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a b s t r a c t

We give sufficient and necessary conditions for the existence of at least one positive
T -periodic solution for a generalized Nicholson’s blowflies model with a nonlinear
harvesting term. Our results extend those of the previous work Li and Du (2008) [1].
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1. Introduction

In [1], the authors considered the generalized Nicholson’s blowflies model

x′(t) = −δ(t)x(t) +

N
k=1

Pk(t)x(t − τk(t))e−x(t−τk(t)) (1)

where for k = 1, . . . ,N the functions δk, Pk and τk are positive, continuous and T -periodic. The existence of at least one
positive T -periodic solution was proven under the assumption

δ(t) <

N
k=1

Pk(t) for all t.

Also, it was proven that the previous inequality is necessary for some t; furthermore, it was seen that if δ(t) ≥
N

k=1 Pk(t)
for all t , then all positive solutions of (1) tend to 0 as t → +∞.

In this work we generalize these results by including into the model a nonlinear harvesting term H(t, x) with H :

R × [0, +∞) → [0, +∞) continuous and T -periodic in t such that H(t, 0) = 0. Namely, we shall consider the problem

x′(t) = −δ(t)x(t) +

N
k=1

Pk(t)x(t − τk(t))e−x(t−τk(t)) − H(t, x(t)). (2)
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Our existence result for problem (2) reads as follows:

Theorem 1.1. Assume that the upper limit Hsup(t) := lim supx→0+
H(t,x)

x is uniform in t and satisfies

δ(t) + Hsup(t) <

N
k=1

Pk(t) (3)

for all t . Then problem (2) admits at least one T-periodic positive solution.

Remark 1.2. Condition (3) implies the existence of constants γ , ε > 0 such that

δ(t) +
H(t, x)

x
<

N
k=1

Pk(t) − γ

for every t and 0 < x < ε. In particular, if H is continuously differentiable with respect to x, then (3) can be written as:
δ(t) +

∂H
∂x (t, 0) <

N
k=1 Pk(t) for all t.

Moreover, we shall prove that the condition

N
k=1

Pk(t) > δ(t) +
H(t, x)

x
for some t, x > 0 (4)

is necessary for the existence of positive T -periodic solutions. But as in [1], in fact we prove a little more: namely, that if (4)
does not hold, then the equilibrium point x̂ = 0 is a global attractor for the solutions with positive initial data. Indeed, let

τ ∗
= max

1≤k≤m, 0≤t≤T
τk(t) − t

and consider the initial condition for problem (2):

x(t) = ϕ(t) t ∈ [−τ ∗, 0] (5)

for some continuous function ϕ. Then we have:

Theorem 1.3. If
N

k=1 Pk(t) ≤ δ(t) +
H(t,x)

x for all t and all x > 0 then all solutions of the initial value problem (2)–(5) with
ϕ > 0 are globally defined and tend to 0 as t → +∞.

The paper is organized as follows. In Section 2 we shall prove Theorem 1.1. In Section 3 we give a proof of Theorem 1.3.
Finally, in Section 4 we make some final comments and introduce an open problem.

2. Proof of Theorem 1.1

Let us firstly introduce some notation. The set of continuous and T -periodic real functions shall be denoted CT . For x ∈ CT ,
its maximum and minimum values and its average 1

T

 T
0 x(t) dt shall be denoted respectively by x∗, x∗ and x. For ϕ ∈ CT

such that ϕ = 0, let Kϕ be the unique T -periodic solution with zero average of the problem x′(t) = ϕ(t). For convenience,
let us also define the operator φ : CT → CT by

φ(x)(t) := −δ(t)x(t) +

N
k=1

Pk(t)x(t − τk(t))e−x(t−τk(t)) − H(t, x(t)).

We shall apply the standard Leray–Schauder degree techniques (see e. g. [2]). For λ ∈ [0, 1], define the compact operator
Fλ : CT → CT given by

Fλ(x) = x − x − φ(x) − λK(φ(x) − φ(x)).

It is easy to verify that if λ > 0 then x ∈ CT is a zero of Fλ if and only if x′
= λφ(x). Thus, we look for a positive zero of F1.

Let Ω := {x ∈ CT : m < x(t) < M} for some constants M > m > 0 to be established. By the standard continuation
method, it suffices to prove that Fλ does not vanish on ∂Ω for λ ∈ [0, 1] and that deg(F0, Ω, 0) ≠ 0. Furthermore, observe
that F0(x)−x ∈ R for every x ∈ CT ; thus, its degree overΩ is different from zero if and only if F0(m) and F0(M) have opposite
signs, i.e. F0(m)F0(M) < 0.

Indeed, if x ∈ R+ then

F0(x) = δx −

N
k=1

Pkxe−x
+

1
T

 T

0
H(t, x) dt.
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Thus, F0(x) > x(δ −
N

k=1 Pke
−x) and hence F0(M) > 0 for M ≥ ln

N
k=1 Pk
δ

. On the other hand, if 0 < x < ε with ε as in
Remark 1.2, then

F0(x) =
x
T

 T

0


δ(t) +

H(t, x)
x

−

N
k=1

Pk(t)e−x


dt

≤
x
T

 T

0


N

k=1

Pk(t)(1 − e−x) − γ


dt

and we deduce that F0(x) < 0 if x is small enough.
It remains to prove that ifm and M are respectively small and large enough then Fλ(x) ≠ 0 for x ∈ ∂Ω and λ ∈ (0, 1].
Let λ ∈ (0, 1] and assume for some positive x that Fλ(x) = 0, that is, x′

= λφ(x). If ξ is an absolute maximizer of x, then
N

k=1

Pk(ξ)x(ξ − τk(ξ))e−x(ξ−τk(ξ)) > δ(ξ)x(ξ),

and from the fact that the function f (A) := Ae−A
≤ f (1) =

1
e , we deduce:

x∗
≤


N

k=1
Pk

eδ


∗

.

On the other hand, if η is an absolute minimizer of x then
N

k=1

Pk(η)x(η − τk(η))e−x(η−τk(η))
=


δ(η) +

H(η, x∗)

x∗


x∗.

As before, if x∗ < ε then we know from the hypothesis that δ(η) +
H(η,x∗)

x∗
< σ

N
k=1 Pk(η) for some constant σ < 1

independent of η.
Suppose that x∗ ≪ 1, then x(η − τk(η))e−x(η−τk(η))

≥ x∗e−x∗ and hence

ex∗ ≥

N
k=1

Pk(η)

δ(η) +
H(η,x∗)

x∗

≥
1
σ

.

Thus, x∗ > − ln σ > 0 and the proof follows.

3. Necessary conditions

In this section, we shall prove that condition (4) is necessary for the existence of positive T -periodic solutions. This is
actually seen directly as in the proof of Theorem 1.1: if x is a positive T -periodic solution and ξ is a global maximizer then

x∗


δ(ξ) +

H(ξ , x∗)

x∗


=

N
k=1

Pk(ξ)x(ξ − τk(ξ))e−x(ξ−τk(ξ)).

If x∗
≤ 1, then the right hand-side term is less or equal than

N
k=1 Pk(ξ)x∗e−x∗ and the proof follows; otherwise we obtain

that

δ(ξ) +
H(ξ , x∗)

x∗
≤

N
k=1

Pk(ξ)

ex∗
<

N
k=1

Pk(ξ)

and so completes the proof. But, as mentioned, we shall prove furthermore that x̂ = 0 is asymptotically stable over the set
of positive solutions.

Proof of Theorem 1.3. We shall proceed in several steps.
1. Assume that x is defined up to t0 and x(t) > 0 for all t < t0. Then x(t0) > 0. Indeed, if x(t0) = 0 then

0 ≥ x′(t0) =

N
k=1

Pk(t0)x(t0 − τk(t0))e−x(t0−τk(t0)) > 0,

a contradiction.
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2. If x′(t0) ≥ 0, then x(t0) ≤
1
e . Proof : as x

′(t0) ≥ 0 and x is positive,

δ(t0) +
H(t0, x(t0))

x(t0)
≤

N
k=1

Pk(t0)

ex(t0)
and the proof follows from the assumptions.

In particular, we deduce from 1 and 2 that x is defined and strictly positive on [0, +∞).
3. If x is strictly decreasing on [0, +∞), then x(t) → 0 as t → +∞. Proof : suppose that x(t) → α > 0, then for arbitrary

β > 0 there exists t0 such that
N

k=1 Pk(t)x(t − τk(t))e−x(t−τk(t)) ≤
N

k=1 Pk(t)αe
−α

+ β for t ≥ t0. From this inequality
and the hypotheses we obtain:

x′(t) ≤

N
k=1

Pk(t)αe−α
+ β − δ(t)x(t) − H(t, x(t))

≤ δ(t)(α − x(t)) + H(t, α) − H(t, x(t)) + β − (δ(t)α + H(t, α))(1 − e−α).

Thus, if we fix β < (δα +H(·, α))∗(1− e−α) it follows that x′(t) ≤ −κ for some κ > 0 and t sufficiently large, which
contradicts the fact that x is always positive.

As a conclusion from the first three steps, we deduce the existence of t1 ≥ 0 such that 0 < x(t) < 1
e for t ≥ t1 − τ ∗.

Next, define x1 =
1
e and, as in step 2, we deduce that if x′(t) ≥ 0 for some t ≥ t1 then x(t) ≤ f (x1) := x2, where as before

f (x) = xe−x. Repeating the procedurewe obtain a sequence t1 ≤ t2 ≤ · · · such that 0 < x(t) < xn := f (xn−1) for t ≥ tn−τ ∗.
As the sequence {xn} is strictly decreasing and positive, it must converge to a fixed point of f and so completes the proof. �

4. Concluding remarks and open problem

In the very recent paper [3], the authors solved a particular case of an open problemposed in [4]: study the originalmodel
(i.e. withm = 1) with linear harvesting term depending on the delayed estimate of the population. An important (implicitly
stated) assumption in [3] was the fact that the delay in the harvesting term was equal to the one in the original equation.
Following the ideas in Theorem 1.1, the existence result in [3] can be improved and extended for the generalized model (2)
if the harvesting term is replaced by a nonlinear term with a delay τ = τk̂ for some k̂. More precisely:

Theorem 4.1. Consider Eq. (2)with the harvesting functionH(t, x(t)) replaced byH(t, x(t−τk̂(t))) for some k̂. Assume that (3) is
satisfied and that

H(t, x)
x

≤ Pk̂(t)e
−x for all t and 0 < x <


N

k=1
Pk

eδ


∗

. (6)

Then the problem has at least one positive T-periodic solution.

The proof follows the outline of Section 2, so the details are left to the reader. Simply observe that if Fλ(x) = 0 for
λ ∈ (0, 1] then a bound for x∗ is obtained exactly in the sameway, and the lower bound is now obtained as follows: suppose
x∗ ≪ 1, then

δx∗ ≥


k≠k̂

Pk(η)x∗e−x∗ + xk̂


Pk̂(η)e−xk̂ −

H(η, xk̂)
xk̂


where xk̂ := x(η − τk̂(η)). As xk̂ ≥ x∗, the desired bound is obtained using (3) and (6).
Open question. Find sufficient conditions for the existence of positive T -periodic solutions without making the assumption
τ = τk̂.
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