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a b s t r a c t

In this paper, we propose robust estimators for the first canonical correlation and direc-
tions of random elements on Hilbert separable spaces by combining sieves and robust
associationmeasures, leading to Fisher-consistent estimators for appropriate choices of the
association measure. Under regularity conditions, the resulting estimators are consistent.
The robust procedure allows us to construct detection rules to identify possible influential
observations. The finite sample performance is illustrated through a simulation study in
which contaminated data is included. The benefits of considering robust estimators are also
illustrated on a real data set where the detectionmethods reveal the presence of influential
observations for the first canonical directions that would be missed otherwise.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Due to the growing interest in studying complex data, functional data analysis has become a relevant subject. When
dealingwith functional data, each observation consists of one or several infinite-dimensional objects such as curves, surfaces
or images rather than scalars or vectors. Functional data analysis has applications in a wide range of fields (archaeology,
medical science, biometrics, econometrics, environmetrics, chemometrics, etc.). Asmentioned inRamsay and Silverman [40],
in many areas of statistics the collected data are more naturally represented as functions rather than finite-dimensional
numerical vectors. It has been extensively discussed that simplifying the functionalmodel by discretizing the observations as
sequences of numbers can often fail to capture some of its important characteristics, such as the smoothness and continuity
of the underlying functions. Statistical methods to analyse such functional data may be found, for instance, in Ferraty and
Romain [18], Ferraty and Vieu [19], Horváth and Kokoszka [28], Hsing and Eubank [29] and Ramsay and Silverman [40]. For
a summary of recent advances in functional statistics see Aneiros et al. [4], Cuevas [14] and Goia and Vieu [22].

When the observed data are infinite-dimensional, dimension reduction is an important task. To tackle this problem and
depending on the goal sought different procedures have been considered, including functional principal components, single-
index functional data analysis and other effective reduction methods as discussed in Yao et al. [44]. Functional canonical
correlation analysis provides a useful dimension reduction tool to quantify correlation or association between two functions
recorded for a sample of subjects on the same population. For multivariate data, canonical correlation analysis is performed
by obtaining linear combinations of each subset of variables that maximize their correlation with the restriction that their
variances are equal to one. Under a Gaussian model, Leurgans et al. [35] showed that the natural extension of multivariate
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Fig. 1. Speed of the pen on the horizontal axis X (left panel) and on the vertical axis Y (right panel). The trajectories labelled 139 and 175 are shown in solid
black lines.

estimators to the functional scenario fails since there is always a pair of directions with empirical canonical correlation
equal to one. To solve this problem, they proposed a consistent estimator which penalizes the roughness of the canonical
directions. On the other hand, He et al. [25] provided conditions ensuring the existence and proper definition of the canonical
directions and correlations for processes admitting a Karhunen–Loève expansion, see also Cupidon et al. [16], while Cupidon
et al. [17] derived the asymptotic distribution of regularized functional canonical correlation and variates.

All aforementioned authors studied the problem of maximizing the Pearson correlation, which is known to be sensitive
to atypical observations (see Taskinen et al. [42]). In the multivariate scenario, there are several approaches which
consider robust estimators for the canonical correlations and directions. Croux and Dehon [10] and Karnel [34] proposed
a robust canonical correlation analysis replacing the sample covariance estimators byM-estimators or minimum covariance
determinant estimators of multivariate scatter in the equations defining the classical canonical directions. The influence
function of these robust plug-in canonical correlation estimators was discussed in Taskinen et al. [42]. Exploiting the
relation between canonical correlation and regression estimation, Filzmoser et al. [20] proposed using robust alternating
regression to obtain estimators of the first canonical variates. This proposal was generalized in Branco et al. [9] to estimate
all the canonical variates. A different approach based on projection-pursuit uses a robust association measure instead of
the Pearson correlation in the maximization procedure. This procedure has been considered in Alfons et al. [2] and Croux
and Filzmoser [12] for multivariate data. Furthermore, Jin and Cui [33] studied the asymptotic distribution of the estimators
obtained by projection-pursuit. As far as we know, there are no robust proposals in the functional setting.

As a motivation, consider the writing data set consisting of 2858 character samples that correspond to the speed profile
of a pen writing on a tablet. The data is available at https://archive.ics.uci.edu/ml/datasets/Character+Trajectories and has
been used byWilliams et al. [43] to have a better understanding of the sub-blocks arising in biological movements and their
timings. Among others, this data set has been considered inHubert et al. [30] to illustrate their depth-based functional outlier
detection method and in Hubert et al. [31] to perform robust supervised functional classification based on depth. We focus
on the 186 data related to the speed of the pen on the horizontal and vertical axis when writing the letter ‘‘e’’, denoted X(t)
and Y (t) respectively.We seek to explain how themovement variability on the horizontal axis is related to that of the vertical
one. Fig. 1 displays the data trajectories where some trajectories, such as those labelled 139 and 175, clearly seem to deviate
from the bulk of the data. For that reason, it is important to provide a procedure for estimating the canonical directions that
will not be influenced by atypical trajectories, as well as to provide a rule allowing for the identification of these influential
trajectories.

In this paper, we introduce robust estimators for the first canonical correlation and directions adapting the robust
projection pursuit approach considered in Alfons et al. [2] to the functional data setting by means of a sieve method. As
is well known, the sieves method involves approximating an infinite-dimensional parameter space Θ by a sequence of
finite-dimensional parameter spaces Θn, which depend on the sample size n, and then estimating the parameters on the
spaces Θn rather than on Θ , allowing for the introduction of the dimension of Θn as a smoothing parameter.

The paper is organized as follows. In Section 2, we begin by introducing some notation and then review some basic
concepts used throughout the paper. In Section 3, we define the robust estimators of the first canonical direction and
canonical correlation based on general association measures. Consistency results are established in Section 4, while Fisher-
consistency of the related functionals is presented in Section 4.1. Section 5 discusses the use of the given robust proposals to
construct detection rules allowing for the detection of influential observations, which is an important step in any analysis.
The results of a Monte Carlo study conducted to examine the robustness and finite sample performance of the proposed
procedures are reported in Section 6. The writing data set is analysed in Section 7, where the advantage of the proposed
estimators is illustrated. Furthermore, the robust estimators allow to identify observations with a different writing pattern.
Finally, Section 8 contains some concluding remarks. Proofs are relegated to the technical supplementary material available
on-line.

https://archive.ics.uci.edu/ml/datasets/Character%2BTrajectories
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2. Notation and preliminaries

LetHj, j = 1, 2, beHilbert separable spaceswith inner product ⟨·, ·⟩Hj and norm ∥·∥Hj . DenoteSj = {u ∈ Hj : ∥u∥Hj = 1},
j = 1, 2, the unit sphere inHj,H = H1 ×H2 the product space and ⟨(u1, v1), (u2, v2)⟩H = ⟨u1, u2⟩H1 + ⟨v1, v2⟩H2 the inner
product in H. Let Z = (X, Y )⊤ be a random element of the Hilbert space H defined in (Ω,A, Pr). When Z has finite second
moment, i.e., E(∥Z∥

2
H) < ∞, we denote as ΓXX : H1 → H1, ΓYY : H2 → H2, ΓXY : H2 → H1 and ΓYX : H1 → H2,

the covariance and cross-covariance operators, respectively. More precisely, for any u1, u2 ∈ H1, v ∈ H2, we have that
Cov(⟨u1, X⟩H1 , ⟨u2, X⟩H1 ) = ⟨u1, ΓXXu2⟩H1 , Cov(⟨u1, X⟩H1 , ⟨v, Y ⟩H2 ) = ⟨u1, ΓXYv⟩H1 and similarly for ΓYY and ΓYX . With
this notation, the covariance operator ΓZZ : H → H can be decomposed as ΓZZ (u, v) = (ΓXXu + ΓXYv, ΓYXu + ΓYYv)⊤,
allowing to write ΓZZ in the matrix form

ΓZZ (u, v) =

(
ΓXX ΓXY
ΓYX ΓYY

)(
u
v

)
.

Given a random sample Wi = (Si, Ti)⊤, 1 ≤ i ≤ n, of a random vector W = (S, T )⊤ : Ω → R2, Pn[S, T ] will denote
the empirical measure induced on R2. More precisely, for A ∈ B, where B is the Borel σ -Algebra of R2, Pn[S, T ](A) =

(1/n)
∑n

i=1IA(Wi), where IA(·) stands for the indicator function of the set A.

2.1. Association measures

Asmentioned in Alfons et al. [2], robust estimators of the canonical correlation for multivariate data can be defined using
themaximal value that a bivariate associationmeasure can attain between any pair of one-dimensional projections. For that
purpose, association measures giving an alternative to the classical Pearson correlation must be considered. In this section,
we recall the definition of an association measure and we review some examples of such measures.

The association ρ between two univariate variables S and T , denoted ρ(S, T ), is a functional defined in the space of
bivariate probability measures that verifies the following conditions

(i) ρ(S, T ) = ρ(T , S),
(ii) ρ(aS + b, cT + d) = sign(ac) ρ(S, T ) for all a, b, c, d ∈ R,
(iii) ρ2(S, T ) ≤ 1.

When (S, T )⊤ ∼ P[S, T ], we also denote ρ(P[S, T ]) = ρ(S, T ).
The most well-known association measure is the Pearson correlation, denoted ρcl, which measures linear correlation. For

a bivariate random vector W = (S, T )⊤ ∼ P[S, T ] with covariance matrix Σ = Var(W), we have

ρcl(W) = ρcl(P[S, T ]) =
Σ12

√
Σ11Σ22

.

It is well known that ρcl is very sensitive to the presence of outliers. Alternatives to the Pearson correlation can be seen in
Maronna et al. [38] or Shevlyakov and Vilchevski [41] among others. We will now briefly describe some of them.

The Spearman’s rank correlation ρ̃sp and Kendall’s tau correlation ρ̃k are well known association measures that have been
used in the finite-dimensional setting by Alfons et al. [2]. They are defined as

ρ̃sp(P[S, T ]) = ρcl{FS(S), FT (T )} and ρ̃k(P[S, T ]) = E [sgn {(S1 − S2)(T1 − T2)}] (1)

respectively, where FS and FT are the cumulative distribution functions of S and T and (S1, T1)⊤ and (S2, T2)⊤ are two
independent copies of (S, T )⊤. A discussion on the robustness properties of Spearman’s and Kendall’s correlations can be
found in Croux and Dehon [11].

Another robust alternative to the Pearson correlation can be obtained by means of a bivariate robust scatter functional
V = V(S, T ) instead of the classical covariance matrix Σ. The association measure induced by a bivariate scatter matrix V is
given by

ρV(P[S, T ]) =
V12(S, T )

{V11(S, T )V22(S, T )}
1
2
, (2)

where Vij(S, T ) is the (i, j)th element of the scatter matrix V(S, T ). One possible choice for V(S, T ) is the M-scatter
estimator defined by Maronna [37], since it provides an efficient estimator which is also highly robust in the bivariate
case. Another possible choice is to consider the orthogonalized Gnanadesikan–Kettenring covariance proposed by Maronna
and Zamar [39]. When using M-estimators or the orthogonalized Gnanadesikan–Kettenring covariance the corresponding
association measures will be denoted by ρVm and ρogk respectively.

A desirable property is that different measures of association determine the same value, which is the target one, at least
for a given distribution family P . If this occurs we will say that the corresponding measure is Fisher-consistent at P . This
property will allow us to guarantee the consistency of the canonical directions and canonical association estimators to the
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population quantities of interest. In particular, if P = {Pσ1,σ2,κ} is the family of bivariate elliptical distributions (which
contains the family of normal bivariate distributions) with location zero and scatter matrix

Σκ =

(
σ 2
1 κ σ1 σ2

κ σ1 σ2 σ 2
2

)
,

we want to identify which association measures consistently estimate the quantity −1 < κ < 1. Without loss of generality
we can assume σ1 = σ2 = 1 and denote P = {Pκ}. Note that, if we define T (κ) = ρ(Pκ ), Fisher-consistency is achieved
when T (κ) = κ . Maronna et al. [38] show that, if the robust scatter functional V is affine-equivariant, V(Pκ ) = c Σκ for some
positive constant c. Hence, the association measure ρV is Fisher-consistent for κ at the family of elliptical distributions. In
particular, we have ρVm (Pκ ) = κ . Even if the orthogonalized Gnanadesikan–Kettenring covariance is not affine equivariant,
the results in Section 6.12.10 in Maronna et al. [38] easily entail that ρogk(Pκ ) = κ .

Let us consider the family of normal distributions PN = {N (µ,Σκ )}. One may transform the Spearman and Kendall
correlations defined in (1) as

ρsp(P[S, T ]) = 2 sin
{π

6
ρ̃sp(P[S, T ])

}
and ρk(P[S, T ]) = sin

{π

2
ρ̃k(P[S, T ])

}
(3)

to ensure that ρsp and ρk are Fisher-consistent at the family of bivariate normal distributions. We will call ρsp and ρk the
normalized (or transformed) Spearman and Kendall correlations respectively.

3. The estimators

3.1. Functional canonical correlation analysis

Given (X, Y )⊤ : Ω → H1 × H2 a random element of the Hilbert space H with probability measure P , we denote the
probability measure of

(
⟨u, X⟩H1 , ⟨v, Y ⟩H2

)
⊤

∈ R2 induced by P as P[⟨u, X⟩H1 , ⟨v, Y ⟩H2 ]. The statistical functionals of
the canonical directions (or canonical weights) and the maximum canonical association defined in the multivariate setting
by Alfons et al. [2] can be extended to the functional setting, replacing the inner product in the Euclidean space by the
corresponding inner product in the Hilbert space. Given ρ an association measure as defined in Section 2.1, let ρXY (u, v) =

ρ
(
P[⟨u, X⟩H1 , ⟨v, Y ⟩H2 ]

)
, ρXX (u1, u2) = ρ

(
P[⟨u1, X⟩H1 , ⟨u2, X⟩H1 ]

)
and ρYY (v1, v2) = ρ

(
P[⟨v1, Y ⟩H2 , ⟨v2, Y ⟩H2 ]

)
. The

first canonical direction (or weight) functionals related to the association measure ρ are defined as

(Φ1(P), Ψ1(P)) = (Φ1, Ψ1) = argmax
∥u∥H1=∥v∥H2=1

ρXY (u, v). (4)

As in the multivariate canonical correlation analysis, the first or maximum canonical association is given by

ρ1(P) = ρ1 = ρXY (Φ1, Ψ1) = ρ(P[⟨Φ1, X⟩H1 , ⟨Ψ1, Y ⟩H2 ]) , (5)

where ⟨Φ1, X⟩H1 and ⟨Ψ1, Y ⟩H2 are the first canonical variates. Asmentioned inAlfons et al. [2], condition (ii) in the definition
of the association measure ρ entails that the maximum canonical association is indeed non-negative. As in He et al. [24],
higher order canonical variates may also be defined, see Section 8 for a discussion on this topic.

When the association measure is the Pearson correlation and the random element (X, Y )⊤ has finite second moments,
the first canonical weights given in (4) will be denoted as (Φcl,1, Ψcl,1). Furthermore, in this case the function ρXY : H → R
can be defined using the covariance operator ΓZZ as

ρXY (u, v) =
⟨u, ΓXYv⟩H1√

⟨u, ΓXXu⟩H1 ⟨v, ΓYYv⟩H2

,

where the ratio ⟨u, ΓXYv⟩
2
H1

/
(
⟨u, ΓXXu⟩H1 ⟨v, ΓYYv⟩H2

)
is equal to 0 when ⟨u, ΓXXu⟩ = 0 or ⟨v, ΓYYv⟩ = 0.

More generally, given a linear self-adjoint, positive semi-definite and compact operator Γ : H → H such that

Γ =

(
Γ11 Γ12
Γ21 Γ22

)
, (6)

Γ induces the functionals ρΓ : H → R, ρΓ11 : H1 × H1 → R and ρΓ22 : H2 × H2 → R as

ρΓ (u, v) =
⟨u, Γ12v⟩H1√

⟨u, Γ11u⟩H1⟨v, Γ22v⟩H2

(7)

ρΓ11 (u1, u2) =
⟨u1, Γ11u2⟩H1√

⟨u1, Γ11u1⟩H1⟨u2, Γ11u2⟩H1

ρΓ22 (v1, v2) =
⟨v1, Γ22v2⟩H2√

⟨v1, Γ22v1⟩H2⟨v2, Γ11v2⟩H2

, (8)

where u, u1, u2 ∈ H1, v, v1, v2 ∈ H2 and ρΓ (u, v) = 0 if either ⟨u, Γ11u⟩H1 = 0 or ⟨v, Γ22v⟩H2 = 0. Moreover,
ρΓ11 (u1, u2) = 0 when either ⟨u1, Γ11u1⟩H1 = 0 or ⟨u2, Γ11u2⟩H1 = 0 and similarly for ρΓ22 .
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Using ρΓ , the canonical directions (ΦΓ ,1, ΨΓ ,1) associated to Γ can be defined as in (4), replacing ρ by ρΓ . The first or
maximum canonical association associated to Γ , ρΓ ,1, satisfies the equation

ρΓ ,1 = ρΓ (P[⟨ΦΓ ,1, X⟩H1 , ⟨ΨΓ ,1, Y ⟩H2 ]) . (9)

When ρ is the Pearson correlation and H = L2(0, 1) × L2(0, 1), Leurgans et al. [35] showed that the estimation method
used in the Euclidean case breaks down in the infinite-dimensional setting. More precisely, let (X1, Y1)⊤, . . . , (Xn, Yn)⊤ be
a random sample of (X, Y )⊤ and denote as Pn its empirical distribution. When ρ is the Pearson correlation and (X, Y )⊤ is a
Gaussian process, replacing in (4) and (5) the probability measure P by the empirical distribution Pn does not lead to reliable
estimators since directions can be found with empirical canonical correlation equal to one. This property shows that in the
classical setting it is necessary to use a method involving some smoothing. Proposition 3.1 shows that the same result holds
when a general association measure is considered.

Given (u, v) ∈ H1 × H2, denote as ρn the empirical version of ρXY , that is,

ρn(u, v) = ρ(Pn[⟨u, X⟩H1 , ⟨v, Y ⟩H2 ]) . (10)

We will need the following assumptions

A1 Pr(X ∈ L) = 0 for any finite-dimensional proper linear space L of H1.
A2 Given any bivariate probability measure Q supported on the line R = {(x1, x2) ∈ R2

: x2 = x1} such that
Q ({x1 = c}) = Q ({x2 = c}) < 1 for all c ∈ R, the bivariate association measure ρ satisfies that ρ(Q ) = 1.

Remark 3.1. Straightforward arguments allow us to see that A1 holds if for any orthonormal basis {δj}j≥1 of H1 and any
k ∈ N such that k ≤ dim(H1), the k-dimensional random vector (⟨X, δ1⟩H1 , . . . , ⟨X, δk⟩H1 )

⊤ has a density. In particular, this
last statement holds if X has an elliptical distribution, as defined in Bali and Boente [6], with a dispersion operator Γ11 with
kernel reducing to {0}. Effectively, if X ∼ E(µ1, Γ11, ϕ) and ker(Γ11) = {0}, then X can be written as X = µ1 + SX̃ , where
Pr(S > 0) = 1 and the scalar random variable S and the Gaussian random element X̃ ∈ H1 are independent (see Boente
et al. [8]). Moreover, the covariance operator of X̃ is proportional to Γ11. Hence, (⟨X − µ1, δ1⟩H1 , . . . , ⟨X − µ1, δk⟩H1 )

⊤
=

S (⟨̃X, δ1⟩H1 , . . . , ⟨̃X, δk⟩H1 )
⊤ and the result follows from the fact thatw = (⟨̃X, δ1⟩H1 , . . . , ⟨̃X, δk⟩H1 )

⊤ has a kth dimensional
non-singular multivariate normal distribution and is independent of S.

On the other hand, A2 states that given a bivariate random vector (S, T ) ∈ R2 such that S = T almost surely, then
ρ(S, T ) = 1, whenever S and T are not constant. The Pearson correlation as well as the association measure ρogk and the
transformed Spearman or Kendall correlations, ρsp and ρk satisfy A2. As noted in Maronna [37], the M-scatter functional
is not defined when S = T . However, defining the Mahalanobis distance as in page 185 of Maronna et al. [38] we get that
ρVm = 1.

Proposition 3.1. Assume that A1 holds and that for any v ∈ H2, Pr(Y = v) = 0. Let ρ be a bivariate association measure
satisfying A2 and n ∈ N, 2 ≤ n ≤ dim(H1). Then, with probability one there exist un ∈ H1 and vn ∈ H2 such that ρn(un, vn) = 1.

It is worth noticing that the conclusion in Proposition 3.1 still holds when the roles of X and Y are reversed.
A direct consequence of Proposition 3.1 is that, if dim(H1) = ∞, some kind of smoothing is needed since supu∈S1,v∈S2

ρn(u, v) = 1. Section 3.2 describes our proposal which combines robust projection-pursuit with the method of sieves as a
smoothing tool.

3.2. Sieve approach for robust functional canonical correlation analysis

Let (X1, Y1)⊤, . . . , (Xn, Yn)⊤ be a random sample of the random element (X, Y )⊤ : Ω → H. Let {δi}i≥1 and {ηj}j≥1 be
orthonormal bases for H1 and H2 respectively. From now on, let H1,p and H2,q denote the subspaces of H1 and H2 spanned
by {δ1, . . . , δp} and {η1, . . . , ηq} respectively. We denote by S1,p = S1 ∩ H1,p and S2,q = S2 ∩ H2,q the unit spheres of H1,p
and H2,q respectively. The sieve estimators for the first canonical directions are defined as

(Φ̂1, Ψ̂1) = argmax
u∈S1,pn ,v∈S2,qn

ρn (u, v) (11)

where ρn is defined in (10), while the first or maximum canonical association estimator ρ̂1 ≥ 0 is such that

ρ̂1 = ρ

(
Pn[⟨Φ̂1, X⟩H1 , ⟨Ψ̂1, Y ⟩H2 ]

)
= ρn

(
Φ̂1, Ψ̂1

)
. (12)

These estimators depend on the chosen bases of H1 and H2, on the sequences (pn)n∈N and (qn)n∈N and on the association
measure ρ used. Some of the frequently used bases for functional data are the Fourier, polynomial, splines and wavelet
bases; see, for instance, Ramsay and Silverman [40].
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3.3. Selection of the smoothing parameters

Once the association measure ρ and the bases {δi}i≥1 and {ηj}j≥1 are chosen, the selection of the approximating linear
space dimensions pn and qn that play the role of the smoothing parameters is an important practical issue. The most popular
general approach to address such a selection problem is to use cross-validation methods.

Denote by rn = (pn, qn) the parameter to be determined. Let (Φ̂(−i)
rn,1, Ψ̂

(−i)
rn,1 ) be the first canonical direction estimators

computed without the ith observation and when the approximating subspaces have dimensions pn and qn, that is,

(Φ̂(−i)
rn,1, Ψ̂

(−i)
rn,1 ) = argmax

u∈S1,pn ,v∈S2,qn

ρ
(
P (−i)
n [⟨u, X⟩H1 , ⟨v, Y ⟩H2 ]

)
,

where P (−i)
n (A) = (1/n)

∑
j̸=iIA(Xj, Yj) for a Borel set A of H.

Let U (i)
rn,1 = ⟨Φ̂

(−i)
rn,1, Xi⟩H1 and V (i)

rn,1 = ⟨Ψ̂
(−i)
rn,1 , Yi⟩H2 be the canonical variates of the ith subject. He et al. [26] proposed a

selection method based onmaximizing the sample correlation of the canonical variates. However, as in other settings, using
a non-robust criterion to select the smoothing parameters even if combined with a robust estimation procedure may lead
to non-resistant estimators. For that reason, we propose using the same association measure ρ considered in the estimation
step to select the smoothing parameters. Let

RCVrn = ρ2

{
1
n

n∑
i=1

∆(U (i)
rn,1,V (i)

rn,1)

}
,

where ∆(a,b) denotes the bivariate probability measure giving all its mass to the point (a, b). GivenR a set of possible values
for the parameter rn, the cross-validation parameter equals r̂ where

r̂ = argmax
rn∈R

RCVrn . (13)

As in He et al. [26], once the dimension is chosen, one may also choose the value ρ̃1 =
√
RCV̂r as the estimator of the first

canonical association.

3.4. Numerical implementation of the estimators

Except for the Pearson correlation ρcl, the maximizers of (11) cannot be computed exactly. For that reason, algorithms to
obtain approximate solutions are needed.

Given {δi}i≥1 and {ηj}j≥1 orthonormal basis of H1 and H2 respectively, the estimators proposed in (11) are obtained
searching directions u =

∑pn
i=1aiδi ∈ H1 and v =

∑qn
i=1biηi ∈ H2,

∑pn
i=1a

2
i =

∑qn
i=1b

2
i = 1, that lead to the maximum value

of ρ(Pn[⟨u, X⟩H1 , ⟨v, Y ⟩H2 ]). Denote a = (a1, . . . , apn )
⊤ and b = (b1, . . . , bqn )

⊤ the coefficients of u and v in the considered
basis and let x =

(
⟨X, δ1⟩H1 , . . . , ⟨X, δpn⟩H1

)
⊤ and y = (⟨Y , η1⟩H2 , . . . , ⟨Y , ηqn⟩H2 )

⊤. Noting that ⟨u, X⟩H1 = a⊤x and
⟨v, Y ⟩H2 = b⊤y, the estimators given in (11) can be obtained using any multivariate algorithm allowing to find the vectors
â1 = (â11, . . . , â1pn )

⊤ and b̂1 = (b̂11, . . . , b̂1qn )
⊤ with norm 1 which maximize ρ(Pn[a⊤x, b⊤y]), i.e.,

(â1, b̂1) = argmin
∥a∥Rp=1,∥b∥Rq=1

ρ(Pn[a⊤x, b⊤y]) . (14)

The alternate grid algorithm described in Alfons et al. [1,2] is a well known algorithm allowing to perform multivariate
canonical analysis for association measures such as the Spearman and Kendall correlation and the association measure
based on a bivariate M-scatter matrix. It provides an accurate method to approximate the weights â1 and b̂1 maximizing
ρ(Pn[a⊤x, b⊤y]), using optimization in two-dimensional spaces. The algorithm is implemented through the function
ccaGrid in the R package ccaPP. Once the multivariate weights â1 and b̂1 are obtained, the canonical direction estimators
in Hj can be reconstructed as

Φ̂1 =

pn∑
j=1

â1jδj and Ψ̂1 =

qn∑
j=1

b̂1jηj . (15)

4. Consistency

As in Cupidon et al. [17] and Leurgans et al. [35], in this section we show that under mild conditions the estimators of
the first canonical weights and the related first canonical association defined in Section 3 are consistent to the functionals
given in (4) and (5). It is worth noticing that our results include the multivariate setting by taking pn = dim(H1) and
qn = dim(H2). In this sense, we extend the results given in Jin and Cui [33] from the Euclidean to the infinite-dimensional
case in amore general setting, sinceweaker assumptions are required. Finally, it should be noticed that, in Theorem4.1when
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dim(H1) < ∞, we understand that the requirement pn → ∞ is replaced by pn = dim(H1). Similarly, when dim(H2) < ∞,
qn = dim(H2).

To derive the consistency of the estimators we will need the following assumptions. To avoid burden notation, from now
on, let (Φ1, Ψ1) = (Φ1(P), Ψ1(P)) the solution of (4), which we assume to exist, and ρ1 = ρ1(P) the functional defined in (5).

C1 supu∈S1,pn ,v∈S2,qn
|ρ2

XY (u, v) − ρ2
n (u, v)|

a.s.
−→ 0.

C2 ρ2
XY : H1 × H2 → R is continuous at the first canonical directions (Φ1, Ψ1).

C3 There exists a compact, self-adjoint and positive definite operator Γ : H1 × H2 → H1 × H2 such that ρ2
XX (u1, u2) =

hX
{
ρ2

Γ11
(u1, u2)

}
, ρ2

YY (v1, v2) = hY
{
ρ2

Γ22
(v1, v2)

}
and

ρ2
XY (u, v) = h

{
ρ2

Γ (u, v)
}

, (16)

where ρΓ , ρΓ11 and ρΓ22 are defined in (7) and (8). Furthermore, if h̃ : [0, 1] → [0, 1] stands for any of the functions
h, hX or hY , then h̃ is a strictly increasing function such that h̃(0) = 0 and limx→1− h̃(x) = 1.

C4 (Φ1, Ψ1) exists and is unique up to change of sign. Moreover, there exists ρ2 with 0 ≤ ρ2 < ρ1 such that if
ρXX (u, Φ1) = ρYY (v, Ψ1) = 0 then ρ2

XY (u, v) ≤ ρ2
2 .

The notion of convergence of the first canonical directions estimators to the first population canonical weights will be the
convergence with respect to the measures of association that is analogous to the Γ -norm convergence defined in Leurgans
et al. [35]. More precisely, given sequences (un)n∈N ⊆ H1, (vn)n∈N ⊆ H2, we say that (un, vn) converges to (u, v) ∈ H
in association if ρ2

XX (un, u) → 1 and ρ2
YY (vn, v) → 1. As noted in Leurgans et al. [35], this convergence means that the

canonical variates obtained from (un, vn) for a given random element (X, Y ) behave as those obtained from (u, v). This kind
of consistency is a desirable property to hold for the estimated canonical directions.

The following theorem shows the strong consistency of our estimators.

Theorem 4.1. Let (Φ̂1, Ψ̂1) and ρ̂1 be the estimators defined in (11) and (12). Assume that the sequences (pn)n∈N and (qn)n∈N are
such that pn → ∞ and qn → ∞. Then, under C1 and C2, we have

(i) ρ̂2
1

a.s.
−→ ρ2

1 ;

(ii) ρ2
XY (Φ̂1, Ψ̂1)

a.s.
−→ ρ2

1 ;

(iii) If in addition C3 and C4 hold, then ρ2
XX (Φ1, Φ̂1)

a.s.
−→ 1 and ρ2

YY (Ψ1, Ψ̂1)
a.s.

−→ 1 .

We include below some comments regarding assumptions C2 to C4. Conditions under which C1 holds and further
comments on C2 are relegated to the supplementary file available on-line.

Remark 4.1. Assume that the association measure satisfies (16) for a continuous increasing function h such that h(0) = 0
and that ρ1 > 0, then C2 holds. Effectively, from ρ1 > 0 and the fact that h is increasing, we get that the ratio

⟨Φ1, Γ12Ψ1⟩H1√
⟨Φ1, Γ11Φ1⟩H1⟨Ψ1, Γ22Ψ1⟩H2

is positive, so ⟨Φ1, Γ11Φ1⟩H1 ̸= 0 and ⟨Ψ1, Γ22Ψ1⟩H2 ̸= 0. On the other hand, the compactness ofΓ entails that the functions
g1(u) = ⟨u, Γ11u⟩H1 , g2(u) = ⟨v, Γ22v⟩H2 and g12(u, v) = ⟨u, Γ12v⟩H1 are continuous functions which together with the fact
that g1(Φ1) ̸= 0 and g2(Ψ1) ̸= 0 entail that C2 holds.

Note that when the kernel of Γjj is equal to {0} for j = 1, 2, we have g1(Φ1) ̸= 0 and g2(Ψ1) ̸= 0. Hence, if h(t) = t , C3
implies C2. On the other hand, Lemma S.3.2 in the Supplementary file implies that C2 holds if the association measure ρ is
continuous with respect to the Prohorov distance at the bivariate distribution P[⟨Φ1, X⟩H1 , ⟨Ψ1, Y ⟩H2 ].

It is worth mentioning that (16) in C3 is analogous to assumption (iv) of Alfons et al. [2].

Remark 4.2. When we use Pearson’s correlation ρ = ρcl in (4), ρXY = ρΓZ , with ΓZ the covariance operator of Z , hence
C3 holds. Notice that, in this case, a necessary condition for a good definition of the canonical weights is that both random
elements X and Y have finite second moments. This condition may be relaxed when the random element Z is elliptic and
the association measure corresponds to one of those described in Section 2.1.

Let Z = (X, Y )⊤ ∼ E(µ, Γ , ϕ) be a random element inHwhere µ ∈ H and Γ is as in (6). Given w = (w1, w2) ∈ H1 ×H2,
define Aw : H → R2 as Aw(x, y) = (⟨w1, x⟩H1 , ⟨w2, y⟩H2 )

⊤. Using that Z ∼ E(µ, Γ , ϕ), we get that zw = Aw(X, Y ) has
an elliptical distribution, zw ∼ E2(Awµ, AwΓ A∗

w), where the (i, j)th element of AwΓ A∗
w equals ⟨wi, Γijwj⟩Hi , for i, j ∈ {1, 2}.

Hence, given an association measure ρ Fisher-consistent at the elliptical family, from the discussion given in Section 2.1 we
conclude that

ρ2
XY (u, v) =

⟨u, Γ12v⟩
2
H1

⟨u, Γ11u⟩H1 ⟨v, Γ22v⟩H2

= ρ2
Γ (u, v) . (17)

Therefore, ρ satisfies (16) with h(t) = t . Moreover, we also have ρ2
XX (u1, u2) = ρ2

Γ11
(u1, u2) and ρ2

YY (v1, v2) = ρ2
Γ22

(v1, v2),
that is, Fisher-consistent association measures for bivariate elliptic families satisfy C3.



A. Alvarez, G. Boente and N. Kudraszow / Journal of Multivariate Analysis 170 (2019) 46–62 53

Remark 4.3. Assumption C4 is similar to assumption 3 in Leurgans et al. [35]. Consider the special situation of an elliptical
random element Z = (X, Y )⊤ ∼ E(µ, Γ , ϕ) where Γ is given by (6) and let ρ be an association measure Fisher-consistent
for elliptical families. Assume that E ∥Z∥

2
H < ∞, then, without loss of generality, we may assume that Γ is the covariance

operator of Z . Define R = Γ
−1/2
11 Γ12Γ

−1/2
22 , where Γ

−1/2
11 and Γ

−1/2
22 are the generalized inverses of the roots of Γ11 and Γ22

respectively. Assume that there exists only one orthonormal eigenfunction v1 associated to the first eigenvalue ζ1 of R∗R and
denote as u1 = Rv1/

√
λ1. When Z ∈ L2(0, 1) × L2(0, 1) and ρ is the Pearson correlation, He et al. [25] provide conditions

ensuring the existence and proper definition of the canonical directions and correlations. Under these conditions, Theorem
4.8 of He et al. [25] entails that (Φ1, Ψ1) = (Γ −1/2

11 u1/∥Γ
−1/2
11 u1∥H1 , Γ

−1/2
22 v1/∥Γ

−1/2
22 v1∥H2 ) is the unique maximizer in (4)

except for sign change. Furthermore, if ζ2 < ζ1 where ζ2 is the second eigenvalue of R∗R, then, given u ∈ H1 and v ∈ H2
such that ρXX (u, Φ1) = ρYY (v, Ψ1) = 0, we have ρXY (u, v) ≤ ρ2 =

√
ζ2 which shows that C4 holds.

As mentioned in Remark 4.2, if Z = (X, Y )⊤ ∼ E(µ, Γ , ϕ) is an elliptical random element, Fisher-consistent association
measures for bivariate elliptic families, such as the coefficients ρVm or ρogk defined through (2), satisfy (16). Hence, we have
ρ1(P) = h(ρΓ ,1),Φ1(P) = ΦΓ ,1 andΨ1(P) = ΨΓ ,1. Therefore, the above discussion implies that C4 holds for these association
measures, under the assumptions in Theorem 4.8 of He et al. [25].

On the other hand, for Gaussian processes, C4 holds when considering the transformed Spearman or Kendall correlations,
ρsp and ρk, under the assumptions of Theorem 4.8 of He et al. [25].

4.1. Fisher-consistency

Theorem 4.1 shows that the estimators defined in (11) and (12) are consistent for the population first canonical directions
and the maximum canonical association given in (4) and (5). It is important to highlight that the quantities ρ1 = ρ1(P) and
(Φ1, Ψ1) = (Φ1(P), Ψ1(P)) depend on the chosen association measure ρ and we need to clarify what they represent. This
section focusses on showing that the functionals ρ1(P) and (Φ1(P), Ψ1(P)) have a simple interpretation, at least in some
situations. In particular, our results hold for the elliptical families, even though they are not restricted to them.

When the measure of association satisfies C3, we have ρ1(P) = h(ρΓ ,1), Φ1(P) = ΦΓ ,1 and Ψ1(P) = ΨΓ ,1. Hence, in
this case, the estimated canonical directions defined in (11) are consistent for the first canonical weights associated to Γ .
Furthermore, if h(t) = t , ρ̂1 provides a consistent estimator of the first canonical association associated to Γ . As mentioned
above, if Z ∼ E(µ, Γ , ϕ) and has finite second moment, there exists a constant c > 0 such that Γ = c ΓZZ , where ΓZZ is the
covariance operator of Z . Therefore, the canonical analysis done using the dispersion operator Γ or the covariance operator
ΓZZ are identical.

We will see that for elliptic families, the functionals ρ1(P), Φ1(P) and Ψ1(P) have a simple interpretation for some of the
association measures described in Section 2.1. Let Z = (X, Y )⊤ ∼ E(µ, Γ , ϕ) be a random element in H where µ ∈ H and
Γ is as in (6). From Remark 4.2, we have that C3 holds with the scatter operator Γ , see (17), implying that ρ1(P), Φ1(P) and
Ψ1(P) are the first canonical association and directions associated to Γ respectively. Hence, Fisher-consistent association
measures for bivariate elliptic families provide estimators of the quantities of interest. Examples of association measures
Fisher-consistent at the elliptical distributions are, for instance, those defined from scatter matrices, i.e., the measures ρVm
or ρogk defined through (2).

Finally, consider the family of Gaussian distributions and any association measure Fisher-consistent for normal bivariate
vectors, such as the normalized Spearman or Kendall correlations ρsp and ρk given in (3). Then, using (17) we get that (16) is
satisfied with h(t) = t which implies that ρ1(P),Φ1(P) andΨ1(P) are the first canonical association and directions associated
to Γ respectively.

5. Detection methods to identify influential observations

An important use of robust estimators is the detection of potential outliers. In this section, we describe two criteria to
detect observations with a significant impact on the first canonical weight estimators. More precisely, we are not interested
in providing a rule to detect any kind of outliers in functional data, but only to identify observations which influence the first
canonical directions estimators. The first method is based on prediction, while the second is based on cross-prediction, both
related to the functional canonical analysis described above.

To describe the first detection rule, let (X, Y )⊤ be a centred random element of H = H1 × H2. Our detection method
considers the orthogonal projections on the first canonical weights ⟨X, Φ1⟩H1Φ1 and ⟨Y , Ψ1⟩H2Ψ1 as predictors of X
and Y respectively. More precisely, given a sample {(Xi, Yi)⊤}

n
i=1 ⊂ H, let µ̂ = (µ̂X , µ̂Y ) be robust location estimates

computed from this sample, such as the spatial median, that is, µ̂X = argminθ∈H1

∑n
i=1

(
∥Xi − θ∥H1 − ∥Xi∥H1

)
/n and

µ̂Y = argminθ∈H2

∑n
i=1

(
∥Yi − θ∥H2 − ∥Yi∥H2

)
/n. Let (Φ̂1, Ψ̂1) be the robust estimates of the first canonicalweights defined

in Section 3.2 and computed as described in Section 3.4. Robust estimators are needed since, as in other settings, the detection
methods based on the Pearson correlation may produce a masking effect that will not allow us to properly identify the
influential observations.

Denote as X (c)
i = Xi − µ̂X and Y (c)

i = Yi − µ̂Y the centred observations and let X̂ (c)
i = ⟨X (c)

i , Φ̂1⟩H1Φ̂1 and Ŷ (c)
i =

⟨Y (c)
i , Ψ̂1⟩H2 Ψ̂1 be their predictors respectively. We expect that an influential or atypical observation will be poorly fitted

leading to large values of at least one of the two squared residuals norms R2
X,i = ∥X (c)

i − X̂ (c)
i ∥

2
H1

or R2
Y ,i = ∥Y (c)

i − Ŷ (c)
i ∥

2
H2

.



54 A. Alvarez, G. Boente and N. Kudraszow / Journal of Multivariate Analysis 170 (2019) 46–62

As noticed in Boente and Salibián–Barrera [7], exploring the residuals norms may allow to detect abnormal points in the
data. Taking into account that the distribution of the residuals squared norm is typically skewed to the right, we propose
to flag an observation as atypical if its squared residual norm exceeds the upper whisker of a skewed-adjusted boxplot (see
Hubert and Vandervieren [32]). More precisely, denote as GX and GY the set of indices exceeding the upper whisker of the
skewed-adjusted boxplot of the residuals (R2

X,i)1≤i≤n and (R2
Y ,i)1≤i≤n respectively. The observations with indices in the sets

GX , GY or GX ∪ GY are considered as potential influential observations which, from now on, are called outliers as shorthand.
The detection rule based on cross-predictions is based on the following property that can be found in Yohai and García

Ben [45]. Let x ∈ Rp and y ∈ Rq be centred random vectors and assume that E∥x∥2
Rp < ∞ and E∥y∥2

Rq < ∞. Given a
random vector z ∈ Rℓ, denote as y∗

z the best linear predictor for y based on z, i.e., y∗
z = E(yz⊤)E(zz⊤)−1z. Then, when each

component zj of z = (z1, . . . , zℓ) is a linear function of x, the random vector z that minimizes the determinant of the matrix
E(y − y∗

z )(y − y∗
z )

⊤ is given by the first ℓ canonical variables related to x.
As in Section 3.4, given {δi}i≥1 and {ηj}j≥1 orthonormal bases of H1 and H2 respectively and a sample {(Xi, Yi)⊤}

n
i=1 set

xi =
(
⟨Xi, δ1⟩H1 , . . . , ⟨Xi, δpn⟩H1

)
⊤ and yi = (⟨Yi, η1⟩H2 , . . . , ⟨Yi, ηqn⟩H2 )

⊤. Denote x(c)i = xi − µ̂x and y(c)i = yi − µ̂y, the
centred observations where µ̂x and µ̂y are robust location estimates, such as the spatial median computed from the samples
{xi}1≤i≤n and {yi}1≤i≤n respectively. Furthermore, let â1 and b̂1 be defined as in (14) and compute the sample of the centred
first canonical variables û(c)

i = â1⊤x(c)i and v̂
(c)
i = b̂1

⊤y(c)i . It is worth noticing that û(c)
i = ⟨Xi, Φ̂1⟩H1 − â1⊤µ̂X provides an

approximation for the centred canonical variate in the space H1 given by Û (c)
i = ⟨X (c)

i , Φ̂1⟩H1 = ⟨Xi, Φ̂1⟩H1 − ⟨µ̂X , Φ̂1⟩H1

and similarly for v̂
(c)
i . Using for each observation the centred canonical variates, we obtain the best robust linear predictors

of x(c) and y(c) based on v̂(c) and û(c) respectively, denoted as x̂∗

v̂
and ŷ∗

û. As before, one expects that an influential observation
will be poorly predicted causing large values of at least one of the two squared residuals norms r2X,i = ∥x(c)i − x̂∗

v̂,i∥
2
Rp and

r2Y ,i = ∥y(c)i − ŷ∗

û,i∥
2
Rq . Three different sets of indices are used to identify the possible atypical data. As above, GX and GY

indicate the sets of indices exceeding the upper whisker of the skewed-adjusted boxplot of the residuals (r2X,i)1≤i≤n and
(r2Y ,i)1≤i≤n respectively, while GX+Y stands for those indices exceeding the upper whisker of the skewed-adjusted boxplot of
the sample (r2X,i + r2Y ,i)1≤i≤n. Finally, any observation with index in the sets GX , GY , GX ∪GY or GX+Y is considered as a potential
atypical data.

It is worth noticing that a detection rule based on the bagplot of (Û (c)
i , V̂ (c)

i ) may also be considered as a diagnostic tool.
We refer to Alvarez [3] for readers interested on the performance of this detection method.

6. Monte Carlo study

In this section, we numerically explore the finite sample behaviour of the proposed estimators for different association
measures and different choices for the approximating subspaces when the Hilbert spaces are L2-spaces. More precisely, we
report the results of a Monte Carlo study designed to compare the performance, for Gaussian and contaminated data, of the
first canonical association and direction estimators defined in (11) and (12) when using the Pearson correlation and two
robust association measures. In all cases, we performed NR = 1000 replications.

6.1. The estimators

As mentioned above, the estimators defined in (11) depend both in the association measure to be maximized and in the
bases generating the approximating spaces. Beyond the Pearson correlation ρcl, we report here the results obtained using
the associationmeasure defined through theM-scatter matrix ρVm defined in (2), where Vm is computed using Huber’s score
functionwith tuning constant k1 = (χ2

2,0.9)
1/2, and the normalized Spearman coefficient ρsp given in (3). The results for other

association measures can be seen in Alvarez [3].
Two different sieve bases are considered: the cubic B-spline basis as fixed basis and the basis of functional principal

directions as an adaptive one. The elements of the B-spline basis are orthonormalized before applying the algorithm to
compute the estimators. On the other hand, when ρ is the Pearson correlation ρcl, the principal direction basis on each
space is chosen as the eigenfunctions of the sample covariance operators of X and Y respectively. For the robust association
measures, robust principal direction estimators are considered. Taking into account that, when performing cross-validation,
the principal directions need to be computed each time an observation is removed, we need to choose a robust and fast
procedure to compute the principal direction estimators. The spherical principal directions defined in Locantore et al. [36]
and studied in Gervini [21] achieve this goal, since they provide a simple and fast method to obtain estimators of the
functional principal directions.

The canonical direction estimators were computed as described in Section 3.4 using the alternate grid algorithm
implemented through the function ccaGrid. It is worth mentioning that an algorithm using the centred data as possible
directions may also be considered to estimate the first canonical directions, following the ideas used by Croux and Ruiz-
Gazen [13] for the estimation of the first principal component. However, as shown in Alvarez [3], the grid algorithm leads to
better results. For that reason, we omit the results obtained using the centred data as candidates and we refer to Alvarez [3]
for further discussions.

To select the dimension of the approximating spaces, we use the criterion defined in Section 3.3, where for computational
simplicity, we have only considered the same dimensions in both spaces, that is, R = {(p, p) : p ∈ R⋆

}, so rn equals
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(p, p) in (13). The set R⋆ is taken as R⋆
= {3, . . . , 11} for both bases. It is worth noticing that the possible values of the

dimension p start in 3 when using B-splines since we are using cubic splines. On the other hand, for the simulation model to
be described in Section 6.2, the eigenvalues related to the first three principal directions are equal, so the principal directions
are not uniquely defined for p < 3. Once the value r̂ = (p̂, p̂) in (13) is obtained, the estimators of the canonical weights are
computed using the algorithm described below, leading to the first canonical weights estimators (Φ̂1, Ψ̂1) and themaximum
canonical association estimator ρ̂1. We also computed the estimator ρ̃1 = ρ̃p̂,1 defined as ρ̃1 =

√
RCV̂r.

6.2. Simulation settings

Our simulation model is similar to the one considered in He et al. [26]. For each replication, we generate independent
samples {(Xi, Yi)⊤}

n
i=1 ⊂ H1 ×H2 of size n = 100 withHj = L2[0, 50]. The processes were observed over an equispaced grid

of 50 points tj, j = 1, . . . , 50. Hence, the inner products ⟨Xi, u⟩H1 and ⟨Yi, v⟩H2 were approximated as sums over the design
points {tj}1≤j≤50.

The clean data sets, denoted C0, were generated with the same distribution as the Gaussian random element (X, Y )⊤ ∈

H1 × H2, given by X(t) =
∑m

j=1ξjfj(t) and Y (t) =
∑m

j=1ζjfj(t), where {fj}j≥1 is the Fourier basis of L2[0, 50] and m = 21.
The scores ξ = (ξ1, . . . , ξm)⊤ and ζ = (ζ1, . . . , ζm)⊤ are m-dimensional normally distributed random vectors, (ξ⊤, ζ⊤)⊤ ∼

N (0,Σ) where

Σ =

(
Σ11 Σ12

Σ⊤

12 Σ22

)
with Σ22 = Σ11 = 10 diag(1, 1, 1, 0.75, . . . , 0.75m−3) and Σ12 = diag(7, 3, 1, 0, . . . , 0).

Taking into account that the process (X, Y ) is Gaussian and that all the considered association measures are Fisher-
consistent at the bivariate normal distribution, the target quantities to be estimated do not depend on the selected
association measure and are equal to the canonical weights and correlations defined in He et al. [24]. Hence, they will be
simply denoted as ρℓ and (Φℓ, Ψℓ). For the process described above, we have ρ1 = 0.7, ρ2 = 0.3, ρ3 = 0.1 and ρℓ = 0 if
ℓ > 3, whereas the canonical weights are Φℓ(t) = Ψℓ(t) = fℓ(t), for ℓ = 1, 2, 3 .

Besides the central Gaussian model, we have considered two contaminated situations that can be described as follows
C1: (Xi, Yi)⊤ are i.i.d. with the same distribution as (1 − B)(X, Y )⊤ + BW (f2, f2)⊤, where B ∼ B(1, 0.1), W ∼ N (25, 1) and
W , B, (X, Y )⊤ are all independent of each other. This contamination corresponds to a strong contamination in the direction
of the second canonical direction of (X, Y )⊤.
C2: (Xi, Yi)⊤ are i.i.d. and the process Xi and Yi are such that

Xi ∼ (1 − B) X + B

⎛⎝ξ1 f1 + W
f3 + f4
√
2

+ 0.1 ξ3 f3 + 0.1 ξ4 f4 +

21∑
j=5

ξj fj

⎞⎠
Yi ∼ (1 − B) Y + B

⎛⎝ζ1 f1 + W
f3 + f4
√
2

+ 0.1 ζ3 f3 + 0.1 ζ4 f4 +

21∑
j=5

ζj fj

⎞⎠
where B ∼ B(1, 0.1),W ∼ N (25, 0.01) independent of B, X and Y and (ξ⊤, ζ⊤)⊤ ∼ N (0,Σ). This contamination corresponds
to a strong contamination in the direction of a linear combination of the third and fourth canonical weights of (X, Y )⊤.

It is worth noticing that, when ρ is the Pearson correlation, Φℓ(P) = Ψℓ(P) = fℓ for ℓ = 1, 2, 3 under C0, but not
necessarily for the contaminated distributions. More precisely, under C1 the order between f1 and f2 is reversed when using
ρ = ρcl, so the first canonical directions are Φ1(P) = Ψ1(P) = f2 for this association measure, while f1 corresponds to the
second canonical weights.

6.3. Simulation results

For each situation, we evaluate the performance of the first canonical directions and themaximum canonical association.
To compare the performance of the first canonical weight estimators (Φ̂1, Ψ̂1) of (Φ1, Ψ1), we compute

• a global goodness of fit measure, denoted as MISE, considered also in He et al. [26], which is the average over
replications of ∥Φ̂1 − Φ1∥

2
+ ∥Ψ̂1 − Ψ1∥

2.
• the average over replications of the absolute Pearson correlation between the canonical variates computed only for

the non-atypical data, that is, the average of

ρ̂X = ρ̂cl,XX,clean(Φ1, Φ̂1) =

⏐⏐⏐∑n
i=1(1 − Bi)UiÛi

⏐⏐⏐√∑n
i=1(1 − Bi)Û2

i
∑n

i=1(1 − Bi)U2
i

,

where Ui = ⟨Xi, Φ1⟩ and Ûi = ⟨Xi, Φ̂1⟩. This measure provides a way to quantify how the proposals fit the good
observations. A similar measure was computed for Ψ̂1.
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Fig. 2. MISE of the canonical weight estimators (in red triangles) and average of ρ̂X = ρ̂cl,XX,clean(Φ1, Φ̂1) (in blue solid points), when using the Pearson
correlation ρcl , the association measure ρVm defined in (2) and the normalized Spearman coefficient ρsp given in (3). The considered sieve bases are the
cubic B-spline basis and the basis of estimated functional principal directions, labelled B-Splines and FPC, respectively.

Fig. 3. Mean (in blue solid points) andmean square error (MSE) (in red triangles) of the estimators ρ̃1 , when using the Pearson correlationρcl , the association
measure ρVm defined in (2) and the normalized Spearman coefficient ρsp given in (3). The considered sieve bases are the cubic B-spline basis and the basis
of estimated functional principal directions, labelled B-Splines and FPC, respectively.

Taking into account that the results obtained for Ψ̂1 are similar to those obtained for Φ̂1, we only report the summary
measures for the first component of the canonical direction estimators.More precisely, Table 1 reports theMISE and averages
over replications of ρ̂X for different association measures and bases. We also report the median of the dimension p̂ obtained
by cross-validation to illustrate how the contaminations affect the dimension of the chosen linear spaces.

The better performance of the estimators computed using a robust association measure is better illustrated in Figs. 2 and
3, where, for simplicity, the functional principal direction basis is denoted FPC. More precisely, Fig. 2 plots in red triangles
and blue solid circles the MISE and the average over replications of ρ̂X = ρ̂cl,XX,clean(Φ1, Φ̂1) respectively.

Note that for clean data the average of ρ̂X is close to 1, while the values of theMISE are small, as expected. This fact ismore
evident in Fig. 2 which reveals that under C0 all the procedures lead to similar results. On the other hand, for contaminated
samples the estimators based on Pearson’s correlation are strongly affected by the presence of outliers. Indeed, in this case
Fig. 2 shows that the average values of ρ̂cl,XX,clean(Φ1, Φ̂1)move away from1 approaching 0 and theMISE grows taking values
very close to 4, which is the maximum possible value. On the other hand, both robust estimators give more resistant results.
However, the proposal based on the Spearman coefficient stands out, since it has the lowestMISE value and the average over
replications of ρ̂cl,XX,clean(Φ1, Φ̂1) is the one closer to 1 for the considered bases in both contaminated scenarios.

To summarize the behaviour of a given estimator ρ̂1 of the maximum canonical association ρ1, we compute the mean
over replications of the obtained values as well as the mean square error (MSE). Table 2 reports the mean and mean square
error (multiplied by 104) of the estimators ρ̂1 and ρ̃1 = ρ̃p̂,1. On the other hand, Fig. 3 shows the mean and MSE of the
estimators ρ̃1 in blue solid points and red triangles respectively revealing the sensitivity of the classical procedure based on
the Pearson correlation that increases its mean square error due to its increased bias. The same conclusion can be obtained
from the estimator ρ̂1 reported in Table 2. Indeed, for clean data the mean values of the estimates ρ̂1 are close to ρ1 and the
MSE are low and very similar to each other. However, it should be noted that the estimates ρ̂1 present a positive bias in all
cases, while the estimator ρ̃p̂,1 is slightly negatively biased. In this scenario, the absolute bias of ρ̃p̂,1 is lower than that of ρ̂1,
leading to MSE values which are in general smaller than those of ρ̂1.

For contaminated samples, both estimators ρ̂1 and ρ̃p̂,1 are strongly affected, moving away from ρ1, when the Pearson
correlation is used. The best procedure is the one based on the normalized Spearman coefficient giving the smallest mean
square errors and only a small increase on the estimators bias. As for uncontaminated samples, the MSE of ρ̃p̂,1 is somewhat
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Table 1
MISE and mean over replications of ρ̂X = ρ̂cl,XX,clean(Φ1, Φ̂1) for different contamination settings, when using the Pearson correlation ρcl , the association
measure ρVm defined in (2) and the normalized Spearman coefficient ρsp given in (3). The median of the dimension p̂ obtained by cross-validation is also
reported. The considered sieve bases are the cubic B-spline and the estimated functional principal directions bases.

C0 C1 C2

ρ p̂ ρ̂X MISE p̂ ρ̂X MISE p̂ ρ̂X MISE

B-splines

ρcl 3 0.98 0.14 3 0.21 3.20 5 0.28 2.98
ρVm 3 0.96 0.23 4 0.82 0.82 5 0.84 0.87
ρsp 4 0.95 0.26 4 0.93 0.38 5 0.90 0.54

Functional principal direction basis

ρcl 4 0.97 0.23 3 0.19 3.30 4 0.26 3.07
ρVm 5 0.95 0.33 5 0.81 0.94 5 0.83 0.90
ρsp 4 0.95 0.33 4 0.89 0.57 5 0.89 0.56

Table 2
Mean and mean square error (multiplied by 104) of the maximum canonical association estimators ρ̂1 and ρ̃1 = ρ̃p̂,1 for different contamination settings,
when using the Pearson correlation ρcl , the association measure ρVm defined in (2) and the normalized Spearman coefficient ρsp given in (3). The median
of the dimension p̂ obtained by cross-validation is also reported. The considered sieve bases are the cubic B-spline and the estimated functional principal
directions bases.

C0 C1 C2

Mean 104
×MSE Mean 104

×MSE Mean 104
×MSE

ρ p̂ ρ̂1 ρ̃1 ρ̂1 ρ̃1 p̂ ρ̂1 ρ̃1 ρ̂1 ρ̃1 p̂ ρ̂1 ρ̃1 ρ̂1 ρ̃1

B-splines

ρcl 3 0.73 0.69 34 33 3 0.91 0.90 437 415 5 0.89 0.87 373 306
ρVm 3 0.74 0.69 45 36 4 0.86 0.82 288 171 5 0.82 0.75 177 57
ρsp 4 0.75 0.68 53 45 4 0.80 0.76 124 63 5 0.79 0.72 104 42

Functional principal direction basis

ρcl 4 0.73 0.68 36 40 3 0.91 0.90 435 419 4 0.89 0.87 356 321
ρVm 5 0.74 0.68 48 45 5 0.86 0.81 287 146 5 0.82 0.74 167 57
ρsp 4 0.75 0.67 55 62 4 0.79 0.73 116 52 5 0.78 0.71 92 43

lower than the one obtained with ρ̂1, in all cases. We can explain this result by the nature of the introduced contamination,
which tends to increase the values of the correlation estimators. Recall that for clean samples ρ̃p̂,1 has a negative bias, while
ρ̂1 has a positive bias. In this case, as a result of the considered contamination, the estimators ρ̃p̂,1 and ρ̂1 give larger values
resulting in estimators ρ̃p̂,1 with smaller bias than ρ̂1.

We also study the performance of the two methods proposed in Section 5 to detect influential observations. For each
detection method, Tables 3 and 4 report the average sensitivity and specificity over the 1000 replications. Recall that
sensitivity is the proportion of actual atypical trajectories that are correctly flagged as such,while specificity is the proportion
of non-atypical curves correctly identified as not atypical. An idealmethodwill simultaneouslymaintain high sensitivity and
specificity. As described in Section 5, the detection rule based on prediction flags as outliers the observations with indices in
the sets GX , GY or GX ∪GY defined therein, leading to the detectionmethods denoted atX , atY and atXoY respectively in Table 3.
On the other hand, the cross-prediction method defines three sets of indices GX , GY and GX+Y based on the skewed-adjusted
boxplot of the cross-prediction residuals norms. Any observation with index in the sets GX , GY , GX ∪GY or GX+Y is considered
as a potential atypical data, leading to the detection rules labelled by atX , atY , atXoY and atX+Y respectively in Table 4.

As shown in Tables 3 and 4, all detection rules have high specificity levels under all scenarios, even though the rules based
on atXoY identifymore data as atypical, resulting in a slightly lower specificity but a higher sensitivity. This behaviour ismore
clearly observed in Figures S.1 and S.2 in the supplementary file.

For the method based on prediction, the detection rule atXoY seems to be the one with the best performance, since the
decrease in specificity with respect to those labelled atX or atY is small compared to the increase in sensitivity obtained.
Analogous results are observed in themethod based on cross-predictions when using the detection rules atX+Y and atXoY . In
almost all cases, the detection rule atXoY corresponding to the method based on prediction overcome in sensitivity the rules
based on cross-prediction.

For the scenarios considered here, the detection rule atXoY based on prediction, using the functional principal direction
basis and the transformed Spearman correlation leads to specificity results similar to those obtainedwith B-splineswith only
a slightly smaller sensitivity. Taking into account that the functional principal direction basis is adaptive, the practitioner
may prefer to use as a diagnostic tool the rule atXoY based on prediction, the association measure ρsp and the functional
principal direction basis, when considering a real data set. However, taking into account the better overall performance of
the detection rule based on B-splines and the fact that the B-spline basis is sufficiently rich to represent most data sets, we
still recommend using this basis for diagnostic purposes.
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Table 3
Specificity and sensitivity for the detection rule based on the prediction errors squared norm R2

X,i = ∥X (c)
i −X̂ (c)

i ∥
2
H1

or R2
Y ,i = ∥Y (c)

i −Ŷ (c)
i ∥

2
H2

. The estimators
are obtained using the association measure ρVm defined in (2) or the normalized Spearman coefficient ρsp given in (3) combined with two possible sieve
bases: the cubic B-spline basis and the basis of estimated functional principal directions.

ρ C0 C1,0.1 C2,0.1

Specificity Specificity Sensitivity Specificity Sensitivity

atX atY atXoY atX atY atXoY atX atY atXoY atX atY atXoY atX atY atXoY
B-splines

ρVm 0.991 0.991 0.982 0.998 0.998 0.997 0.887 0.888 0.917 0.999 0.999 0.998 0.933 0.929 0.966
ρsp 0.990 0.991 0.981 0.999 0.999 0.998 0.964 0.978 0.994 0.999 0.999 0.998 0.984 0.978 0.997

Functional principal direction basis

ρVm 0.990 0.991 0.982 0.999 0.999 0.998 0.887 0.884 0.920 0.999 0.999 0.998 0.914 0.911 0.953
ρsp 0.991 0.991 0.982 0.999 0.999 0.998 0.949 0.956 0.973 0.999 0.999 0.998 0.980 0.976 0.995

Table 4
Specificity and sensitivity for the detection rule based on the cross-prediction errors squared norm r2X,i = ∥x(c)i − x̂∗

v̂,i∥
2
Rp and r2Y ,i = ∥y(c)i − ŷ∗

û,i∥
2
Rq . The

estimators are obtained using the association measure ρVm defined in (2) or the normalized Spearman coefficient ρsp given in (3) combined with two
possible sieve bases: the cubic B-spline basis and the basis of estimated functional principal directions.

ρ C0 C1,0.1 C2,0.1

Specificity Specificity Sensitivity Specificity Sensitivity

atX atY atXoY atX+Y atX atY atXoY atX+Y atX atY atXoY atX+Y atX atY atXoY atX+Y atX atY atXoY atX+Y

B-splines

ρVm 0.992 0.992 0.984 0.991 0.999 0.999 0.998 0.999 0.812 0.815 0.869 0.883 0.999 0.999 0.998 0.999 0.834 0.814 0.907 0.912
ρsp 0.992 0.992 0.984 0.991 0.999 0.999 0.998 0.999 0.931 0.932 0.975 0.978 0.999 0.999 0.998 0.999 0.858 0.862 0.942 0.953

Functional principal direction basis

ρVm 0.992 0.992 0.983 0.989 0.998 0.998 0.997 0.998 0.748 0.748 0.821 0.821 0.999 0.999 0.998 0.999 0.890 0.883 0.943 0.942
ρsp 0.991 0.991 0.983 0.990 0.999 0.999 0.997 0.999 0.870 0.873 0.929 0.919 0.999 0.999 0.998 0.999 0.959 0.957 0.988 0.989

7. Example: the writing data set

To illustrate the performance of the proposed first canonical directions estimators and of the atypical data detection rules,
we consider the writing data set described in the Introduction. We only analyse the 186 data related to the speed of the pen
on the horizontal and vertical axis when writing the letter ‘‘e’’ denoted X(t) and Y (t) respectively.

To identify potential atypical observations, we use as detection rules those that turn out to be the most effective
ones in the simulation study described in Section 6. Table 5 reports the indices corresponding to observations detected
as outliers/influential by the prediction and cross-prediction methods using the detection rules labelled atXoY and atX+Y
respectively. The estimates of the first canonical weights were computed as described in Section 6.1, using the normalized
Spearman coefficient ρsp defined in (3) combined with B-splines and with the functional principal direction basis. The
dimension of the approximating spaces was selected by the cross-validation criterion given in (13) with R = {(p, p) , 3 ≤

p ≤ 11}, when using B-splines and R = {(p, p) , 1 ≤ p ≤ 11} for the functional principal direction basis. When the
maximum was attained at 11, the possible values of p were enlarged up to 20. For the B-spline basis, the pair satisfying
(13) has coordinates p̂ = 8, while for the functional principal direction basis the maximum is attained at p̂ = 5. It is worth
noticing that for the B-spline basis, when 5 ≤ p ≤ 8, the values of RCV(p,p) are very close to the maximum RCV(p̂,p̂) (see
Figure S.3 in the supplementary file available on-line). In order to show that, for B-splines, with a smaller dimension of the
approximating spaces we can also obtain reliable results, Table 5 reports the results corresponding to dimension p = 5.
Observations 33, 38, 139 and 175 are detected as atypical or influential curves for all bases and detection methods. On the
other hand, when using the functional principal direction basis, the detection rule based on predictions detects as atypical
some additional observations.

In order to evaluate the influence of the potential atypical data on the estimators based on the Pearson correlation,
the classical estimates of the canonical weights were computed after removing the detected atypical observations. More
precisely, when using B-splines, the observations with indices in I1 = {33, 38, 139, 175} are excluded from the analysis.
On the other hand, when projecting on the functional principal direction basis, taking into account that the observations
in I1 are also detected by the cross-prediction method, we compute the estimators based on the data set without the
observations in I1 and those obtained omitting the trajectories with indices in I2 = {7, 33, 38, 113, 139, 154, 175, 137, 140}.
We denote as Φ̂

−Ij
cl,1 the classical first canonical weight estimator in the X space obtained after removing the observations

indexed in Ij, while Φ̂cl,1 or Φ̂sp,1 stand for the estimators computed with the whole data set using the Pearson correlation
or the normalized Spearman coefficient respectively. The results for the maximal canonical association are reported in the
supplementary file,while the results obtained for the first canonicalweight associated to Y are omitted, since they are similar
to those corresponding to X .
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Table 5
Atypical observations detected by the prediction and cross-prediction methods us-
ing normalized Spearman coefficient combined with the cubic B-spline basis or the
basis of estimated functional principal directions. The dimension of the approxi-
mating subspaces is also reported.

B-splines

p Detection rule Index of the detected observation
5 Prediction method atXoY 33, 38, 139, 175
5 Cross-prediction method atX+Y 33, 38, 139, 175

Functional principal direction basis

p̂ Detection rule Index of the detected observation
5 Prediction method atXoY 7, 33, 38, 113, 139, 154, 175, 137, 140
5 Cross-prediction method atX+Y 33, 38, 139, 175

Table 6
Association between canonical variables and absolute cosine of the angle be-
tween the robust and classical first canonical weight estimates computed
with B-splines or with the functional principal direction basis using the Pear-
son correlation and the transformed Spearman coefficient. We label as −Ij
the results obtainedwhen the classical estimator is computed after removing
the observations indexed in Ij with I1 = {33, 38, 139, 175} and I2 =

{7, 33, 38, 113, 139, 154, 175, 137, 140}.

B-splines

ρ̂sp,cl ρ̂
−I1
sp,cl ĉsp,cl ĉ −I1

sp ,cl

0.71 1.00 0.09 0.99

Functional principal direction basis

ρ̂sp,cl ρ̂
−I1
sp,cl ρ̂

−I2
sp ,cl ĉsp ,cl ĉ −I1

sp ,cl ĉ −I2
sp ,cl

0.95 0.97 0.97 0.79 0.86 0.85

Table 6 gives some summary measures that illustrate the behaviour of the first canonical directions estimates of X . To
compare the performance of the classical estimators with those obtained using the normalized Spearman coefficient, we
report the absolute cosine of the angle between the robust and the classical first canonical weight estimates. As mentioned
above, the estimators based on the Pearson correlation are computed with the complete sample and after removing the
observations detected as atypical. We denote as ĉsp,cl the absolute cosine of the angle between Φ̂sp,1 and Φ̂cl,1 and as
ĉ

−Ij
sp,cl that of the angle between Φ̂sp,1 and Φ̂

−Ij
cl,1 . It is worth noticing that we cannot compute the measure ρ̂cl,XX,clean

defined in Section 6.3, since the abnormal data were not artificially introduced but detected by our diagnostic rules. For
that reason, taking into account that the Spearman coefficient provides a reliable measure when atypical data arise in the
sample, we report the empirical normalized Spearman correlation between the robust and classical canonical variables
corresponding to such canonical directions. More precisely, we report the values ρ̂sp,cl = ρsp(Pn[⟨Φ̂sp,1, X⟩, ⟨Φ̂cl,1, X⟩]) and
ρ̂

−Ij
sp,cl = ρsp(Pn[⟨Φ̂sp,1, X⟩, ⟨Φ̂

−Ij
cl,1 , X⟩]).

The obtained results show that, when considering the estimates based on B-splines and computed with the complete
data set, the robust and classical canonical weight estimators are far from each other, since the association measure ρ̂sp,cl is
far from 1 and the absolute cosine ĉsp,cl is close to 0 implying that the directions are almost orthogonal. On the other hand,
the canonical variable ⟨Φ̂sp,1, X⟩ and the classical one obtained when the potential outliers are removed, ⟨Φ̂−I1

cl,1 , X⟩, attain
the largest possible empirical association and the absolute cosine ĉ −I1

sp,cl is also close to 1. It is also worth noticing that, when
the whole data set is considered and the estimators are computed using the Pearson coefficient and B-splines, themaximum
of RCV(p,p) is attained at p̂ = 16 with value RCV(p̂,p̂) = 0.94, while the values of RCV(p,p) for 5 ≤ p ≤ 10 are between 0.78 and
0.85, so a smaller dimension cannot be considered in this case. On the other hand, after removing the data with indices in I1
the maximum is attained at p̂ = 5. Hence, the dimension of the approximating space and the canonical weights computed
with the Pearson correlation coefficient after removing the observationswith indices in I1 are closer to the canonicalweights
computed with the Spearman coefficient using the whole data set. Hence, as expected, the robust procedure leads to more
reliable results without excluding atypical data.

A different phenomenon is observed for the functional principal direction basis. In this situation, the classical and robust
first canonical variates in the space X , computed with the whole sample, are highly associated since ρsp(Pn[⟨Φ̂sp,1, X⟩,

⟨Φ̂cl,1, X⟩]) = 0.95, while the angle between the robust and classical canonical weights is close to 38◦. After removing the
potential atypical observations, the cosine of the angle slightly increases resulting in an angle around 30◦. Again, as expected,
the estimators based on the normalized Spearman coefficient computed with the complete data set give estimates close to
those obtained with the Pearson correlation coefficient after removing the observations detected as atypical.

To highlight the behaviour of the detected observations, Fig. 4 gives a plot of the data trajectories. The thin grey lines in the
background correspond to the complete set of observations, and they are included for visual reference, while the potential
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Fig. 4. Speed of the pen on the horizontal and vertical axes. Black dashed curves correspond to atypical observations with indices in I1 , while the black
solid curves to those with indices belonging to I2 − I1 .

atypical trajectories are given in black lines. To help in visualizing both sets of atypical data, Fig. 4 shows the potential outliers
with indices in I1 in black dashed lines, while those corresponding to indices in I2 − I1 are given in solid black lines (recall
that I1 ⊂ I2).

Most of the trajectories with indices in I2 − I1 correspond to individuals with a higher writing speed over the interval
[0.8, 1]. It is clear from Fig. 4 that the observationswith indices belonging to I1 correspond to observations far away from the
bulk of the data due to their behaviour both in shape and phase. More precisely, these trajectories seem to have a temporal
phase shift with respect to the bulk of the data. Effectively, the time when their maximum (minimum) is reached is far
from the time in which most of the trajectories reach their maximum (minimum). In particular, two of the trajectories of I1,
corresponding to the observation labelled as 139 and 175, present a distinctly different behaviourwithin the interval [0.8, 1]
(see Figures S.4 and S.5 in the supplementary file). In this two cases, the pen moves slower than the majority on the vertical
axis. Furthermore, the individual corresponding to the data labelled 175 has a handwriting of the character ‘‘e’’ slower than
most individualswhen ending itswriting. On the other hand, the observation labelled 33 is atypical since it has a highwriting
speed on the vertical axis and a low one on the horizontal axis within the interval [0.8, 1]. Finally, the maximum of X(t) in
the interval [0, 0.5] corresponding to observation 38 clearly exceeds the remaining trajectories. Moreover, this maximum
is attained approximately at t = 0.3, while for most of the data, the value where the maximum is reached is close to 0.2.
As shown in Figure S.6 of the supplementary file, the robust proposal given in this paper was useful to identify potential
atypical data which affect the estimation of the first canonical directions. These atypical data correspond to individuals with
a clearly different handwriting of the character ‘‘e’’.

8. Concluding remarks

In this paper, we introduce a family of robust estimators for the first canonical weights and the related maximal associa-
tion for functional data. Using robust association measures, our proposal adapts the projection-pursuit ideas introduced in
Alfons et al. [2], Branco et al. [9] and Croux and Filzmoser [12] for multivariate samples with the sieve approach considered
in He et al. [26].

Among other contributions, we provide an extension of the result given in Leurgans et al. [35], when a general association
measure and not only the Pearson correlation is used. More precisely, we show that the natural extension of the projection-
pursuit multivariate estimators considered in Alfons et al. [2] to the functional scenario fails, since directions can be found
with empirical canonical association equal to one,motivating our robust proposal which combines robust projection-pursuit
with the method of sieves as a smoothing tool.

The robust estimators introduced for the first canonical directions and the maximal association are consistent under
mild conditions on the association measure. As in the multivariate case, the proposed estimators are Fisher-consistent for
elliptical or Gaussian processes for appropriate choices of the association measure.

Finally, our simulation study confirms the inadequate behaviour of the classical estimators when atypical data arise in
the sample, while the robust procedures based on the association measure defined through an M-scatter matrix or the
normalized Spearman coefficient lead to more reliable results. In particular, we recommend the procedure based on the
normalized Spearman coefficient. As shown in our simulation study, the robust estimators are useful to detect atypical data
using the predicted canonical variates. The benefits of considering robust estimators are also illustrated on a real data set
where the detection rules reveal the presence of influential observations that would be missed otherwise.

The described procedure can be extended to robustly estimate the subsequent canonical correlations and directions.More
precisely, for k ≥ 2, the kth canonical directions related to the association measure ρ may be defined as (Φk(P), Ψk(P)) =

(Φk, Ψk) = argmax(u,v)∈Bk
ρXY (u, v), where Bk = {(u, v) ∈ S1 × S2 : ρXX (u, Φj) = ρYY (v, Ψj) = 0, for all 1 ≤ j ≤ k − 1},

while the kth maximal canonical association equals ρk(P) = ρ(P[⟨Φk, X⟩H1 , ⟨Ψk, Y ⟩H2 ]). The sieves estimators for the kth
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canonical directions are defined as (Φ̂k, Ψ̂k) = argmax(u,v)∈Bk,pn,qn
ρn (u, v), where ρn is given in (10) and Bk,pn,qn = {(u, v) ∈

S1,pn × S2,qn : ρ(Pn[⟨u, X⟩H1 , ⟨Φ̂j, X⟩H1 ]) = ρ(Pn[⟨v, Y ⟩H2 , ⟨Ψ̂j, Y ⟩H2 ]) = 0, for all 1 ≤ j ≤ k − 1} . Finally, the kth
maximal canonical association estimator equals ρ̂k = ρn

(
Φ̂k, Ψ̂k

)
. These estimators can be computed using the alternate

grid algorithm as described in Section 3.4 for the first canonical direction estimators. Consistency results for the canonical
directions and correlations when k ≥ 2 are an interesting topic but beyond the scope of this paper. The main difficulties
arise by the side null-association conditions ρ(Pn[⟨u, X⟩H1 , ⟨Φ̂j, X⟩H1 ]) = ρ(Pn[⟨v, Y ⟩H2 , ⟨Ψ̂j, Y ⟩H2 ]) = 0, for 1 ≤ j ≤

k − 1. It is worth noticing that, when dealing with the Euclidean case, Jin and Cui [33] impose orthogonality conditions,
i.e., ⟨u, Φ̂j⟩H1 = ⟨v, Ψ̂j⟩H2 = 0 as in principal component analysis to derive the consistency of the estimators loosing the
desired null association property between the canonical variates ⟨Φ̂j, X⟩H1 , 1 ≤ j ≤ k. These robust canonical direction
estimators may be helpful to obtain a resistant estimation procedure for functional canonical regression generalizing the
approach considered in He et al. [27].

Functional discrimination has been extensively considered and we refer to Cuevas et al. [15] and Hubert et al. [31] for a
depth approach, to Yao et al. [44] for an approachwhen dealingwith sparse data and to Baillo et al. [5] for further discussions.
The relation between canonical correlation and discriminant analysis has been widely described in the multivariate setting
and also extended to the functional case, see, for instance, Hastie et al. [23] and Ramsay and Silverman [40]. Hence, the robust
proposal considered in this paper may be useful to deal with robust functional optimal scoring and discriminant analysis
taking Y as a dummy vector coding the group class.
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