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Abstract

During an epidemic outbreak of a new disease, the probability of dying
once infected is considered an important though difficult task to be com-
puted. Since it is very hard to know the true number of infected people,
the focus is placed on estimating the case fatality rate, which is defined
as the probability of dying once tested and confirmed as infected. The es-
timation of this rate at the beginning of an epidemic remains challenging
for several reasons, including the time gap between diagnosis and death,
and the rapid growth in the number of confirmed cases.

In this work, an unbiased estimator of the case fatality rate of a virus
is presented. The consistency of the estimator is demonstrated, and its
asymptotic distribution is derived, enabling the corresponding confidence
intervals (C.I.) to be established. The proposed method is based on the
distribution F' of the time between confirmation and death of individuals
who die because of the virus. The estimator’s performance is analyzed in
both simulation scenarios and the real-world context of Argentina in 2020
for the COVID-19 pandemic, consistently achieving excellent results when
compared to an existing proposal as well as to the conventional “naive”
estimator that was employed to report the case fatality rates during the
last COVID-19 pandemic.

In the simulated scenarios, the empirical coverage of our C.I. is studied,
both using the F' employed to generate the data and an estimated F', and
it is observed that the desired level of confidence is reached quickly when
using real F' and in a reasonable period of time when estimating F'.

Keywords: Case fatality rate, Epidemic outbreak ; Unbiased estimator ; Asymp-
totic distribution ; Confidence intervals ; COVID-19 pandemic



1 Introduction

One of the most important questions to be answered when a new infectious dis-
ease emerges, such as COVID-19, is how deadly it is or will be. In other words,
the proportion of infected individuals who will die as the epidemic progresses
needs to be determined. This proportion is considered a key epidemiological
measure for quantifying the severity of the disease, and it is particularly cru-
cial to have it estimated during outbreaks of emerging infectious diseases like
COVID-19.

To calculate this rate, the number of infected individuals needs to be known,
which is not a trivial matter. Typically, the data consist of individuals who
were tested and confirmed positive for the infection in question, referred to as
”confirmed cases” from now on.

In massive infections like COVID-19, the actual number of infected individ-
uals is often unknown due to the presence of asymptomatic cases, cases that
were not tested, and a lack of serological studies, among other reasons. Given
this issue, the fatality rate among confirmed cases is commonly studied, as done
in this article. Other authors who follow the same criterion are, e.g., Marschner
(2021) and Grewelle and De Leo (2020).

The proportion of confirmed cases that die from the disease during an epi-
demic is difficult to calculate for several reasons: rapid growth in the number of
confirmed cases, the time gap between diagnosis and death, biases due to delays
in reporting confirmed cases, among others (see Baud et al. (2020)).

In epidemiology, the case fatality rate among confirmed cases in a specific
period of time (a day, a week, a month, etc.) is defined as the proportion of
confirmed individuals in that period who eventually die (not necessarily within
that period) due to the disease. In this work, a mathematical definition of the
case fatality rate among confirmed cases for a specific day is provided as the
probability to die from the disease for a randomly chosen individual among the
confirmed cases from the beginning of the epidemic up to that day. This means
that the time periods considered are of the form [0,t], where ¢t € Ny, with 0
representing the day when the first case in the geographic region of interest is
recorded. We will refer to that day as day 0 of the epidemic. The case fatality
rate for the period [0,¢] is denoted cfr(t) and is the object of estimation.

A commonly calculated “naive” fatality rate is the proportion of confirmed
individuals during a fixed period of time who die from the disease in that
same period. The World Health Organization and many countries reported
this “naive” fatality rate daily for COVID-19, considering the period of time
from the beginning of the epidemic up to the reporting day. The reason for
using this rate is that it requires minimal information for calculation (see Kim
et al. (2021)). This rate has a tendency to underestimate ¢fr(t) because, up to
the reporting date, many of the confirmed cases have not died yet. This fact has
been described by several authors, who also have made attempts to define and
estimate cfr(t); see, for example, Chang et al. (2020) and Shim et al. (2020).
Lipsitch et al. (2015) and Marschner (2021) also define the case fatality rate as
the probability to die from the disease for a randomly chosen individual con-
firmed within a fixed period of time. These authors analyze potential biases in



their estimates. Lee and Lim (2019) also make an attempt in that direction.

The “naive” fatality rate, reported daily during the COVID-19 pandemic,
underestimates c¢fr(t) because the calculation for a specific day involves dividing
the number of people who died from COVID-19 until that day by the number
of confirmed cases until that day. The underestimation occurs because the
numerator does not include the confirmed cases that will die from the disease
later on. This bias can be significant, especially when the estimation is made
during a period of rapid growth in confirmed cases or when the time between
diagnosis and death is long. For example, at the beginning of an outbreak,
the number of confirmed cases can double in just a few days, but only a small
proportion of the patients who will eventually die do so in the first few days
after diagnosis.

To address this underestimation issue of the “naive” rate, Garske et al.
(2009) propose an estimator that takes into account the distribution of the
time between confirmation and death for individuals who die from the disease.
The method they propose would be unbiased if the daily probabilities of a
confirmed individual dying from the disease did not change over time. However,
this probability can change from one day to another for various reasons, not
only because a treatment that reduces the probability is found but also, for
example, because the definition of a confirmed case changes or because more
testing becomes accessible. These last two reasons, which were very common
during the COVID-19 pandemic, do not change the fatality rate among infected
individuals but do change fatality rate among confirmed individuals. The fact
that the daily probabilities of dying among confirmed cases vary makes Garke’s
estimator biased.

In this work an estimator is proposed that remains unbiased for ¢fr(t) even
when the daily probabilities of death among confirmed cases are not constant
over time. Both the Garske et al. (2009) estimator and ours assume that the
distribution of the time between confirmation and death for individuals who die
from the disease is known. In practice, the distribution of the time between
confirmation and death has to be estimated from the data and any bias in the
estimator of this distribution will of course introduce some bias in the final
estimator.

Our proposal, the Garske et al. estimator, and the “naive” estimator are

applied and compared with real COVID-19 data in Argentina during 2020. Dif-
ferent simulation scenarios are also considered. A very good performance of
our proposal compared to the other estimation methods is observed, both for
real data and in simulations, except at the very beginning of the epidemic in
Argentina, where Garske ’s estimator performs better. The consistency of our
estimator is proved, and its asymptotic distribution is found, allowing for the
derivation of confidence intervals for c¢fr(t). In the simulation scenarios, the
level of empirical coverage of confidence intervals is studied when our estimator
does not assume the distribution of the time between confirmation and death
is known but estimates it. The finite sample bias and the mean squared er-
ror of our estimator, Garske et al. (2009)’s estimator, and the “naive” rate are
analyzed, observing a better performance of our estimator in all the simulations.

The real data analysis is based on a data base that was published and up-



dated daily by the Ministry of Health of Argentina since March 2020 until the
end of 2021. It contains information on all the individuals that were tested for
COVID-19 during that time. For each individual, it provides sex, age, country
of residence, province, date of first symptoms, date of diagnosis and date of
death, among other features.

2 Proposed estimators

2.1 Main definitions and notation

Random variables will be denoted with upper case letters, and non-random
parameters will be denoted with lower case letters. We set the following defini-
tions:

e py is the probability of death among cases confirmed during day d.

e ¢4 is the number of cases confirmed during day d.

e D, is a dichotomous variable that equals 1 if the i-th confirmed case on
day d dies because of the disease and 0 if it does not.

e D, ;(t) is a dichotomous variable that equals 1 if the i—th confirmed case
on day d has died because of the disease by day t and 0 if it has not,
defined for d < t.

e D.(t) is the total number of people that die from COVID-19 infection
among cases confirmed until day ¢ inclusive, once the epidemic has ended.

e D(t) is the number of confirmed cases that died from COVID-19 from the
beginning of the epidemic (day 0) until day ¢ inclusive.

Suppose that Dg 1, ..., D4, are independent random variables with a Bernoulli
distribution and probability of success py, i.e. Dg; ~ Be(pg). Thus,

t Cd t

De(t) = Da; and D(t)=» > Dai(t). (1)

d=0 =1 d=0 i=1

The “naive” estimator of the case fatality rate usually reported on day ¢,
denoted as CF Ry (t), is defined as:

CFRp(t) is defined as the proportion of cases confirmed until day ¢ which
finally die because of the disease, and referred to as the final case fatality rate



by day ¢. In terms of the defined variables:

OFRp(t) = 20 (3)

>

d=0

Notice that CFRp(t) cannot be computed on day ¢; one would have to wait for
all the diagnosed people by day ¢ to recover or die. We define the case fatality
rate by day t as the expected value of CFRp(t), i.e, cfr(t) = E(CFRp(t)). As
it will be seen in (4), this definition of c¢fr(t) coincides with the one given in
the Introduction. It is worth noting that the case fatality rate by day ¢ defined
in this way is a population parameter and it is not observable, not even at the
end of the epidemic. From (1)

E(De(1)) = ) capa,
d=0

and then, from (3)

t
d=0
cfr(t) = —; = depd, (4)
d=0
cd
d=0
where cy
Wqg = n .
>
d=0

Note that cfr(t) is a weighted sum of daily case fatality rates pg, where each
day’s weight is the proportion of cases that were confirmed that day with re-
spect to the total number of cases confirmed until day ¢. Thus, cfr(t) can be
interpreted as the probability of dying from the disease for a randomly picked
person among those confirmed by day t. If p; = p (constant throughout the epi-
demic), cfr(t) = p. It is worth noting that cfr(t) is the parameter of interest,
of which the case fatality rate observed at the end of the epidemic, CFRp(t),
is an estimation.

In order to estimate cfr(t), the following definition is made:

T4, = number of days from confirmation until death, in the i-th case confirmed
on day d.

Let F; be the cumulative distribution function of Tj; conditional on
Dg; = 1. Several authors use this distribution in their estimations, see for in-
stance Marschner (2021), Garske et al. (2009), Nishiura et al. (2009), Dorigatti
et al. (2020). Note that we are allowing the cumulative distribution function to
change in time, unlike Garske et al. (2009). This seems realistic for several rea-
sons; for instance, new treatments may lengthen the survival time, the sanitary
system may collapse and this may shorten the survival time, or the confirmation
of cases may be faster, lengthening also the time from confirmation until death,
among others.



2.2  An unbiased estimator for cfr(t)

Our goal is to predict on day ¢ the number of people that eventually will die,
among confirmed cases until day ¢, that is to say D.(t), as defined in (1). The
idea of our proposal is the following. For each d < t, Fy(t —d) = P(Tyq; <
t —d|Dg,; = 1) is the probability that the time (in days) from confirmation to
death for a case confirmed on day d that eventually died is lower than or equal
to t — d. This means that, for cases confirmed on day d that eventually died,
F4(t — d) indicates the expected proportion that were deceased by day t.

Therefore, dividing the cases confirmed during day d that have died by day
t by Fy(t — d), we will obtain a predictor of the number of confirmed cases
during day d that will finally die. Concretely, we define the predictor of D, (t)
as follows

R ¢ ;f:lDd,i(t)
PO =2 Fi—a

The estimator of the case fatality rate by day ¢, that is the estimator of cfr(t),
is defined as
e(t)

n .
D _ca
d=0
Note that the probability of dying from COVID-19 by day t for a case confirmed
on day d can be expressed in the following way
P(Dgi(t)=1) = PDg;=1)-P(Ty; <t—d|Dg;=1)
= ded(t - d)

Straightforward calculations show that E(CFR(t)) = cfr(t) and therefore, the
proposed estimator is unbiased. Setting

o)

CFR(t) = (5)

__Dai(t)

Fy(t—d)’
CFR(t) is an average of the Z4;(t) variables, which are independent but not
necessarily identically distributed since Dy ;(t) ~ Be(paFa(t — d)).

Z4,;(t)

The following result states the consistency and asymptotic normality of
CFR(t). Its proof can be found in the Appendix. Consider the following
assumptions:

Al: D = i%f F;(0) >0
A2: T = i%fpd >0
A3: S = suppg<l1

d

Theorem 1. For each t € N, let {Dg;(t)}a: for 0 <d <t and 1l <i<cq be
independent random variables Be(pqFy(t — d)). Assume that the total number
of confirmed cases until day t,



Then
(1) If A1 holds, then CFR(t) — cfr(t) — 0
CFR(t) —cfr(t) D,

V(CFR(t))
where V(CFR(t) is the variance of the CFR(t).

(i1) If A1 to A3 hold, then N(0,1),

As a consequence, asymptotic confidence intervals for ¢fr(t) can be devel-
oped. Confidence bounds can be calculated by using a normal approximation

CFR(t) £ 215/ V(CFR(t)),

where
capa(l — paFa(t — d))
Fy(t —d)

V(CFR(t)) = 22 (6)

"t 420

Note that these confidence intervals are theoretical, in the sense that they
only can be computed if F; and pg are known. The same applies to CFR(t), it
can be computed if Fy is known. Since this is not the case when working with
real data, Fy is replaced by an estimator I:_'d, see Section 2.4. Therefore, the
predictor that will be used for real data is given by

To calculate the confidence interval on day ¢, the py values are also needed for
0 < d < t, which are not available in a real data analysis. In such case, for
to < ty,call ¢ frié the expected proportion of people that will die from COVID-
19 among those who are confirmed in the period of time from ¢( to ¢t; days after
the start of the epidemic. Based on the same idea of the cumulative case fatality
rate estimator CF R, cfrié can be estimated on day ¢t > ¢; by

" ; Dai(t)
D Fa(t —d)

CFR(t) = =g (7)

S
d=tg
Note that CFR(t) is a particular case of deffinition (7), since CFR(t) =
CFRi(t).

In order to estimate pg on day t, for d < t, we use an estimator of the case
fatality rate for the week centered at d, i.e.

pa = CFRIT3(1). (8)

Estimation (8) is computed for days d, with 3 < d < t—3, while we set pg = Pi—3
fort —2 < d<tandpg = p3 for 0 < d < 2. Here, the estimation of py is an



auxiliary calculation, used to estimate the variance needed for the confidence
intervals. It is a problem of interest in its own since it allows to estimate the
actual probability of dying from COVID-19 for the cases confirmed on day d.
Moreover, equation (7) allows the estimation of the case fatality rate in any
period of time.

An analogous calculation can be done in order to estimate the daily proba-
bility of needing an intensive care unit (ICU), which might be useful to predict
the number of people who will arrive to ICU. This may be the subject of future
work.

2.3 Modified Garske et al. (2009) estimator

Garske et al. (2009) do not consider the possibility that the distribution of the
time from confirmation to death, F, or the daily case fatality rate pg, may vary
with time. Their estimator of the case fatality rate is defined as follows

D(t)
Z CdF(t - d)
d=0

where F' is the distribution of the time from confirmation to death and D(t) is
the random variable that counts the number of confirmed cases that died from
the beginning of the epidemic (day 0), to day ¢. If we consider varying F,; their
estimator becomes

CFRg(t) = : 9)

D(t)

CFRB(t) = ——"—.
Z CdFd(t — d)
d=0

Simple computations yield

> caFalt—dpa
E(CFRE(t)) = == = wipa. (10)
Z caFa(t — d) =0
d=0

Equation (10) shows that the expected value of this estimator is a weighted
mean of pg, but the weights are not the same as in c¢fr(t) and therefore, the
estimator is not necessarily unbiased, unless pg = p for all d. Of course, these
estimators are also computed by replacing F' or Fy; by their estimates when
these distributions are not known.

Despite this bias, Garske et al. estimator has some advantages if pg is
constant. First, if the distribution function Fy = F is known or estimated
previously, it can be computed for day ¢ using only the number of confirmed
cases and the number of deaths until day ¢t. The estimator proposed in our work,
on the other hand, requires knowing the number of deaths by day ¢, among all
confirmed cases during day d, for all d < ¢. Second, we have observed in our
simulations and real data analysis that it has less variance.



2.4 Estimation of Fy

Briefly, an explanation is provided on how Fj is estimated on day ¢, for d < t.
For such estimation, the assumption made is that F; = F for all d. On day
t, Fy(k) is estimated by FEMP(I{), the proportion of confirmed cases who died
in k or less days since confirmation, among those who died from the disease.
For calculating this proportion we consider only cases who were confirmed by
day t — tpacr and dead by day t, where tpqcr is taken in such a way that the
probability that a confirmed case that finally dies, does it in tpq., days or less,
is high. The need to take this tpqcr value is that considering all cases confirmed
until day ¢ would lead to an overestimation of F'(k), for small values of k, since
if there are dead people for day ¢, among the cases confirmed in the last days
before ¢, they have inevitably died within a few days, while those who have
been infected a few days before ¢ and have not died by day ¢ but will delay some
more days to die, are not taken into account for the estimate of F. Ideally,
tpack should be chosen in such a way that the probability of dying in tp.cr days
or less, among people who die from the disease, is one. If one chooses to set
the value of tpeer to a very large number, the estimate of F' will have a very
small bias. However, one will need to wait for many days to pass before being
able to start estimating F' and consequently cfr(t). Let us see an example of
how the value of tp,c, can be determined in practice: suppose we are on day
75 of the epidemic and we analyze those people who were confirmed infected
in the first 30 days of the epidemic, in other words, we use tpaer = 45. If 95%
of individuals have already recovered and 98% of the remaining 5% have died
from the disease, we can estimate that the probability of dying within 45 days
or less, among those who succumb to the disease, is at least 98%.

In the choice of tpqck, there is a trade-off between achieving a low-bias esti-
mation of F' and being able to do it as early as possible. In our case, we have
chosen a lower bound of 98% for the probability of dying in tpecr days or less,
conditional on dying from the disease.

3 Monte Carlo study

To evaluate the performance of the proposed estimators, a Monte Carlo study
is performed, considering several hypothetical scenarios, varying the parameters
cd, pa and the distribution function Fy. For ¢4, values based on real data are
chosen, specifically on the case of India and Argentina. In the first setting, the
observed ¢4 for d = 0 to d = 400 in Argentina are taken, while for the second, the
observed cg4 in India for d = 36 to d = 436 are taken, since there were no observed
cases from d = 1 to d = 35; see Figure 1. These quantities were downloaded
from https://ourworldindata.org/coronavirus; see Mathieu et al. (2020).
For the values of p; two possibilities were considered. The first, that we will
call Argentine pg is defined in the following way: for each day d, the value of
pq is the proportion of confirmed cases which finally died among those cases
confirmed between days d — 3 and d + 3, i.e, during the week centered at d in
the Argentinian case; see Figure 2. The second, that we will call the abruptly
changing py, is defined as pg = 0.05 for d = 0 to 120 and pg = 0.02 for d = 121 to
400. Finally, two possible models for F; were considered. In both cases Fy = F



for all d. In the first model, called Argentine F', F' is a Zero Inflated Negative
Binomial (ZINB) distribution, i.e., a convex combination of Fy, the distribution
of a constantly zero variable, and Fj a negative binomial distribution. We set
F =7Fy+ (1 —m)Fy, where 7 = 0.1, and F; ~ NB(u = 12.6,r = 1.2). This
distribution has been seen to provide a very good fit in the real case of Argentina.
Taking into account that a future epidemic might have different expected time
from diagnosis to death, a second Fy equal to the Argentine I’ except for u, that
changes to u = 6 has been considered. This distribution function will be called
Argentine F' with p = 6. In all cases Nrep replicates of an epidemic developing
form day d = 0 to day d = 400 have been simulated. For the Argentine cg4,
Nrep = 1000 is taken while for the Indian ¢4, Nrep = 500 is taken, to keep
computational times moderate, since in this case ¢4 are much larger.
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Figure 1: Daily cases in thousands in India (left) and Argentina (right).
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confirmed between days d — 3 and d + 3 in the first 400 days of the epidemic in
Argentina
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In all cases all the estimators presented in Section 2.2 are calculated, namely
CFRy(t), CFR(t) and CFRg(t), as defined in equations (2), (5) and (9),
respectively. CFR(t) and CFR¢(t) are calculated in two different ways. First,
the estimation is made using the known distribution of survival times F' used to
generate the data, and in such case the estimation is made for times ¢ with 10 <
t < 400. Second, the distribution F' is estimated by the “empirical estimation”
FEMP in the way described in Section 2.4. Note that for the empirical estimation
of F on day t, in order to reduce bias, we need to analyze the survival times of
cases confirmed several days before day ¢ (until ¢ — tpecr); see Section 2.4. Tt
is also necessary to have a relatively large number of deaths among confirmed
cases in order to obtain a stable estimate of F. This is why, in this second
instance, there is a need to begin the estimations a bit later, specifically on day
to = t1 + tpack, Where t1 represents the days required to accumulate enough
deaths by day t1 4 tpack from cases confirmed during the initial t; days. This
is necessary for the estimation of F' to be stable, and ¢y, is chosen such that
F(tpack) > 0.98. In the cases of Argentine F with pu = 12.6, we set tpqer = 45
and in the cases of u = 6, we set tpack = 23. The values of ¢; were chosen as
follows: in the cases of Argentine cq4, we took t; = 45 and in the cases of Indian
¢4, since the number of cases is larger, we took ¢; = 30. In order to find a lower
bound for ¢;, note that, for CFR(tg) to be well defined in (5), it is necessary
that Fy(to—d) > 0 for all d with 0 < d < tg, and this holds if F34(0) > 0 for all d.
When replacing Fj; by FEMP, the need is that ﬁ‘EMP(O) > 0. So CFR(tp) can be
estimated only if, among cases confirmed between day 0 and day tg — tpack = t1,
at least one died the same day it was confirmed. Observe that, in the cases of
Argentine ¢q and Argentine F' with y = 12.6, we have t; = tpacx = 45, and
thus tg = t1 + tback = 90 is the first day of estimation. The choice of d = 120
as the day of the abrupt change in pg in the simulations allows for a 30-day
comparison period (from day 90 to day 120) during which the p; values remain
constant since the beginning of the epidemic. This setup enables us to compare
the Garske estimator with ours under such conditions and to visualize how the
estimators behave once the change in the values of p; occurs, see Figure 3.

We calculated 95% confidence intervals for c¢fr(¢) presented in Section 2.2:
CFR(t) £ 20975/ V(CFR(t)). Note that V(CFR(t)) depends both on the daily
case fatality rates pg and on the distribution functions Fy (0 < d < t), see (6).
When we compute CFR(t) using the known F', we also use the known F to
estimate V(CFR(t)), whereas, when we compute CFR(t) using Fyp, we also
use Eyyp to estimate V(CFR(t)). In both cases the estimation of the daily p,
presented in (8) is performed. For the derivation of the confidence intervals, see
the Appendix.

Due to space limitations, in Figures 3 to 8, the graphics to analyze the
simulation results for only two of the considered scenarios are displayed, namely:
Argentine ¢4, u = 12.6, abrupt pg and F estimated by FE_\,lp with t; = 45 and
thack = 45; and Indian cg, p = 6, Argentine py and F' estimated by Fiyp with
tl = 30 and tback = 23.

In order to compare CFRy(t), CFR(t) and CFRg(t) with cfr(t), a func-
tional boxplot of the Nrep estimated curves obtained by each method is pre-
sented. Also the functional boxplot of CFRpg(t) is presented, which is the best
possible estimation of c¢fr(t), but only computable at the end of the epidemic,
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as a reference. In each functional boxplot a plot of the curve to be estimated,
cfr(t), is added; see Figures 3 and 4. Functional boxplots can be interpreted
in a similar way as boxplots for univariate data. The magenta region is analo-
gous to the box, the black curve contained in this region is the deepest curve,
analogous to the median, the two white regions between the outer blue curves
are analogous to the whiskers. Outliers, if present, would appear as dotted red
lines. For a definition of depth for functional data and details on functional
boxplots, see Sun and Genton (2011). The functional boxplots presented here
were computed using the function fbplot of the R package fda; see Ramsay
(2023).
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Figure 3: Functional boxplots of CFR(t) (top left), CFRq(t) (top right),
CFRy(t) (bottom left) and CFRp(t) (bottom right). The black curve is the
deepest estimated curve, while the green curve is the true curve cfr(t), object
of the estimation. The parameters used are: Argentine ¢4, u = 12.6, abrupt py.
The estimation is made using FEMP with t; = 45 and tpger, = 45.
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Figure 4: Functional boxplots of CFR(t) (top left), CFRqg(t) (top right),
CFRy(t) (bottom left) and CFRp(t) (bottom right). The black curve is the
deepest estimated curve, while the green curve is the true curve cfr(t), object
of the estimation. The parameters used are: Indian ¢y, u = 6 and Argentine py.
The estimation is made using FEMP with t1 = 30 and tpger = 23.

In Figures 3 and 4 only results until day 200 are shown in order to make
clearly visible the behaviour of the estimators at the beginning of the epidemic.
In Figure 3, one can observe the unbiased behaviour of CFR(t) during this
period. On the other hand, the estimator proposed by Garske et al. (2009),
CFR¢(t), overestimates cfr(t) for a long period of time after day 120, the day
when the cumulative case fatality rates cfr(t) start to decrease. On the other
hand one observes the severe tendency to underestimate of the “naive” case
fatality rate CF Ry (t) during the outbreak of the epidemic.

In Figure 4 one can observe that CFRg(t) underestimates cfr(t) in the
period of time in which c¢fr(t) is increasing and overstimates cfr(t) when it is
decreasing. The unbiased behaviour of CFR(t) is also observed and the severe
tendency to underestimate of CF Ry (t) during the outbreak of the epidemic. A
similar behaviour between CFRp(t) and CFR(t) is observed, except that, as
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may be expected, CF'Rp(t) has less variability.

Though it is not visible in Figures 3 and 4, by day 400, since the number of
cases is very large, all the estimators give good results.

In Figures 5 and 6 (below) both the finite sample bias and the finite sample
Mean Squared Error of estimators for the same scenarios plotted in Figures 3
and 4, respectively, are presented. In Figure 5 a lower mean squared error of
CF Rg compared to CF'R is observed for the first period until day 120, moment
in which cfr(t) starts to decrease and the bias of CFRg produces a higher
mean squared error compared to CFR as well. In Figure 6 one can observe
more clearly how C'F R has periods of moderate negative bias and of moderate
positive bias. These periods correspond to the increasing and decreasing periods
of cfr(t), respectively, showing that CF Rg(t) has a delay at detecting changes
in efr(t), whereas CF R(t) reacts to these changes instantly.
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|

0.000 0.005

2.0

15
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mean squared error x 10*
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Figure 5: Finite sample bias (left) and mean squared error multiplied by 10*
(right). Black curve corresponds to CFRy(t), red curve to CFR(t) and green
curve to CFRg(t). The parameters used are: Argentine ¢4, p = 12.6, abrupt
p4- The estimation is made using Femp with ¢; = 45 and tpger, = 45.
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Figure 6: Finite sample bias (left) and mean squared error multiplied by 10*
(right). Black curve corresponds to CFRy(t), red curve to CFR(t) and green
curve to CF R (t). The parameters used are: Indian ¢4, # = 6 and Argentine
pq- The estimation is made using ﬁemp with ¢; = 30 and tpeer = 23.

We have observed these same phenomena described for Figures 3, 4, 5 and 6
in all scenarios analyzed in the simulation, that is to say, minimum finite sample
bias for CFR(t) for all ¢, moderate finite sample bias for CFRg(t) in periods
of changing cfr(t) and even larger finite sample bias for CFRx(t) for a large
period of time since the beginning of the epidemic.

In the Appendix, we prove that the theoretical confidence intervals presented
in Section 2.2 have an assympthotic level of (1 — ) x 100%. However, the C.I.
calculated in the simulations may differ slightly from the theoretical ones. In
some cases empirical F' may be used instead of theoretical F', and the calculation
of V(CFR(t)) uses pq defined in (8) instead of pg. It is important to determine if
these computable C.I. also have an approximate confidence level of (1—a)x100%
and to analyze how many confirmed cases are needed for the C.I. to reach the
desired level of confidence. To address this, the C.I. have been calculated in
all scenarios of the simulations. For each replication in every scenario, the
confidence interval (a(t), b(t)) is constructed for tg < ¢ < 400. Then it is checked
if each interval contains the corresponding cfr(t). Finally, it is measured the
proportion of times, out of the Nrep replications, in which a(t) < efr(t) < b(t).
We refer to this proportion as the empirical mean coverage of the C.I. at time
t.

In Figures 7 and 8 the empirical coverage of the C.I. is plotted as a function
of the number of days since the beginning of the epidemic and as a function
of the number of confirmed cases. In Figure 7 one observes that the empirical
mean coverage of the C.I. is arround 95% approximately since day 270 or for 1.5
million of confirmed cases, and stabilizes around this empirical coverage from
that moment onwards, while the empirical coverage exceeds 90% with more than
250000 confirmed cases. In Figure 8 one can observe that the empirical mean
coverage of the C.I. reaches 95% around day 120 and stabilizes in that level of
coverage approximately by day 220. In Tables 1 and 2 the emprirical coverage
for all the simulation scenarios considered is given. In Table 1, the results when
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estimating F' using Four are presented. In these experiments, one can observe
that, the level of empirical coverage stabilizes at 95% at some point. In cases
where p = 6, this is achieved significantly sooner. In Table 2, the results with
known F' are presented. One can observe that, in this case, the desired coverage
of 95% is reached approximately around day 25.

mean coverage (percentage)
mean coverage (percentage)

0.0 05 10 15 20 25 100 200 300 400
cumulative cases in millions days since start of epidemic (d)

Figure 7: Mean coverage of 95% confidence intervals setting Argentine cg, p =
12.6, abrupt pg, using Fyype with ¢t = 45 and tpecr = 45.
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Figure 8: Mean coverage of 95% confidence intervals setting Indian cg, 4 = 6
and Argentine pg, using Fyyp with t; = 30 and tpqc = 23.
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Days since the beginning of the epidemic
cd Pd I tvack 75 100 150 200 250 300 350 400
India  Abrupt 12.6 45 52.2 72.0 85.0 882 92.8 934 93.6 94.8
India  Abrupt 6 23 91.8 91.8 93.6 94.0 944 952 93.8 944
India Arg 12.6 45 - 724 886 724 90.2 952 958 944
India Arg 6 23 90.6 93.8 934 92.6 95.0 94.6 96.0 94.6
Arg Abrupt 12.6 45 - 83.0 92.0 935 932 950 939 948
Arg Abrupt 6 23 95.2 91.6 93.8 943 939 955 950 952
Arg Arg 12.6 45 - 900 91.8 915 934 946 957 94.9
Arg Arg 6 23 96.0 95.8 94.2 94.8 952 945 953 952
Table 1: Empirical coverage of confidence intervals computed with FEMP.
Days since the beginning of the epidemic
Cd Pd I 25 50 75 100 150 200 250 300 350 400
India Abrupt 12.6 | 954 95.7 95.6 96.4 96.0 958 95.1 93.9 94.1 94.7
India  Abrupt 6 96.6 95.6 953 956 95.0 955 953 949 94.7 94.1
India Arg 126 | 94.1 951 96.6 959 955 95.7 945 951 956 94.7
India Arg 6 94.0 958 96.3 95.6 957 95.2 95.6 94.8 96.0 94.8
Arg Abrupt 12.6 | 95.4 949 96.2 955 953 950 94.7 952 94.1 949
Arg Abrupt 6 95.5 958 96.3 955 952 95.0 94.0 954 948 95.3
Arg Arg 12.6 | 929 954 970 96.0 96.2 951 959 95.0 955 94.8
Arg Arg 6 94.8 94.8 96.5 96.4 955 94.6 95.5 94.6 954 95.3

Table 2: Empirical coverage of confidence intervals computed with known F'.

4 Real data: the COVID-19 epidemic in
Argentina

In this section, the behavior of the estimators presented in Section 2.2 is analyzed
in a real data example. Of course, in this case, the values of the estimators can
not be compared with the values of interest ¢fr(t), as done in the simulation
study, because these values are not observable. The natural way to deal with
this problem is to compare the estimators to the final case fatality rate by day
t, CFRp(t).

For each day ¢ from June 1st to December 31st 2020, different estimators
of c¢fr(t) are computed using three of the columns of the data base from the
Ministry of Health of Argentina as of April 4th, 2021. The data set we used
is available as Supplement Material of this paper. Three estimators of the case
fatality rate by day ¢, ¢fr(t), that can be computed on day ¢, namely CF Ry (t),
CFR(t) and CFRg(t) are compared to the final case fatality rate until day
t observed on April 4th 2021, which we call CFRp(t), assuming that all the
confirmed cases during 2020 have either recovered or died by that date. The
three estimators are defined in equations (2), (5) and (9), respectively, and

17



CFRp(t) is computed by

Z Dy i(tr)

CFRp(t) = =%

t cq

— (11)
>
d=0

where tp is the number of days from March 3rd 2020 to April 4th 2021. Observe
that CFRp(t) defined in (11) equals the one defined in (3) if all people diagnosed
until day t have already died or recovered by day ¢, which might not be true
but both values should be very close one from the other. In fact, the Argentine
data set shows that the 0.98 quantile of the times between confirmation and
death is 45 days. We also observe that the ditributions Fy defined in Section
2.1 do not change significantly when d varies, expect for the first days of the
outbreak. For this reason, we assume F; = F' and estimate it by FEMP, using
thack = 45 and t; = 45; see Section 2.4 for the definitions of FEMP, and tpqcr and
Section 3 for the definition of ¢;. See also Section 4.1 for more details on the
estimation of Fj in this data set.

Figure 9 displays the estimated curves, together with the observed CFRp(t).
First, observe that both CFRg(t) and CFR(t) do a much better job than
the usual CFRy(t) at estimating cfr(t), since they are both much closer to
CFRp(t). Second, we remark that CF R¢(t) is nearer to CF Rp(t) until around
day 130 but soon after that day, the biased nature of CF Rg(t) becomes ap-
parent. We have observed that the empirical estimation of F(¢) in the first
40 days (day 90 to day 130), is higher than the actual proportion of cases that
died in ¢ or less days for cases that were confirmed in this period. This may
be because, earlier in the COVID-19 pandemic, PCR test results were slower
to arrive compared to later stages. Recall that, to estimate F(¢) on day d, we
use cases confirmed before day d — 45. In fact, we have observed that Fy(t)
decreases with d at the beginning of the epidemic and, assuming it constant, we
are overestimating it. This causes an underestimation of D.(t), which in turn
causes an underestimation of ¢fr(¢t) from day 90 to day 130. Unfortunately, we
do not have a solution for this isssue. See Section 4.1 for more details on the
estimation of Fy in this data set

Other simulations (unreported here) show that CF R (t) has less variability
than CF R(t). However, since for both estimators the variance converges to zero
as the number of observations goes to infinity, the weight of the variance in the
bias-variance trade off gets smaller and smaller as the number of cases rises.
By approximately day 150, it becomes evident that CF Rg(t) exhibits bias and
converges to a value different from the intended estimation of cfr(t). Finally,
it is noteworthy that the most realistic approach would have been to utilize the
database reported on day ¢ for computing the estimators at each ¢ in the analysis,
instead of employing the April 4th database for all estimations. Unfortunately,
this was not feasible due to the unavailability of all databases from June to
December 2020. However, we did have access to some databases from June
2020 and observed (in estimations not reported here) that the estimators did
not perform as well as those reported in this study. The issue arose from delays
in entering data, i.e., many individuals who were confirmed and deceased by day
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t only appeared in the database for day ¢ as confirmed cases but not as deceased
cases. Conversely, in a subsequent database (for instance, one from two months
later), these individuals appeared correctly as diagnosed and deceased by day
t. Addressing this data entry delay problem may involve the application of
nowcasting techniques, as discussed in Bastos et al. (2019).

A

-

100 150 200 250 300
days since start of epidemic

Figure 9: Estimated case fatality rate of COVID-19 in Argentina in 2020 com-
puted by different methods. Shaded area corresponds to the union of the C.I. of
CFR(t) for each t. Black curve corresponds to CF Ry (t), red curve to CFR(t),
green curve to CFRg(t) and blue curve to CFRE(t).

4.1 On the estimation of F, in the Argentine data

The estimation of F' is treated here as an auxiliary calculation. However it is an
interesting problem in its own right for public health intervention and policy,
as a referee remarked. Figure 10 shows three estimations of F', namely, FEMP,
Fy and FZ[NB, computed using all the available data by April 4th, 2021. Let
{z;,1 < i < n} be the observed times between confirmation and death for all
cases confirmed during 2020 that eventually died and note that n is the number
of cases that were confirmed in 2020 and died by April 4th, 2021. The first
estimation is the empirical distribution function defined as

. 1 &
Fowp () = n ZI(—oo,x] ().
i=1

The second estimation assumes that the time from confirmation to death is a
random variable X that follows a negative binomial distribution with mean p
and size r; that is with probability mass function

I(r+x) r \ [ w \"
= f =0,1,2,...
e (T, 11, 7) 20 () <T+M> <T+M or u,v > 0,2 =0,1,2,
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Figure 10: Different estimates of F, the distribution of time (in days) from
confirmation to death. The black line represents the empirical distribution
function FEMP, the red line represents FZINB and the green line represents FNB for
days 1 to 50.

and cumulative distribution function Fyg(z,u,r). The estimation of F' is then
computed as FNB(x) = Fygs(x, fixg, Pxp), Where fiyg = 11.5 and 7y = 0.8 are the
maximum likelihood estimations of p and r, respectively. The third estimation
is analogous to the second but assumes that the time from confirmation to death
follows a zero-inflated negative binomial distribution; that is, with probability
mass function given by

7+ (1 —m)pse(y,pr) if y=0

P (Y, py 7, ) = { Pxs (Y, 1, 7) if y>0."

for p,r > 0,0 <7 <1,y =0,1,2,..., and cumulative distribution func-
tion Fyng(x, p,r,m). The estimation of F is then computed as Fyng(z) =
FZINB(xaﬂZINB772ZINB77?rZINB)5 where fiyng = 12.8, 74y = 1.2 and e = 0.1 are
the maximum likelihood estimations of u, r and m, respectively.

Figure 10 shows that Fyns is quite similar to Elyp, while FNB(t) > Fouw (t)
for small values of ¢. For this reason, we decided to compare the final estimators
obtained using FEMP to those obtained using F’ZINB. The same estimations de-
scribed in Section 4 were performed using FZINB instead of FEMP and, as expected,
the resulting estimates of cfr(t) are extremely similar.

We explored different estimators of F', assuming parametric models for this
distribution, including regression of Y on X, where Y represents the number of
days from diagnosis to death, and X represents the number of days from the
beginning of the epidemic (March 3rd in this case) until the diagnosis date. We
employed a linear model and different generalized linear models. However, for
the majority of values of ¢, the regressions were non-significant. Additionally,
it was necessary to use the fitted models to estimate Fy for values of d that
were significantly beyond the range of the training data, leading to substan-
tial extrapolation errors. We believe this issue can be addressed by employing
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techniques designed for censored data. However, this does not appear straight-
forward for this type of data and may be explored in future work. For these
reasons we decided to use the empirical distribution function Fiyp.

5 Concluding remarks

Given the diagnosed cases of an epidemic disease, a statistical model is estab-
lished for the outcomes of the disease for patients diagnosed on different days.
Based on the model, the case fatality rate of the disease by day ¢ is defined as
the probability of dying from the disease for a randomly chosen person among
those diagnosed by day ¢, and an estimator for this rate is proposed. This esti-
mator is based on the distribution of the times between confirmation and death
of confirmed cases that die because of the disease..

It is demonstrated that the proposed estimator is unbiased, consistent, and
asymptotically normal, and asymptotic confidence intervals are derived. Both
the estimator and confidence intervals for the case fatality rate can be computed
during the course of the epidemic.

The excellent performance of the proposed estimator and confidence intervals
for large samples is demonstrated in comparison to the estimator proposed by
Garske et al. (2009) and the “naive” estimator reported daily during the COVID-
19 epidemic. This is achieved through a Monte Carlo study and an analysis of
the COVID-19 epidemic in Argentina during 2020. The mean coverage of the
asymptotic confidence intervals is computed as a function of the cumulative
number of cases, and it is shown to closely approximate the nominal confidence
level when the number of cases is large.

An estimator of the daily case fatality rate and an extension of the estima-
tor proposed by Garske et al. (2009) that allows the distribution of the times
between confirmation and death to change over time are also proposed.

To conclude, some limitations of our proposal and potential future directions
of our work are mentioned. First, the computation of our proposed estimator
requires more information than the simpler estimator proposed by Garske et al.
(2009), namely the number of confirmations and deaths each day. Second, the
delay in entering data, usually present in epidemic outbreaks, may introduce
extra bias and variability. This problem may be dealt with using nowcasting
techniques, as demonstrated in Bastos et al. (2019). This may be the subject of
further work. Third, the difficulty of estimating F', the distribution of the time
between confirmation and death. In the real data analysis, different estimators
of F were studied. We believe this estimation can be improved by employing
techniques designed for censored data. However, this does not seem simple for
this kind of data and may be the subject of further work.

Appendix

In this Appendix, the consistency and asymptotic normality of CFR(t) are
proved. Consistency of CFR(t) is defined as the convergence in probability of
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CFR(t) — cfr(t) to 0, as t — oo. Firstly, the Central Limit Theorem for
triangular arrays is recalled.

Theorem. Suppose that for each t € No, X¢1,X¢2,...,X¢r, are independent
random variables. Let Sy = X471+ Xy o+ ...+ Xy, . Suppose that E(X, ;) =0
for all t and k, and that the variances E(X?,) are finite. Call 0 = V(S;). If
the Lindeberg condition is satisfied, i.e.: ,

Tt
D E(X7k 1, pses)) =0

. 1
lim —
t k=

t—oo O

foralle > 0, where 1(...y is the indicator function, then the central limit theorem
holds, i.e.

f%lQNWJ)

(<47

For a proof of this theorem, see Theorem 27.2 in Billingsley (2008).

Proof of Theorem 1. Even though weak consistency is a consequence of
asymptotic normality, the proof of part (i) is written because it is interesting in
itself and has a simple proof independent of (ii).

The estimator C'F R(t) proposed for the case fatality rate, cfr(t), is a sample
average of the variables
Dy l(t)
Zai(t) = -0
d.i(t) Falt — d)

Easy calculations show that E(Z4;(t)) = pqs and

pa(l — paFa(t —d))
Fult — d)

V(Zai(t) =

are finite.

(7) Since A1 is satisfied, it is obtained that

1 1

V(Zg;(t) < ———— —infpy < —

( d,t( )) — infd/ Fd/(o) 13, pd —= Da
for all d and for all . Then
t
V(Zg.4(t 1 o
V(CFR( )) _ Zd—O Cd 2( d ( )) < t— O,

r; Dry

since 1, =% co. Since CFR(t) is an unbiased estimator of cfr(t), this implies
that CFR(t) — cfr(t) == 0.

(17) For each day ¢, the centered variables Zy;(t) — pg for 0 < d < t and
1 <i < ¢q, yield r; independent random variables of mean 0. If these variables
are renamed as X; 1,..., Xt ,, it can be observed that the Lindeberg condition
is satisfied. Subsequently, if S; = X1 + Xy o+ ...+ X¢,, and o2 =V(S;), the
convergence in distribution

St D, wro,1)
gt
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is achieved. The proof concludes by noting, through elementary calculations,

that
CEFR(t) —cfr(t) _ S

V(CFR(t)) or

Let us see that the variables {Zg ;(t) —pa}q,; satisfy the Lindeberg condition.
It is observed that

V(Za,i(t)) > (izll,fpd/)(l - sg/ppd,) =I(1-S),

for all d and for all i. This implies

o?=3" f:wzdﬁ-(t)) > rd(1—S)

d=0 i=1

and then o; — oo as 7y — o0o. Since A2 and A3 hold, the lower bound of of
is positive. It is observed that the variable Z4,(t) — pq takes only two possible
values: —pg and 1/F;(t — d) — pq. so it is obtained that

|Z4i(t) — pa)| < max {1,

1
—infpy § < 1,— b = M.
inf F4(0) P —max{’p}

Given ¢ > 0, if r; is large enough, then € - oy > M and 1|z, ,(t)-py|>co,} =0
for all d and 7, and then the Lindeberg condition

t Ccd
1

lim =Y "N "E ((Zai(t) = pa)® - 1{| 24, (t)—pa>eo}) =0

is satisfied.
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