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1 INTRODUCTION.

The dynamics of the following system was studied in [2]:

2 (t) = —6121(t) + Brza(t) + prai (t — 7y )e 0z =)
(1)
2h(t) = —62a(t) + Pom1 () + paxa(t — 1o)e 0201 (E772)

with initial data z;(s) = ¢;(s), s € [-7,0], ¢:(0) > 0 where ¢; € C([—T, 0], [0, +00)) for i = 1, 2. Here,
d;, Bi, pi, a; and T are positive constants for i = 1,2, Models of this kind were used, for example, to describe
the dynamics of the B-cells of the chronic lymphocytic leukemia.

In [3], Zhou considered a non-autonomous version of system (1) with T-periodic 6;, 3;, p;, 7; € C(R,R™),
which included in each equation a linear harvesting term H; := h;(t)z;(t — 7;(t)) for some T-periodic
hi € C(R, [0, +00)). Under appropriate conditions, existence of a positive T'-periodic solution was proven.

In this work, we consider the case of a Nicholson type system for two species with mutualism terms

z1(t) = =01 ()21 (t) + B1(t)22(t) + p1 () f(21(t — 71 (2))) — Hi(t, 21(2))
()
25(t) = —02(t)x2(t) + Ba(t)w1(t) + pa(t) f(z2(t — m2(t))) — Ha(t, z2(1)).

Here, the functions d;, 3;, p;, 7; € C(R,R™) are T-periodic, f(z) = xe % and H; € C(R x R, R™) are
T-periodic in ¢ for ¢ = 1, 2. Under appropriate conditions we shall prove, using topological degree theory,
the existence of at least one positive T-periodic solution.

Our main theorem reads as follows.

Theorem 1.1 Assume that the limits

and

are uniformint fori = 1,2 and
0i(t) + Hi,sup(t) < Bi(t) + pi(t) (3a)

51(t) + Hz';mf(t) > ﬁl(t) +pi(t) (3b)
forallt € R, i = 1,2. Then the system (2) admits at least one positive T-periodic solution.



2 EXISTENCE OF SOLUTIONS
2.0.1 An abstract continuation theorem

Consider the Banach space
X = {x:= (21,22) € O(R,R?) : z;(t + T) = x4(t),i = 1,2}
equipped with the norm ||x|| = max{|z;|o0,? = 1,2}, where

friloe = o (D)}, i = 1,2

and the operators
L:XNC'RRHCX =X, &:=(f1,¢0): X=X

are defined in the following way:
L(x) =x'

Pr(zr, 22)(t) = =01 (W)z1 () + Br(t)22(t) + pr() f(21,, () — Hi(t, 21(1)))

and
Pa(w1, 32)(1) 1= —=02(t)w2(t) + Pa(t)w1(t) + p2(t) f(w2,, (1) — Ha(t, w2(1))).

For convenience, we shall employ the notation

and set the mapping g : R? — R? given by g(x) = —®(x).

The following continuation theorem was proven in [1]:

Theorem 2.1 (Continuation theorem) Let 2 C X be open and bounded such that the following conditions
are satisfied:

(H1): The equation L(x) = A®(x) has no solutions on 92 N\ Dom(L) for A € (0,1).
(H2): g does not vanish on 92 N R? and dg(g, 2 N R%,0) # 0, where dp denotes the Brouwer degree.

Then problem (2) has at least one solution x € Q C X such that x; > 0 fori =1,2.

2.0.2 A priori bounds

The following lemma shall be the key of the proof of our existence theorem.

Lemma 2.2 Assume that the hypotheses of Theorem 1.1 are satisfied. Then there exist €9, Ry > 0 such
that if x € X satisfies x' = A®(x) with x; > 0 fori = 1,2 and X € (0,1) then

g0 < xi(t) < Ry forallte R, i=1,2.

Proof.
Let x = (z1,22) € X satisfy X' = A®(x) with 2; > 0 fori = 1,2 and A € (0,1), and set
R := max{z},z5} where 2™ := rilz%lgc{x(t)} Without loss of generality, we may assume for example
€

that z1(t*) = R for some t* € [0, 7.

From the first equation of the system it is seen that ¢ (z1(t*), z2(t*)) = 0, so

01(t) 21 (87) — Hi(t%, 21 (1)) = Br(t")2(t) + pr(8) f (217, (7))



Since z2(t*) < Rand f(z17, (t*)) < 1, we deduce:

R (51(t*) + M) = Bi(t)wa(t*) + pr(t) f (21, (1)) < Pr(t) R+ 2.

Hence
R (5i(t) + R — g, (17)) < 2

and using (3b) we conclude that there exists a constant Ry > 0 such that
zi(t) < Rpforallt € Rand i =1,2.

In an analogous way, let ¢ := min{z,, x2.} where x, := gm]él{x(t)} and suppose for example that
€

x1(t.) = € for some t,, then

01(te) w1 () = Hi(te, 21(t4)) = Br(te)wa(te) + pr(te) f(21r (8))-

We may assume that Ry > 1 and set R; as the unique value in [0, 1] such that f(R;) = f(Ro). Moreover,
we may assume that ¢ < Rj since otherwise there is nothing to prove. Thus, ¢ < z1 (¢, — 71 (t+)) < Rp and

f(z1m (8) = [(e),
since f is increasing in [0, 1] and decreasing in [1, +00). Hence
e (81 (k) + L2 = By (L )a(t) + 1 () fl2ar, (1) =
Pi(te)e +pi(ta) f(e) = e (Biltse) + pr(te)e™)

and

S1(te) + D) > 8y (1) 4 py (ta)e®

Using (3a), we deduce the existence of €y > 0 such that g < z;(t) forallt € Randi = 1,2 [ ]

2.0.3 Proof of the existence theorem

In this section, we shall prove the existence of 2 C X open and bounded such that (H1) and (H2) of
Theorem 2.1 are verified.

From the previous section, if we set
Q={xeX:e<a;<R,i=12}

then (H1) holds for arbitrary positive constants € < g9 and R > Ry, where €5 and Ry are as in lemma 2.2.
Thus, it suffices to prove that the Brouwer degree of the function g is different from zero over the set

Qo:i={xecR*: e<z <R, i=1,2}

In the first place, observe that
= = _ _ T H
91($1,$2) = 0121 — Sz —prme T+ T fg lﬁff”dt

=7 Jo <51() p1(t)e ™ + (tzl )dt—ﬁ1x2

In particular, if x; = ¢ < 22 < R then



91(e,2) = 016 — a2 —Pree ™ + £ T oT Hl(gt 2 gt =

=5l (51(t)—p (t)ee + L) ))dt—ﬁ 9 <
5 Jy (810 = pr()e + 1LY a1 — e =
S Jo (810 = pi(e s = Bi(1) + 2LD) dt = g1 e ).
Hence by (3a) we deduce, forall t € R,
lim sup At.e)

e—0t €

<=0+ pi(0)+ Ait) = lim (=0(t) + pr(B)e” + (1)
and thus

lim sup <H(z’6) +61(t) —pi(t)e ™ — Bi(t ))

e—0t
uniformly en ¢.

Thus, if € € (0, gp) is small enough, then
gi(e,z2) < g(e,e) <0, foralle <zy < R.

Now suppose € < z92 < R = z1, then

g1(R.ws) =51 R — By — pyRe R + [T iR gy —

=%h(& )= pi(Be "+ 2G) dt — 51y >

BIY (010 = pa®e®+ 20 ) dt — B, R =

E [y (1) = pr(®)e ™ = Bat) + @) dt = g1(R, R).
Using (3b), it is seen that

%IBi‘}.ﬁ H(ZR) < —61(t) + B1(t) :RE)IEOO(_(Sl ) +pr(t)e "+ Bi(1)

uniformly in ¢ and thus

lim inf
R—4o0

(P2 4510 -me - 510)) > 0

uniformly in £.
We conclude that if R > Ry is large enough then
g1(R,x2) > g1(R,R) >0, foralle < x9 < R.
In the same way, it is verified that if R > Ry is large enough and ¢ € (0, &¢) is small enough then
g2(r1,e) <0, foralle <z; <R
and
g2(z1,R) > 0, foralle <z; < R.

Hence dg(g,2 NR%,0) # 0 is well defined and different from zero, so (H2) is satisfied and the proof is
complete. |
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