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1 INTRODUCTION.

The dynamics of the following system was studied in [2]:
x′1(t) = −δ1x1(t) + β1x2(t) + p1x1(t− τ1)e−a1x1(t−τ1)

x′2(t) = −δ2x2(t) + β2x1(t) + p2x2(t− τ2)e−a2x1(t−τ2)
(1)

with initial data xi(s) = φi(s), s ∈ [−τ, 0], φi(0) > 0 where φi ∈ C([−τ, 0], [0,+∞)) for i = 1, 2. Here,
δi, βi, pi, ai and τ are positive constants for i = 1, 2, Models of this kind were used, for example, to describe
the dynamics of the B-cells of the chronic lymphocytic leukemia.

In [3], Zhou considered a non-autonomous version of system (1) with T -periodic δi, βi, pi, τi ∈ C(R,R+),
which included in each equation a linear harvesting term Hi := hi(t)xi(t − τi(t)) for some T -periodic
hi ∈ C(R, [0,+∞)). Under appropriate conditions, existence of a positive T -periodic solution was proven.

In this work, we consider the case of a Nicholson type system for two species with mutualism terms
x′1(t) = −δ1(t)x1(t) + β1(t)x2(t) + p1(t)f(x1(t− τ1(t)))−H1(t, x1(t))

x′2(t) = −δ2(t)x2(t) + β2(t)x1(t) + p2(t)f(x2(t− τ2(t)))−H2(t, x2(t)).
(2)

Here, the functions δi, βi, pi, τi ∈ C(R,R+) are T -periodic, f(x) = xe−x and Hi ∈ C(R × R+,R+) are
T -periodic in t for i = 1, 2. Under appropriate conditions we shall prove, using topological degree theory,
the existence of at least one positive T -periodic solution.

Our main theorem reads as follows.

Theorem 1.1 Assume that the limits

Hi,sup(t) := lim sup
x→0+

Hi(t, x)

x

and

Hi,inf (t) := lim inf
x→+∞

Hi(t, x)

x

are uniform in t for i = 1, 2 and

δi(t) +Hi,sup(t) < βi(t) + pi(t) (3a)

δi(t) +Hi,inf (t) > βi(t) + pi(t) (3b)

for all t ∈ R, i = 1, 2. Then the system (2) admits at least one positive T -periodic solution.



2 EXISTENCE OF SOLUTIONS

2.0.1 An abstract continuation theorem

Consider the Banach space

X := {x := (x1, x2) ∈ C(R,R2) : xi(t+ T ) = xi(t), i = 1, 2}

equipped with the norm ||x|| = max{|xi|∞, i = 1, 2}, where

|xi|∞ := max
t∈[0,T ]

{|xi(t)|}, i = 1, 2

and the operators
L : X ∩ C1(R,R2) ⊂ X → X, Φ := (φ1, φ2) : X → X

are defined in the following way:
L(x) = x′

φ1(x1, x2)(t) := −δ1(t)x1(t) + β1(t)x2(t) + p1(t)f(x1τ1 (t))−H1(t, x1(t)))

and
φ2(x1, x2)(t) := −δ2(t)x2(t) + β2(t)x1(t) + p2(t)f(x2τ2 (t))−H2(t, x2(t))).

For convenience, we shall employ the notation

x :=
1

T

∫ T

0
x(t) dt, x := (x1, x2), xiτi(t) := xi(t− τi(t))

and set the mapping g : R2 → R2 given by g(x) = −Φ(x).

The following continuation theorem was proven in [1]:

Theorem 2.1 (Continuation theorem) Let Ω ⊂ X be open and bounded such that the following conditions
are satisfied:

(H1): The equation L(x) = λΦ(x) has no solutions on ∂Ω ∩Dom(L) for λ ∈ (0, 1).

(H2): g does not vanish on ∂Ω ∩ R2 and dB(g,Ω ∩ R2, 0) 6= 0, where dB denotes the Brouwer degree.

Then problem (2) has at least one solution x ∈ Ω ⊂ X such that xi > 0 for i = 1, 2.

2.0.2 A priori bounds

The following lemma shall be the key of the proof of our existence theorem.

Lemma 2.2 Assume that the hypotheses of Theorem 1.1 are satisfied. Then there exist ε0, R0 > 0 such
that if x ∈ X satisfies x′ = λΦ(x) with xi > 0 for i = 1, 2 and λ ∈ (0, 1) then

ε0 < xi(t) < R0 for all t ∈ R, i = 1, 2.

Proof.

Let x = (x1, x2) ∈ X satisfy x′ = λΦ(x) with xi > 0 for i = 1, 2 and λ ∈ (0, 1), and set
R := max{x∗1, x∗2} where x∗ := max

t∈R
{x(t)}. Without loss of generality, we may assume for example

that x1(t∗) = R for some t∗ ∈ [0, T ].

From the first equation of the system it is seen that φ1(x1(t∗), x2(t∗)) = 0, so

δ1(t
∗)x1(t

∗)−H1(t
∗, x1(t

∗)) = β1(t
∗)x2(t

∗) + p1(t
∗)f(x1τ1(t∗)).



Since x2(t∗) ≤ R and f(x1τ1(t∗)) ≤ 1
e , we deduce:

R
(
δ1(t

∗) + H1(t∗,R)
R

)
= β1(t

∗)x2(t
∗) + p1(t

∗)f(x1τ1(t∗)) ≤ β1(t∗)R+
p∗1
e .

Hence
R
(
δ1(t

∗) + H1(t∗,R)
R − β1(t∗)

)
≤ p∗1

e

and using (3b) we conclude that there exists a constant R0 > 0 such that

xi(t) < R0 for all t ∈ R and i = 1, 2.

In an analogous way, let ε := min{x1∗, x2∗} where x∗ := min
t∈R
{x(t)} and suppose for example that

x1(t∗) = ε for some t∗, then

δ1(t∗)x1(t∗)−H1(t∗, x1(t∗)) = β1(t∗)x2(t∗) + p1(t∗)f(x1τ1(t∗)).

We may assume thatR0 ≥ 1 and setR1 as the unique value in [0, 1] such that f(R1) = f(R0). Moreover,
we may assume that ε ≤ R1 since otherwise there is nothing to prove. Thus, ε ≤ x1(t∗− τ1(t∗)) ≤ R0 and

f(x1τ1(t∗)) ≥ f(ε),

since f is increasing in [0, 1] and decreasing in [1,+∞). Hence

ε
(
δ1(t∗) + H1(t∗,ε)

ε

)
= β1(t∗)x2(t∗) + p1(t∗)f(x1τ1(t∗)) ≥

β1(t∗)ε+ p1(t∗)f(ε) = ε (β1(t∗) + p1(t∗)e
−ε)

and

δ1(t∗) + H1(t∗,ε)
ε ≥ β1(t∗) + p1(t∗)e

−ε.

Using (3a), we deduce the existence of ε0 > 0 such that ε0 < xi(t) for all t ∈ R and i = 1, 2 �

2.0.3 Proof of the existence theorem

In this section, we shall prove the existence of Ω ⊂ X open and bounded such that (H1) and (H2) of
Theorem 2.1 are verified.

From the previous section, if we set

Ω := {x ∈ X : ε < xi < R, i = 1, 2}

then (H1) holds for arbitrary positive constants ε ≤ ε0 and R ≥ R0, where ε0 and R0 are as in lemma 2.2.
Thus, it suffices to prove that the Brouwer degree of the function g is different from zero over the set

Ω0 := {x ∈ R2 : ε < xi < R, i = 1, 2}.

In the first place, observe that

g1(x1, x2) = δ1x1 − β1x2 − p1x1e−x1 + x1
T

∫ T
0

H1(t,x1)
x1

dt =

= x1
T

∫ T
0

(
δ1(t)− p1(t)e−x1 + H(t,x1)

x1

)
dt− β1x2.

In particular, if x1 = ε ≤ x2 ≤ R then



g1(ε, x2) = δ1ε− β1x2 − p1εe−ε + ε
T

∫ T
0

H1(t,ε)
ε dt =

= ε
T

∫ T
0

(
δ1(t)− p1(t)e−ε + H(t,ε)

ε

)
dt− β1x2 ≤

ε
T

∫ T
0

(
δ1(t)− p1(t)e−ε + H(t,ε)

ε

)
dt− β1ε =

ε
T

∫ T
0

(
δ1(t)− p1(t)e−ε − β1(t) + H(t,ε)

ε

)
dt = g1(ε, ε).

Hence by (3a) we deduce, for all t ∈ R,

lim sup
ε→0+

H(t, ε)

ε
< −δ1(t) + p1(t) + β1(t) = lim

ε→0+
(−δ1(t) + p1(t)e

−ε + β1(t))

and thus

lim sup
ε→0+

(
H(t, ε)

ε
+ δ1(t)− p1(t)e−ε − β1(t)

)
< 0

uniformly en t.

Thus, if ε ∈ (0, ε0) is small enough, then

g1(ε, x2) ≤ g(ε, ε) < 0, for all ε ≤ x2 ≤ R.

Now suppose ε ≤ x2 ≤ R = x1, then

g1(R, x2) = δ1R− β1x2 − p1Re−R + R
T

∫ T
0

H1(t,R)
R dt =

= R
T

∫ T
0

(
δ1(t)− p1(t)e−R + H(t,R)

R

)
dt− β1x2 ≥

R
T

∫ T
0

(
δ1(t)− p1(t)e−R + H(t,R)

R

)
dt− β1R =

R
T

∫ T
0

(
δ1(t)− p1(t)e−R − β1(t) + H(t,R)

R

)
dt = g1(R,R).

Using (3b), it is seen that

lim inf
R→+∞

H(t, R)

R
< −δ1(t) + β1(t) = lim

R→+∞
(−δ1(t) + p1(t)e

−R + β1(t))

uniformly in t and thus

lim inf
R→+∞

(
H(t, ε)

ε
+ δ1(t)− p1(t)e−R − β1(t)

)
> 0

uniformly in t.

We conclude that if R > R0 is large enough then

g1(R, x2) ≥ g1(R,R) > 0, for all ε ≤ x2 ≤ R.

In the same way, it is verified that if R ≥ R0 is large enough and ε ∈ (0, ε0) is small enough then

g2(x1, ε) < 0, for all ε ≤ x1 ≤ R

and
g2(x1, R) > 0, for all ε ≤ x1 ≤ R.

Hence dB(g,Ω ∩ R2, 0) 6= 0 is well defined and different from zero, so (H2) is satisfied and the proof is
complete. �
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