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Abstract We consider a Nicholson type system for two species with mutualism and non-
linear harvesting terms. We give sufficient conditions for the existence of a positive periodic
solution. We also provide a necessary condition; more precisely, we prove that if the harvest-
ing rate is large enough, then 0 is a global attractor for the positive solutions and, in particular,
positive periodic solutions cannot exist.
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Introduction

The following system of delay differential equations was introduced in [5]:
⎧
⎨

⎩

x ′
1(t) = −δ1x1(t) + β1x2(t) + p1x1(t − τ)e−γ1x1(t−τ)

x ′
2(t) = −δ2x2(t) + β2x1(t) + p2x2(t − τ)e−γ2x2(t−τ).

(1.1)

Here, δi , βi , pi , γi and τ are positive constants for i = 1, 2, with initial data xi (s) =
φi (s), s ∈ [−τ, 0], φi (0) > 0 where φi ∈ C([−τ, 0], [0,+∞)) for i = 1, 2. Systems
of this kind were used, for example, in models of marine protected areas and to describe the
dynamics of the B-cells of the chronic lymphocytic leukemia.
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In [6], Zhou considered a non-autonomous version of system (1.1) with T -periodic
δi , βi , pi , γi ∈ C(R,R+). Instead of a constant τ , each equation included a time-dependent
T periodic delay τi ∈ C(R,R+) and a linear harvesting term−hi (t)xi (t−τi (t)) for some T -
periodic hi ∈ C(R, [0,+∞)). Existence of a positive (i.e. with strictly positive coordinates)
T -periodic solution was proven, assuming:

(Z1) � := δ1∗δ2∗ − β∗
1β∗

2 > 0,

(Z2)
(

pi
δi+hi

)

∗ > 1,

(Z3) δi + hi > β i ,
(Z4) pi∗e−γ ∗

i Ai /e� ≥ h∗
i ,

where for a T -periodic function x ∈ C(R,R+) we denote

x∗ := max
t∈R {x(t)}, x∗ := min

t∈R {x(t)}, x := 1

T

T∫

0

x(t) dt

and the quantities A1, A2 are defined by

A1 := δ2∗
(
p1
γ1

)∗
+ β∗

1

(
p2
γ2

)∗
, A2 := β∗

2

(
p1
γ1

)∗
+ δ1∗

(
p2
γ2

)∗
.

In this work, we consider the case of a Nicholson type system for two species with
mutualism and non-delayed nonlinear harvesting terms. For simplicity, we shall consider
only the case γi ≡ 1, although the results in the present paper can be easily extended for
arbitrary positive T -periodic functions γi . Setting f (x) := xe−x , the system under study
reads:

⎧
⎨

⎩

x ′
1(t) = −δ1(t)x1(t) + β1(t)x2(t) + p1(t) f (x1(t − τ1(t))) − H1(t, x1(t))

x ′
2(t) = −δ2(t)x2(t) + β2(t)x1(t) + p2(t) f (x2(t − τ2(t))) − H2(t, x2(t)).

(1.2)

As before, δi , βi , pi , τi ∈ C(R,R+) are T -periodic and Hi ∈ C(R×R
+,R+) are T -periodic

in t for i = 1, 2.Under appropriate conditionswe shall prove, using topological degree theory,
the existence of at least one positive T -periodic solution. More precisely:

Theorem 1.1 Assume that the limits

H0
i,sup(t) := lim sup

x→0+

Hi (t, x)

x

and

H∞
i,in f (t) := lim inf

x→+∞
Hi (t, x)

x

are uniform in t for i = 1, 2 and

δi (t) + H0
i,sup(t) < βi (t) + pi (t) (1.3a)

δi (t) + H∞
i,in f (t) > βi (t) (1.3b)

for all t ∈ R, i = 1, 2. Then the system (1.2) admits at least one positive T -periodic solution.
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Moreover, we shall prove that the first condition of the previous theorem is, in some
sense, expectable. With this aim, observe that (1.3a) implies that if x > 0 is small enough
then δi (t) + Hi (t,x)

x < βi (t) + pi (t) for all t . As we shall see, a necessary condition for the
existence of positive T -periodic solutions is that the latter inequality holds for some x > 0
and some t . In fact, we shall prove a bit more: if the inequality is reversed for all t and all
x > 0, then the trivial equilibrium is a global attractor for the positive solutions.

Theorem 1.2 Let x := (x1, x2) be a positive solution of (1.2) defined on [t0,+∞) for some
t0. Furthermore, assume that

δi (t) + Hi (t, x)

x
≥ βi (t) + pi (t) for all t, all x > 0 and i = 1, 2. (1.4)

Then x(t) → (0, 0) as t → +∞. In particular, the problem does not admit positive T -
periodic solutions.

As a corollary, we deduce that the solution of the initial value problem with positive data
is positive, globally defined and tends to 0 as t → +∞. To this end, assume that Hi is locally
Lipschitz in x and can be extended continuously to R × [0,+∞) as Hi (·, 0) ≡ 0.

Corollary 1.3 Assume that Hi is locally Lipschitz in its second variable and that Hi (·, 0) ≡
0. If φi : [−τ ∗

i , 0] → R
+ is continuous, then (1.2) with initial condition xi = φi on [−τ ∗

i , 0]
has a unique solution x = (x1, x2), which is globally defined and positive. If furthermore
(1.4) holds, then x(t) → (0, 0) as t → +∞.

Existence of a Positive T -Periodic Solution

An Abstract Continuation Theorem

Let CT ⊂ C(R,R2) be the Banach space of T -periodic continuous vector functions and
consider the interior of the positive cone of CT , namely

X := {x := (x1, x2) ∈ CT : xi (t) > 0 for all t ∈ R, i = 1, 2}.
Define the operators

L : X ∩ C1(R,R2) → CT , � := (φ1, φ2) : X → CT

in the following way:

L(x) := x′,
φ1(x1, x2)(t) := −δ1(t)x1(t) + β1(t)x2(t) + p1(t) f (x1τ1

(t)) − H1(t, x1(t)),

and

φ2(x1, x2)(t) := −δ2(t)x2(t) + β2(t)x1(t) + p2(t) f (x2τ2
(t)) − H2(t, x2(t)).

For convenience, we shall employ the notation

x(t) := (x1(t), x2(t)), xiτi (t) := xi (t − τi (t)).
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Identifying the subspace of constant functions of X with R
2, we may set the mapping g :

R
+ × R

+ → R
2 given by

g(x) = −�(x) = − 1

T

T∫

0

�(x)(t) dt.

The following continuation theorem can be readily adapted from the results in [2]:

Theorem 2.1 (Continuation theorem) Let 	 ⊂ X, with 	 open and bounded such that the
following conditions are satisfied:

(H1) The equation L(x) = λ�(x) has no solutions on ∂	 ∩ C1(R,R2) for λ ∈ (0, 1).
(H2) g does not vanish on ∂	 ∩ R

2 and dB(g,	 ∩ R
2, 0) �= 0, where dB denotes the

Brouwer degree.

Then problem (1.2) has at least one solution x ∈ 	.

A Priori Bounds

The following lemma shall be the key of the proof of our existence theorem. It is clear that
if x ∈ X then there exist positive constants ε < R such that ε < xi (t) < R for all t and
i = 1, 2. As we shall see, these constants may be chosen independently of x and λ for the
solutions of the problem x′ = λ�(x) with 0 < λ < 1, namely:

Lemma 2.2 Assume that the hypotheses of Theorem 1.1 are satisfied. Then there exist
ε0, R0 > 0 such that if x ∈ X satisfies x′ = λ�(x) with xi > 0 for i = 1, 2 and λ ∈ (0, 1)
then

ε0 < xi (t) < R0 for all t ∈ R, i = 1, 2.

Proof Let x = (x1, x2) ∈ X satisfy x′ = λ�(x) with xi > 0 for i = 1, 2 and λ ∈ (0, 1), and
set R as the maximum value between x∗

1 and x∗
2 . Without loss of generality, we may assume

for example that x1(t∗) = R for some t∗ ∈ [0, T ].
From the first equation of the system, it follows that φ1(x1, x2)(t∗) = 0, so

δ1(t
∗)x1(t∗) + H1(t

∗, x1(t∗)) = β1(t
∗)x2(t∗) + p1(t

∗) f (x1τ1(t∗)).

Since x2(t∗) ≤ R and f (x1τ1(t
∗)) ≤ 1

e , we deduce:

R
(
δ1(t∗) + H1(t∗,R)

R

)
= β1(t∗)x2(t∗) + p1(t∗) f (x1τ1(t∗))

≤ β1(t∗)R + p∗
1
e .

Hence
R

(
δ1(t∗) + H1(t∗,R)

R − β1(t∗)
)

≤ p∗
1
e ≤ p∗

e ,

where p∗ := max{p∗
1, p

∗
2}. From (1.3b), there exist constants γ, R̃ > 0 such that

δi (t) + Hi (t, x)

x
> βi (t) + γ

for all x ≥ R̃ and all t . Thus,

xi (t) < max

{

R̃,
p∗

eγ

}

:= R0 for all t ∈ R and i = 1, 2.
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In an analogous way, let ε := min{x1∗, x2∗} and suppose for example that x1(t∗) = ε for
some t∗, then

δ1(t∗)x1(t∗) + H1(t∗, x1(t∗)) = β1(t∗)x2(t∗) + p1(t∗) f (x1τ1(t∗)).

We may assume that R0 ≥ 1 and set R1 as the unique value in [0, 1] such that f (R1) =
f (R0). Moreover, we may assume that ε ≤ R1 since otherwise there is nothing to prove.
Thus, ε ≤ x1(t∗ − τ1(t∗)) ≤ R0 and

f (x1τ1(t∗)) ≥ f (ε),

since f is increasing in [0, 1] and decreasing in [1,+∞). Hence

ε
(
δ1(t∗) + H1(t∗,ε)

ε

)
= β1(t∗)x2(t∗) + p1(t∗) f (x1τ1(t∗))
≥ β1(t∗)ε + p1(t∗) f (ε)
= ε

(
β1(t∗) + p1(t∗)e−ε

)

and
δ1(t∗) + H1(t∗,ε)

ε
≥ β1(t∗) + p1(t∗)e−ε ≥ β1(t∗) + p1(t∗) − p∗ (

1 − e−ε
)
.

Using (1.3a), we deduce the existence of η, ε̃ > 0 such that

δi (t) + Hi (t, x)

x
< βi (t) + pi (t) − η

for all x ∈ (0, ε̃] and all t . Without loss of generality we may assume that η < p∗; thus,

xi (t) > min{ε̃,− ln(1 − η/p∗)} := ε0 for all t ∈ R and i = 1, 2.

�

Proof of Theorem 1.1 Based on Theorem 2.1, our aim consists in finding an open and
bounded set 	 with 	 ⊂ X such that (H1) and (H2) are verified.

From Lemma 2.2, if we set

	 := {x ∈ X : ε < xi < R, i = 1, 2}
then (H1) holds for arbitrary positive constants ε ≤ ε0 and R ≥ R0, where ε0 and R0 are as
in Lemma 2.2.

Thus, it suffices to consider the rectangle

	 ∩ R
2 = {x ∈ R

2 : ε < xi < R, i = 1, 2} := R

and prove that g does not vanish at ∂R and deg(g,R, 0) �= 0.
In the first place, observe that

g1(x1, x2) = δ1x1 − β1x2 − p1x1e
−x1 + x1

T

T∫

0

H1(t, x1)

x1
dt

= x1
T

T∫

0

(

δ1(t) − p1(t)e
−x1 + H1(t, x1)

x1

)

dt − β1x2.

123



Differ Equ Dyn Syst

In particular, if x1 = ε ≤ x2 ≤ R then

g1(ε, x2) = ε

T

T∫

0

(

δ1(t) − p1(t)e
−ε + H1(t, ε)

ε

)

dt − β1x2

≤ ε

T

T∫

0

(

δ1(t) − p1(t)e
−ε + H1(t, ε)

ε

)

dt − β1ε

= ε

T

T∫

0

(

δ1(t) − p1(t)e
−ε − β1(t) + H1(t, ε)

ε

)

dt = g1(ε, ε).

By (1.3a), we deduce, for all t ∈ R,

lim sup
ε→0+

H1(t, ε)

ε
< −δ1(t) + p1(t) + β1(t) = lim

ε→0+(−δ1(t) + p1(t)e
−ε + β1(t))

and hence

lim sup
ε→0+

(
H1(t, ε)

ε
+ δ1(t) − p1(t)e

−ε − β1(t)

)

< 0

uniformly in t . Thus, if ε ∈ (0, ε0) is small enough, then

g1(ε, x2) ≤ g1(ε, ε) < 0, for all ε ≤ x2 ≤ R.

Now suppose ε ≤ x2 ≤ R = x1, then

g1(R, x2) = R

T

T∫

0

(

δ1(t) − p1(t)e
−R + H1(t, R)

R

)

dt − β1x2

≥ R

T

T∫

0

(

δ1(t) − p1(t)e
−R + H1(t, R)

R

)

dt − β1R

= R

T

T∫

0

(

δ1(t) − p1(t)e
−R − β1(t) + H1(t, R)

R

)

dt = g1(R, R).

Using (1.3b), it is seen that

lim inf
R→+∞

H1(t, R)

R
> −δ1(t) + β1(t) = lim

R→+∞(−δ1(t) + p1(t)e
−R + β1(t))

and thus

lim inf
R→+∞

(
H1(t, R)

R
+ δ1(t) − p1(t)e

−R − β1(t)

)

> 0

uniformly in t .
We conclude that if R > R0 is large enough then

g1(R, x2) ≥ g1(R, R) > 0, for all ε ≤ x2 ≤ R.

In the same way, it is verified that if R ≥ R0 is large enough and ε ∈ (0, ε0) is small
enough then

g2(x1, ε) < 0 < g2(x1, R), for all ε ≤ x1 ≤ R.
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Hence dB(g,R, 0) is well defined and different from zero, so (H2) is satisfied and the proof
is complete. �
Remark 2.1 It is worth noticing that the asymptotic condition (1.3b) is required due to the
mutualism. In the scalar case (see e.g. [1]), no condition at +∞ is assumed, since large
populations are self-regulated by the action of the nonlinearity f .

Remark 2.2 Interestingly, the conditions in Theorem 1.1 do not seem to suffice for the case of
delayed harvesting terms, namely−Hi (t, xi (t − τi (t))). This fact partially explains the more
restrictive set of conditions mentioned above, obtained in [6] for the linear case Hi (t, xi (t −
τi (t))) = hi (t)xi (t − τi (t)). The preceding continuation theorem can be used to extend the
latter conditions for the nonlinear case. For example, observe that (Z1) implies, for some i ,
that δi (t) > βi (t) for all t ; if for simplicity we assume this is true for both i = 1, 2, then
upper bounds are readily obtained as in Lemma 2.2 with R := p∗

e(δ−β)∗ , where (δ − β)∗ :=
min{(δ1 −β1)∗, (δ2 −β2)∗}. Thus, existence of positive T -periodic solutions can be proven,
provided that

(1) (1.3a) holds,
(2) There exists η > 0 such that the function ϕi : R × R

+ → R given by ϕi (t, x) :=
pi (t) f (x) − Hi (t, x) is nondecreasing in x for 0 < x < η. (1.3c)

(3) ϕi (t, x) > 0 for 0 < x ≤ R. (1.3d)

Indeed, if as in Lemma 2.2 we let ε := min{x1∗, x2∗} and suppose for example that
x1(t∗) = ε for some t∗, then it is deduced that either

(δ1(t∗) − β1(t∗))ε ≥ inf
η≤x≤R

p1(t∗) f (x) − H1(t∗, x)

or

(δ1(t∗) − β1(t∗))ε ≥ p1(t∗) f (ε) − H1(t∗, ε)

and the proof follows as before.
It is worthy noticing that, for the linear case, (1.3c) and (1.3d) are satisfied if pi (t)e−R >

hi (t), a condition comparable to (Z4). Moreover, in this situation (1.3a) simply reads δi (t)+
hi (t) < βi (t) + pi (t) for all t , which is obviously weaker than (Z2).

Necessary Conditions. Global Stability of the Trivial Equilibrium

In this section, we shall give a proof of Theorem 1.2 and Corollary 1.3. Specifically, we shall
prove that if (1.4) holds, then all positive solutions defined for t ≥ t0 tend to 0 as t → +∞.
As a consequence, it is seen that if Hi satisfy a Lipschitz condition for i = 1, 2, then the
solutions of the initial value problem with positive data are globally defined, positive and
tend to 0 as t → +∞.

Proof of Theorem 1.2 Let x be a positive solution defined for t ≥ t0. For convenience, let
us employ the following notation: if i = 1 or 2, then denote by j the remaining element of
the set {1, 2}. Also, we define e1 := f (1) and en+1 := f (en). Clearly the sequence {en} is
strictly decreasing and tends to 0 as n → ∞.

Due to (1.4), it is seen that

x ′
i (t) ≤ pi (t)( f (xiτi (t)) − xi (t)) + βi (t)(x j (t) − xi (t)). (3.1)
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Hence, if xi (t) ≥ e1 and x j (t) ≤ xi (t), then x ′
i (t) ≤ 0. Furthermore, if one of the first

inequalities is strict then the latter one is also strict.

Claim There exists t1 such that xi (t) ≤ e1 for all t ≥ t1.
We shall prove the claim in two steps. Firstly, we shall prove that xi (t1) ≤ e1 for some t1

and i = 1, 2. Next, it shall be seen that xi (t) ≤ e1 for all t ≥ t1. With this aim, define the
following sets:

Ri := {x ∈ R
+ × R

+ : xi ≥ max{x j , e1}}
E := {x ∈ R

+ × R
+ : xi ≤ e1 for i = 1, 2}

and

D := {x ∈ R
+ × R

+ : x1 = x2 > e1} = R1 ∩ R2\{(e1, e1)}.
Suppose that x(t) /∈ E for all t . If there exists t1 such that x(t) ∈ Ri for t ≥ t1, then xi is

nonincreasing after t1 and thus converges to some value a ≥ e1. Hence f (xiτi (t))− xi (t) →
f (a) − a < 0 and x ′

i (t) ≤ pi (t)( f (xiτi (t)) − xi (t)) ≤ c < 0 for t large enough, a
contradiction. From now on, wemay assume that x(t) does not remain in Ri and, in particular,
there exists a sequence tn → +∞ such that x(tn) ∈ D for all n.

Observe that if x(t) ∈ D then x ′
i (t) ≤ pi (t) f (xiτi (t)) − xi (t) < 0. On the other hand, if

x(t) ∈ R◦
i for all t ∈ (r, s) then xi (s) < xi (t) < xi (r) and x j (t) < xi (t) for t ∈ (r, s). This

yields the following conclusion: if x(s) ∈ D then xi (t) < xi (s) for all t > s. In particular,
xi (tn) is strictly decreasing and converges to some value a ≥ e1.

We claim there exists a constant c < 0 independent of t such that if x(t) ∈ Ri then x ′
i (t) ≤ c.

Indeed, by inequality (3.1) it suffices to show that f (xiτi (t)) − xi (t) ≤ C < 0 for some
constant C independent of t . There exist two cases:

1. If a > e1 then f (xiτi (t)) − xi (t) ≤ e1 − a < 0.
2. If a = e1, then fix s such that xi (r) < 1

2 for r > s. If t > s+τ ∗
i then f (xiτi (t))− xi (t) ≤

f
( 1
2

) − e1 < 0. Otherwise, fix n such that tn ≥ s + τ ∗
i . Then xi (t) ≥ xi (tn) > e1 and

thus f (xiτi (t)) − xi (t) ≤ e1 − xi (tn) < 0.

Next, consider the closed set C := {t ≥ t0 : x(t) ∈ D} and write

[t0,+∞)\C =
∞⋃

k=1

(ak, bk)

where the intervals (ak, bk) are nonempty and disjoint, with x(ak), x(bk) ∈ D and
x([ak, bk]) ⊂ Ri for some i . Let us compute

xi (tn) − xi (t0) =
tn∫

t0

x ′
i (s) ds =

∫

C∩[t0,tn ]
x ′
i (s) ds +

∫

[t0,tn ]\C
x ′
i (s) ds.

Recall that x ′
i (t) ≤ c over C; thus, ∫C∩[t0,tn ] x

′
i (s) ds ≤ c

∣
∣C ∩ [t0, tn]

∣
∣. On the other hand,

bk∫

ak

x ′
j (t) dt = x j (bk) − x j (ak) = xi (bk) − xi (ak) =

bk∫

ak

x ′
i (t) dt ≤ c(bk − ak)
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and we deduce that
∫

[t0,tn ]\C x ′
i (s) ds ≤ c

∣
∣[t0, tn]\C

∣
∣. Hence

xi (tn) − xi (t0) ≤ c
∣
∣C ∩ [t0, tn]

∣
∣ + c

∣
∣[t0, tn]\C

∣
∣ = c(tn − t0) → −∞,

a contradiction.
For the second step, let us prove that if x(s) ∈ E then x(t) ∈ E for all t ≥ s. From (3.1),

it is clear that x cannot abandon E through any of the segments {x : xi = e1 > x j > 0}
for i = 1, 2. Moreover, since x ′

i (t) < 0 when x(t) ∈ D, it follows that x cannot abandon E
through the point (e1, e1) either.

Next,wemayuse (3.1) again to deduce, for t ≥ t1+τ ∗
i , that if xi (t) ≥ e2 and x j (t) ≤ xi (t),

then x ′
i (t) ≤ 0; furthermore, if one of the first inequalities is strict then the latter one is also

strict. Thus, repeating the previous procedure we obtain t2 > t1 + τ ∗
i such that xi (t) ≥ e2

for all t ≥ t2. Inductively, there exists an increasing sequence {tn} such that xi (t) ≤ en for
all t ≥ tn , and the proof is complete. �
Proof of Corollary 1.3 Assume that Hi (·, 0) ≡ 0 and observe that if x1(t), x2(t) > 0 for
t < ti and xi (ti ) = 0 then

0 ≥ x ′
i (ti ) = βi (ti )x j (ti ) + pi (t) f (xiτi (ti )) − Hi (ti , 0) > 0,

a contradiction.
On the other hand,

x ′
i (t) ≤ pi (t)

e
+ βi (t)x j (t)

and by standard results (see e.g. [3,4]), we deduce that the initial value problem has a unique
solution x, which is defined for all t ≥ 0. The conclusion thus follows from Theorem 1.2. �
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