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1. Introduction

In [1], the authors considered the generalized Nicholson’s blowflies model

N
X (6) = =8(Dx() + Y _ Pe(X(t — 7 (£))e ™ 7O (n
k=1
where for k = 1, ..., N the functions &, P, and t; are positive, continuous and T-periodic. The existence of at least one

positive T-periodic solution was proven under the assumption

N
8(t) < > Pi(t) forallt.

k=1

Also, it was proven that the previous inequality is necessary for some t; furthermore, it was seen that if §(t) > ZkN:1 Py (t)
for all t, then all positive solutions of (1) tend to 0 as t — +o00.

In this work we generalize these results by including into the model a nonlinear harvesting term H(t, x) with H
R x [0, +00) — [0, +00) continuous and T-periodic in t such that H(t, 0) = 0. Namely, we shall consider the problem

N
X (£) = =8OX(0) + Y Pult)x(t — ()e ™" — H(t, x(t)). 2)
k=1
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Our existence result for problem (2) reads as follows:

Theorem 1.1. Assume that the upper limit Hg,,(t) = lim sup,_, ¢+ w is uniform in t and satisfies
N
8(t) + Hap(t) < Y Pr(t) (3)
k=1

for all t. Then problem (2) admits at least one T-periodic positive solution.

Remark 1.2. Condition (3) implies the existence of constants y, ¢ > 0 such that

N
50+ 100 <Y o~y
k=1

forevery t and 0 < x < e. In particular, if H is continuously differentiable with respect to x, then (3) can be written as:
() + (£, 0) < ), Pi(t) forall ¢.

Moreover, we shall prove that the condition

H(t, x)
X

N

ZPk(t) > §(t) + forsomet,x > 0 (4)
k=1

is necessary for the existence of positive T-periodic solutions. But as in [1], in fact we prove a little more: namely, that if (4)

does not hold, then the equilibrium point X = 0 is a global attractor for the solutions with positive initial data. Indeed, let

= max  T(t) —t
1<k<m, 0<t<T

and consider the initial condition for problem (2):

x(t) =) te[-1",0] (5)

for some continuous function ¢. Then we have:

Theorem 1.3. If ZL P(t) < §(t) + Wfor all t and all x > 0 then all solutions of the initial value problem (2)-(5) with
¢ > 0 are globally defined and tend to 0 as t — +oc.

The paper is organized as follows. In Section 2 we shall prove Theorem 1.1. In Section 3 we give a proof of Theorem 1.3.
Finally, in Section 4 we make some final comments and introduce an open problem.

2. Proof of Theorem 1.1

Let us firstly introduce some notation. The set of continuous and T-periodic real functions shall be denoted Cr. For x € Cr,
its maximum and minimum values and its average % fOT x(t) dt shall be denoted respectively by x*, x, and X. For ¢ € Cr
such that = 0, let K ¢ be the unique T-periodic solution with zero average of the problem x'(t) = ¢(t). For convenience,
let us also define the operator ¢ : Ct — Cr by

N
PR)(1) = —8(Ox(1) + Y P(DX(t — T(6))e T — H(t, x(1)).
k=1
We shall apply the standard Leray-Schauder degree techniques (see e. g.[2]). For A € [0, 1], define the compact operator
F, : Ct — Cr given by

F(x) =x—X— ¢(x) — LK (px) — p(x)).

It is easy to verify thatif . > 0 thenx € Cr is a zero of F; if and only if X' = A¢ (x). Thus, we look for a positive zero of F;.

Let 2 := {x € Ct : m < x(t) < M} for some constants M > m > 0 to be established. By the standard continuation
method, it suffices to prove that F; does not vanish on 942 for A € [0, 1] and that deg(Fy, §2, 0) # 0. Furthermore, observe
that Fy(x) —x € Rforeveryx € Cr; thus, its degree over 2 is different from zero if and only if Fy(m) and Fy (M) have opposite
signs, i.e. Fo(m)Fy(M) < 0.

Indeed, if x € R then

N T
- — 1
Fo(x) = 6x — E Pxe ™ + f/ H(t, x) dt.
k=1 0



P. Amster, A. Déboli / Applied Mathematics Letters 25 (2012) 1203-1207 1205

— R N 5
Thus, Fo(x) > x(§ — Zgﬂ Pre™) and hence Fo(M) > 0for M > In % On the other hand, if 0 < x < & with ¢ as in
Remark 1.2, then

T N
Fox) = ; / (5(0 + H(;’ M _ me*) dt
0 k=1

x [T
< f/ (ZPk(t)(l —e™) —y) de
T 0 k=1

and we deduce that Fy(x) < 0 if x is small enough.
It remains to prove that if m and M are respectively small and large enough then F; (x) # 0 forx € 92 and A € (0, 1].
Let A € (0, 1] and assume for some positive x that F; (x) = 0, that is, X' = A¢(x). If £ is an absolute maximizer of x, then

N
D PEX(E — (€)eETHE) > §(E)x(&),

k=1
and from the fact that the function f(A) := Ae™ < f(1) = % we deduce:

N *
Z P k
< k=1
ed

On the other hand, if  is an absolute minimizer of x then

H(n, X*)]X

Zpk(n)x(ﬂ — ‘[k(n))efx(n w"(n) _ [8( ) +

H(’I X*)

As before, if x, < & then we know from the hypothesis that §(n) + <o Z',:’zl Py(n) for some constant o < 1

independent of 7.
Suppose that x, < 1, then x( — 7,(n))e ¥~ > x_e~*+ and hence

N
> Pe(n)
> >

- H(n,xx)
5(n) + T2

Thus, x, > —Ino > 0 and the proof follows.

1
o

3. Necessary conditions

In this section, we shall prove that condition (4) is necessary for the existence of positive T-periodic solutions. This is
actually seen directly as in the proof of Theorem 1.1: if x is a positive T-periodic solution and & is a global maximizer then

H * N
¢ (304 T80 ) = Y R - niene e
k=1

If x* < 1, then the right hand-side term is less or equal than Zﬁ':] Pk(f;‘)x*e*"* and the proof follows; otherwise we obtain
that

(%_ Zpk(‘i:) N
o)+ = <Y P®)
k=1

ex*

and so completes the proof. But, as mentioned, we shall prove furthermore that X = 0 is asymptotically stable over the set
of positive solutions.
Proof of Theorem 1.3. We shall proceed in several steps.

1. Assume that x is defined up to tg and x(t) > 0 forall t < tp. Then x(tp) > 0. Indeed, if x(t;) = 0 then
N

0> X(to) = Y Prlto)x(ty — Ti(to))e 00 > g,
k=1

a contradiction.
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2. If X' (tp) > 0, then x(ty) < % Proof : as x'(tp) > 0 and x is positive,

N
Py (¢
sty 4 Xt _ &
’ x(t)  ~  ex(to)

and the proof follows from the assumptions.
In particular, we deduce from 1 and 2 that x is defined and strictly positive on [0, +00).
3. If x is strictly decreasing on [0, +00), then x(t) — 0 ast — 400. Proof : suppose that x(t) — « > 0, then for arbitrary

B > 0 there exists to such that ZL P(t)x(t — T (£))e*—n0) < ZkN=1 Py(t)ae™ + B for t > to. From this inequality
and the hypotheses we obtain:

N
X(t) < ZPk(t)ae_“ + B = 3(Ox(t) — H(t, x(1))
k=1
< 8(t) (@ —x(t)) + H(t, ) —H(t,x(t)) + B — (8(t)a + H(t, ®))(1 — e~ ).
Thus, if we fix 8 < (S +H(-, «))*(1 —e™?) it follows that x'(t) < —« for some x > 0 and t sufficiently large, which
contradicts the fact that x is always positive.
As a conclusion from the first three steps, we deduce the existence of t; > 0 such that 0 < x(t) < % fort > t; — t*.
Next, define x; = % and, as in step 2, we deduce that if X'(t) > 0 for some t > t; then x(t) < f(x;) := X,, where as before

f(x) = xe™*. Repeating the procedure we obtain a sequence t; < t; < ---suchthat0 < x(t) < x, .= f(x,_1) fort > t,—t*.
As the sequence {x,} is strictly decreasing and positive, it must converge to a fixed point of f and so completes the proof. O

4. Concluding remarks and open problem

In the very recent paper [3], the authors solved a particular case of an open problem posed in [4]: study the original model
(i.e. with m = 1) with linear harvesting term depending on the delayed estimate of the population. An important (implicitly
stated) assumption in [3] was the fact that the delay in the harvesting term was equal to the one in the original equation.
Following the ideas in Theorem 1.1, the existence result in [3] can be improved and extended for the generalized model (2)

if the harvesting term is replaced by a nonlinear term with a delay T = ; for some k. More precisely:

Theorem 4.1. Consider Eq. (2) with the harvesting function H(t, x(t)) replaced by H(t, x(t —t;(t))) for some k. Assume that (3)is
satisfied and that

N *
P

H(t, x) » k; i
< P(t)e™ foralltand0 < x < e

(6)

Then the problem has at least one positive T-periodic solution.

The proof follows the outline of Section 2, so the details are left to the reader. Simply observe that if F, (x) = 0 for
A € (0, 1] then a bound for x* is obtained exactly in the same way, and the lower bound is now obtained as follows: suppose
X < 1, then

X, > ZPk(n)x*e_"* + x5 (P,;(r))e_"f« —
ks#k
where x; := x(n — 7;(n)). As x; > X,, the desired bound is obtained using (3) and (6).

Open question. Find sufficient conditions for the existence of positive T-periodic solutions without making the assumption
T=r1.
k

H(n, X,;))

Xk
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