# Positive $T$-PERIODIC solutions for A Nicholson type SYSTEM. 

Amster Pablo ${ }^{\dagger \ddagger}$ and Déboli Alberto ${ }^{\ddagger}$<br>${ }^{\dagger}$ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. pamster@dm.uba.ar ${ }^{\ddagger}$ Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina. adeboli@dm.uba.ar


#### Abstract

In this work, we consider the case of a Nicholson type system for two species with mutualism terms. Under appropriate conditions we prove, using topological degree theory, the existence of at least one positive $T$-periodic solution.


Keywords: Nicholson type system, Nonlinear Harvesting, Delay, Positive T-periodic solutions, Coincidence degree theory.
2000 AMS Subject Classification: 34K13, 92D25.

## 1 Introduction.

The dynamics of the following system was studied in [2]:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=-\delta_{1} x_{1}(t)+\beta_{1} x_{2}(t)+p_{1} x_{1}\left(t-\tau_{1}\right) e^{-a_{1} x_{1}\left(t-\tau_{1}\right)}  \tag{1}\\
x_{2}^{\prime}(t)=-\delta_{2} x_{2}(t)+\beta_{2} x_{1}(t)+p_{2} x_{2}\left(t-\tau_{2}\right) e^{-a_{2} x_{1}\left(t-\tau_{2}\right)}
\end{array}\right.
$$

with initial data $x_{i}(s)=\phi_{i}(s), s \in[-\tau, 0], \phi_{i}(0)>0$ where $\phi_{i} \in C([-\tau, 0],[0,+\infty))$ for $i=1,2$. Here, $\delta_{i}, \beta_{i}, p_{i}, a_{i}$ and $\tau$ are positive constants for $i=1,2$, Models of this kind were used, for example, to describe the dynamics of the $B$-cells of the chronic lymphocytic leukemia.

In [3], Zhou considered a non-autonomous version of system (1) with $T$-periodic $\delta_{i}, \beta_{i}, p_{i}, \tau_{i} \in C\left(\mathbb{R}, \mathbb{R}^{+}\right)$, which included in each equation a linear harvesting term $H_{i}:=h_{i}(t) x_{i}\left(t-\tau_{i}(t)\right)$ for some $T$-periodic $h_{i} \in C(\mathbb{R},[0,+\infty))$. Under appropriate conditions, existence of a positive $T$-periodic solution was proven.

In this work, we consider the case of a Nicholson type system for two species with mutualism terms

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=-\delta_{1}(t) x_{1}(t)+\beta_{1}(t) x_{2}(t)+p_{1}(t) f\left(x_{1}\left(t-\tau_{1}(t)\right)\right)-H_{1}\left(t, x_{1}(t)\right)  \tag{2}\\
x_{2}^{\prime}(t)=-\delta_{2}(t) x_{2}(t)+\beta_{2}(t) x_{1}(t)+p_{2}(t) f\left(x_{2}\left(t-\tau_{2}(t)\right)\right)-H_{2}\left(t, x_{2}(t)\right)
\end{array}\right.
$$

Here, the functions $\delta_{i}, \beta_{i}, p_{i}, \tau_{i} \in C\left(\mathbb{R}, \mathbb{R}^{+}\right)$are $T$-periodic, $f(x)=x e^{-x}$ and $H_{i} \in C\left(\mathbb{R} \times \mathbb{R}^{+}, \mathbb{R}^{+}\right)$are $T$-periodic in $t$ for $i=1,2$. Under appropriate conditions we shall prove, using topological degree theory, the existence of at least one positive $T$-periodic solution.

Our main theorem reads as follows.
Theorem 1.1 Assume that the limits

$$
H_{i, s u p}(t):=\limsup _{x \rightarrow 0^{+}} \frac{H_{i}(t, x)}{x}
$$

and

$$
H_{i, i n f}(t):=\liminf _{x \rightarrow+\infty} \frac{H_{i}(t, x)}{x}
$$

are uniform in $t$ for $i=1,2$ and

$$
\begin{align*}
& \delta_{i}(t)+H_{i, \text { sup }}(t)<\beta_{i}(t)+p_{i}(t)  \tag{3a}\\
& \delta_{i}(t)+H_{i, \text { inf }}(t)>\beta_{i}(t)+p_{i}(t) \tag{3b}
\end{align*}
$$

for all $t \in \mathbb{R}, i=1,2$. Then the system (2) admits at least one positive $T$-periodic solution.

## 2 Existence of solutions

### 2.0.1 An abstract continuation theorem

Consider the Banach space

$$
X:=\left\{\mathbf{x}:=\left(x_{1}, x_{2}\right) \in C\left(\mathbb{R}, \mathbb{R}^{2}\right): x_{i}(t+T)=x_{i}(t), i=1,2\right\}
$$

equipped with the norm $\|\mathbf{x}\|=\max \left\{\left|x_{i}\right|_{\infty}, i=1,2\right\}$, where

$$
\left|x_{i}\right|_{\infty}:=\max _{t \in[0, T]}\left\{\left|x_{i}(t)\right|\right\}, \quad i=1,2
$$

and the operators

$$
L: X \cap C^{1}\left(\mathbb{R}, \mathbb{R}^{2}\right) \subset X \rightarrow X, \quad \Phi:=\left(\phi_{1}, \phi_{2}\right): X \rightarrow X
$$

are defined in the following way:

$$
\begin{gathered}
L(\mathbf{x})=\mathbf{x}^{\prime} \\
\left.\phi_{1}\left(x_{1}, x_{2}\right)(t):=-\delta_{1}(t) x_{1}(t)+\beta_{1}(t) x_{2}(t)+p_{1}(t) f\left(x_{1_{\tau_{1}}}(t)\right)-H_{1}\left(t, x_{1}(t)\right)\right)
\end{gathered}
$$

and

$$
\left.\phi_{2}\left(x_{1}, x_{2}\right)(t):=-\delta_{2}(t) x_{2}(t)+\beta_{2}(t) x_{1}(t)+p_{2}(t) f\left(x_{2_{2}}(t)\right)-H_{2}\left(t, x_{2}(t)\right)\right) .
$$

For convenience, we shall employ the notation

$$
\bar{x}:=\frac{1}{T} \int_{0}^{T} x(t) d t, \quad \overline{\mathbf{x}}:=\left(\bar{x}_{1}, \bar{x}_{2}\right), \quad x_{i \tau_{i}}(t):=x_{i}\left(t-\tau_{i}(t)\right)
$$

and set the mapping $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $g(\mathbf{x})=-\overline{\Phi(\mathbf{x})}$.
The following continuation theorem was proven in [1]:
Theorem 2.1 (Continuation theorem) Let $\Omega \subset X$ be open and bounded such that the following conditions are satisfied:
(H1): The equation $L(\mathbf{x})=\lambda \Phi(\mathbf{x})$ has no solutions on $\partial \Omega \cap \operatorname{Dom}(L)$ for $\lambda \in(0,1)$.
(H2): $g$ does not vanish on $\partial \Omega \cap \mathbb{R}^{2}$ and $d_{B}\left(g, \Omega \cap \mathbb{R}^{2}, 0\right) \neq 0$, where $d_{B}$ denotes the Brouwer degree.
Then problem (2) has at least one solution $\mathbf{x} \in \bar{\Omega} \subset X$ such that $x_{i}>0$ for $i=1,2$.

### 2.0.2 A priori bounds

The following lemma shall be the key of the proof of our existence theorem.
Lemma 2.2 Assume that the hypotheses of Theorem 1.1 are satisfied. Then there exist $\varepsilon_{0}, R_{0}>0$ such that if $\mathrm{x} \in X$ satisfies $\mathrm{x}^{\prime}=\lambda \Phi(\mathbf{x})$ with $x_{i}>0$ for $i=1,2$ and $\lambda \in(0,1)$ then

$$
\varepsilon_{0}<x_{i}(t)<R_{0} \text { for all } t \in \mathbb{R}, i=1,2 .
$$

## Proof.

Let $\mathbf{x}=\left(x_{1}, x_{2}\right) \in X$ satisfy $\mathbf{x}^{\prime}=\lambda \Phi(\mathbf{x})$ with $x_{i}>0$ for $i=1,2$ and $\lambda \in(0,1)$, and set $R:=\max \left\{x_{1}^{*}, x_{2}^{*}\right\}$ where $x^{*}:=\max _{t \in \mathbb{R}}\{x(t)\}$. Without loss of generality, we may assume for example that $x_{1}\left(t^{*}\right)=R$ for some $t^{*} \in[0, T]$.

From the first equation of the system it is seen that $\phi_{1}\left(x_{1}\left(t^{*}\right), x_{2}\left(t^{*}\right)\right)=0$, so

$$
\delta_{1}\left(t^{*}\right) x_{1}\left(t^{*}\right)-H_{1}\left(t^{*}, x_{1}\left(t^{*}\right)\right)=\beta_{1}\left(t^{*}\right) x_{2}\left(t^{*}\right)+p_{1}\left(t^{*}\right) f\left(x_{1 \tau_{1}}\left(t^{*}\right)\right) .
$$

Since $x_{2}\left(t^{*}\right) \leq R$ and $f\left(x_{1 \tau_{1}}\left(t^{*}\right)\right) \leq \frac{1}{e}$, we deduce:

$$
R\left(\delta_{1}\left(t^{*}\right)+\frac{H_{1}\left(t^{*}, R\right)}{R}\right)=\beta_{1}\left(t^{*}\right) x_{2}\left(t^{*}\right)+p_{1}\left(t^{*}\right) f\left(x_{1 \tau_{1}}\left(t^{*}\right)\right) \leq \beta_{1}\left(t^{*}\right) R+\frac{p_{1}^{*}}{e}
$$

Hence

$$
R\left(\delta_{1}\left(t^{*}\right)+\frac{H_{1}\left(t^{*}, R\right)}{R}-\beta_{1}\left(t^{*}\right)\right) \leq \frac{p_{1}^{*}}{e}
$$

and using (3b) we conclude that there exists a constant $R_{0}>0$ such that

$$
x_{i}(t)<R_{0} \text { for all } t \in \mathbb{R} \text { and } i=1,2
$$

In an analogous way, let $\varepsilon:=\min \left\{x_{1 *}, x_{2 *}\right\}$ where $x_{*}:=\min _{t \in \mathbb{R}}\{x(t)\}$ and suppose for example that $x_{1}\left(t_{*}\right)=\varepsilon$ for some $t_{*}$, then

$$
\delta_{1}\left(t_{*}\right) x_{1}\left(t_{*}\right)-H_{1}\left(t_{*}, x_{1}\left(t_{*}\right)\right)=\beta_{1}\left(t_{*}\right) x_{2}\left(t_{*}\right)+p_{1}\left(t_{*}\right) f\left(x_{1 \tau_{1}}\left(t_{*}\right)\right)
$$

We may assume that $R_{0} \geq 1$ and set $R_{1}$ as the unique value in $[0,1]$ such that $f\left(R_{1}\right)=f\left(R_{0}\right)$. Moreover, we may assume that $\varepsilon \leq R_{1}$ since otherwise there is nothing to prove. Thus, $\varepsilon \leq x_{1}\left(t_{*}-\tau_{1}\left(t_{*}\right)\right) \leq R_{0}$ and

$$
f\left(x_{1 \tau_{1}}\left(t_{*}\right)\right) \geq f(\varepsilon)
$$

since $f$ is increasing in $[0,1]$ and decreasing in $[1,+\infty)$. Hence

$$
\begin{aligned}
& \varepsilon\left(\delta_{1}\left(t_{*}\right)+\frac{H_{1}\left(t_{*}, \varepsilon\right)}{\varepsilon}\right)=\beta_{1}\left(t_{*}\right) x_{2}\left(t_{*}\right)+p_{1}\left(t_{*}\right) f\left(x_{1 \tau_{1}}\left(t_{*}\right)\right) \geq \\
& \beta_{1}\left(t_{*}\right) \varepsilon+p_{1}\left(t_{*}\right) f(\varepsilon)=\varepsilon\left(\beta_{1}\left(t_{*}\right)+p_{1}\left(t_{*}\right) e^{-\varepsilon}\right)
\end{aligned}
$$

and

$$
\delta_{1}\left(t_{*}\right)+\frac{H_{1}\left(t_{*}, \varepsilon\right)}{\varepsilon} \geq \beta_{1}\left(t_{*}\right)+p_{1}\left(t_{*}\right) e^{-\varepsilon} .
$$

Using (3a), we deduce the existence of $\varepsilon_{0}>0$ such that $\varepsilon_{0}<x_{i}(t)$ for all $t \in \mathbb{R}$ and $i=1,2$

### 2.0.3 Proof of the existence theorem

In this section, we shall prove the existence of $\Omega \subset X$ open and bounded such that (H1) and (H2) of Theorem 2.1 are verified.

From the previous section, if we set

$$
\Omega:=\left\{\mathbf{x} \in X: \varepsilon<x_{i}<R, i=1,2\right\}
$$

then (H1) holds for arbitrary positive constants $\varepsilon \leq \varepsilon_{0}$ and $R \geq R_{0}$, where $\varepsilon_{0}$ and $R_{0}$ are as in lemma 2.2.
Thus, it suffices to prove that the Brouwer degree of the function $g$ is different from zero over the set

$$
\Omega_{0}:=\left\{\mathbf{x} \in \mathbb{R}^{2}: \varepsilon<x_{i}<R, \quad i=1,2\right\}
$$

In the first place, observe that

$$
\begin{aligned}
& g_{1}\left(x_{1}, x_{2}\right)=\bar{\delta}_{1} x_{1}-\bar{\beta}_{1} x_{2}-\bar{p}_{1} x_{1} e^{-x_{1}}+\frac{x_{1}}{T} \int_{0}^{T} \frac{H_{1}\left(t, x_{1}\right)}{x_{1}} d t= \\
& =\frac{x_{1}}{T} \int_{0}^{T}\left(\delta_{1}(t)-p_{1}(t) e^{-x_{1}}+\frac{H\left(t, x_{1}\right)}{x_{1}}\right) d t-\bar{\beta}_{1} x_{2}
\end{aligned}
$$

In particular, if $x_{1}=\varepsilon \leq x_{2} \leq R$ then

$$
\begin{aligned}
& g_{1}\left(\varepsilon, x_{2}\right)=\bar{\delta}_{1} \varepsilon-\bar{\beta}_{1} x_{2}-\bar{p}_{1} \varepsilon e^{-\varepsilon}+\frac{\varepsilon}{T} \int_{0}^{T} \frac{H_{1}(t, \varepsilon)}{\varepsilon} d t= \\
& =\frac{\varepsilon}{T} \int_{0}^{T}\left(\delta_{1}(t)-p_{1}(t) e^{-\varepsilon}+\frac{H(t, \varepsilon)}{\varepsilon}\right) d t-\bar{\beta}_{1} x_{2} \leq \\
& \frac{\varepsilon}{T} \int_{0}^{T}\left(\delta_{1}(t)-p_{1}(t) e^{-\varepsilon}+\frac{H(t, \varepsilon)}{\varepsilon}\right) d t-\bar{\beta}_{1} \varepsilon= \\
& \frac{\varepsilon}{T} \int_{0}^{T}\left(\delta_{1}(t)-p_{1}(t) e^{-\varepsilon}-\beta_{1}(t)+\frac{H(t, \varepsilon)}{\varepsilon}\right) d t=g_{1}(\varepsilon, \varepsilon) .
\end{aligned}
$$

Hence by (3a) we deduce, for all $t \in \mathbb{R}$,

$$
\limsup _{\varepsilon \rightarrow 0^{+}} \frac{H(t, \varepsilon)}{\varepsilon}<-\delta_{1}(t)+p_{1}(t)+\beta_{1}(t)=\lim _{\varepsilon \rightarrow 0^{+}}\left(-\delta_{1}(t)+p_{1}(t) e^{-\varepsilon}+\beta_{1}(t)\right)
$$

and thus

$$
\limsup _{\varepsilon \rightarrow 0^{+}}\left(\frac{H(t, \varepsilon)}{\varepsilon}+\delta_{1}(t)-p_{1}(t) e^{-\varepsilon}-\beta_{1}(t)\right)<0
$$

uniformly en $t$.
Thus, if $\varepsilon \in\left(0, \varepsilon_{0}\right)$ is small enough, then

$$
g_{1}\left(\varepsilon, x_{2}\right) \leq g(\varepsilon, \varepsilon)<0, \text { for all } \varepsilon \leq x_{2} \leq R
$$

Now suppose $\varepsilon \leq x_{2} \leq R=x_{1}$, then

$$
\begin{aligned}
& g_{1}\left(R, x_{2}\right)=\bar{\delta}_{1} R-\bar{\beta}_{1} x_{2}-\bar{p}_{1} R e^{-R}+\frac{R}{T} \int_{0}^{T} \frac{H_{1}(t, R)}{R} d t= \\
& =\frac{R}{T} \int_{0}^{T}\left(\delta_{1}(t)-p_{1}(t) e^{-R}+\frac{H(t, R)}{R}\right) d t-\bar{\beta}_{1} x_{2} \geq \\
& \frac{R}{T} \int_{0}^{T}\left(\delta_{1}(t)-p_{1}(t) e^{-R}+\frac{H(t, R)}{R}\right) d t-\bar{\beta}_{1} R= \\
& \frac{R}{T} \int_{0}^{T}\left(\delta_{1}(t)-p_{1}(t) e^{-R}-\beta_{1}(t)+\frac{H(t, R)}{R}\right) d t=g_{1}(R, R) .
\end{aligned}
$$

Using (3b), it is seen that

$$
\liminf _{R \rightarrow+\infty} \frac{H(t, R)}{R}<-\delta_{1}(t)+\beta_{1}(t)=\lim _{R \rightarrow+\infty}\left(-\delta_{1}(t)+p_{1}(t) e^{-R}+\beta_{1}(t)\right)
$$

uniformly in $t$ and thus

$$
\liminf _{R \rightarrow+\infty}\left(\frac{H(t, \varepsilon)}{\varepsilon}+\delta_{1}(t)-p_{1}(t) e^{-R}-\beta_{1}(t)\right)>0
$$

uniformly in $t$.
We conclude that if $R>R_{0}$ is large enough then

$$
g_{1}\left(R, x_{2}\right) \geq g_{1}(R, R)>0, \text { for all } \varepsilon \leq x_{2} \leq R
$$

In the same way, it is verified that if $R \geq R_{0}$ is large enough and $\varepsilon \in\left(0, \varepsilon_{0}\right)$ is small enough then

$$
g_{2}\left(x_{1}, \varepsilon\right)<0, \text { for all } \varepsilon \leq x_{1} \leq R
$$

and

$$
g_{2}\left(x_{1}, R\right)>0, \text { for all } \varepsilon \leq x_{1} \leq R
$$

Hence $d_{B}\left(g, \Omega \cap \mathbb{R}^{2}, 0\right) \neq 0$ is well defined and different from zero, so (H2) is satisfied and the proof is complete.

## REFERENCES

[1] Amster P., Idels L. Periodic solutions in general scalar non-autonomous models with delays. Nonlinear Differential Equations and Applications 20 (2013), 1577-1596.
[2] Berezansky L., Idels L., L. Troib. Global dynamics of Nicholson-type delay sistema whit applications. Nonlinear Anal. Real Word Appl. 12 (2011) 436-445.
[3] Qiyuan Zhou. The positive periodic solution for Nicholson-type dely system whit linear harvesting terms. Applied Mathematical Modelling. 37 (2013) 5581-5590.

