

0

[u1(x1, 1, 0)q̃1(x1, 1)− u1(x1, x1, 0)q̃1(x1, x1)]dx1 −
∫ 1

0

∫ 1

x1

u1(x1, x2, 0)
∂q̃1

∂x2
(x1, x2) dx1dx1.

Therefore we arrive at

|If
31| ≤ C(q)

(
‖θ3‖W 1,1(K̂2)

+ ‖u1‖W 1,p(K̂2)

)
.

Also, we clearly have
|If

32| ≤ C(q)‖u1‖W 1,p(K̂2)
,

and by collecting the previous inequalities we obtain

|Ff3(w,q)| ≤ C(q)
(
‖θ3‖W 1,1(K̂2)

+ ‖u1‖W 1,p(K̂2)

)
.
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Finally, we have for q ∈ [Pl−2(f4)]2

Ff4(w,q) =
∫

f4

(w2 − w3)q1 +
∫

f4

u1q2

We set

If
41 :=

∫

f4

(w2 − w3)q1

If
42 :=

∫

f4

u1q2

Clearly
|If

42| ≤ C(q)‖u1‖W 1,p(K̂2)
.

Now we deal with If
41. We have

∫

f4

w2q1 =
∫ 1

0

∫ x2

0

[u2(x1, x2, 1− x2)− u2(x2, x2, 1− x2)]q1(x1, x2) dx1dx2

= −
∫ 1

0

∫ x2

0

∫ x2

x1

∂u2

∂x1
(t, x2, 1− x2)q1(x1, x2) dt dx1dx2

= −
∫ 1

0

∫ x2

0

∫ x2

x1

θ3(t, x2, 1− x2)q1(x1, x2) dt dx1dx2 −
∫ 1

0

∫ x2

0

∫ x2

x1

∂u1

∂x2
(t, x2, 1− x2)q1(x1, x2) dt dx1dx2

= −
∫

f4

θ3q̃1 −
∫

f4

∂u1

∂x2
q̃1

with q̃1 defined by (19). Analogously we have
∫

f4

w3 q1 =
∫

f4

θ2q̃1 −
∫

f4

∂u1

∂x3
q̃1

So,

If
41 = −

∫

f4

(θ2 + θ3)q̃1 −
∫

f4

(
∂u1

∂x2
− ∂u1

∂x3

)
q̃1.

But
∫

f4

(
∂u1

∂x2
− ∂u1

∂x3

)
q̃1 =

∫ 1

0

∫ 1

x1

d

dx2
[u1(x1, x2, 1− x2)]q̃(x1, x2) dx2dx1

=
∫ 1

0

[u1(x1, 1, 0)q̃1(x1, 1)− u1(x1, x1, 1− x1)]q̃1(x1, x1)dx1 −
∫

f4

u1
∂q̃1

∂x2

and so, ∣∣∣∣
∫

f4

(
∂u1

∂x2
− ∂u1

∂x3

)
q̃1

∣∣∣∣ ≤ C(q) ‖u1‖W 1,p(K̂2)

and then we can conclude that

|If
41| ≤ C(q)

(
‖θ2‖W 1,1(K̂2)

+ ‖θ3‖W 1,1(K̂2)
+ ‖u1‖W 1,p(K̂2)

)
,
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obtaining

Ff4(w,q) ≤ C(q)
(
‖θ2‖W 1,1(K̂2)

+ ‖θ3‖W 1,1(K̂2)
+ ‖u1‖W 1,p(K̂2)

)
.

Thus we proved (17).
Finally, we consider the volume conditions. We have for q = (q1, q2, q3) ∈

[Pl−3(K̂2)]3

FK̂2
(w,q) =

∫

K̂2

u1 q1 +
∫

K̂2

w2 q2 +
∫

K̂2

w3 q3

=: IV
1 + IV

2 + IV
3 .

Clearly
|IV

1 | ≤ C(q)‖u1‖Lp(K̂2)
.

On the other hand we have

IV
2 =

∫

K̂2

(u2(x1, x2, x3)− u2(x2, x2, x3))q2

= −
∫

K̂2

∫ x2

x1

∂u2

∂x1
(t, x2, x3)q2(x1, x2, x3) dt dx1 dx2 dx3

= −
∫ 1

0

∫ 1−x2

0

∫ x2

0

∫ x2

x1

∂u2

∂x1
(t, x2, x3)q2(x1, x2, x3) dt dx1 dx3 dx2

= −
∫ 1

0

∫ 1−x2

0

∫ x2

0

∫ t

0

∂u2

∂x1
(t, x2, x3)q2(x1, x2, x3) dx1 dt dx3 dx2

=
∫

K̂2

∂u2

∂x1
(t, x2, x3)q̄2(t, x2, x3) dt dx3 dx2

=
∫

K̂2

θ3q̄2 +
∫

K̂2

∂u1

∂x2
q̄2

where

q̄2(t, x2, x3) =
∫ t

0

q2(x1, x2, x3) dx1.

So, we see that

|IV
2 | ≤ C(q)

(
‖θ3‖L1(K̂2)

+ ‖u1‖W 1,p(K̂2)

)
.

Similarly we can obtain

|IV
3 | ≤ C(q)

(
‖θ2‖L1(K̂2)

+ ‖u1‖W 1,p(K̂2)

)
.

Then, we obtained

FK̂2
(w,q) ≤ C(q)

(
‖θ2‖L1(K̂2)

+ ‖θ3‖L1(K̂2)
+ ‖u1‖W 1,p(K̂2)

)

proving (18).
By Proposition 2.1 and inequalities (16)-(18), we have

‖Πl,1u‖L∞(K̂2)
≤ ‖Πlw‖L∞(K̂2)

≤ C
(
‖θ2‖W 1,1(K̂2)

+ ‖θ3‖W 1,1(K̂2)
+ ‖u1‖W 1,p(K̂2)

)

Then the following theorem is proved.
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Theorem 5.2. Let u ∈ [W 1,p(K̂2)]3, with p > 2, such that curlu ∈ [W 1,1(K̂2)]3.
Denote curlu by θ = (θ1, θ2, θ3). Then we have

‖Πl,1u‖L∞(K̂2)
≤ C

(
‖u1‖W 1,p(K̂2)

+ ‖θ2‖W 1,1(K̂2)
+ ‖θ3‖W 1,1(K̂2)

)

‖Πl,2u‖L∞(K̂2)
≤ C

(
‖u2‖W 1,p(K̂2)

+ ‖θ1‖W 1,1(K̂2)
+ ‖θ3‖W 1,1(K̂2)

)

‖Πl,3u‖L∞(K̂2)
≤ C

(
‖u3‖W 1,p(K̂2)

+ ‖θ1‖W 1,1(K̂2)
+ ‖θ2‖W 1,1(K̂2)

)

Now we state the main theorem of this section.

Theorem 5.3. Let K̃ ∈ F2 be the tetrahedron generated by {0, h1e1+h2e2, h2e2, h3e3}.
Denote by Π̃l the edge interpolation operator of order l in K̃. Then, there exists a
constant C independent of h1, h2 and h3 such that for all ṽ ∈ [W 1,p(K̃)]3, p > 2,
with curl ṽ ∈ [W 1,1(K̃)]3, we have

‖Π̃lṽ‖L∞(K̃) ≤ C

{
|K̃|− 1

p

(
‖ṽ‖Lp(K̃) +

3∑

i=1

hi

∥∥∥∥
∂ṽ
∂x̃i

∥∥∥∥
Lp(K̃)

)

+ h |K̃|−1




∥∥∥c̃url ṽ
∥∥∥

L1(K̃)
+

3∑

i=1

hi

∥∥∥∥∥
∂c̃url ṽ

∂x̃i

∥∥∥∥∥
L1(K̃)




}

where h is the diameter of K̃.

Proof. The proof follows by rescaling arguments like the ones used in Theorem 4.3,
considering the map x → x̃ = Bx with B = diag(h1, h2, h3) that applies K̂2 onto
K̃. So, we omit the details here. ¤

6. Interpolation error estimates

In this section we give optimal error estimates for edge interpolation of any order.
These estimates are derived from the stability results obtained in the previous
sections combined with polynomial approximation results.

Let us recall some well known results concerning the approximation of functions
in Sobolev spaces by averaged Taylor polynomials, that have been obtained in [12]
(see also [7, 13]). For a convex domain U ⊂ R3 and any non-negative integer m,
given g ∈ Wm+1,p(U) we consider the averaged Taylor polynomial

Qmg(x) =
1
|U |

∫

U

Tmg(y,x) dy ,

where

Tmg(y,x) =
∑

|α|≤m

Dαg(y)
(x− y)α

α!
,

where, for a function g = g(x) and a multi-index α, Dαg indicates the derivative
∂|α|g
∂xα . We remark that in [12], the average is taken with a regular compactly
supported weight function φ, while for simplicity, here we have taken φ = χU

|U | (χU

is the characteristic function of the convex set U). The proofs of the next results
given in [12] are not affected by this change.

The following equality holds: if |β| ≤ m then

(20) Dβ(Qmg) = Qm−|β|
(
Dβg

)
.
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The following result is contained in Theorem 3.2 of [12]: let m ≥ 0 and p, p̄ ∈
[1,∞]. Suppose that

(21)
1
p̄
− 1

p
+

m + 1
3

≥ 0

and that there exists σ with

(22) 0 < σ ≤ max
{⌈

m + 1
3

⌉
,
1
p̄
− 1

p
+

m + 1
3

,min
{

1− 1
p
,
1
p̄

}}
,

where dae denotes the largest integer less than or equal a. Then, there exists a
constant C depending on m,σ and U such that for all g ∈ Wm+1,p(U) we have

(23) ‖(g −Qmg)‖Lp̄(U) ≤ C|g|W m+1,p(U).

Now we collect some properties of the averaged polynomials on elements in F1∪
F2. Of course, some of these properties hold also on more general domains, but we
will use them only on those elements.

Let K̃ ∈ F1∪F2, and consider a function ũ ∈ [Wm+1,p(T̃ )]3. Define q̃ = Q̃m(ũ)
where

Q̃m(ũ) = (Q̃mũ1, Q̃mũ2, Q̃mũ3) ∈ [Pm(T̃ )]3,

where Q̃m(g) denotes the averaged Taylor polynomial of g ∈ Wm+1,p(K̃) on K̃ of
degree m. Then, by rescaling inequalities (23) on U = K̂1 or U = K̂2, if m, p, p̄ and
σ satisfy (21)-(22), we obtain

(24) ‖ũ− q̃‖Lp̄(K̃) ≤ C |K̃| 1p̄− 1
p

∑

i1+i2+i3=m+1

hi1
1 hi2

2 hi3
3

∥∥∥∥
∂m+1ũ

∂x̃i1
1 ∂x̃i2

2 ∂x̃i3
3

∥∥∥∥
Lp(K̃)

with C depending only on m,σ and K̂1 or K̂2. Similarly, using also property (20),
if m ≥ 1, p, p̄ and σ satisfy

(25)
1
p̄
− 1

p
+

m

3
≥ 0

and

(26) 0 < σ ≤ max
{⌈m

3

⌉
,
1
p̄
− 1

p
+

m

3
, min

{
1− 1

p
,
1
p̄

}}
,

then there exist C as before, such that

(27)
∥∥∥∥

∂(ũ− q̃)
∂x̃1

∥∥∥∥
Lp̄(K̃)

≤ C|K̃| 1p̄− 1
p

∑

i1+i2+i3=m

hi1
1 hi2

2 hi3
3

∥∥∥∥
∂m+1ũ

∂x̃i1+1
1 ∂x̃i2

2 ∂x̃i3
3

∥∥∥∥
Lp(K̃)

and the corresponding inequalities for the derivatives with respect to x̃2 and x̃3.
Additionally, since

c̃url (Q̃mũ) = Q̃m−1(c̃url ũ)

if m ≥ 1 and p ≥ 1 the following inequality holds:

(28) ‖c̃url (ũ− q̃)‖L1(K̃) ≤ Chm|K̃|1− 1
p ‖D̃mc̃url ũ‖Lp(K̃),

with h the diameter of K̃, and where for a natural number m and a function g, we
are denoting by Dmg the sum of the absolute values of all the derivatives of order
m of g (D1 = D).



INTERPOLATION ERROR ESTIMATES FOR EDGE ELEMENTS 25

Finally, if m ≥ 1 and p ≥ 1 we have

(29)
∥∥∥∥

∂

∂x̃i
c̃url (ũ− q̃)

∥∥∥∥
L1(K̃)

≤ Chm−1|K̃|1− 1
p ‖D̃mc̃url ũ‖Lp(K̃)

with C depending only on m,σ and on the references elements. This inequality
follows by applying the estimates just presented, when m ≥ 2, or from Hölder’s
inequality, when m = 1.

Now, we state and prove the main theorem of this article.

Theorem 6.1. Let l ≥ 1. Let K be a tetrahedron satisfying MAC(ψ̄). There
exist three edges of K, `i, i = 1, 2, 3, and a constant C, such that for each integer
0 ≤ m ≤ l − 1 we have

(1) if m and p satisfy either m ≥ 2 and p ≥ 1 or m = 1 and p > 6
5 , then for

all u ∈ [Wm+1,p(K)]3 we have
(30)

‖u−Πlu‖Lp(K) ≤ C





∑

i+j+k=m+1

hi
1h

j
2h

k
3

∥∥∥∥∥
∂m+1u

∂ξi
1∂ξj

2∂ξk
3

∥∥∥∥∥
Lp(K)

+ hm+1‖Dmcurlu‖Lp(K)



 ,

(2) if m = 0 and p > 2, then for all u ∈ [W 1,p(K)]3 with Dcurlu ∈ [Ls(K)]3

for some s ≥ 1, we have
(31)

‖u−Πlu‖Lp(K) ≤ C

{
3∑

i=1

hi

∥∥∥∥
∂u
∂ξi

∥∥∥∥
Lp(K)

+ h‖curlu‖Lp(K) + h2|K| 1p− 1
s ‖Dcurlu‖Ls(K)

}
,

where hi denotes the lengths of `i, ξi = `i/‖`i‖, i = 1, 2, 3, and h is the diameter
of K. The constant C depends only on ψ̄, l and p, and it is independent of the
function u. Furthermore, C can be chosen such that, in addition, if M ∈ R3×3 is
the matrix made up of ξi as columns, then ‖M‖, ‖M−1‖ ≤ C.

Remark 6.1. The last sentence in the Theorem implies that detM is bounded
bellow in terms of the constant C. It follows that the directions ξ1, ξ2 and ξ3 are
“uniformly” linearly independent.

Proof. From Theorem 3.2 we know that there exists an element K̃ ∈ F1 ∪ F2

that can be mapped onto K by an affine transformation x̃ → x = M x̃ + p0

with ‖M‖, ‖M−1‖ ≤ C, where C depends only on ψ̄. The matrix M is made
up of vectors ξi, i = 1, 2, 3, as it columns, where ξi are unitary vectors in the
directions of three edges of K, `i, of lengths hi, i = 1, 2, 3. Also we can assume
that K̃ is the tetrahedron with vertices at either {0, h1e1, h2e2, h3e3} or {0, h1e1 +
h2e2, h2e2, h3e3}.

Assume m ≥ 1. From the conditions on m and p we have 1
p − m

3 < 1
2 , therefore

we can always choose p̄ > 2 and σ > 0 such that conditions (21), (22), (25) and (26)
are verified. From the Sobolev’s embedding theorems we know that Wm+1,p(K) ↪→
W 1,p̄(K). In particular, since p̄ > 2, Πlu is well defined for all u ∈ [Wm+1,p(K)]3.

Define on K̃ the function ũ by ũ(x̃) = M tu(x). Let q̃ = (Q̃m(ũ1), Q̃m(ũ2), Q̃m(ũ3)) ∈
[Pm(K̃)]3. Finally we set q(x) = M−tq̃(x̃), x ∈ K.

We have

‖u−Πlu‖Lp(K) ≤ ‖u− q‖Lp(K) + ‖Πl(u− q)‖Lp(K).
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Now

‖Πl(u− q)‖Lp(K) = |M | 1p
(∫

K̃

∣∣∣M−tΠ̃l(ũ− q̃)|x̃
∣∣∣
p

dx̃
) 1

p

≤ |M | 1p ‖M−1‖
∥∥∥Π̃l(ũ− q̃)

∥∥∥
Lp(K̃)

≤ C|M | 1p ‖M−1‖|K̃| 1p
∥∥∥Π̃l(ũ− q̃)

∥∥∥
L∞(K̃)

.

where we have used an inverse inequality. Here, Π̃l is the edge interpolation operator
on K̃ of order l. Since ũ ∈ [W 1,p̄(K̃)]3 (p̄ > 2) with c̃url ũ ∈ [W 1,1(K̃)]3 we use
Theorem 4.3 if K̃ ∈ F1 or Theorem 5.3 if K̃ ∈ F2, to obtain

‖u−Πlu‖Lp(K) ≤ C|M | 1p ‖M−1‖|K̃| 1p

×
{
|K̃|− 1

p̄

(
‖ũ− q̃‖Lp̄(K̃) +

3∑

i=1

hi

∥∥∥∥
∂(ũ− q̃)

∂x̃i

∥∥∥∥
Lp̄(K̃)

)

+h|K̃|−1




∥∥∥c̃url (ũ− q̃)
∥∥∥

L1(K̃)
+

3∑

i=1

hi

∥∥∥∥∥
∂c̃url (ũ− q̃)

∂x̃i

∥∥∥∥∥
L1(K̃)




}
.

Due to our choice of p̄, inequalities (24) and (27) hold true. Using those inequalities
together with (28) and (29) we arrive at

‖u−Πlu‖Lp(K) ≤ C|M | 1p ‖M−1‖
( ∑

i1+i2+i3=m+1

hi1
1 hi2

2 hi3
3

∥∥∥∥
∂m+1ũ

∂x̃i1
1 ∂x̃i2

2 ∂x̃i3
3

∥∥∥∥
Lp(K̃)

+hm+1
∥∥∥D̃m(c̃url ũ)

∥∥∥
Lp(K̃)

)
.(32)

But,
∂m+1ũ

∂x̃i1
1 ∂x̃i2

2 ∂x̃i3
3

(x̃) = M t ∂m+1u
∂ξi1

1 ∂ξi2
2 ∂ξi3

3

(x),

so

(33)
∥∥∥∥

∂m+1ũ
∂x̃i1

1 ∂x̃i2
2 ∂x̃i3

3

∥∥∥∥
Lp(K̃)

≤ ‖M‖
|M | 1p

∥∥∥∥
∂m+1u

∂ξi1
1 ∂ξi2

2 ∂ξi3
3

∥∥∥∥
Lp(K)

.

On the other hand, if we set θ = curl u and θ̃ = c̃url ũ, and define

Curl u(x) =




0 −θ3(x) θ2(x)
θ3(x) 0 −θ1(x)
−θ2(x) θ1(x) 0




and

C̃url ũ(x̃) =




0 −θ̃3(x̃) θ̃2(x̃)
θ̃3(x̃) 0 −θ̃1(x̃)
−θ̃2(x̃) θ̃1(x̃) 0


 ,

then it is known [17] that

C̃url ũ(x̃) = M tCurl u(x)M.
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Hence,∥∥∥∥
∂m

∂x̃i1
1 ∂x̃i2

2 ∂x̃i3
3

c̃url ũ
∥∥∥∥

p

Lp(K̃)

≤ C

∫

K̃

∥∥∥∥
∂m

∂x̃i1
1 ∂x̃i2

2 ∂x̃i3
3

C̃urlũ(x̃)
∥∥∥∥

p

dx̃

= C
1
|M |

∫

K

∥∥∥∥
∂m

∂ξi1
1 ∂ξi2

2 ∂ξi3
3

M tCurlu(x) M

∥∥∥∥
p

dx

≤ C
1
|M | ‖M‖2p

∫

K

∥∥∥∥
∂m

∂ξi1
1 ∂ξi2

2 ∂ξi3
3

Curlu(x)
∥∥∥∥

p

dx

≤ C
1
|M | ‖M‖2p

∫

K

∥∥∥∥
∂m

∂ξi1
1 ∂ξi2

2 ∂ξi3
3

curl u(x)
∥∥∥∥

p

dx

≤ C
1
|M | ‖M‖(2+m)p

∫

K

‖Dmcurl u(x)‖p
dx.

So, we obtain

(34)
∥∥∥D̃m(c̃url ũ)

∥∥∥
Lp(K̃)

≤ C
1

|M | 1p
‖M‖2+m ‖Dmcurl u‖Lp(K) .

Then, inserting (34) and (33) in (32) we obtain (30).
Estimate (31) for the simpler case m = 0 is clearly proved analogously, by using

(24) with p̄ = p and Hölder’s inequality. ¤

Taking into account that hi ≤ h, i = 1, 2, 3, and that, since ‖ξi‖ = 1, if i1 + i2 +
i3 = m then ∣∣∣∣

∂m+1u
∂ξi1

1 ∂ξi2
2 ∂ξi3

3

(x)
∣∣∣∣ ≤ Dmu(x),

we easily obtain the following simple corollary, containing a uniform interpolation
error estimate on elements satisfying MAC(ψ̄).

Corollary 6.2. Let l ≥ 1. Let K be a tetrahedron satisfying MAC(ψ̄). There exists
a constant C, such that for each 0 ≤ m ≤ l − 1 we have

(1) if m and p satisfy either m ≥ 2 and p ≥ 1 or m = 1 and p > 6
5 , for all

u ∈ [Wm+1,p(K)]3 we have

‖u−Πlu‖Lp(K) ≤ C hm+1
∥∥Dm+1u

∥∥
Lp(K)

,

(2) if m = 0 and p > 2, for all u ∈ [W 1,p(K)]3 with Dcurlu ∈ [Ls(K)]3 we
have

‖u−Πlu‖Lp(K) ≤ Ch
(
‖Du‖Lp(K) + h|K| 1p− 1

s ‖Dcurlu‖Ls(K)

)
,

where h denotes the diameter of K. The constant C depends only on ψ̄, l and p,
and it is independent of the function u.

7. Conclusions

The maximum angle condition introduced in section 3 allows for meshes that,
for example, appear naturally in the approximation of edge singularities in ellip-
tic problems or layers in singularly perturbed problems, where the classical shape
regularity property becomes too restrictive. We refer to Chapter 4 of [5] where the
author deals with the construction of families of meshes satisfying the maximum
angle condition to obtain adequate approximations for elliptic problems in domains
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with edges. For such a family of meshes, each element satisfy a maximum angle
condition with a constant ψ̄ < π, with ψ̄ independent on the element and the mesh.

We have obtained in section 6 error estimates for the edge (Nédélec) interpola-
tion. These estimates are valid uniformly for elements satisfying a maximum angle
condition, that means that the constants in the estimates does not degenerate if the
maximum angle of the elements remains bounded above away from π (see Corol-
lary 6.2). In this way, by adding the estimates on the individual elements, one can
obtain global error estimates.

Our results are also of anisotropic type as showed in Theorem 6.1. We mention
that interpolation error estimates of anisotropic type are necessary when one wishes
to exploit the independent element sizes h1, h2 and h3 to treat edge singularities
or layers: if it is known that the gradient of the solution is large in some direction,
it is possible to take a mesh more refined in that direction. Indeed, in many cases,
this can be performed controlling the maximum angle of the elements.

Acknowledgments. We thank the valuable recommendations of the anony-
mous referees that motivate significative improvements to Theorem 6.1. We also
thank Ricardo G. Durán for very helpful discussions on the topics of this article.
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