

Contents lists available at SciVerse ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Existence of positive T-periodic solutions of a generalized Nicholson's blowflies model with a nonlinear harvesting term*

Pablo Amster a,b,*, Alberto Déboli a

ARTICLE INFO

Article history: Received 14 October 2011 Received in revised form 16 February 2012 Accepted 16 February 2012

Keywords: Nicholson's blowflies model Nonlinear harvesting term Topological degree methods

ABSTRACT

We give sufficient and necessary conditions for the existence of at least one positive T-periodic solution for a generalized Nicholson's blowflies model with a nonlinear harvesting term. Our results extend those of the previous work Li and Du (2008) [1]. © 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In [1], the authors considered the generalized Nicholson's blowflies model

$$x'(t) = -\delta(t)x(t) + \sum_{k=1}^{N} P_k(t)x(t - \tau_k(t))e^{-x(t - \tau_k(t))}$$
(1)

where for $k=1,\ldots,N$ the functions δ_k,P_k and τ_k are positive, continuous and T-periodic. The existence of at least one positive T-periodic solution was proven under the assumption

$$\delta(t) < \sum_{k=1}^{N} P_k(t)$$
 for all t .

Also, it was proven that the previous inequality is necessary for some t; furthermore, it was seen that if $\delta(t) \ge \sum_{k=1}^{N} P_k(t)$ for all t, then all positive solutions of (1) tend to 0 as $t \to +\infty$.

In this work we generalize these results by including into the model a nonlinear harvesting term H(t,x) with $H: \mathbb{R} \times [0,+\infty) \to [0,+\infty)$ continuous and T-periodic in t such that H(t,0)=0. Namely, we shall consider the problem

$$x'(t) = -\delta(t)x(t) + \sum_{k=1}^{N} P_k(t)x(t - \tau_k(t))e^{-x(t - \tau_k(t))} - H(t, x(t)).$$
(2)

E-mail addresses: pamster@dm.uba.ar (P. Amster), adeboli@dm.uba.ar (A. Déboli).

^a Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina

^b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Supported by projects UBACyT 20020090100067 and PIP 11220090100637 CONICET.

^{*} Corresponding author at: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina.

Our existence result for problem (2) reads as follows:

Theorem 1.1. Assume that the upper limit $H_{\text{sup}}(t) := \limsup_{x \to 0^+} \frac{H(t,x)}{x}$ is uniform in t and satisfies

$$\delta(t) + H_{sup}(t) < \sum_{k=1}^{N} P_k(t) \tag{3}$$

for all t. Then problem (2) admits at least one T-periodic positive solution.

Remark 1.2. Condition (3) implies the existence of constants γ , $\varepsilon > 0$ such that

$$\delta(t) + \frac{H(t,x)}{x} < \sum_{k=1}^{N} P_k(t) - \gamma$$

for every t and $0 < x < \varepsilon$. In particular, if H is continuously differentiable with respect to x, then (3) can be written as: $\delta(t) + \frac{\partial H}{\partial x}(t,0) < \sum_{k=1}^N P_k(t)$ for all t.

Moreover, we shall prove that the condition

$$\sum_{k=1}^{N} P_k(t) > \delta(t) + \frac{H(t,x)}{x} \quad \text{for some } t, x > 0$$
 (4)

is necessary for the existence of positive T-periodic solutions. But as in [1], in fact we prove a little more: namely, that if (4) does not hold, then the equilibrium point $\hat{x} = 0$ is a global attractor for the solutions with positive initial data. Indeed, let

$$\tau^* = \max_{1 \le k \le m, \ 0 \le t \le T} \tau_k(t) - t$$

and consider the initial condition for problem (2):

$$x(t) = \varphi(t) \quad t \in [-\tau^*, 0] \tag{5}$$

for some continuous function φ . Then we have:

Theorem 1.3. If $\sum_{k=1}^{N} P_k(t) \le \delta(t) + \frac{H(t,x)}{x}$ for all t and all x > 0 then all solutions of the initial value problem (2)–(5) with $\varphi > 0$ are globally defined and tend to 0 as $t \to +\infty$.

The paper is organized as follows. In Section 2 we shall prove Theorem 1.1. In Section 3 we give a proof of Theorem 1.3. Finally, in Section 4 we make some final comments and introduce an open problem.

2. Proof of Theorem 1.1

Let us firstly introduce some notation. The set of continuous and T-periodic real functions shall be denoted C_T . For $x \in C_T$, its maximum and minimum values and its average $\frac{1}{T} \int_0^T x(t) \ dt$ shall be denoted respectively by x^* , x_* and \bar{x} . For $\varphi \in C_T$ such that $\bar{\varphi} = 0$, let $\mathcal{K}\varphi$ be the unique T-periodic solution with zero average of the problem $x'(t) = \varphi(t)$. For convenience, let us also define the operator $\varphi : C_T \to C_T$ by

$$\phi(x)(t) := -\delta(t)x(t) + \sum_{k=1}^{N} P_k(t)x(t - \tau_k(t))e^{-x(t - \tau_k(t))} - H(t, x(t)).$$

We shall apply the standard Leray–Schauder degree techniques (see e. g. [2]). For $\lambda \in [0, 1]$, define the compact operator $F_{\lambda}: C_T \to C_T$ given by

$$F_{\lambda}(x) = x - \overline{x} - \overline{\phi(x)} - \lambda \mathcal{K}(\phi(x) - \overline{\phi(x)}).$$

It is easy to verify that if $\lambda>0$ then $x\in C_T$ is a zero of F_λ if and only if $x'=\lambda\phi(x)$. Thus, we look for a positive zero of F_1 . Let $\Omega:=\{x\in C_T: m< x(t)< M\}$ for some constants M>m>0 to be established. By the standard continuation method, it suffices to prove that F_λ does not vanish on $\partial\Omega$ for $\lambda\in[0,1]$ and that $\deg(F_0,\Omega,0)\neq 0$. Furthermore, observe that $F_0(x)-x\in\mathbb{R}$ for every $x\in C_T$; thus, its degree over Ω is different from zero if and only if $F_0(m)$ and $F_0(M)$ have opposite signs, i.e. $F_0(m)F_0(M)<0$.

Indeed, if $x \in \mathbb{R}^+$ then

$$F_0(x) = \overline{\delta}x - \sum_{k=1}^N \overline{P_k} x e^{-x} + \frac{1}{T} \int_0^T H(t, x) dt.$$

Thus, $F_0(x) > x(\overline{\delta} - \sum_{k=1}^N \overline{P_k} e^{-x})$ and hence $F_0(M) > 0$ for $M \ge \ln \frac{\sum_{k=1}^N \overline{P_k}}{\overline{\delta}}$. On the other hand, if $0 < x < \varepsilon$ with ε as in Remark 1.2, then

$$F_0(x) = \frac{x}{T} \int_0^T \left(\delta(t) + \frac{H(t, x)}{x} - \sum_{k=1}^N P_k(t) e^{-x} \right) dt$$

$$\leq \frac{x}{T} \int_0^T \left(\sum_{k=1}^N P_k(t) (1 - e^{-x}) - \gamma \right) dt$$

and we deduce that $F_0(x) < 0$ if x is small enough.

It remains to prove that if m and M are respectively small and large enough then $F_{\lambda}(x) \neq 0$ for $x \in \partial \Omega$ and $\lambda \in (0, 1]$. Let $\lambda \in (0, 1]$ and assume for some positive x that $F_{\lambda}(x) = 0$, that is, $x' = \lambda \phi(x)$. If ξ is an absolute maximizer of x, then

$$\sum_{k=1}^{N} P_k(\xi) x(\xi - \tau_k(\xi)) e^{-x(\xi - \tau_k(\xi))} > \delta(\xi) x(\xi),$$

and from the fact that the function $f(A) := Ae^{-A} \le f(1) = \frac{1}{e}$, we deduce:

$$x^* \le \left(\frac{\sum\limits_{k=1}^N P_k}{e\delta}\right)^*.$$

On the other hand, if η is an absolute minimizer of x then

$$\sum_{k=1}^{N} P_k(\eta) x(\eta - \tau_k(\eta)) e^{-x(\eta - \tau_k(\eta))} = \left[\delta(\eta) + \frac{H(\eta, x_*)}{x_*} \right] x_*.$$

As before, if $x_* < \varepsilon$ then we know from the hypothesis that $\delta(\eta) + \frac{H(\eta, x_*)}{x_*} < \sigma \sum_{k=1}^N P_k(\eta)$ for some constant $\sigma < 1$ independent of η .

Suppose that $x_* \ll 1$, then $x(\eta - \tau_k(\eta))e^{-x(\eta - \tau_k(\eta))} \ge x_*e^{-x_*}$ and hence

$$e^{x_*} \ge \frac{\sum\limits_{k=1}^N P_k(\eta)}{\delta(\eta) + \frac{H(\eta, x_*)}{x_*}} \ge \frac{1}{\sigma}.$$

Thus, $x_* > -\ln \sigma > 0$ and the proof follows.

3. Necessary conditions

In this section, we shall prove that condition (4) is necessary for the existence of positive T-periodic solutions. This is actually seen directly as in the proof of Theorem 1.1: if x is a positive T-periodic solution and ξ is a global maximizer then

$$x^* \left(\delta(\xi) + \frac{H(\xi, x^*)}{x^*} \right) = \sum_{k=1}^N P_k(\xi) x(\xi - \tau_k(\xi)) e^{-x(\xi - \tau_k(\xi))}.$$

If $x^* \le 1$, then the right hand-side term is less or equal than $\sum_{k=1}^{N} P_k(\xi) x^* e^{-x^*}$ and the proof follows; otherwise we obtain that

$$\delta(\xi) + \frac{H(\xi, x^*)}{x^*} \le \frac{\sum\limits_{k=1}^{N} P_k(\xi)}{ex^*} < \sum\limits_{k=1}^{N} P_k(\xi)$$

and so completes the proof. But, as mentioned, we shall prove furthermore that $\hat{x} = 0$ is asymptotically stable over the set of positive solutions.

Proof of Theorem 1.3. We shall proceed in several steps.

1. Assume that x is defined up to t_0 and x(t) > 0 for all $t < t_0$. Then $x(t_0) > 0$. Indeed, if $x(t_0) = 0$ then

$$0 \ge x'(t_0) = \sum_{k=1}^{N} P_k(t_0) x(t_0 - \tau_k(t_0)) e^{-x(t_0 - \tau_k(t_0))} > 0,$$

a contradiction.

2. If $x'(t_0) \ge 0$, then $x(t_0) \le \frac{1}{a}$. Proof: as $x'(t_0) \ge 0$ and x is positive,

$$\delta(t_0) + \frac{H(t_0, x(t_0))}{x(t_0)} \le \frac{\sum_{k=1}^{N} P_k(t_0)}{ex(t_0)}$$

and the proof follows from the assumptions.

In particular, we deduce from 1 and 2 that x is defined and strictly positive on $[0, +\infty)$.

3. If x is strictly decreasing on $[0, +\infty)$, then $x(t) \to 0$ as $t \to +\infty$. Proof: suppose that $x(t) \to \alpha > 0$, then for arbitrary $\beta > 0$ there exists t_0 such that $\sum_{k=1}^{N} P_k(t)x(t-\tau_k(t))e^{-x(t-\tau_k(t))} \le \sum_{k=1}^{N} P_k(t)\alpha e^{-\alpha} + \beta$ for $t \ge t_0$. From this inequality and the hypotheses we obtain:

$$x'(t) \leq \sum_{k=1}^{N} P_k(t)\alpha e^{-\alpha} + \beta - \delta(t)x(t) - H(t, x(t))$$

$$\leq \delta(t)(\alpha - x(t)) + H(t, \alpha) - H(t, x(t)) + \beta - (\delta(t)\alpha + H(t, \alpha))(1 - e^{-\alpha}).$$

Thus, if we fix $\beta < (\delta \alpha + H(\cdot, \alpha))^*(1 - e^{-\alpha})$ it follows that $x'(t) \le -\kappa$ for some $\kappa > 0$ and t sufficiently large, which contradicts the fact that x is always positive.

As a conclusion from the first three steps, we deduce the existence of $t_1 \geq 0$ such that $0 < x(t) < \frac{1}{e}$ for $t \geq t_1 - \tau^*$. Next, define $x_1 = \frac{1}{e}$ and, as in step 2, we deduce that if $x'(t) \geq 0$ for some $t \geq t_1$ then $x(t) \leq f(x_1) := x_2$, where as before $f(x) = xe^{-x}$. Repeating the procedure we obtain a sequence $t_1 \leq t_2 \leq \cdots$ such that $0 < x(t) < x_n := f(x_{n-1})$ for $t \geq t_n - \tau^*$. As the sequence $\{x_n\}$ is strictly decreasing and positive, it must converge to a fixed point of f and so completes the proof. \Box

4. Concluding remarks and open problem

In the very recent paper [3], the authors solved a particular case of an open problem posed in [4]: study the original model (i.e. with m=1) with linear harvesting term depending on the delayed estimate of the population. An important (implicitly stated) assumption in [3] was the fact that the delay in the harvesting term was equal to the one in the original equation. Following the ideas in Theorem 1.1, the existence result in [3] can be improved and extended for the generalized model (2) if the harvesting term is replaced by a nonlinear term with a delay $\tau = \tau_{\hat{k}}$ for some \hat{k} . More precisely:

Theorem 4.1. Consider Eq. (2) with the harvesting function H(t, x(t)) replaced by $H(t, x(t-\tau_{\hat{k}}(t)))$ for some \hat{k} . Assume that (3) is satisfied and that

$$\frac{H(t,x)}{x} \le P_{\hat{k}}(t)e^{-x} \quad \text{for all } t \text{ and } 0 < x < \left(\frac{\sum\limits_{k=1}^{N} P_{k}}{e\delta}\right)^{*}. \tag{6}$$

Then the problem has at least one positive T-periodic solution.

The proof follows the outline of Section 2, so the details are left to the reader. Simply observe that if $F_{\lambda}(x) = 0$ for $\lambda \in (0, 1]$ then a bound for x^* is obtained exactly in the same way, and the lower bound is now obtained as follows: suppose $x_* \ll 1$, then

$$\delta x_* \geq \sum_{k \neq \hat{k}} P_k(\eta) x_* e^{-x_*} + x_{\hat{k}} \left(P_{\hat{k}}(\eta) e^{-x_{\hat{k}}} - \frac{H(\eta, x_{\hat{k}})}{x_{\hat{k}}} \right)$$

where $x_{\hat{k}} := x(\eta - \tau_{\hat{k}}(\eta))$. As $x_{\hat{k}} \ge x_*$, the desired bound is obtained using (3) and (6).

Open question. Find sufficient conditions for the existence of positive T-periodic solutions without making the assumption $\tau = \tau_{\hat{k}}$.

Acknowledgment

The authors thank the anonymous referees for a careful reading of the original version of this manuscript and their valuable comments.

References

- [1] J. Li, C. Du, Existence of positive periodic solutions for a generalized Nicholson's blowflies model, J. Comput. Appl. Math. 221 (2008) 226–233.
- [2] J. Mawhin, Topological degree methods in nonlinear boundary value problems, in: CBMS Regional Conference Series in Mathematics, vol. 40, American Mathematical Society, Providence, RI, 1979.

- [3] F. Long, M. Yang, Positive periodic solutions of delayed Nicholson's blowflies model with a linear harvesting term, Electron. J. Qual. Theory of Differ. Equ. 2011 (41) (2011) 1-11.
 [4] L. Berezansky, E. Braverman, L. Idels, Nicholson's blowflies differential equations revisited: main results and open problems, Appl. Math. Model. 34 (6) (2010) 1405-1417.